第3章 地基中的应力计算
工程地质与地基基础_03土中应力和沉降详解
主要内容
§3.1 §3.2 §3.3 §3.4 §3.5 土中自重应力 基底压力 地基附加应力 土的压缩性 地基最终沉降量
1/32
§3.1
土中自重应力
自重应力:由于土体本身自重引起的应力
确定土体初始 应力状态
土体在自重作用下,在漫长的地质历史时期,已经压 缩稳定,因此,土的自重应力不再引起土的变形。但对 于新沉积土层或近期人工充填土应考虑自重应力引起的 变形。
二、偏心荷载作用下的基底压力
F+G
e e b l pmax pmin
作用于基础底面 形心上的力矩 M=(F+G)∙e
pmax pmin
F G M A W
基础底面的抵 抗矩;矩形截 面W=bl2/6
pmax pmin
F G 6e 1 bl l
9/32
讨论:
pmax pmin
x
附加应力系数
P K 2 z
z
z
1885年法国学者布 辛涅斯克解
3Pz3 3P 3 z cos q 5 2 2R 2R
15/32
附加应力分布规律 距离地面越深,附加应力的分布范围越广 在集中力作用线上的附加应力最大,向两侧逐渐减 小 同一竖向线上的附加应力随深度而变化 在集中力作用线上,当z=0时,σz→∞,随着深 度增加,σz逐渐减小 竖向集中力作用引起的附加应力向深部向四周无限 传播,在传播过程中,应力强度不断降低(应力扩 散)
n z /b m l /b
矩形基础角点 下的竖向附加 应力系数
b为基础短边
19/32
角点法计算地基附加应力Ⅰ
p III II
o
III
第三章土中应力计算习题及答案解析
第三章土中应力计算一、填空题1.由土筑成的梯形断面路堤,因自重引起的基底压力分布图形是梯形,桥梁墩台等刚性基础在中心荷载作用下,基底的沉降是相同的。
2.地基中附加应力分布随深度增加呈曲线减小,同一深度处,在基底中心点下,附加应力最大。
3.单向偏心荷载作用下的矩形基础,当偏心距e > l/6时,基底与地基局部脱开,产生应力重分部。
4.在地基中,矩形荷载所引起的附加应力,其影响深度比相同宽度的条形基础浅,比相同宽度的方形基础深。
5.上层坚硬、下层软弱的双层地基,在荷载作用下,将发生应力扩散现象,反之,将发生应力集中现象。
6.土中应力按成因可分为自重应力和附加应力。
7.计算土的自重应力时,地下水位以下的重度应取有效重度(浮重度)。
8.长期抽取地下水位,导致地下水位大幅度下降,从而使原水位以下土的有效自重应力增加,而造成地基沉降的严重后果。
9.饱和土体所受到的总应力为有效应力与孔隙水压力之和。
二、名词解释1.基底附加应力:基底压应力与基底标高处原土层自重应力之差。
2.自重应力:由土层自身重力引起的土中应力。
3.基底压力:建筑物荷载通过基础传给地基,在基础底面与地基之间的接触应力。
三、选择题1.成层土中竖向自重应力沿深度的增大而发生的变化为:(B )(A)折线减小(B)折线增大(C)斜线减小(D)斜线增大2.宽度均为b,基底附加应力均为P0的基础,同一深度处,附加应力数值最大的是:(C )(A)方形基础(B)矩形基础(C)条形基础(D)圆形基础(b为直径)3.可按平面问题求解地基中附加应力的基础是:(B )(A)柱下独立基础(B)墙下条形基础(C)片筏基础(D)箱形基础4.基底附加应力P0作用下,地基中附加应力随深度Z增大而减小,Z的起算点为:(A )(A)基础底面(B)天然地面(C)室内设计地面(D)室外设计地面5.土中自重应力起算点位置为:(B )(A)基础底面(B)天然地面(C)室内设计地面(D)室外设计地面6.地下水位下降,土中有效自重应力发生的变化是:(A )(A)原水位以上不变,原水位以下增大(B)原水位以上不变,原水位以下减小(C)变动后水位以上不变,变动后水位以下减小(D)变动后水位以上不变,变动后水位以下增大7.深度相同时,随着离基础中心点距离的增大,地基中竖向附加应力:(D )(A)斜线增大(B)斜线减小(C)曲线增大(D)曲线减小8.单向偏心的矩形基础,当偏心距e < l/6(l为偏心一侧基底边长)时,基底压应力分布图简化为:(B )(A)矩形(B)梯形(C)三角形(D)抛物线形9.宽度为3m的条形基础,作用在基础底面的竖向荷载N=1000kN/m ,偏心距e=0.7m,基底最大压应力为:(C )(A)800 kPa (B)417 kPa (C)833 kPa (D)400 kPa10.矩形面积上作用三角形分布荷载时,地基中竖向附加应力系数K t是l/b、z/b的函数,b指的是:(D )(A)矩形的长边(B)矩形的短边(C)矩形的短边与长边的平均值(D)三角形分布荷载方向基础底面的边长11.某砂土地基,天然重度γ=18 kN/m3,饱和重度γsat=20 kN/m3,地下水位距地表2m,地表下深度为4m处的竖向自重应力为:(A )(A)56kPa (B)76kPa (C)72kPa (D)80kPa12.均布矩形荷载角点下的竖向附加应力系数当l/b=1、Z/b=1时,K C=0.1752;当l/b=1、Z/b=2时,K C=0.084。
土力学与地基基础(土中的应力计算)
矩形基础:A=b× 矩形基础:A=b×L
d1 + d2 Gk =A
Gk = γ G Ad
γG=20kN/m3
2、偏心荷载下的基底压力 单向偏心荷载下的矩形基础如图。 单向偏心荷载下的矩形基础如图。 设计时, 设计时,通常基底长边方向取与偏心 方向一致, 方向一致,最大压力值与最小压力值 按材料力学短柱偏心受压公式计算: 按材料力学短柱偏心受压公式计算:
p0 = pk − σ c
四、地基附加应力
地基附加应力是指建筑物荷载在土体中引起的附加于原有应力之上的应力。 地基附加应力是指建筑物荷载在土体中引起的附加于原有应力之上的应力。
(一)竖向集中应力作用下的地基附加应力
1、布辛奈斯克解 、
3p z3 3 1 p σz = = 2π ( r 2 + z 2 )5 / 2 2π ( r / z )2 + 1 5 / 2 z 2
第三章 地基土中的应力计算
一、概述 地基土中的应力: 地基土中的应力: 1、自重应力 2、附加应力
建筑物修建以前, 建筑物修建以前,地基中由于土 体本身的有效重量所产生的应力。 体本身的有效重量所产生的应力。 建筑物修建以后,建筑物重量等 建筑物修建以后, 外荷载在地基中引起的应力, 外荷载在地基中引起的应力,所 谓的“附加” 谓的“附加”是指在原来自重应 力基础上增加的压力。 力基础上增加的压力。
γ
γ′
均质地 基
γ1(γ
1
< γ2 )
γ2 γ′ 2
成层地基
(二)水平向自重应力
σ cx = σ cy = K 0σ cz
式中: 土的侧压力系数或静止土压力系数, 式中:K0——土的侧压力系数或静止土压力系数,经验值可查课本 土的侧压力系数或静止土压力系数 表3.1
土力学第三章
向下渗流
z z u H w h
存在向下渗流,有效自重应力增大γw⊿h
A点的有效自重应力:
3.4 基底压力计算
上部结构
建筑物设计
基础 地基
上部结构的自重及各 种荷载都是通过基础 传到地基中的。
基础结构的外荷载 基底反力 基底压力 基底附加压力 地基附加应力 地基沉降变形 基底压力:基础底面传递 给地基表面的压力,也称 基底接触压力。 暂不考虑上部结构的影响, 使问题得以简化; 用荷载代替上部结构。
Aw 1 A
PSi
PaVi
有效应力σ′
'u
3.2 有效应力原理
2. 有效应力原理
'u
σ:作用在饱和土中任意面上的总应力 σ′:作用在同一平面土骨架上的有效应力 u:作用于同一平面上孔隙水压力 土的变形和强度变化只取 决于有效应力的变化
3.2 有效应力原理
①变形的原因 颗粒间克服摩擦相对滑移、滚动—与 σ’ 有关; 接触点处应力过大而破碎—与 σ’ 有关。
②强度的成因 凝聚力和摩擦—与σ’ 有关 ③孔隙水压力的作用 对土颗粒间摩擦、土粒的破碎没有贡献, 并且水不能承受剪应力,因而孔隙水压力 对土的强度没有直接的影响; 它在各个方向相等,只能使土颗粒本身 受到等向压力,由于颗粒本身压缩模量很 大,故土粒本身压缩变形极小。因而孔隙 水压力对变形也没有直接的影响,土体不 会因为受到水压力的作用而变得密实。
pmax
min
y
P 6e 1 A b
3.5.2 基础底面接触压力
2、偏心荷载作用——单向偏心荷载 P b e x y
p max
pmax
min
第三章地基中的应力
非均质和各向异性地基中的附加应力
(a) 刚性下卧层(上软下硬)(出现应力集中) (b) 软弱下卧层(上硬下软)(产生应力扩散)
图 双层地基中的竖直应力σz
O
h1=2.5m
1
1 18.23 KN / m3
1
h2=2.0m
2
2 18.62 KN / m3
2
' 3 9.8KN / m3
h3=1.5m
3
3
' 4 9.4 KN / m3
h4=2.0m
4
4
Z
土的自重应力
1-1面 cz1 γ 1h1 18.23 2.5=45.58kpa
O
2-2面
h1=2.5m
1
r1=18.23KN/m 3
1
σ cz2 σ cz1 γ 2h 2
45.58 18.62 2 82.82kpa
3-3面
σ cz3 σ cz2 γ h 3
' 3
h2=2.0m
2
r2=18.62KN/m 3
2 '=9.80KN/m 3 r1 3 3 '=9.40KN/m 3 r1 4 4
土的自重应力
地下水位以下的土:
地面
z
cz
'z
cz z
'
式中: ' 为土的有效重度,kN/m3;z为土柱的高度,即计算应力 点以上土层的厚度,m。
土的自重应力
地下水位以下,用有效重度;不同土层的重量可以叠加
h3 cz 1h1 2 h2 3
地面
1
研究土体中的应力是研究地基变形与地基失稳 的基础。 支承建筑物荷载的土层称为地基 与建筑物基础底面直接接触的土层称为持力层 将持力层下面的土层称为下卧层
地基中的应力计算
地基中的应力计算地基是地下工程中最基本的构造部分,承受着上部结构的重量和荷载,承担着巨大的压力作用。
在地基设计中,应力计算是非常重要的一部分,它能够提供地基承载力和安全性的评估。
本文将介绍地基中应力计算的方法和计算公式。
首先,需要了解地基中的应力是如何形成的。
地基承受的主要应力有自重应力、活载荷载应力和附加应力。
自重应力是由于地基材料本身的重量所引起的应力,可以通过材料的密度和重力加速度计算得到。
活载荷载应力是由上部结构的荷载所引起的应力,可以根据上部结构的设计荷载计算得到。
附加应力是由于地基中存在的其他因素所引起的应力,比如建筑物的自身形变引起的应力。
接下来,我们介绍如何计算地基中的应力。
地基中的应力计算可以根据不同的地基类型和荷载情况采用不同的方法。
下面以均质土壤的地基为例,介绍几种常用的应力计算方法。
1.利用铁索计算应力:铁索是一种常用的应力计算工具,可以通过测量铁索的伸长量来计算地基中的应力。
首先,在地基中铺设一根长度合适的铁索,然后测量并记录铁索的伸长量。
根据该伸长量和铁索的初始长度,可以通过应力-应变关系计算得到地基中的应力。
2.利用试孔计算应力:试孔是另一种用于计算地基中应力的方法。
首先,在地基中进行试孔,并记录试孔的深度和直径。
然后,根据试孔的直径和土壤的剪切强度,可以计算得到地基中的应力分布情况。
3.利用数值模拟计算应力:数值模拟是一种常用的计算地基应力的方法,它可以通过建立地基的有限元模型来模拟地基的应力分布情况。
首先,需要根据地基的实际情况建立有限元模型,然后通过数值计算方法求解得到地基中的应力。
综上所述,地基中的应力计算是地基设计的重要环节,可以通过铁索、试孔和数值模拟等多种方法进行计算。
在进行应力计算时,需要考虑地基的类型、荷载情况和材料特性等因素,确保计算结果的准确性和可靠性。
地基中的应力计算对于确保地基的稳定性和安全性具有重要意义,是地基设计中不可或缺的一环。
土力学-第三章地基中的应力计算1
σ z : τ zy : τ zx = z : y : x
P σz = k ⋅ 2 z
3 1 3 1 k= = 2 5/ 2 2π [1 + (r / z) ] 2π [1 + tg2β ]5/ 2
查表3 查表3-1
集中力作用下的 应力分布系数
z
σ x τxy τxz σ ij = τyx σ y τyz τzx τzy σ z
∞ ∞ ∞ ∞
σ y σ z τ yx 学关于力的方向的规定
τzx
材料力学
σz +
正应力
剪应力 顺时针为正 逆时针为负
-
τzx
土力学
σz +
τxz
2. 竖直集中力作用下的附加应力计算 根据布辛涅斯克解
3 P 3P z3 2 cos β = σz = 2 2 πR 2π R5
3P yz2 τzy = 2π R5 3P xz2 τzx = 2π R5
R 2 = r 2 + z 2 = x2 + y 2 + z 2
3P z3 3 1 P σz = = 5 2π R 2π [1 + (r / z)2 ]5/ 2 z2
γ
γ′
均质地基
γ1 (γ
1
< γ2 )
γ2 γ′ 2
成层地基
算例分析
某地基的地 质剖面如图 所示,求各 层土界面上 竖向的自重应 力,并画出分 布图。
答案: 根据土层和地下水位将上述地质剖面分为4层 根据土层和地下水位将上述地质剖面分为 层
γ ′ = γ sat − γ w σ 0z = 0 σ 1 z = γ 1 h1 = 17.5kPa
γ xy = γ yz = γ zx = 0
第三章土和地基中的应力及分布
§3.1 土中一点的应力状态和应力平衡方程
一、地基中应力的种类
1、土体自重产生的自重应力(self-weight stress) 2、建筑物荷载引起的附加应力(stress in aground)
二、 应力(stress)—应 变(strain)关系的假定
土体中的应力分布,主要取决 于应力—应变关系特性。真实的应 力—应变关系非常复杂,为简化计 算,假定土体为均质、各向同性的 半无限线弹性体(semi-infinite elastic body),其应力应变关系 如图。
在一般情况下,饱和土体所受总应力由孔隙水和土骨架承担,即总应力等于 孔隙水压力和有效压力。当总压力σ不变,u的减小就意味着σ的增加,反之亦然。 如饱和粘土在地下水面以下,孔隙水压力乃为地下水面以下水柱压力。由外力 引起的附加孔隙水压力,称为超静水压力。还有一种作用在骨架单位体积上的 力,它也能使骨架变形,这是一种体力,一般称为有效力。如地下水面上的容 重,地下水面以下的浮容重 =sat - w。
图A压力作用下孔隙水上,砂层不产生压缩,图B压力作用在土骨架上,应 力通过土骨架传递下去,砂层产生压缩变形。
1 、几个概念
(1)有效应力(effectives stress):凡使骨架产生变形的力, 称为有效应力σ。
(2)孔隙水压力(pore water pressure):孔隙水所承担压力 称为孔隙水压力或孔隙压力,也称为中性压力,用u表示。
地基中的几种应力状态 计算地基应力时,将
地基当作半无限空间弹 性体。 1. 三维应力状态
ij yxxx
xy yy
xz yz
zx zy zz
矩阵表达式
每一点的应力状态都可用9个应力分量(独立的有6个)
土力学-第三章-地基中的应力状态、有效应力原理1 张丙印
智者乐水 仁者乐山
应力状态及应力应变关系
有效应力原理 自重应力 基底压力计算 附加应力
修建筑物以前,地基中由 土体重量所产生的应力
建筑物重量等外荷载在地 基中引起的应力增量
土体中的应力计算
3
第三章:本章概要
智者乐水 仁者乐山
3-1(假定水位骤降后,黏土和粉质黏土
层中孔隙水压力近似为0)
3-2 3-3 3-4
智者乐水 仁者乐山
z zx xz x
εy γ yx γ yz
地基中的应力状态(2)
9
§3.1 地基中的应力状态
智者乐水 仁者乐山
二维应力状态(平面应变状态)
应变条件 εy
γ yx γ yz
εx
εij
0
0
γ
xz
0
0
γ
xz
0
εz
应力条件
εy
σy E
ν E
σx σz
独立变量 εx εy ; εz
σc 0
σ ij
0
σc
0 0
试 样
y
x
σx σy σc
0
εx 0 0
0
εij
0
εx
0
σz
0 0 εz
地基中的应力状态(1) 8
§3.1 地基中的应力状态
二维应力状态(平面应变状态)
o
y
z
x
y
z zx xy
yz
x
垂直于y轴断面的几何形状与应力状态相同 沿y方向有足够长度,l/b≧10 在x, z平面内可以变形,但在y方向没有变形
13
§3.1 应力状态及应力应变关系
智者乐水 仁者乐山
3地基中的应力计算
第三章 地基中的应力计算土中的应力按引起的原因可分为:(1)由土本身有效自重在地基内部引起的自重应力;(2)由外荷(静荷载或动荷载) 在地基内部引起的附加应力。
应力计算方法:1.假设地基土为连续、均匀、各向同性、半无限的线弹性体;2.弹性理论。
第一节 土中自重应力研究目的:确定土体的初始应力状态研究方法:土体简化为连续体,应用连续体力学 (例如弹性力学)方法来研究土中应力的分布。
假设天然土体是一个半无限体,地面以下土质均匀,天然重度为γ (kN/m3),则在天然地面下任意深度z (m)处的竖向自重应力σcz (kPa),可取作用于该深度水平面上任一单位面积上土柱的重量γz ⨯ l 计算,即: σcz= γzσcz 沿水平面均匀分布,且与z 成正比,即随深度按直线规律分布地基中除有作用于水平面上的竖向自重应力外,在竖直面上还作用有水平向的侧向自重应力。
由于地基中的自重应力状态属于侧限应力状态,故εx=εy=0,且σcx = σcy ,根据广义虎克定理,侧向自重应力σcx 和σcy 应与σcz 成正比,而剪应力均为零,即σcx = σcy = K0σczτxy=τyz=τzx =0式中 K0 ―比例系数,称为土的侧压力系数或静止土压力系数。
它是侧限条件下土中水平向有效应力与竖直向有效应力之比。
(1) 土中任意截面都包括有骨架和孔隙的面积,所以在地基应力计算时考虑的是土中单z σsz = γz 天然地面σcy zσcx天然地面σcz位面积上的平均应力。
(2) 假设天然土体是一个半无限体,地基中的自重应力状态属于侧限应力状态,地基土在自重作用下只能产生竖向变形,而不能有侧向变形和剪切变形。
地基中任意竖直面和水平面上均无剪应力存在。
(3) 土中竖向和侧向的自重应力一般均指有效自重应力。
为了简便起见,把常用的竖向有效自重应力σcz ,简称为自重应力,并改用符号σc 表示。
成层地基土中自重应力因各层土具有不同的重度。
土力学与地基基础(第三章土的自重应力计算)_图文
一、竖向集中力下的地基附加应力
由上面分析和图可知,集中力P在地基中引起的附加应力在地基中向深 部和四周无限传播,在传播过程中应力强度逐渐降低。为直观表示出这 种现象,绘出应力等值线,其空间形状如泡状,称为应力泡。图中离集 中力作用点越远,附加应力越小,这种现象称为应力扩散现象。
集中力作用下土中的自重应力分布图
r z
5
2
2
一、竖向集中力下的地基附加应力 2、多个竖向集中力下的地基附加应力
z
1 z2
n
i1
i Fi
例2:在地基中作用有一集中力P=100kN,求:(1)在地基中z=2m的水平 面上,水平距离r=0,1,2,3,4m处各点的附加应力,并绘出分布图; (2)在地基中r=0的竖直线上距地基表面z =0,1,2,3,4m处各点的附 加应力,并绘出分布图; (3)取σ z =10,5,2,1kPa,反算在地基中z =2m的水平面上的r值和在r=0的竖直线上的z值,并绘出相应于该四个应 力值的σ z等值线图。
在距地表深度z处,土体的自重应力为:
竖向:sz = z 水平向:sx = sy = K0 sz 剪应力:τxy= τyz= τzx
H1
地下水位
H2
sz sx
sy
一、均质土中竖向自重应力
σ(kPa)
cz= z
z
地基中的初始应力,即地基中任一点的自重应力,只需用竖向应力和
水平向应力表示。天然地面下任意深度z处水平面上的竖向自重应力为
cz= z
竖直面上的水平向自重应力为
cx=K0 cz = K0 z
K0 为静止侧压力系数。
二、成层土中自重应力
土力学地基中的应力计算
p
arctan
1
2(x / b) 2(z / b)
arctan 1 2(x / b) 2(z / b)
4 z [4( x )2 4( z )2 1]
bb
b
[4( x )2 4( z )2 1]2 16( z )2
b b
b
b
b
13
•带状三角形荷载
b
p
x
z
Mx
(x, z)
z
查表3-3
e 基底压力呈三角形分布
e 基底局部出现拉应力
基底与地基脱开
对于矩形底面,= b
6
37
(1) 矩形底面单轴偏心荷载作用时(e)
由竖向、弯矩平衡方程
P
b 2
(
p1
p2 ) a
M
b 2 ( p1
p2
)
a
(
b 2
b) 3
p1 p2
PM AW
P (1 A
e)
P 1 A
6e b
e a
b
P M Pe
z
p
{x b
(arctan
x z
/ /
b b
arctan
x
/b 1) z/b
z b
(x
/
b
x/b 1)2
1 (z
/
b)2
}
k(x b
,
z b
)
p
•带状梯形荷载
14
5、矩形均布面积荷载作用下附加应力旳计算
1)角点下旳垂直附加应力
dP pdxdy
d z
3dP 2
z3 R5
3p 2
z3 R5
dxdy
第3章 土体中的应力计算
3
土体中的应力计算
概
述
研究土中的应力和分布规律是研究地基和土工建筑物变形
和稳定问题的依据
自重应力 附加应力 惯性力 渗透力
: 由土体自身重量所产生的应力 :由外荷载引起的土中应力
1 地基中的几种应力状态 a、三维(空间)应力状态
xy xy xz ij yz yy yz zx zy zz
zz (OXAY ) zz (OYBZ) zz (OZCT) zz (OTDX )
A
Y O
B
Z
Point of interest
zo ( KsI KsII KsIII KsIV ) p
(b)O 在荷载面外部
O D C X D Z O
(q)
C
(q)
影响因素 (1) 分布荷载p(x,y)的分布规律及其大小 (2) 分布荷载作用面积 A 的几何形状及大小
(3) 应力计算点的坐标值
z p0
3.3.2.1 空间问题的附加应力计算 (一) 矩形面积竖直均布荷载 1. 角点下应力
B
dP dA
x
p
x L y x
R z
R
z
集中荷载 dP = dxdyp0, M点处 dz 为
基压缩变形的主要原因。因为一般基础都埋臵于地面下一定深度,因此在计
算由建筑物造成的基底附加压力时,应扣除基底标高处土中原有的自重应力
p0 p cd p 0 d
cd
cd
p
cd
p0
3.3 地基中的附加应力
附加应力:指建筑物荷重在土体中引起的附加于原有应力之上 的应力。
土力学第三章
σy = ν(σx +σz )
§3 土体中的应力计算
§3.3 地基中附加应力的计算
七. 条形面积竖直均布荷载作用下的附加应力计算
任意点下的附加应力— 任意点下的附加应力—F氏解的应用
p
σz = Ksp z σx = Ks p x τxz = Kszp x
y
B
x
z
x
z
M
x z Ks ,Ks ,Ksz = F(B, x, z) = F( , ) = F(m n) , z x x B B
§3 土体中的应力计算
§3.3 地基中附加应力的计算
五. 矩形面积水平均布荷载作用下的附加应力计算
角点下的垂直附加应力 ——C氏解的应用 氏解的应用
B
σz = mKhph
L z Kh = F(B, L, z) = F( , ) = F(m n) , B B
ph
L
σz
z
σz
矩形面积作用水平均布荷载时角点下的应力分布系数
i =1
n
i i
σ c = γ 1h1 + γ 2 h2 + ...... + γ n hn = ∑ γ h
i =1
n
i i
式中,
1、各层土容重地下水位以上取天然容重; 、各层土容重地下水位以上取天然容重; 2、地下水位以下砂土取浮容重 、 3、粘性土液性指数IL大于 时取浮容重; 、粘性土液性指数 大于1时取浮容重 时取浮容重; 4、粘性土液性指数IL小于等于 时取天然容重, 、粘性土液性指数 小于等于0时取天然容重 时取天然容重, 5、IL在0~1之间时依最不利原则取天然或浮容重。 、 之间时依最不利原则取天然或浮容重。 ~ 之间时依最不利原则取天然或浮容重
地基中的应力计算
pmax
min
P A
1
6e B
pmin
P A
1
6e B
pmax
min
P A
1
6e B
矩形面积单向偏心荷载
高耸结构物下可 能的的基底压力
P
P
P
土不能承受拉力
B
B
e
e
x
Lx
L
y
y
pmax
pmin 0 pmax
pmin 0
e<B/6: 梯形
e=B/6: 三角形
B
压力调整
Ke
基底
x
L
水平地基半无限空间体;
半无限弹性地基内的自重应
力只与Z有关;
土质点或土单元不可能有侧
向位移侧限应变条件;
y
任何竖直面都是对称面
▪应变条件
y x 0; xy yz zx 0
o x
A
B
z
sA sB
(4)侧限应力状态—— 一维问题
▪应变条件
y x 0;
xy yz zx 0
K
P z2
查表3-1
一. 竖直集中力作用下的附加应力计算
P
-布辛内斯克课题
P z K z2
o αr
y
x
x
M’
R βz
3
1
y
K 2 [1 (r / z)2]5 / 2
0.5
M
z
特点
0.4
1.σz与α无关,应力呈轴对称分布
0.3
2.σz:τzy:τzx= z:y:x, 合力过原点,与R同向
K
0.2
基底压力:基础底面传递 给地基表面的压力,也称 基底接触压力。
第3章 土中应力计算
表3-1 z=3m处水平面上竖应力计算
r(m)
0
1
2
3
4
5
r/z
0
0.33
0.67
1
1.33
1.67
K
0.478 0.369
0.189
0.084
0.038
0.017
z(kPa)
10.6
8.2
4.2
1.9
0.8
0.4
表3-2 r=1m处竖直面上竖应力z的计算
z(m)
0
1
2
3
4
5
6
r/z
1
0.5
0.33
M(x,y,0)
z
附加应力系数
z
K
P z2
M(x,y,z) z
1885年法国学者 布辛内斯克解
z
3Pz 3
2R5
3P
2R2
cos3 q
图 直角坐标表示
❖ 讨论6个应力分量和3个位移分量:
法向应力:
z
3Fz3
2 R5
x
3F
2
zx2
R5
1 2
3
R2 Rz z2 R3(R z)
x2 (2R z)
(a) 马鞍形分布 (b) 抛物线分布 (c) 钟形分布
▪上述演化只是一典型的情形,实际情况十分复杂 ▪大多数情况处于上述两种极端情况之间。
(3)情况3 弹塑性地基上有限刚性的基础
3.2.2 基底压力的简化计算
❖ 基底压力分布十分复杂;
❖ 但是,根据弹性理论中圣维南原理,在基底一定深度 处引起的地基附加应力与基底荷载分布形状无关,只与 其合力的大小和位置有关。
土力学与地基基础——第3章 地基土中的应力计算
三、水平向自重应力 土的水平向自重应力cx和cy可按下式计算:
cxcyK0cz
天然地面
土的侧压力系数/ 静止土压力系数
cz cx
广义虎克定律推导出
理论关系为
K0
1
。
值K可0 以在实验室测定。
cy
编辑ppt
z
四、例题分析
【例】一地基由多层土组成,地质剖面如下图所示,试计
算并绘制自重应力σcz沿深度的分布图
土中应力
自重应力
附加应力
编辑ppt
建筑物修建以前,地 基中由土体本身重量 所产生的应力
建筑物重量等外荷载 在地基中引起的应力 增量
土中应力计算的目的:
第一节 概述
土中应力过大时,会使土体因强度不够发生破坏, 甚至使土体发生滑动失去稳定。
土中应力的增加会引起土体变形,使建筑物发生沉 降,倾斜以及水平位移。
布。根据平衡条件求得重分布后的基底最大压应力。
pmax
pmin pmax
pmin=0
e<l/6
e=l/6
pmax
e>l/6
pmin<0 基底压力重分编布辑pppt max
2(F G) pmax 3( l e)b pmin=0
基底压力重分布
l
l/2-e e>l/6
偏心荷载作用线
应与基底压力的
b
编辑ppt
法国数学家布辛内斯克(J. Boussinesq)1885年推出了该
问题的理论解,包括六个应力分量和三个方向位移的表达
式
教材P48页
其中,竖向应力z:
z3 2 PR z3 52 3 [1(r1 /z)2]5/2zP 2z P 2
土力学-第三章-地基自重应力计算1、基底压力计算、地基附加应力计算 张丙印
竖直集中力-布辛内斯克课题
法国数学家布辛内斯克(J. Boussinesq)1885年
推出了该问题的理论解,包括六个应力分量和三
个方向位移的表达式
其中,竖向应力z:
教材P98~99页
σz
P π
z R
π [ (r / z) ]/
P z
K
P Z2
集中力作用下的 应力分布系数 查图3-23
集中荷载的附加应力
19
§3.5 附加应力计算– 集中荷载
竖直集中力-布辛内斯克课题
智者乐水 仁者乐山
σz
π [ (r / z) ]/
P z
K
P Z2
垂直应力分布规律
σz与α无关,呈轴对称分布 P
P作用线上 在某一水平面上 在r﹥0的竖直线上
z等值线-应力泡
集中荷载的附加应力
20
基底压力是地基和 基础在上部荷载作 用下相互作用的结 果,受荷载条件、 基础条件和地基条 件的影响
暂不考虑上部结构的影 响,用荷载代替上部结 构,使问题得以简化
智者乐水 仁者乐山
•大小
荷载条件: •方向
•分布
基础条件:
• 刚度 • 形状 • 大小 • 埋深
• 土类
地基条件: • 密度
• 土层结构等
简化计算方法: 假定基底压力按直线分布的材料力学方法
基底压力的简化计算
10
§3.4 基底压力计算 – 计算方法
竖直中心
竖直偏心
矩
P
形
l
b
pP A
P
x y
o
l
b
p( x, y) P M x y M y x
A Ix
Iy
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
双向偏心荷载作用下 的基底压力
§3.4 基底压力计算
4.水平荷载作用下的基底压力 承受水压力和土压力的建筑 物,基础常会受到倾斜荷载作用。 此时计算基底受力将斜向荷载分 解为水平荷载 Fh 和竖向荷载 Fv, 并假定由Fh 引起的基底水平应力 ph均匀分布于整个基底,则: 矩形基础 ph= Fh/A= Fh/lb 条形基础,取l=1.0m,则 倾斜荷载作用下的基底压力 ph = Fh /A= Fh /b
例题2
基底尺寸 l=4m , b=3m ,作用有荷载 F1=3600kN , F2=600kN , M 顶 =100kN·m。基础埋深 d=3.5m , γ G=20kN/m3 , γ 0=16kN/m3 。 求基底接触应力和基底附加压力。
解:基础底面作用的弯矩
M M顶 F2d 2200 (kN m)
3.均质和各向同性假设
§3.1 概述
二、地基中的几种应力状态 计算地基应力时,将地基看作具有水平界面、深度和 广度都无限大的半空间无限体。 1.三维应力状态
ij = yx yy yz zx zy zz
xx xy xz
二维问题
§3.1 概述
2.二维应变状态(平面应变状态)
基底附加压力
p
max 0 min
p
max min
589 0d (kPa) 39
4m 50kPa
95kPa
基底平均附加压力
p0 F 4440 0d 16 3.5 314 (kPa ) A 12 39kPa pH F2 600 50(kPa ) A 12
天然地面
①均质土层:设地基中某单元 体离地面的距离h,则单元体 上竖向自重应力为:
h
γ1
cz h
式中 γ —土的天然重度,kN/m3 h—计算应力点以上土层厚度,m
γ1 h
§3.2 地基中的自重应力
②成层土层:自重应力是由多层土 组成,设各层土的厚度为h1, h2...hn,相应重度为γ 1, γ 2...γ n,则地基中第n层土底面 处的竖向自重应力为:
cz i hi
i 1 n
天然地面
h1 h2
γ1 γ2
γ1 h 1
γ1h1+ γ2 h 2
h3
γ 3sat
γ1h1+ γ2 h 2+ γ3 ' h3
式中
hi—i 层土的厚度,m
n—计算深度范围内土层数
γ i—第i层土的的天然重度,kN/m3 ,地 下水位以下应取浮重度γ i’=γ isat-γ w
有效应力原理示意图
σ=σ' + u
有效应力原理
§3.3 有效应力原理
3.3.3 有效应力原理应用举例 1.静水条件下
C点水平面上:竖向总应力:σ =γ h1+γ
孔隙水压力: u =γ
A
sat
h2
w
h2
u σ'
有效应力:σ ’=σ -u=γ h1+γ 'h2
σ
h1
B
γ γh 1 γ sat γh 1+ γsat h 2 γw h 2 γh 1+ γ' h 2 γh 1
传到基底的力为F,偏心距为e。
F F1 G Ad 3600 20 12 3.5 4440(kN)
e M 2200 l 0.495(m)< F 4440 6
判断为小偏心
计算基底接触应力
p
max min
645 F M 4440 2200 (kPa) A W 4 3 3 4 4 / 6 95
§3.4 基底压力计算
(2)刚性基础 刚度大,基础与地基变形必须相互 协调,出现应力重分布现象。
中心荷载作用下刚性基础 底面处接触应力分布图 (a) 马鞍形 (b) 抛物线形 (b) 钟形
§3.4 基底压力计算
3.4.2 基底接触应力简化计算 1.竖向中心荷载作用下的基底压力
基底压力均匀分布,按下式计算:
三角形; e>l/6时大偏心受压,基底压力进
行重分布,此时可得到: 2( F G ) l pmax , a e 3ba 2
偏 心 荷 载 下 接 触 压 力 的 计 算
§3.4 基底压力计算
3.双向偏心荷载作用下的基底压力 同样按材料力学偏心受压公式计 算基底压力: F G Mx y Myx max pmin A Ix Iy Mx=(F+G)ey ,My=(F+G)ex Ix, Iy 为对 x 轴y轴的惯性矩, m4 。
§3.2 地基中的自重应力
计算时应注意: 地下水位以上用天然容重;当地下水位以下为砂土 时,土中水为自由水,计算时用浮重度γ
’,对粘性土:
当水下为坚硬粘土时(不透水层,即液性指数IL<0,即
w <wp),在饱和坚硬粘土中只含有结合水,计算时采 用饱和重度γ
sat,若粘性土液性指数IL>1时,为流动状
l e 1.167(m) 2
基底接触应力
845.5kPa
0.73m
3.27m
基底附加压力
p0max pmax 0d 845.5 16 3.5 789.5(kPa)
50kPa 基底附加压力
789.5kPa
3.3.2 有效应力原理 截面总应力的一部分由土颗粒 间的接触面承担和传递,即有效应 力;另一部分由孔隙压力承担。 土体在外力作用下处于平衡, 沿 a-a 截面取脱离体,土颗粒接触 面的法向应力σ s。
As-土颗粒接触面积之和,u-孔隙水压 力,Aw-孔隙水横截面积,u a-孔隙气压 力,Aa-空气截面积
有效应力原理示意图
§3.3 有效应力原理
根据平衡条件: σ A=σ sAs+ uwAw+ uaAa 对于饱和土体:Aa=0 则 σ A=σ sAs+ uwAw 式中, σ -作用于截面上的总 应力。 变换得: σ =σ s A s / A + uw(A –As )/A 或 σ =σ s A s / A + uw ( 1 –As/A) 又已知σ sAs/A为σ ',As/A 很小,可忽略。
p = (F+G) / A= (F+G) / (l×b)
中心荷载矩形、条形基底压力计算
§3.4 基底压力计算
2.单向偏心荷载作用下的基底压力
此时基底压力按材料力学偏心受压
简化公式计算:
p
max min
F G M F G 6e (1 ) A W A l
e<l/6 时小偏心受压,基底压力分布梯 形; e=l/6时临界偏心受压,基底压力分布
第3章
3.1 概述
地基中的应力计算
3.2 地基中的自重 应力
3.3 有效应力原理 3.5 地基中的附加 应力
3.7 刚性基础的倾斜
3.4 基底压力计算 3.6 平面问题条件下 的附加应力
3.8 几个问题的 讨论
§3.1 概述
3.1.1 研究土中应力的目的
建筑物地基的土体在上部荷载的作用下会发生变形, 使建筑物发生沉降、倾斜和水平位移等破坏,过大的变形 会影响建筑物的安全和正常使用,因此有必要了解和掌握 土体中应力的分布规律和计算方法。
h2
C
静水条件下各应力的分布
§3.3 有效应力原理
2.毛细水上升时土中有效自重应力的变化
毛细水上升区由于表面张力的作用使孔隙水压力为 负值,u=-γ whc,使有效应力增加。
在地下水位以下,由于水对土粒的浮力作用,使有 及有效应力计算
§3.3 有效应力原理
§3.2 地基中的自重应力
3.2.2 水平自重应力 根据胡克定律
1 x E [ x ( y z )] 1 [ ( )] z x y E y z 1 [ z ( x y )] E 2(1 ) xy xy E 2(1 ) yz yz E 2(1 ) xz xz E
§3.4 基底压力计算
3.4.3 基础底面附加压力 ①基础在地面上,无埋深 基底平均附加压力: p0=p ②基础在地面下埋深d处 基底平均附加压力: p0 p c p 0 d 0 为基础底面以上土的加
(a) 基础无埋深 (b)基础有埋深 权平均重度。 基底附加应力分布图 从上式可知,增大埋深可 减少附加应力。
自重应力:由土体本身有效重量产生的应力,通常认 为变形已经稳定; 附加应力:由于外荷在地基内部引起的应力,是使地 基失稳和产生变形的主要原因。
§3.1 概述
3.1.2 土中的应力状态
一、应力—应变关系的假设
在计算地基中的附加应力时,把土当成线弹
性体,即假定其应力与应变呈线性关系。
1.连续介质假设
2.线弹性体假设
侧限条件
x y 0 x y
x y
1
z K 0 z
ν —土的泊松比,0.20-0.45 K0—土的侧压力(静止土压力)系数
例题1:按例图所给的资料,计算并绘制地基中的自重应 力沿深度的分布曲线。
例题4-1:按例图所给的资料,计算并绘制地基中的自重应力沿深度的分布 曲线。
(c) 水自下向上渗流
§3.4 基底压力计算
3.4.1 基底接触应力的实际分布
基底接触应力的实际分布取决于地基土的性质,地 基与基础的相对刚度,荷载大小、性质及其分布情况, 基础埋深、面积、形状等。 (1)刚性很小的基础和柔性基础 刚度很小,基础 与地基共同变形,接触应力同上部荷载分布。
中心荷载作用下柔性基础 底面处接触应力分布图