不饱和聚酯树脂的主要特性

合集下载

不饱和树脂牌号及相关特性及用途

不饱和树脂牌号及相关特性及用途

不饱和树脂牌号及相关特性及用途1.聚酯型不饱和树脂聚酯型不饱和树脂是一种常见的不饱和树脂,主要由不饱和酸、不饱和醇和稀释剂等组成。

具有以下特性:-良好的成型性和流动性-高机械强度和刚性-耐化学物质侵蚀主要用途包括:-制造玻璃钢制品:如船舶、储罐、化工设备等-电气绝缘材料:如绝缘板、电线电缆外护套等-建筑材料:如人造大理石、面板等2.环氧型不饱和树脂环氧型不饱和树脂是一种聚合度较高、分子链带有环氧基团的不饱和树脂。

具有以下特性:-优异的粘接性和耐腐蚀性-凝胶时间可调节,适应不同加工要求-优异的机械强度和热稳定性主要用途包括:-粘接剂:用于粘接复合材料、金属、陶瓷等-复合材料:制造高性能复合材料制品,如飞机、汽车等-电子封装材料:如芯片封装、电工胶等3.酚醛型不饱和树脂酚醛型不饱和树脂是一种由酚醛树脂与不饱和单体混合而成的不饱和树脂。

具有以下特性:-优异的热稳定性和电绝缘性-耐化学品侵蚀和耐磨性-高硬度和刚性主要用途包括:-电子零部件:如插座、继电器等-电机配件:如电机壳、转子等-高压开关:如断路器、接触器等4.醇酸型不饱和树脂醇酸型不饱和树脂是一种由醇酸树脂与不饱和单体混合而成的不饱和树脂。

具有以下特性:-优异的耐腐蚀性和绝缘性-良好的耐热性和耐水性-低挥发性和毒性主要用途包括:-食品包装:如食品容器、盖帽等-化妆品包装:如口红壳、香水瓶等-医药包装:如药品瓶、注射器等以上是一些常见的不饱和树脂的牌号、相关特性及用途的介绍。

在实际应用中,根据具体要求,可以选择不同种类的不饱和树脂进行加工,以满足不同行业的需求。

不饱和聚酯树脂与环氧树脂的区别

不饱和聚酯树脂与环氧树脂的区别

不饱和聚酯树脂与环氧树脂的区别标题:不饱和聚酯树脂与环氧树脂的区别:详解两者特性与应用不饱和聚酯树脂与环氧树脂是工业领域广泛应用的两种树脂材料。

虽然它们都具有较高的耐化学性和良好的物理性能,但由于化学结构和制作工艺的不同,导致两者在特性和应用方面存在明显差异。

本文将为您详细解析不饱和聚酯树脂与环氧树脂的区别。

一、不饱和聚酯树脂1.特性(1)化学性质:不饱和聚酯树脂是由不饱和二元酸(或其酐、酯)与二元醇(或多元醇)通过缩聚反应制得的一类聚酯。

其分子结构中含有不饱和双键,具有较高的活性。

(2)物理性质:不饱和聚酯树脂具有较高的强度、刚度和韧性,耐热性较好,但耐水性相对较差。

(3)固化过程:不饱和聚酯树脂的固化过程需要加入引发剂,通过自由基聚合反应进行。

固化后的树脂具有良好的机械性能和耐化学性能。

2.应用不饱和聚酯树脂广泛应用于以下领域:(1)玻璃钢制品:如船舶、储罐、管道、冷却塔等。

(2)涂料:如地坪涂料、防腐涂料等。

(3)人造石材:如浴缸、台面板等。

二、环氧树脂1.特性(1)化学性质:环氧树脂是由环氧氯丙烷与多元醇(或多元酚)通过缩聚反应制得的一类聚醚。

其分子结构中含有环氧基团,具有较高的活性。

(2)物理性质:环氧树脂具有较高的强度、刚度和耐热性,耐水性和耐化学品性能优良。

(3)固化过程:环氧树脂的固化过程可以采用多种固化剂,如胺类、酸酐类等。

固化后的树脂具有优异的机械性能和耐化学性能。

2.应用环氧树脂广泛应用于以下领域:(1)粘接剂:如电子元器件、建筑材料等。

(2)涂料:如防腐涂料、地坪涂料等。

(3)复合材料:如碳纤维复合材料、玻璃纤维复合材料等。

三、总结不饱和聚酯树脂与环氧树脂在化学结构、特性和应用方面存在以下区别:1.化学结构:不饱和聚酯树脂含有不饱和双键,环氧树脂含有环氧基团。

2.耐水性:环氧树脂的耐水性优于不饱和聚酯树脂。

3.固化过程:不饱和聚酯树脂需要加入引发剂进行自由基聚合反应,环氧树脂可以采用多种固化剂进行固化。

不饱和聚酯树脂及复合材料

不饱和聚酯树脂及复合材料

CH2 CH2 CH2
乙二醇,具有对称结构,由乙二醇制得的不饱和聚酯有强烈的结 晶倾向,与苯乙烯的相容性较差。为此常要对不饱和聚酯的端羟 基进行酰化,以降低结晶倾向,改善与苯乙烯的相容性,提高固 化物的耐水性及电性能。如在乙二醇中添加一定量的丙二醇,亦 能破坏其对称性,从而降低结晶倾向,使所得的聚酯和苯乙烯混 溶性良好,而且固化后的树脂在硬度和热变形温度方面也较单纯 用乙二醇所制得的树脂为好。 多元醇(例如季戊四醇),使制得的聚酯带有支链,从而可提高固 化树脂的耐热性与硬度。只要加入少量季戊四醇代替二元醇就使 聚酯的粘度有很大增加,并易于凝胶。
二元醇对UPR的影响 1,2-丙二醇,分子结构中有不对称的甲基,由此得到的聚酯 结晶倾向较少,与交联剂苯乙烯有良好的相容性。树脂固化 后具有良好的物理与化学性能。
1,2-丙二醇和1,3-丙二醇的区别
OH OH CH3 CH CH2 OH OH R R O C O C OH R OH R O C O CH2 CH2 CH2 O O C CH3 O CH CH 2 O O C R O C R n n
高性能树脂及复合材料
不饱和聚酯树脂 (Unstaturated Polyester Resin, UPR)
授课内容
1 2
3 4 不饱和聚酯树脂的发展简史
不饱和聚酯树脂的合成原理
不饱和聚酯树脂的性能和分类 不饱和聚酯树脂基复合材料
1
不饱和聚酯树脂的发展简史
聚酯是主链上含有酯键的高分子化合物总称 ,一般由二元羧 酸和二元醇经缩聚反应而成。 不饱和聚酯树脂的主要原料为不饱和二元酸(顺酸酐、反丁烯 二酸、甲基反丁烯二酸等)、饱和二元酸(邻苯二甲酸酐、间 苯二酸、己二酸、六氯内次甲基四氢邻苯二甲酸等),二元醇 类(乙二醇、丙二醇、一缩二乙二醇、新戊二醇等)以及交联 用单体(苯乙烯、乙烯基甲苯、甲基丙烯酸甲酯、苯二甲酸二 丙烯酯、二乙烯基苯和三聚氰酸三丙烯酯等)组成的。

不饱和聚酯特性

不饱和聚酯特性

不饱和聚酯树脂的特性不饱和聚酯在室温下是一种粘流体或固体,易燃,难溶于水,而在适当加热情况下,可熔融或使粘度降低,它的相对分子质量大多在1000-3000 范围内,没有明显的熔点,它能溶于与单体具有相同结构的有机溶剂中。

不饱和聚酯分子结构中含有不饱和的双键而具有双键的特性——在高温下,会发生双键打开、相互交联而自聚;通过双键的加成反应,而与其它烯类单体发生共聚;在一定条件下,双键还易被氧化,致使聚酯质量劣化。

聚酯中的酯键易被酸、碱水解而破坏其应有的物理、化学性能,聚酯本身发生降解。

不饱和聚酯与交联剂(稀释剂)混和而成不饱和聚酯树脂,它有如下特点:物理性质:不饱合聚脂树脂的相对密度在1.11-1.20左右,固化时体积收缩率较大,固化树脂的一些物理性质如下:(1)耐热性:绝大多数不饱合树脂的热变形温度都在50-60度间,一些耐热性较好的树脂则可达到120度,线热膨胀系数为(130-150)*0.0000006度力学性能。

不饱合聚脂树脂具有较高的拉伸、弯曲。

压缩等强度。

(2)耐化学腐蚀性能。

不饱合聚脂树脂耐水、稀酸、稀碱的性能较好,耐有机溶剂的性能差,同时,树脂的耐化学腐蚀性能随其化学结构和几何形状的不同,可以有很大的差异。

(3)介电性能。

不饱合聚脂树脂的耐热性能良好。

化学性质:不饱合聚脂树脂具有多功能团的线型高份子化合物,在其骨架主链上具有聚脂链键和不饱和双键,而在大分子链两端各带有羧基和羟基。

(1)主链上的双键可以和乙烯基单体发生共聚交联发应,使不饱和聚脂树脂从可溶。

可熔状态转变成不溶、不溶状态。

(2)主链上的酯键可以发生水解反应,酸或碱可以加速该反应,使不饱合聚脂树脂从可溶状态变成不溶状态。

若与苯乙烯共聚交联后,则可大大降低水解反应的发生。

在酸性介质中,水解是可逆的,不完全的,所以,聚酯能耐酸性介质的侵蚀,在碱性介质中,由于形成了共振稳定的羧酸根阴离子,水解成为不可逆的,所以聚酯耐碱性较差。

(3)树脂处于这一状态时并未交联,在合适的溶剂中仍可溶解,加热时良好的流动性。

不饱和聚酯树脂研究报告

不饱和聚酯树脂研究报告

不饱和聚酯树脂研究报告不饱和聚酯树脂是一种非常常见的高分子材料,具有优异的性能,比如高强度、耐候性和耐化学性等。

在工业生产和日常生活中,被广泛应用于制造船舶、家具、汽车和电子产品等各种领域。

本文将针对不饱和聚酯树脂的特点、研发及应用做一个简要介绍。

一、不饱和聚酯树脂的特点不饱和聚酯树脂是一种由不饱和聚酯、交联剂和促进剂等组成的材料。

它具有以下4个突出的特点。

1、高强度:不饱和聚酯树脂本身具有高强度的特点,可以制成高强度的产品。

2、耐化学性:不饱和聚酯树脂有着很好的耐化学性能,不易受化学品腐蚀。

3、耐紫外线照射:不饱和聚酯树脂的材料在日晒雨淋等环境下不会出现劣化现象。

4、外观美观:通过加工和涂装处理,不饱和聚酯树脂可以制成各种外观美观的产品。

二、不饱和聚酯树脂的研发现状随着人工合成化学的发展,不饱和聚酯树脂的合成技术也得到了极大的发展。

现在主要有以下几种合成方法。

1、聚酯法:这是一种常见的不饱和聚酯树脂合成方法,通过平稳的聚酯反应,令聚酯链延伸到一定程度后,与环氧基团或不饱和胁迫烯烃等交联剂反应,形成树脂材料。

2、开环聚合法:这是一种相对简单的合成方法,通过开环反应,将環氧基团或苯乙烯等不饱和脂肪膴剂加入反应中,从而获得不饱和聚酯树脂。

3、聚加成型法:这是一种不饱和聚酯树脂的新型合成方法,将加成型单体引入聚酯链中,使多级反应发生,产生不饱和聚酯树脂。

三、不饱和聚酯树脂的应用不饱和聚酯树脂的应用非常广泛,常见的应用有:1、风电叶片制造:不饱和聚酯树脂是风电叶片的重要材料之一,可以制成强度高、耐风吹雨打的叶片。

2、汽车制造:不饱和聚酯树脂被广泛应用于汽车外壳的制造,使汽车在强度、硬度和安全性能等方面得到充分保障。

3、化工设备制造:不饱和聚酯树脂具有耐腐蚀的特性,因此在化工设备制造中,作为一种优秀的耐腐材料,被广泛地应用。

4、水上运动设备制造:作为一种轻质、坚固且具有高硬度的材料,不饱和聚酯树脂被广泛地应用于水上设施和运动器材制造领域。

不饱和树脂

不饱和树脂

不饱和树脂、环氧树脂、ABS、亚克力区别不饱和聚酯树脂1.不饱和聚酯树脂的定义:人类最早发现的树脂是从树上分泌物中提炼出来的脂状物,如松香等,这是“脂”前有“树”的原因。

直到1906年第一次用人工合成了酚醛树脂,才开辟了人工合成树脂的新纪元。

1942年美国橡胶公司首先投产不饱和聚酯树脂,后来把未经加工的任何高聚物都称作树脂。

但是早就与“树”无关了。

树脂又分为热塑性树脂和热固性树脂两大类。

对于加热熔化冷却变固,而且可以反复进行的可熔的树脂叫做热塑性树脂,如聚氯乙烯树脂(PVC)、聚乙烯树脂(PE)等;对于加热固化以后不再可逆,成为既不溶解,又不熔化的固体,叫做热固性树脂,如酚醛树脂、环氧树脂、不饱和聚酯树脂等。

“聚酯”是相对于“酚醛”“环氧”等树脂而区分的含有酯键的一类高分子化合物。

这种高分子化合物是由二元酸和二元醇经缩聚反应而生成的,而这种高分子化合物中含有不饱和双键时,就称为不饱和聚酯,这种不饱和聚酯溶解于有聚合能力的单体中(一般为苯乙烯)而成为一种粘稠液体时,称为不饱和聚酯树脂(英文名Unsaturated Polyester Resin 简称UPR)。

因此,不饱和聚酯树脂可以定义为由饱和的或不饱和的二元酸与饱和的或不饱和的二元醇缩聚而成的线型高分子化合物溶解于单体(通常用苯乙烯)中而成的粘稠的液体。

2.不饱和聚酯树脂的特性不饱和聚酯树脂是一种热固性树脂,当其在热或引发剂的作用下,可固化成为一种不溶不融的高分子网状聚合物。

但这种聚合物机械强度很低,不能满足大部分使用的要求,当用玻璃纤维增强时可成为一种复合材料,俗称“玻璃钢”(英文名Fiber Reinforced Plastics 简称FRP)。

“玻璃钢”的机械强度等各方面性能与树脂浇铸体相比有了很大的提高。

环氧树脂是泛指分子中含有两个或两个以上环氧基团的有机高分子化合物,除个别外,它们的相对分子质量都不高。

环氧树脂的分子结构是以分子链中含有活泼的环氧基团为其特征,环氧基团可以位于分子链的末端、中间或成环状结构。

不饱和聚酯树脂性能特点及玻璃钢固化机理

不饱和聚酯树脂性能特点及玻璃钢固化机理

不饱和聚酯树脂性能特点工艺性能优良这是不饱和聚酯树脂最大的优点。

可以在室温下固化,常压下成型,工艺性能灵活,特别适合大型和现场制造玻璃钢制品。

固化后树脂综合性能好力学性能指标略低于环氧树脂,但优于酚醛树脂。

耐腐蚀性,电性能和阻燃性可以通过选择适当牌号的树脂来满足要求,树脂颜色浅,可以制成透明制品。

品种多品种多,适应广泛,价格较低。

缺点缺点是固化时收缩率较大,贮存期限短,含苯乙烯,有刺激性气味,长期接触对身体健康不利。

不饱和聚酯树脂的物理和化学性质物理性质不饱和聚酯树脂的相对密度在1.11~1.20左右,固化时体积收缩率较大,固化树脂的一些物理性质如下:⑴耐热性。

绝大多数不饱和聚酯树脂的热变形温度都在50~60℃,一些耐热性好的树脂则可达120℃。

红热膨胀系数α1为(130~150)×10-6℃。

⑵力学性能。

不饱和聚酯树脂具有较高的拉伸、弯曲、压缩等强度。

⑶耐化学腐蚀性能。

不饱和聚酯树脂耐水、稀酸、稀碱的性能较好,耐有机溶剂的性能差,同时,树脂的耐化学腐蚀性能随其化学结构和几何开关的不同,可以有很大的差异。

⑷介电性能。

不饱和聚酸树脂的介电性能良好。

化学性质不饱和聚酯是具有多功能团的线型高分子化合物,在其骨架主链上具有聚酯链键和不饱和双键,而在大分子链两端各带有羧基和羟基。

主链上的双键可以和乙烯基单体发生共聚交联反应,使不饱和聚酯树脂从可溶、可熔状态转变成不溶、不熔状态。

主链上的酯键可以发生水解反应,酸或碱可以加速该反应。

若与苯乙烯共聚交联后,则可以大大地降低水解反应的发生。

在酸性介质中,水解是可逆的,不完全的,所以,聚酯能耐酸性介质的侵蚀;在碱性介质中,由于形成了共振稳定的羧酸根阴离子,水解成为不可逆的,所以聚酯耐碱性较差。

聚酯链末端上的羧基可以和碱土金属氧化物或氢氧化物[例如MgO,CaO,Ca(OH)2等]反应,使不饱和聚酯分子链扩展,最终有可能形成络合物。

分子链扩展可使起始粘度为0.1~1.0Pa·s粘性液体状树脂,在短时间内粘度剧增至103Pa·s以上,直至成为不能流动的、不粘手的类似凝胶状物。

191树脂用途

191树脂用途

191不饱和聚酯树脂
191不饱和聚酯树脂是由苯酐、顺酐或反酸与丙二醇等组成的,经过缩聚反应合成的聚酯,最后与苯乙烯混在一起溶解而成的不饱和聚酯树脂。

它的特点是拥有中等反应活性和一般粘度,在相对密度为1.11-1.20时,固化时体积收缩率大,但是有较好的机械性能,所以它适用制造玻璃钢产品,本产品在加入适量引发剂后,能在常温下较快交联固化,成为坚实的固体,可用来粘合多种金属和非金属材料,固化后具有良好的耐水、耐腐蚀等性能。

191不饱和聚酯树脂的性能主要有以下两个特点:
1、耐热性好:大多不饱和聚酯树脂的热变形温度都在50~60℃,一些耐热性好的树脂则可达120℃,红热膨胀系数a1为(130~150)*10-6℃。

2、拉伸性能:191树脂的拉伸、弯曲、压缩性都很强,并且耐化学腐蚀性能、介电性能也十分良好。

191不饱和聚酯树脂是一种固化时放热峰低、收缩率小的新型聚酯树脂。

用于制造各种人造大理石制品,如各种规格、形状的卫生洁具、平板和装饰品等。

191树脂的安全事项:
191树脂要存放于阴凉的地方,不能暴晒,不能和碱性金属物质放在一块,特别是不能跟钴促进剂一起存放。

同时人也要特别小心,不能让它接触到大家的皮肤和眼睛,如果不小心砬到了,就立即用清水或碱性肥皂水冲洗。

复合材料不饱和聚酯树脂

复合材料不饱和聚酯树脂

复合材料不饱和聚酯树脂
12
1.直接酯化
❖ (1)二元酸与二元醇作用
n H O R 'O H n H O O C R C O O H H O O C R C O R 'O n H 2 n 1 H 2 O ❖ (2)二元醇与酸酐作用
片状模塑料(SMC)与团状模塑料(BMC)技术日益成 熟,可以机械化大量生产汽车外壳部件以及其他工 业及日常用品部件。
❖ 4.树脂的配方设计
选用不同的二元酸、二元醇并调节其用量,以确 定不同的分子链结构;
选用不同的引发剂(催化剂),或联用两种引发剂 以满足固化性能要求;
复合材料不饱和聚酯树脂
10
❖ 5.新品种树脂
第4章 不饱和聚酯树脂
复合材料不饱和聚酯树脂
4.1 概述
❖ 4.1.1概念及其特性
不饱和聚酯树脂(UPR):分子链上具有不饱和键(如双键)的 聚酯高分子。不饱和二元酸(或酸酐)、饱和二元酸(或酸酐) 与二元醇(或多元醇)在一定条件下进行缩聚反应合成不饱 和聚酯,不饱和聚酯溶解于一定量的交联单体(如苯乙烯、 邻苯二甲酸二烯丙酯)中形成的液体树脂即为不饱和聚酯 树脂。加入引发体系可反应形成立体网状结构的不溶不熔 高分子材料,是一种典型的热固性树脂。
(2)阻燃性树脂:常用的添加型阻燃剂有A1(OH)3、 Sb2O3、磷酸酯和Mg(OH)2等。目前欧洲也采用加入酚 醛树脂的方法,而美国还采用加入二甲基磷酸酯和磷酸 三乙基酯,都收到了较好效果。
复合材料不饱和聚酯树脂
ห้องสมุดไป่ตู้
7
(3)耐腐蚀树脂 常用耐腐蚀性树脂有双酚A型不饱和聚酯、 间苯二甲酸型树脂和松香改性不饱和聚酯等。
复合材料不饱和聚酯树脂
6

第4章 不饱和聚酯树脂

第4章 不饱和聚酯树脂

a、邻苯二甲酸二烯丙酯 反应活性比乙烯类单体及丙烯酸类单体要低,即 使有催化剂存在,也不能使不饱和聚酯树脂在室温固 化。 4、端基封闭剂 为改进聚酯的某些性能,如抗水性、电绝缘性以 及与交联单体的混溶性,在合成聚酯的后期,常用一 元酸或一元醇与端羟基或端羧基反应,使聚酯的端基 失去活性,达到封端的目的。 5、溶剂 目的是利用溶剂与水的共沸点,降低水的沸点, 将水除去。一般是环状烃如苯、甲苯或二甲苯。
4.1.2 国内外发展概况
1、国外发展概况 19世纪中叶到20世纪30年代为早期 世纪中叶到20世纪30 (1)第一阶段 19世纪中叶到20世纪30年代为早期 阶段; 阶段; 聚苯二甲酸甘油酯, 聚苯二甲酸甘油酯,主要用于涂料 20世纪30年代到第二次世界大战结 世纪30 (2)第二阶段 20世纪30年代到第二次世界大战结 束; 军用航空领域 第二次世界大战结束至今; (3)第三阶段 第二次世界大战结束至今; 军民两用,其发展超过其他塑料品种 军民两用,
第4章 不饱和聚酯树脂 4.1 概述 4.1.1 不饱和聚酯树脂的概念及其特性 不饱和聚酯树脂( 不饱和聚酯树脂(unsaturated polyester resins,UPR)是指分子链上具有不饱和键(如 resins,UPR)是指分子链上具有不饱和键(如 双键)的聚酯高分子。 更准确的定义是:不饱和聚酯在乙烯基类 交联单体(eg.苯乙烯)中形成的液体树脂。 交联单体(eg.苯乙烯)中形成的液体树脂。 不饱和聚酯树脂是一种典型的热固性树脂。
j、混酸 顺酐/苯酐=1/1(摩尔比)时称为“ 顺酐/苯酐=1/1(摩尔比)时称为“低活 性不饱和聚酯树脂”;顺酐/苯酐=2/1或 性不饱和聚酯树脂”;顺酐/苯酐=2/1或3/1 (摩尔比)时,分被称为“ (摩尔比)时,分被称为“中活性不饱和聚酯 树脂” 树脂”和“高活性不饱和聚酯树脂”。 高活性不饱和聚酯树脂” (3)多元酸 偏苯三酸酐、均苯三酸酐和马来酐海松酸 等三酸可用于制造软化点高的、特种用途的聚 酯树脂;如固体感光树脂、不饱和聚酯树脂固 体粉末涂料。

不饱和聚酯

不饱和聚酯

4.1不饱和聚酯所用的原材料
交联单体:苯乙烯,其他苯的乙烯基衍生物,邻苯二甲 酸二烯丙酯(DAP),甲基丙烯酸甲酯,三聚氰酸三烯 丙酯。 引发剂:常用的常温引发剂是过氧化环己酮(CHP)和 过氧化甲乙酮(MEKP);中温引发剂是过氧化二苯甲 酰;高温引发剂是二过氧化缩酮类。
过氧化甲乙酮(MEKP)
ቤተ መጻሕፍቲ ባይዱ脂本身的活性
UPR的反应活性通常是以其中所含不饱和二元酸 的摩尔数占总二元酸摩尔数的百分比来衡量,所谓高反 应活性,中反应活性,低反应活性一般是指:不饱和二 元酸占70%以上者为高反活性;60—30%者为中反应 活性;而不饱和二元酸占30%以下者为低反应活性。
引发剂
引发剂的特性要与 树脂的反应性 相匹配。 树脂存放期 指树脂使用者在加工制品时, 一般来说,树脂反应性强,就可以采用活性较 成型温度 的变化,直接影响树脂的凝胶与 从加入引发剂开始,到树脂开始凝胶,失去流 引发剂的选择主要考虑以下几个方面: 高的引发剂使树脂固化周期缩短,树脂反应性 固化速度 决定了模压成型的合模时间,如 固化速度。成型温度上下波动10 ℃,对工艺就 动性为止的一段可进行加工的有效时间。 树脂特性 弱就要求选用活性较低的引发剂相配合,以免 要求较长的合模时间,就要放慢固化速度,也 有敏感的反映。在热固化工艺中,可以根据半 根据树脂的存放时间不同,可将引发剂分 模制件的厚度 对引发剂的选择也很重要。 树脂的存放期 游离基产生过快,在树脂固化过程中不能充分 就要选用较稳定的引发剂,否则引发剂分解过 衰期和经验共同确定一种引发剂的固化温度。 为:室温引发剂——不需要存放期;中温引发 成型温度控制 随着制品厚度增大,热传导延续,固化时间延 在选用引发剂时,必须考虑填料、颜料以 生效,而到后期又缺少引发剂。 快,在合模时可能出现过凝胶。反之要提高生 固化速度 剂(十小时半衰期温度低于80℃)——需要存 长,部件中心达到反应温度需时也长。如果采 及其他添加剂对固化工艺的影响。有些填料起 模制件的壁厚 产效率,缩短合模时间,就要选用较活泼的引 放几小时到几天;高温引发剂(十小时半衰期 用高温引发剂时,模制件传热慢,但放热温度 促进剂作用,减少存放时间。有些颜料(特别 填料、颜料及各种添加剂的影响 发剂。决定树脂固化速度的因素有引发剂的活 温度高于80℃ )——需要存放一周以上到几个 较高,就可能因短时间内高度放热不能散开而 是黑色)其加速剂作用。但也有些起阻滞作用, 性、浓度和成型温度。 月。 使固化延缓。 使部件开裂。但采用低温引发剂,又会使固化 时间过短不能满足工艺要求。此时,要仔细选 择合用的引发剂。

不饱和聚酯树脂实验方法

不饱和聚酯树脂实验方法

不饱和聚酯树脂实验方法
4 试验结果 4.1 每个试样测定二次,将读数按粘度计规定进行计算, 以算术平均值表示,取三位有效数字。 4.2 测定结果以帕•秒为单位。 5 试验报告 试验报告应包括下列内容: a. 试样名称、牌号、编号; b. 试样来源、送样日期; c. 粘度计名称、型号规格、使用的转筒(子)号数及转速 d. 测试结果; e. 测试人员、测试日期。
不饱和聚酯树脂实验方法

1 试样
1.1 均匀、无气泡、无杂质。
1.2 数量能满足粘度计测定需要。

2 仪器和设备 2.1 旋转粘度计:转筒型或转子型。 2.2 恒温水浴:控制温度精度为±0.5℃。
2.3 温度计:测量范围0~50℃,最小分度值为0.2℃。
2.4 容器:应符合粘度计的要求。 2.5 秒表。

不饱和聚酯树脂实验方法

试验结果:固体含量按下式计算,取三位有 效数字
m 3 m1 SC m2
式中: SC——不饱和聚酯树脂的固体含量,%; m1——培养皿的质量,g; m2——试样的质量,g; m3——培养皿与残留试样的质量,g; 测试结果以两个平行试样测定值的算术平均值表示。两个试 样的结果相对误差不得 超过0.5%,否则应重新进行试验。
不饱和聚酯树脂实验方法



3 试验步骤 3.1 选择粘度计的转筒(子)及转速,使测定读数落在满 刻度值的20%~90%,尽可能落在45 %~90%之间。 3.2 把试样装入容器,将温度调到25℃左右,然后把 容器放入温度为25±0.5℃的恒温水浴中(或将试样倒 入粘度计的测定容器),水浴面应比试样面略高。 3.3 将粘度计转筒(子)垂直浸入试样中心,浸入深度应 符合粘度计的规定,与此同时开始计时。 3.4 在整个测定过程中,应将试样温度控制在 25±0.5℃,当转筒(子)浸入试样中达8min时,开启马 达,转筒旋转2min后读数。读数后关闭马达,停留 1min后再开启马达,旋转1min后第二次读数。 3.5 每测定一个试样后,应将粘度计转筒(子)等用溶剂 清洗干净。

饱和树脂与不饱和树脂的区别

饱和树脂与不饱和树脂的区别

不饱和树脂与饱和树脂的区别?
一、饱和聚酯树脂
饱和聚酯树脂(无油醇酸树脂)主要用于生产卷材的涂料,根据树脂性能和结构的不同分别可用于卷材涂料的面漆、底漆、背漆,也有用于油墨和热覆膜卷材用得饱和聚酯树脂.
饱和聚酯树脂的特点:
饱和聚酯树脂要求涂膜具有良好的装饰性、保护性、耐久性、施工性以及加工成型性,使用最多的是聚酯型面漆,因为饱和聚酯树脂具有如下特性:(1)通用性强、耐候性好.主要适用在建筑行业的钢板涂装.
(2)是硬度和韧性都突出,并具有耐粘污性,使用档次较高.
(3)经济性.适用于一般要求的卷材涂装.
二、不饱和聚酯树脂
不饱和聚酯树脂,一般是由不饱和二元酸二元醇或者饱和二元酸不饱和二元醇缩聚而成的具有酯键和不饱和双键的线型高分子化合物.通常,聚酯化缩聚反应是在190~220℃进行,直至达到预期的酸值(或粘度),在聚酯化缩反应结束后,趁热加入一定量的乙烯基单体,配成粘稠的液体,这样的聚合物溶液称之为不饱和聚酯树脂.
不饱和聚酯树脂的特点:
(1)耐热性.绝大多数不饱和聚酯树脂的热变形温度都在50~60℃,一些耐热性好的树脂则可达120℃.
(2)力学性能.不饱和聚酯树脂具有较高的拉伸、弯曲、压缩等强度.
(3)耐化学腐蚀性能.不饱和聚酯树脂耐水、稀酸、稀碱的性能较好,耐有机溶剂的性能差,同时,树脂的耐化学腐蚀性能随其化学结构和几何开关的不同,可以有很大的差异.
(4)介电性能.不饱和聚酸树脂的介电性能良好.
(5)不饱和聚酯树脂从可溶、可熔状态转变成不溶、不熔状态.
(6)在合适的溶剂中仍可溶解,加热时有良好的流动性.。

不饱和聚酯树脂的分类和用途

不饱和聚酯树脂的分类和用途

不饱和聚酯树脂的分类和用途根据不饱和聚酯树脂的结构可分为邻苯型、间苯型、对苯型、双酚A型、乙烯基酯型等;根据其性能可分为通用型、防腐型、自熄型、耐热型、低收缩型等;根据其主要用途可分为玻璃钢(FRP)用树脂与非玻璃钢用树脂两大类,所谓玻璃钢制品是指树脂以玻璃纤维及其制品为增强材料制成的各种产品,也称为玻璃纤维增强塑料(简称FRP或玻璃钢);非玻璃钢制品是树脂与无机填料相混合或其本身单独使用制成的各种制品,也称为非增强型玻璃钢制品。

按具体专用品种分类包括有缠绕树脂、喷射树脂、RTM树脂、拉挤树脂、SMC、BMC 树脂、阻燃树脂、食品级树脂、防腐蚀树脂、气干型树脂、宝丽板树脂、工艺品树脂、纽扣树脂、玛瑙树脂、人造石树脂、高透明树脂水晶树脂、原子灰树脂等。

作为FRP表面装饰的防老化阻燃胶衣、耐热胶衣、喷涂胶衣、模具胶衣、不开裂胶衣、辐射固化胶衣、高耐磨胶衣等。

UPR的玻璃钢制品广泛地应用于下述领域:建筑领域:制冷却塔,8立方米/小时~3000立方米/小时的横流、逆流、喷射式塔及风筒、风机、收水器等辅件。

门、窗、轻型采光建筑、格栅、活动房、冷库、公园亭、台、报亭等。

玻璃钢管、罐、槽等防腐产品及工程:包括大、中、小口径管道、管件、阀门、贮罐、贮槽、格栅、填仓板、塔器、烟囱、防腐地面及建筑防腐等。

玻璃钢车辆:火车双层客车及零部件、窗框、汽车车身、保险杠、火车通风道、弹簧板等。

玻璃钢船艇:包括游艇、救生艇、交通艇、渔船、快艇、舢舨、养殖船、冲锋舟等。

玻璃钢游乐设备:包括大型游艺机、大型水上乐园、儿童乐园。

玻璃钢交通设备、劳保及保安用品:包括公路牌、路标、人行桥、灯具、电缆盒、测量标尺、头盔、收亭、防爆器材、井盖等。

玻璃钢卫生设备:浴缸、洗漱台、便器、镜架、整体卫生间、垃圾箱。

节能玻璃钢产品:包括轴流风机、离心风机、太阳能热水器、风力发电机等。

玻璃钢食品容器:高位水箱、食品运输罐、饮料罐。

玻璃钢工艺品:城市雕塑、字体、工艺品和贴骨工艺。

不饱和聚酯树脂的固化特征及表征

不饱和聚酯树脂的固化特征及表征

不饱和聚酯树脂的固化特征及表征(一)不饱和聚酯树脂的固化特征不饱和聚酯树脂在固化过程中同样有三个阶段,按照其成型工艺上的术语分为凝胶、定型和熟化三个阶段。

凝胶阶段是指从粘流态的树脂到失去流动性形成半固体凝胶阶段。

这一阶段对应于通常所说的A阶向B阶的过渡。

定型阶段是从凝胶到具有一定硬度的固定的形状,可从模具上取下为止,从树脂未完全固化这一点来说,与通常所说的B阶段相似,只是它不具有通常B阶段树脂那种加热软化等特性,实际上更接近C 阶段的特证,但由于此时性能还未稳定,而处于中间变化阶段,所以还不能称为C阶,确切地说是处于C阶前期。

熟化阶段是从表观上已变硬具有一定力学性能,经过后处理到具有稳定的化学与物理性能而供使用的阶段,大体上可称#阶,不过这一阶段比通常习用的#阶要长,这是不饱和聚酯树脂固化过程的一个特点。

(二)固化特征的表征一般研究聚酯固化特征,采用树脂固化时温度随时间变化的曲线,这种曲线称为放热曲线。

这是美国塑料工业协会应用最广泛的方法,简称SIP法,后又发展为“日本工业标准法”,简称JIS法,两种方法不同点是采用的温标不一样,前者采用华氏温标,恒温水浴为180F,而后者则采用摄氏温标,恒温水浴温度为80℃树脂固化过程是物理性质和化学性质发生变化的过程,放热曲线是这个过程中固化温度随时间变化的关系曲线,根据放热曲线能够确定树脂在固化过程中的几个物理量。

1、凝胶时间SIP法:在环境温度(浴温)为180F的条件下,试样的温度从150F升到190F所需要的时间定为凝胶时间。

JIS法:在环境温度(浴温)为C的条件下,试样的温度从65℃升到85℃时所需的时间定为凝胶时间。

2、最小固化的时间从150F或65℃到达最高放热温度时间。

3、最高放热温度———放热峰温度聚合热可达温度的最高值。

在诱导期,树脂中的阻聚剂消耗掉,由于热分解为自由基的引发剂,在诱导期的终点时,阻聚剂全部消耗完,于是引发剂分解产生的初级自由基引起了聚合作用,树脂的凝胶化和聚合反应的热效应证明了共聚合反应的开始。

不饱和聚酯树脂的定义

不饱和聚酯树脂的定义

不饱和聚酯树脂的定义不饱和聚酯树脂(Unsaturated Polyester Resin)是一类重要的合成树脂材料,具有广泛的应用领域。

不饱和聚酯树脂是指在分子结构中含有双键(碳-碳双键或碳-氧双键)的聚酯树脂。

与饱和聚酯树脂相比,不饱和聚酯树脂具有更高的强度、硬度和耐腐蚀性能,被广泛应用于建筑、汽车、航空航天、电子等领域。

不饱和聚酯树脂具有以下几个主要特点:1. 自由度高:不饱和聚酯树脂具有较高的自由度,可以通过改变聚酯酸和交联剂的种类和比例来调节树脂的性质,满足不同应用的需求。

2. 交联性强:不饱和聚酯树脂可以通过与交联剂(如液态或固态的引发剂)的反应形成三维网络结构,从而实现固化和硬化。

这种交联反应又称为“不饱和聚酯树脂与交联剂的缩聚反应”,可以通过热固化或光固化的方式进行。

3. 机械性能优异:由于交联结构的形成,不饱和聚酯树脂具有较高的强度、刚度和硬度。

在一些特殊的应用中,还可以通过添加填料、增强剂等改善树脂的机械性能。

4. 耐腐蚀性好:不饱和聚酯树脂具有优异的耐腐蚀性能,可以抵御酸、碱、盐等化学物质的侵蚀。

这使得不饱和聚酯树脂成为一种理想的防腐材料,广泛应用于化工设备、储罐、管道等领域。

5. 加工性好:不饱和聚酯树脂可以通过喷涂、浇注、涂覆等方式进行加工,适应各种复杂形状和结构的制造需求。

此外,不饱和聚酯树脂还可以与玻璃纤维、碳纤维等增强材料复合,形成复合材料,进一步提高材料的性能。

不饱和聚酯树脂的应用领域非常广泛。

在建筑领域,不饱和聚酯树脂可以用于制造隔热板、屋面瓦、装饰板等;在汽车领域,不饱和聚酯树脂可以用于制造车身件、内饰件等;在航空航天领域,不饱和聚酯树脂可以用于制造飞机外壳、导弹外壳等;在电子领域,不饱和聚酯树脂可以用于制造电路板、绝缘材料等。

不饱和聚酯树脂的发展前景非常广阔。

随着科技的进步和人们对环保材料的需求增加,不饱和聚酯树脂在可再生能源、新能源汽车、高端装备制造等领域的应用将会进一步扩大。

不饱和树脂种类

不饱和树脂种类

不饱和树脂种类
一、概念及特点
不饱和树脂是一种含有不饱和双键的高分子化合物,通常与玻璃纤维增强材料一起使用,制成复合材料。

其主要特点包括高强度、高刚度、轻量化、耐腐蚀、耐老化等。

因此不饱和树脂广泛应用于航空航天、汽车、建筑等领域。

二、不同种类
1. 聚酯树脂:聚酯树脂是不饱和树脂的一种,其基本成分是无色透明的液体,可混合不同的固化剂和促进剂,在常温下即可固化。

聚酯树脂用途广泛,可用于制作风力发电叶片、船体、水箱等。

2. 环氧树脂:环氧树脂是不饱和树脂的一种,其特点是硬度高、强度大、耐腐蚀性好。

因此被广泛用于制作高强度和高性能的复合材料制品,如汽车、飞机、高速列车等交通工具。

3. 醇酸树脂:醇酸树脂是不饱和树脂的一种,常用于制作电子元器件、粘接材料、地坪涂料等。

其特点是粘度低,颜色透明,具有良好的流动性和涂覆性。

三、应用领域
不饱和树脂广泛应用于航空航天、汽车、建筑、电子、体育器材等领域。

在航空航天领域,不饱和树脂常用于制造机身、翼型、高温复合材料等,具有轻量化、高强度的特点。

在汽车领域,不饱和树脂可用于制造车身件、前脸、车门等部件,具有轻质、高强度、节能环保等特点。

在建筑领域,不饱和树脂可用于制造装饰材料、建筑构件等,
具有防水、防腐、防火等特点。

不饱和聚酯树脂的理化性质及危险特性

不饱和聚酯树脂的理化性质及危险特性
不饱和聚酯树脂的理化性质及危险特性
标识
中文名:不饱和聚酯树脂
危险货物编号:33645
英文名:unsaturatedpolyosterresin
UN编号:1866
分子式:/
分子量:/
CAS号:/
理化性质
外观与性状
黄至棕黄色粘厚液体;
熔点℃
/
相对密度水=1
/
相对密度空气=1
/
沸点℃
/
饱和蒸气压kPa
/溶解性燃烧爆炸来自险性燃烧性易燃
燃烧分解物
/
闪点℃
23℃≤闪点≤61℃
爆炸上限v%
/
引燃温度℃
/
爆炸下限v%
/
危险特性
不饱和聚酯树脂的危险性取决于所用添加剂,如树脂的溶剂苯乙烯和催化剂有机过氧化物;苯乙烯闪点31℃;遇明火、高热、氧化剂易引起燃烧;在火场高温下能聚合放热,使容器爆破;
建规火险分级

稳定性
稳定
聚合危害
聚合
禁忌物
强氧化剂
储运条件
与泄漏处理
储运条件:储存于阴凉、通风的仓间内,远离火种、热源,避免阳光直射;与氧化剂隔离储运;泄漏处理:切断火源;建议应急处理人员戴防毒面具与手套;用砂土吸收,倒至空旷地方掩埋;被污染地面用油灰刀刮清;
灭火方法
用泡沫、雾状水、二氧化碳、干粉、砂土灭火;用雾状水幕抑爆;
不溶于水,溶于苯乙烯等有机溶剂;
毒性及健康危害
侵入途径
吸入、食入、经皮吸收;
毒性
LD50:
LC50:
健康危害
蒸气和液体对眼睛、皮肤和呼吸系统有刺激性;
急救方法
①皮肤接触:先用清洁纱布擦清树脂,再用肥皂彻底洗涤;②眼睛接触:用水冲洗,严重的就医诊治;③吸入:迅速脱离现场至空气新鲜处;保持呼吸道通畅;如呼吸困难,给输氧;如呼吸停止,立即进行人工呼吸;就医;④食入:饮足量温水,催吐;就医;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不饱和聚酯树脂的主要特性
树脂是一种俗称,指制造塑料所用的高分子原料,凡未经加工的任何高聚物都可称为树脂。

聚酯指的是二元羧酸和二元醇经过缩聚反应而成的聚合物。

通用聚酯树脂一般为邻苯型,即采用邻苯二甲酸酐、顺丁烯二酸酐、丙二醇、乙二醇等常用的材料合成,然后溶解于交联单体苯乙烯中。

聚酯树脂可分为两类:一类是饱和聚酯树脂,其分子结构中没有非芳族的不饱和键,如聚对苯二甲酸乙烯酯。

这是一种热塑性树脂,可以通过喷丝头注射成型得“涤纶”纤维,也可以制成薄模,即“涤纶”薄模。

另一类是不饱和聚酯树脂,其分子含有非芳族的不饱和键,可以适当的引发剂引发交联反应而成为一种热固性树脂,我们以下文中所讲的不饱和聚酯树脂即属此类,有时为方便也称为聚酯。

不饱和聚酯分子在固化前是长链形的分子,其分子量(相对分子质量)一般为100~3000,这种长链的分子可以和不饱和的单体交联而形成具有复杂结构的庞大的网状分子,共有三种形态:1.为大致均匀的连续网状结构;2.为不均匀的连续网状结构,在密度较大的连续网之间有密度较底的链型分子互相联结;3.为不连续网状结构,密度较大的连续网分散与未键和的组分中间。

一般不饱和聚酯树脂固化后主要形成第二种。

不饱和聚酯树脂是增强塑料中使用最普遍的树脂。

在增强塑料领域中,热固性树脂用量占85%~90%(质量分数),不饱和聚酯有特别有利的加工工艺条件,而且价格便宜,不饱和聚酯树脂主要优点如下:
(1)工艺性能优良。

这是不饱和聚酯树脂最突出的优点,室温下具有适宜的粘度,可以在室温下固化,常压下成型,固化过程中无小分子形成,因而施
工方便,易保证质量,并可用多种措施来调节他的工艺性能,特别适合于
大型和现场制造玻璃钢制品。

(2)耐化学腐蚀性:不饱和聚酯树脂与普通金属的电化学腐蚀机理不同,它不导电,在电解质溶液里不会有离子溶解出来,因而对大气、水和一般浓度的酸、碱、盐等介质有着良好的化学稳定性,特别在强的非氧化性酸和相当广泛的PH值范围内的介质中都有着良好的适应性,过去用不锈钢也对付不了的一些介质,如盐酸、氯气、二氧化碳、稀硫酸、次氯酸钠和二氧化硫等,但现在可以很好的解决,固化后的树脂综合性能良好。

该树脂的力学性能略低于环氧树脂,但优于酚醛树脂和呋喃树脂,耐腐蚀性能好与其他树脂。

常见的热固性树脂一般都耐酸、稀碱、盐、有机溶剂、海水并耐湿。

间苯型不饱和聚酯耐化学性
在不同化学介质浸泡中,四种树脂浇铸块的耐腐蚀性
(浸泡一年)
(3)耐热性,绝大多数不饱和聚酯树脂的热变形温度都在50~60℃,一些耐热性好的可达120℃,线热膨胀系数a1为(130~150)×10-6℃。

(4)优良的电性能;不饱和聚酯树脂是一种优良的电绝缘材料,用他制造的设备不存在电化学腐蚀和杂散电流腐蚀,可广泛用于制造仪表、电极及电路中的绝缘零部件,以提高使用寿命。

(5)力学性能好:不饱和聚酯树脂具有较高的拉伸、弯曲、压缩等强度。

见下表
不饱和聚酯树脂固化后性能对比
聚酯玻璃钢和其他材料性能比较。

相关文档
最新文档