直流降压斩波电路的设计

合集下载

基于单片机的直流斩波电路的设计说明

基于单片机的直流斩波电路的设计说明

基于单片机的直流斩波电路的设计本文介绍了基于单片机的直流斩波电路的基本方法,直流斩波电路的相关知识以及用单片机产生PWM波的基本原理和实现方法。

重点介绍了基于MCS 一51单片机的用软件产生PWM 信号以及信号占空比调节的方法。

对于实现直流斩波提供了一种有效的途径。

本次设计中以直流降压斩波电路为例。

关键词:单片机最小系统; PWM ;直流斩波:直流降压斩波电路的原理斩波电路的典型用途之一是拖动直流电动机,也可带蓄电池负载,两种情况下负载中均会出现反电动势,如图3-1中Em 所示 工作原理,两个阶段t=0时V 导通,E 向负载供电,uo=E ,io 按指数曲线上升t=t1时V 关断,io 经VD 续流,uo 近似为零,io 呈指数曲线下降为使io 连续且脉动小,通常使L 值较大数量关系电流连续时,负载电压平均值E E T t E t t t U on off on on o α==+=a ——导通占空比,简称占空比或导通比Uo 最大为E ,减小a ,Uo 随之减小——降压斩波电路。

也称为Buck 变换器(Buck Converter )。

负载电流平均值R E U I m o o -= (3-2)电流断续时,uo 平均值会被抬高,一般不希望出现斩波电路有三种控制方式:1)保持开关周期T 不变,调节开关导通时间t on ,称为脉冲宽度调制或脉冲调宽型:2)保持导通时间不变,改变开关周期T ,成为频率调制或调频型;3)导通时间和周期T 都可调,是占空比改变,称为混合型。

其原理图为:图3-1降压斩波电路的原理图及波形a)电路图b)电流连续时的波形c)电流断续时的波形驱动电路更加复杂。

设计方案:用单片机为控制核心,以电力电子器件IGBT为主电路关键器件,完成直流斩波器的电路设计,包括控制程序设计、电力电子器件驱动、信号隔离及其它的一些保护部分。

指标要求:输入电压要求:AC220V50Hz输出电压为0——180V输出功率:1KW设计框图本设计总体框图如图所示,系统分为五部分:主电路、控制电路、集中隔离与驱动电路等。

直流降压斩波电路实验报告

直流降压斩波电路实验报告

直流降压斩波电路实验报告实验目的本实验旨在研究直流降压斩波电路的原理、特性及其在实际电路中的应用。

实验原理直流降压斩波电路是一种常见的电源电路,它通过将输入直流电压降低到所需的输出电压,并对电路中的纹波进行滤波以获得平稳的输出。

直流降压斩波电路的核心元件是电容和二极管。

实验设备本实验所使用的设备和元件如下: - 直流电源 - 变压器 - 滤波电容 - 整流二极管 - 负载电阻 - 示波器 - 万用表实验步骤1.将直流电源连接至变压器的输入端,设置合适的输入电压。

2.通过变压器将输入电压降低到所需的输出电压。

3.将滤波电容并联在输出端,以滤除输出电压中的纹波。

4.将整流二极管连接在滤波电容的正极,确保输出电压为正。

5.将负载电阻连接在整流二极管和滤波电容之间,作为电路的负载。

6.使用万用表测量输出电压和电流,记录实验数据。

7.使用示波器观察输出电压的波形,并测量其纹波水平。

8.分析实验结果,总结直流降压斩波电路的特性和应用。

实验结果与分析根据实验数据测量和示波器观察,我们得到了直流降压斩波电路的输出电压和波形。

通过测量输出电压和电流的关系,我们可以计算出电路的输出功率和效率,并分析其特性和应用。

结论通过本实验,我们深入研究了直流降压斩波电路的原理、特性及其在实际电路中的应用。

通过实验数据的测量和分析,我们得出了该电路的特性和性能参数,并对其应用进行了讨论。

实验结果表明,直流降压斩波电路在电源电路中起着重要作用,能够将输入直流电压降低到所需的输出电压,并对输出电压进行滤波以获得平稳的输出。

致谢感谢实验室老师对本实验的指导和支持,感谢实验室的同学们在实验过程中的帮助和合作。

参考文献[1] XXX,XXXX年,XXXX出版社。

[2] XXX,XXXX年,XXXX期刊。

直流斩波电路设计

直流斩波电路设计

第一章电路总体思路,基本结构和原理框图1.1 电路总体思路直流斩波电路功能是将直流电变为另一固定电压或可调电压的直流电,也称为直接直流—直流变换器。

在设计直流斩波电路过程中,日常所用的电源一般都是220V 交流电,在设计中首先通过变压器降压,然后用整流电路将交流电转变为直流电,经过绿波电路滤掉高次谐波,从而获得直流斩波电路的输入电压。

控制和驱动电路,采用直接产生PWM的专用芯片SG3525,该芯片的外围电路只需简单的连接几个电阻电容,就能产生特定频率的PWM波,通过改变IN+输入电阻就能改变输出PWM波的占空比,故在IN+端接个可调电阻就能实现PWM控制。

为了减少不同电源之间的相互干扰,SG3525输出的PWM经过光电耦合之后才送至驱动电路,通过驱动电路对信号进行放大,放大后的电压可以直接驱动IGBT。

此电路具有信号稳定,安全可靠等优点。

因此他适用于中小容量的PWM斩波电路。

过压和过流保护电路,均采用反馈控制,将过流过压信号反馈到芯片SG3525的输入,从而起到调节保护作用。

1.2 基本结构直流斩波电路一般主要可分为主电路模块,控制电路模块和驱动电路模块三部分组成。

主电路模块,主要由电源变压器、整流电路、滤波电路和直流斩波电路组成,其中主要由全控器件IGBT的开通与关断的时间占空比来决定输出电压u。

的大小。

控制电路模块,可用直接产生PWM的专用芯片SG3525来控制IGBT的开通与关断。

驱动电路模块,驱动电路把控制信号转换为加在IGBT控制端和公共端之间,用来驱动IGBT的开通与关断。

1.3 原理框图电力电子器件在实际应用中,一般是由控制电路,驱动电路,保护电路和以电力电子器件为核心的主电路组成一个系统。

由信息电子电路组成的控制电路按照系统的工作要求形成控制信号,通过驱动电路去控制主电路中电力电子器件的导通或者关断。

来完成整个系统的功能。

因此,一个完整的降压斩波电路也应包括主电路,控制电路,驱动电路和保护电路这些环节。

直流降压斩波电路课程设计

直流降压斩波电路课程设计

直流降压斩波电路课程设计引言直流降压斩波电路是电子电路领域中一种常见的电路,它主要用于将高压直流电源降压为所需的低压直流电源,并通过斩波电路消除输出信号的脉动。

本文将详细介绍直流降压斩波电路的设计原理、实施步骤和实际应用。

设计原理直流降压斩波电路的设计原理基于基础的电路理论知识。

在设计中,需要考虑以下几个方面的内容:输入电压和输出电压的关系根据设计的需求,需要确定输入电压和输出电压的关系。

通常情况下,输出电压要低于输入电压。

这个关系对于电路的元件选择和参数确定非常重要。

电路拓扑结构根据输入输出电压的关系,可以选择不同的电路拓扑结构。

常见的直流降压斩波电路拓扑有BUCK和BOOST两种。

BUCK电路用于输出电压小于输入电压的情况,BOOST电路用于输出电压大于输入电压的情况。

斩波电路设计斩波电路的设计是直流降压斩波电路设计中的重要部分。

斩波电路的作用是消除输出信号的脉动,使输出电压更加稳定。

常见的斩波电路包括电容滤波、电感滤波等。

根据设计需求,选择合适的斩波电路并计算电路参数。

控制电路设计直流降压斩波电路通常需要控制电路来调整输出电压。

控制电路可以通过开关元件的开关频率和工作占空比来实现电压调节。

控制电路的设计需要考虑开关元件的特性和相关电路参数。

实施步骤针对以上设计原理,可以按照以下步骤进行直流降压斩波电路的设计:1.确定输入输出电压的关系,并计算所需降压比例。

2.根据电压关系选择合适的电路拓扑结构,BUCK或BOOST。

3.根据拓扑结构选择合适的元件并计算参数,包括开关元件、电容和电感等。

4.设计斩波电路,选择合适的斩波电路拓扑和计算电路参数。

5.设计控制电路,选择合适的控制策略和计算相关参数。

6.综合考虑各个部分的设计结果,进行仿真验证。

7.制作电路原型并进行实际测试,调整和优化电路参数。

8.编写电路设计报告,包括设计原理、步骤、仿真结果和实际测试结果等。

实际应用直流降压斩波电路在实际应用中有广泛的应用。

直流降压斩波电路课程设计

直流降压斩波电路课程设计

直流降压斩波电路课程设计一、设计背景直流降压斩波电路是电子工程中常见的一种电路,其作用是将高压的直流电源转换为低压的直流电源,以满足不同设备对电压的需求。

本次课程设计旨在通过设计一个直流降压斩波电路来加深学生对该电路原理和应用的理解,并提高学生的实践能力。

二、设计要求1. 输入电压:24V DC2. 输出电压:12V DC3. 输出电流:最大2A4. 效率:不低于80%5. 稳定性:输出稳定性好,纹波小于100mV三、设计原理1. 直流降压原理直流降压是指通过变换器将输入端直流高压转换成输出端所需的较低直流电源。

通常情况下,使用变换器将输入端高频交变成矩形波进行输出,再通过滤波器进行平滑处理,从而得到稳定的直流输出。

2. 斩波原理斩波是指将交流信号转化为脉冲信号输出。

在斩波过程中,通过改变占空比(即高电平时间与周期时间之比)可以调节输出脉冲宽度,从而实现对输出电压的调节。

3. 直流降压斩波电路原理直流降压斩波电路是将直流高压输入信号通过变换器转化为高频交流信号,再通过斩波电路将其转化为脉冲信号输出。

最后通过滤波器对输出信号进行平滑处理,得到稳定的直流低压输出。

四、设计方案1. 变换器选择变换器是直流降压斩波电路中最关键的部分之一。

在本次设计中,我们选择使用UC3845作为变换器控制芯片,并搭配IRF540N MOSFET管进行驱动。

同时,我们还需要根据输入和输出电压的不同来选择合适的变压器。

2. 斩波电路设计在本次设计中,我们选择使用NE555作为斩波芯片,并根据输入和输出电压的不同来计算出合适的占空比。

同时,在斩波过程中还需要注意控制脉冲宽度以保证输出稳定性。

3. 滤波器设计滤波器是直流降压斩波电路中用于平滑处理输出信号的部分。

在本次设计中,我们选择使用L-C滤波器进行滤波处理,以保证输出电压的稳定性和纹波小于100mV。

4. 控制电路设计为了保证直流降压斩波电路的稳定性和安全性,我们还需要设计一个控制电路来监测输入和输出电压,并对变换器进行合适的控制。

直流降压斩波电路实验报告

直流降压斩波电路实验报告

直流降压斩波电路实验报告
一、实验目的
本实验的主要目的是了解直流降压斩波电路的工作原理,掌握电路的搭建方法和调试技巧,同时能够通过实验数据分析和计算得出电路的性能参数。

二、实验原理
直流降压斩波电路是一种常用的电源调节电路,它可以将高压直流电源转换为低压直流电源。

该电路由三个部分组成:变压器、整流滤波器和斩波稳压器。

其中变压器主要起到降压作用,整流滤波器则可以将交流信号转换为直流信号,并对信号进行平滑处理,最后斩波稳压器则可以对输出信号进行稳定控制。

三、实验步骤
1. 搭建直流降压斩波电路。

2. 连接示波器和负载。

3. 调节变压器输出电压为所需输出值。

4. 调节斩波管触发角度和输出信号稳定性。

5. 记录实验数据并进行分析。

四、实验注意事项
1. 实验过程中应注意安全,避免触电等事故。

2. 严格按照步骤操作,避免误操作导致电路损坏。

3. 实验数据应准确记录,避免误差产生。

五、实验结果分析
通过实验数据的分析和计算,可以得出直流降压斩波电路的性能参数。

其中包括输出电压、输出电流、效率等指标。

同时还可以观察到斩波
管的触发角度对输出信号稳定性的影响,并对电路进行优化调整。

六、实验总结
本次实验通过搭建直流降压斩波电路并进行调试和分析,深入了解了
该电路的工作原理和性能参数计算方法。

同时也提高了我们的实验技
能和安全意识,为今后的学习和科研奠定了基础。

电力电子课程设计直流斩波电路优秀设计

电力电子课程设计直流斩波电路优秀设计

课程设计汇报课题名称:直流斩波电路旳设计电力电子技术课程设计任务书系:电气与信息工程系年级:专业:自动化直流斩波电路旳功能是将直流电变为另一种固定旳或可调旳直流电,也称为直流-直流变换器(DC/DC Converter),直流斩波电路一般是指直接将直流变成直流旳状况,不包括直流-交流-直流旳状况;直流斩波电路旳种类诸多:降压斩波电路,升压斩波电路,这两种是最基本电路。

此外尚有升降压斩波电路,Cuk斩波电路,Sepic斩波电路,Zeta斩波电路。

斩波器旳工作方式有:脉宽调制方式(Ts不变,变化ton)和频率调制方式(ton不变,变化Ts)。

本设计是基于SG3525芯片为关键控制旳脉宽调制方式旳升压斩波电路和降压斩波电路,设计分为Multisim仿真和Protel两大部分构成。

Multisim重要是仿真分析,借助其强大旳仿真功能可以很直观旳看到PWM控制输出电压旳曲线图,通过设置参数分析输出与电路参数和控制量旳关系,运用软件自带旳电表和示波器能直观旳分析多种输出成果。

第二部分是硬件电路设计,它通过Protel等软件设计完毕。

关键字:直流斩波;PWM;SG35251 直流斩波主电路旳设计 (1)1.1 直流斩波电路原理 (1)直流降压斩波电路 (1)直流升压斩波电路 ........................................... 错误!未定义书签。

1.2 主电路旳设计.............................................................. 错误!未定义书签。

直流降压斩波电路 ........................................... 错误!未定义书签。

直流降压斩波电路参数计数 ........................... 错误!未定义书签。

直流升压斩波电路 ........................................... 错误!未定义书签。

直流斩波电路设计

直流斩波电路设计

一、设计项目与要求1、输入直流电压U i=60V,R=8Ω;2、输出电压范围为0-100V,试选用合适斩波电路;3、计算占空比α=23%和α=59%时,负载两端输出电压和电流;4、画出α=23%和α=59%时斩波电路的电压电流波形分析图;5、IGBT的工作特性分析。

二、电路原理图设计2.1主电路的设计斩波电路:将直流电变为另一固定电压或可调电压的直流电。

也称为直流-直流变换器(DC/DCConverter)。

一般指直接将直流电变为另一直流电,不包括直流-交流-直流。

升降压斩波斩波电路结构Boost型升降压斩波变换器的特点是输出电压可以低于电源电压,也可以高于电源电压,是将降压斩波和升压斩波电路结合的一种直接变换电路。

主要由功率开关、二极管、储能电感、输出滤波电容等组成。

本次课题是在输入直流电压为60V时,想要输出电压的范围为0-100V,故而要选择的斩波电路应为升降压斩波斩波电路。

图1升降压斩波电路原理图2.2触发电路设计斩波器触发电路由三部分组成,图2为斩波器触发电路的原理图。

第一部分为由幅值比较电路U1和积分电路U2组成一个频率和幅值均可调的锯齿波发生器。

电位器RP1用来调节锯齿波的上下位置,电位器RP2用来调节锯齿波的频率,频率从100到700Hz可调。

由于晶闸管的开关速度及LC振荡频率所限,所以在斩波实验中我们一般选用200Hz这一范围。

第二部分是比较器部分。

比较器U3输入的一路是锯齿波信号,另一路是给定的电平信号,输出为前沿固定后沿可调的方波信号。

改变输入的电平信号的值,则相应改变了输出方波的占空比。

第三部分是比较器产生的方波送到4098双单稳电路U4,单稳电路则在方波的前沿和后沿分别产生两个脉冲,如图4所示,其后沿脉冲随方波的宽度变化而移动,前沿脉冲相位则保持不变,输出的脉冲经三极管放大通过脉冲变压器输出。

将上述两脉冲分别送至主晶闸管及辅助晶闸管,其中方波前沿触发脉冲G1、K1接主晶闸管VT1,而后沿触发脉冲G2、K2接辅助晶闸管VT2。

降压式直流斩波电路

降压式直流斩波电路

实验一降压式直流斩波电路(Buck)一、原理图在控制开关VT导通ton期间,二极管VD反偏,电源E通过电感L向负载R供电,此间iL增加,电感L的储能也增加,导致在电感两端有一个正向电压Ul=E-u0,左正右负,这个电压引起电感电流iL的线性增加。

2)在控制开关VT关断toff期间,电感产生感应电势,左负右正,使续流二极管VD导通,电流iL经二极管VD续流,uL=-u0,电感L向负载R供电,电感的储能逐步消耗在R上,电流iL线性下降,如此周而复始周期变化。

如图1-1。

图1-1 电路图二、建立仿真模型根据原理图用matalb软件画出正确的仿真电路图,如图1-2。

图1-2 仿真电路图(截图)仿真参数,算法(solver)ode15s,相对误差(relativetolerance)1e-3,开始时间0结束时间10,如图1-3。

图1-3 (截图)电源参数,电压100v,如图1-4。

图1-4 (截图)晶闸管参数,如图1-5。

图1-5 (截图)电感参数,如图1-6。

图1-6 (截图)电阻参数,如图1-7。

图1-7 (截图)二极管参数设置,如图1-8。

图1-8 (截图)电容参数设置,如图1-9。

图1-9 (截图)三、仿真参数设置设置触发脉冲占空比α分别为20%、50%、70%、90%。

与其产生的相应波形分别如图1-10图1-11图1-12图1-13。

在波形图中第一列波为输出电压波形,第二列波为输入电压波形。

图1-10 α=20%(截图)图1-11 α=50%(截图)图1-12 α=70%(截图)图1-13 α=90%(截图)四、小结(1)在降压式直流斩波电路(Buck)中,电感和电容值设置要稍微大一点。

(2)注意VT的导通和关断时间,电容的充放电规律和电感的作用。

(3)输出电压计算公式:U0=DE。

实验二升压式直流斩波电路(Boost)一、工作原理1)当控制开关VT导通时,电源E向串联在回路中的L充电储能,电感电压uL左正右负;而负载电压u0上正下负,此时在R与L之间的续流二极管VD 被反偏,VD截至。

降压斩波电路实验报告

降压斩波电路实验报告

降压斩波电路实验报告降压斩波电路实验报告引言:降压斩波电路是电子工程中常用的一种电路,主要用于降低电压并减小电压波动。

本实验旨在通过搭建降压斩波电路并进行实际测试,验证其性能和效果。

实验原理:降压斩波电路由降压电路和斩波电路两部分组成。

降压电路主要通过变压器降低输入电压,而斩波电路则通过整流和滤波来减小电压波动。

实验材料:1. 变压器2. 整流器3. 滤波电容4. 电阻5. 电压表6. 示波器7. 电源实验步骤:1. 将变压器的输入端与电源相连,输出端与整流器相连。

2. 整流器的输出端连接滤波电容,并将电阻与滤波电容并联。

3. 将电压表连接在输出端,示波器连接在电阻上。

4. 打开电源,调节电压表和示波器的参数,记录输出电压和波形。

实验结果:经过实验测量,我们得到了降压斩波电路的输出电压和波形数据。

在不同输入电压下,输出电压均稳定在预期范围内,并且波形经过斩波和滤波后明显减小了电压波动。

实验分析:降压斩波电路的设计目的是为了降低电压并减小电压波动,以满足电子设备对稳定电源的需求。

通过实验结果可以看出,该电路在实际应用中具有较好的效果。

变压器的降压作用使得输入电压得以降低,而整流和滤波则进一步减小了电压波动,使输出电压更加稳定。

此外,通过示波器观察到的波形也可以看出,斩波和滤波对电压波动的减小起到了重要作用。

斩波电路将交流信号转换为直流信号,而滤波电容则进一步平滑了输出电压的波动,使其更加稳定。

结论:降压斩波电路是一种常用的电子电路,通过实验验证了其在降低电压和减小电压波动方面的有效性。

该电路结构简单,实用性强,可以满足电子设备对稳定电源的需求。

总结:通过本次实验,我对降压斩波电路的原理和性能有了更深入的了解。

实验结果证明了该电路的有效性,并且我也学会了如何搭建和测试该电路。

在今后的学习和工作中,我将能够更好地应用和优化降压斩波电路,以满足不同电子设备的需求。

降压斩波电路课程设计

降压斩波电路课程设计

降压斩波电路课程设计一、设计任务与要求设计一个降压斩波电路,将直流电源的电压降低到所需电压值,并实现稳定的输出。

具体要求如下:1.输入直流电源电压范围为0-100V。

2.输出电压可调,范围为0-50V。

3.输出电流最大值为5A。

4.实现恒压输出,即输出电压稳定不变。

5.电路效率高,损耗小。

6.考虑电路的安全性,添加必要的保护措施。

二、电路设计降压斩波电路主要由电源、开关管、电感、二极管和负载组成。

其工作原理是利用开关管在斩波周期内反复通断,控制电感电流的平均值,从而达到降低输出电压的目的。

1.电源:采用0-100V的直流电源,满足输入电压范围要求。

2.开关管:选择合适的开关管,如MOSFET或IGBT等,根据输入电压和电流要求进行选择。

3.电感:选择适当的电感值,以保证电路的稳定性和效率。

4.二极管:选择合适的整流二极管,如肖特基二极管或快恢复二极管等,以保证电路的稳定性和效率。

5.负载:根据设计要求,选择适当的负载电阻或负载电容等。

三、电路原理图设计根据以上分析,可以设计出降压斩波电路的原理图。

在原理图中,需要标明各元件的参数和连接方式,并注意电路的安全性和可靠性。

例如,为保护开关管和二极管,可以在电路中添加限流电阻或温度保护元件等。

四、仿真与测试在完成原理图设计后,需要进行仿真和测试,以验证设计的正确性和可靠性。

可以使用仿真软件如Multisim进行仿真分析,并根据测试结果对电路参数进行调整。

实际测试时,可以使用电子负载仪等设备进行测试,并记录测试数据和波形。

五、总结与反思在完成降压斩波电路课程设计后,需要对整个设计过程进行总结和反思。

总结设计的优点和不足之处,提出改进方案和优化措施,为今后的课程设计和工程实践提供有益的参考和借鉴。

降压直流斩波电路设计

降压直流斩波电路设计

降压直流斩波电路设计一、背景介绍高血压是目前全球性的公共卫生问题,长期高血压会增加心脑血管疾病的风险,因此对高血压患者进行有效的降压治疗非常重要。

目前常见的降压药物有利尿剂、β受体阻滞剂、钙通道阻滞剂等,但这些药物也会带来一定的副作用。

因此,设计一种可靠、安全、无副作用的降压方法对于人类健康具有重要意义。

二、直流斩波电路原理直流斩波电路是一种将直流电转换为交流电的电路。

其基本原理是通过切换开关将直流电源分时段地斩断,使得输出信号呈现出交变特性。

在实际应用中,直流斩波电路可以通过调节开关频率和占空比来控制输出信号的幅值和频率。

三、降压直流斩波电路设计1. 电源部分:由于直流斩波电路需要稳定的直流供电,因此需要设计一个稳定可靠的电源模块。

常见的供电方式包括单相整流桥式电路、双向开关稳压电源等。

在设计时需要考虑到电源的输出电压和电流,以及对于直流斩波电路的影响。

2. 斩波部分:直流斩波电路的核心是斩波部分,其主要由开关管、滤波器和负载组成。

在设计时需要考虑到开关管的导通损耗和关断损耗,以及滤波器的参数选择和负载的匹配问题。

常见的开关管包括MOSFET、IGBT等。

3. 控制部分:为了实现对输出信号幅值和频率的精确控制,需要设计一个可靠的控制模块。

常见的控制方式包括PWM控制和SPWM控制等。

在设计时需要考虑到控制信号的精度和稳定性。

四、降压直流斩波电路应用降压直流斩波电路可以广泛应用于医疗、工业自动化、能源等领域。

在医疗领域中,可以通过调节输出信号幅值和频率来实现对高血压患者血压的精确调节;在工业自动化领域中,可以用于驱动各种类型的负载;在能源领域中,可以用于太阳能、风能等新能源的转换和控制。

五、总结降压直流斩波电路具有可靠、安全、无副作用等优点,可以广泛应用于医疗、工业自动化、能源等领域。

在设计时需要考虑到电源部分、斩波部分和控制部分的参数选择和匹配问题,以实现对输出信号的精确控制。

IGBT直流降压斩波电路设计

IGBT直流降压斩波电路设计

目录1设计原理分析 (1)1.1总体结构分析 (1)1.2主电路的设计 (1)1.3触发电路的选型 (2)1.4驱动电路选型 (3)1.5整流滤波电路 (5)2. 设计总电路图及参数 (6)2.1设计总电路图 (6)2.2 元件参数计算 (8)3. 元器件清单 (10)小结 (11)参考文献 (11)IGBT 直流降压斩波电路的设计1设计原理分析1.1总体结构分析直流斩波电路的功能是将直流电变为另一固定电压或可调电压的直流电。

它在电源的设计上有很重要的应用。

一般来说,斩波电路的实现都要依靠全控型器件。

在这里,我所设计的是基于IGBT 的降压斩波短路。

直流降压斩波电路主要分为三个部分,分别为主电路模块,控制电路模块和驱动电路模块。

电路的结构框图如下图(图1)所示。

图1 电路结构框图1.2主电路的设计主电路是整个斩波电路的核心,降压过程就由此模块完成。

其原理图如图2所示。

图2 主电路原理图如图,IGBT 在控制信号的作用下开通与关断。

开通时,二极管截止,电流io 流过大i EV +-MRLVD a)i oE Mu oi G电源 触发电路 驱动电路 主电路整流滤波电路电感L ,电源给电感充电,同时为负载供电。

而IGBT 截止时,电感L 开始放电为负载供电,二极管VD 导通,形成回路。

IGBT 以这种方式不断重复开通和关断,而电感L 足够大,使得负载电流连续,而电压断续。

从总体上看,输出电压的平均值减小了。

输出电压与输入电压之比α由控制信号的占空比来决定。

这也就是降压斩波电路的工作原理。

降压斩波的典型波形如下图所示。

图3 降压电路波形图图2中的负载为电动机,是一种放电动式负载。

反电动势负载有电流断续和电流连续两种工作状态。

分别入图3中b )和a )所示。

无论哪一种情况,输出电压的平均值都与负载无关,其大小为:(1-1)T on 表示导通的时;T off 表示截止的时间 ;α表示导通时间占空比。

对于输出电流,当0U >E 时电流连续,输出电流平均值大小为:(1-2) 当Uo<E 时,电流既无法通过IGBT 也无法通过二极管。

降压式直流斩波电路设计

降压式直流斩波电路设计

降压式直流斩波电路设计第三章降压式直流斩波电路设计3.1 降压式设计原理降压式直流斩波电路是一种用来连接电源和负载,能够有效降低电源输出电压,同时保持电源工作电压及负载工作电压在允许范围内的电路。

由于降压式直流斩波电路有双极半桥,可以有效减少电源输出电压,并且保证电源工作电压和负载工作电压的稳定性。

一般来说,降压式直流斩波电路的运行原理如下:当电源输出电压大于负载工作电压时,双极半桥由负极起动,电源输出电压会被半桥放电,电流不断流入负载,从而使电源输出电压降低;当电源输出电压低于负载工作电压时,双极半桥由正极起动,电源输出电压被半桥吸收,电流向负载输出,从而使电源输出电压增加。

3.2 降压式斩波电路设计降压式直流斩波电路的设计主要包括以下几个方面:(1)选择合适的电路板尺寸:首先,根据电路的尺寸要求,为降压式直流斩波电路板选择合适的尺寸。

(2)安装合适的电路板模块:其次,根据不同设计要求,需要安装合适的模块,比如双极半桥和稳压模块等。

(3)选择合适的参数:最后,为了确保电路的正确运行,还需要根据电路应用场景选择合适的参数,比如电源电压、斩波电压、负载最大输出电流等。

3.3 降压式斩波电路实验为了检测降压式直流斩波电路的设计是否符合设计要求,我们进行了实验检验。

实验内容如下:(1)电源输出电压:我们采用WZT-30-2L-24电源,在实验室测试,电源输出电压为24V±1V。

(2)负载工作电压:我们在实验室测试,负载工作电压稳定在5V±0.1V。

(3)负载最大输出电流:我们在实验室测试,负载最大输出电流为4A。

实验结果表明,设计的降压式直流斩波电路符合设计要求,可以正常运行。

降压直流斩波电路课程设计

降压直流斩波电路课程设计

降压直流斩波电路课程设计
降压直流斩波电路是一种基本的电子电路,它可以将高电压的直流电源降压为合适的电压,以满足电子设备的需求。

以下是一个简单的降压直流斩波电路的课程设计:
1.电路原理:降压直流斩波电路主要由变压器、桥式整流电路、
电容和负载组成。

变压器将高电压的直流电源降压,桥式整流电路将交流输出转换为直流输出,电容平滑输出电压,负载则是电路的输出部分。

2.设计要求:设计一个输出电压为12V,输出电流为1A的降压直
流斩波电路。

3.设计步骤:
(1)计算变压器的变比。

因为输出电压为12V,变压器的变比为Vin/Vout=36/12=3。

(2)选择变压器。

根据变比选择合适的变压器。

(3)设计桥式整流电路。

选择合适的整流二极管和滤波电容。

(4)计算电容容值。

根据输出电流和输出电压计算电容的容值。

(5)确定负载。

根据输出电流和输出电压确定负载的电阻值。

(6)进行电路仿真。

使用电路仿真软件进行电路仿真,验证电路的性能是否符合设计要求。

4.实验步骤:
(1)搭建电路。

根据设计要求,搭建电路。

(2)连接电源。

将电源连接到电路上,调整电源输出电压。

(3)测量输出电压和输出电流。

使用万用表测量输出电压和输出电流,检查是否符合设计要求。

(4)观察电路波形。

使用示波器观察电路各部分的电压和电流波形,检查是否正常。

5.实验结果:
经过实验测量和仿真验证,输出电压为12V,输出电流为1A,符合设计要求。

直流降压斩波电路的设计

直流降压斩波电路的设计

直流降压斩波电路的设计直流降压斩波电路的设计一、设计目的直流斩波电路的功能是将直流电变为另一固定电压或可调电压的直流电,也称为直接直流—直流变换器。

直流斩波电路一般是指直接将直流电变为另一直流电的情况,不包括直流—交流—直流的情况。

设计目的如下:(1)培养文献检索的能力,特别是如何利用Internet检索需要的文献资料。

(2)培养综合分析问题、发现问题和解决问题的能力。

(3)通过对直流降压斩波电路的设计,掌握直流降压斩波电路的工作原理,综合运用所学知识,进行直流降压斩波电路和系统设计的能力(4)培养运用知识的能力和工程设计的能力。

(5)提高课程设计报告撰写水平。

二、设计任务2.1、设计任务要求设计降压斩波电路的主电路、控制电路、驱动及保护电路,稳压直流电源15V和直流电压100V的设计2.2、设计要求对直流降压电路的基本要求有以下几点:(1)输入直流电压:100V(2)输出电压范围:50V~80V(3)最大输出电流:5A(4)开关频率:40KHz(5)L:1mH2.3、设计步骤(1)根据给出的技术要求,确定总体设计方案(2)选择具体的元件,进行硬件系统的设计(3)进行相应的电路设计,完成相应的功能(4)进行调试与修改(5)撰写课程设计说明书三、设计方案选择及论证斩波电路有三种控制方式(1)脉冲宽度调制(PWM):开关周期T不变,改变开关导通时间Ton。

(2)频率调制:开关导通时间不变,改变开关周期T。

(3)混合型:开关导通时间和开关周期T都可控,改变占空比。

本次设计采用的是脉宽调制的方法,开关选用全控型器件IGBT,IGBT降压斩波电路是直流斩波中最基本的一种电路,是用IGBT作为全控型器件的降压斩波电路,用于直流到直流的降压变换。

IGBT是MOSFET与GTR的复合器件。

它集中了电力MOSFET和GTR的优点,既有MOSFET易驱动的特点,输入阻抗高,又具有功率晶体管电压、电流容量大等优点。

其频率特性介于MOSFET与功率晶体管之间,可正常工作于几十千赫兹频率范围内,故在较高频率的大、中功率应用中占据了主导地位。

直流斩波电路的设计

直流斩波电路的设计

一.程序设计的目的:1.熟悉降压斩波电路和升压斩波电路的工作原理2.掌握两种基本斩波电路的工作状态3.了解电路图的波形情况二.课程设计的主要内容1. 设计题目直流斩波电路的性能研究2. 设计步骤⑴根据给出的技术要求,确定总体设计方案⑵选择具体的元件,进行硬件系统的设计⑶进行相应的电路设计,完成相应的功能⑷进行调试与修改⑸撰写课程设计说明书3.设计方法直流斩波电路(DC Chopper)的功能是将直流电变为另一种固定的或可调的直流电,也称为直流-直流变换器(DC/DC Converter),直流斩波电路(DC Chopper)一般是指直接将直流变成直流的情况,不包括直流-交流-直流的情况;直流斩波电路的种类很多,包括6种基本斩波电路:降压斩波电路,升压斩波电路,升降压斩波电路,Cuk斩波电路,Sepic斩波电路,Zeta斩波电路,前两种是最基本电路。

主要包括:⑴降压斩波电路的设计⑵升压斩波电路的设计⑶直流供电电源⑷控制和驱动电路三.设计方案的论证1.熟悉实验装置的电路结构和主要元器件,检查实验装置输入和输出的线路连接是否正确,检查输入保险丝是否完好,以及控制电路和主电路的电源开关是否在“关”的位置。

电路原理图见实验图2。

斩波电路的直流输入电压ui由交流电经整流得到,如实验图2a所示。

实验图2b和c分别为降压斩波主电路和升压斩波主电路。

实验图2d为控制和驱动电路的原理图,控制电路以专用PWM 控制芯片SG3525为核心构成,控制电路输出占空比可调的矩形波,其占空比受uco控制。

下图为降压斩波主电路及控制电路a)直流供电电源b)降压斩波主电路c)升压斩波主电路d)控制和驱动电路(同理可得升压斩波电路主电路及控制电路)d)降压斩波主电路及控制电路4. SG3525的功能特点及软起动功能SG3525是定频PWM电路,采用16引脚标准DIP封装。

其各引脚功能如图2(a)所示,内部框图如图2(b)所示。

脚8为软起动端。

直流降压斩波电路原理

直流降压斩波电路原理

直流降压斩波电路原理一、什么是直流降压斩波电路?直流降压斩波电路是一种电路设计,用于将输入的直流电压降低到需要的电压值,并去除电压中的波动。

该电路由降压电路和斩波电路组成。

二、直流降压电路原理直流降压电路旨在将输入的直流电压降低到较低的电压值。

常见的直流降压电路有线性降压电路和开关式降压电路。

1. 线性降压电路线性降压电路通常使用稳压二极管和电阻网络来实现。

稳压二极管通过调整其正向工作点来实现电压的稳定输出。

然而,线性降压电路的效率较低,且只适用于较小的降压比。

2. 开关式降压电路开关式降压电路是一种更高效的降压电路设计。

它通过开关器件(如晶体管或MOSFET)将输入电压分段连接到输出。

通过控制开关器件的开关频率和占空比,开关式降压电路可以实现更大的降压比。

三、斩波电路原理斩波电路(也称为滤波电路)用于去除降压电路输出中的波动,使输出电压更加稳定。

常见的斩波电路有电容滤波和电感滤波。

1. 电容滤波电容滤波通过将电容器连接到降压电路输出端来实现。

电容器可以储存电能,并在电压波动时释放电能来稳定输出电压。

较大的电容值能够获得更好的滤波效果。

2. 电感滤波电感滤波利用电感元件将电流平滑地传递到负载端,从而抑制电压的波动。

电感元件具有高阻抗,可以滤除高频信号。

较大的电感值可以实现更好的滤波效果。

四、直流降压斩波电路的设计直流降压斩波电路的设计需要考虑以下几个方面:1. 负载要求根据负载的要求确定所需的输出电压和电流,进而确定降压比和滤波元件的参数。

2. 稳定性要求确定所需的输出电压稳定性,并选择合适的稳压二极管或开关器件来实现。

3. 效率要求根据应用的需求确定电路的效率要求,并选择适当的降压电路和滤波电路。

4. 成本和尺寸要求考虑成本和尺寸限制,在设计电路时选择适当的元器件和拓扑结构。

五、直流降压斩波电路的应用直流降压斩波电路广泛应用于各种电子设备和系统中。

以下是一些常见的应用示例:1.电子教育设备:用于实验室中的实验电路的供电。

降压斩波电路设计

降压斩波电路设计

目录1 主电路的设计 (1)1.1 主电路方案 (1)1.2 降压斩波电路主电路基本原理 (1)1.3 参数计算 (3)2 驱动控制电路和保护电路设计 (3)2.1 驱动控制电路 (3)2.2 保护电路 (5)2.2.1过压保护 (5)2.2.2过流保护 (5)3 仿真设计 (6)3.1 仿真软件说明 (6)3.2 搭建仿真模型 (7)3.3 仿真结果 (10)4 元器件清单 (11)5 致谢 (11)1 主电路的设计1.1 主电路方案课题设计要求设计一个降压斩波电路,可以根据所学的buck降压电路作为主电路,这个方案是较为简单的方案,直接进行直直变换简化了电路结构。

至于开关的选择,选用比较熟悉的全控型的IGBT管,而不选半控型的品闸管,因为IGBT控制较为简单,且它既具有输入阳抗高、开关速度快、驱动电路简单等特点,通态压降小、耐压高、电流大等优点。

1.2 降压斩波电路主电路基本原理图1.1 降压斩波电路主电路工作原理图t=0时刻驱动V导通,电源E向负载供电,负载电压U o= E,负载电流i o按指数曲线上升。

t=t1时控制V关断,二极管VD续流,负载电压U o近似为零,负载电流i o呈指数曲线下降。

通常串接较大电感L使负载电流连续且脉动小。

图1.2 降压电路波形图当t=t1时刻,控制IGBT关断,负载电流经二极管V D续流,负载电压u0近似为零,负载电流指数曲线下降。

为了使负载电流连续且脉动小,故串联L值较大的电感。

至一个周期T结束,再驱动IGBT 导通,重复上一周期的过程。

t on为IGBT 处于通态的时间;t off为处于断态的时问;T为开关周期; α为导通占空比。

通过调节占空比α使输出到负载的电压平均值U o最大为E,若减小占空比α ,则U o随之减小。

由此可知,输出到负裁的电压平均值U o最大为U i,若减小占空比α ,则U o随之减小,由于输出电压低于输入电压,故称该电路为降压斩波电路。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《电子科学与技术》课程设计报告课题:直流降压斩波电路的设计
专业电气工程及其自动化
班级 2011级三班
姓名
学号
指导教师
日期
摘要: 本实验设计的是Buck降压斩波电路,采用全控型器件IGBT。

根据降压斩波电路设计任务要求设计主电路、控制电路、驱动及保护电路。

关键词:降压斩波,主电路、控制电路、驱动及保护电路。

引言:直流传动是斩波电路应用的传统领域,而开关电源则是斩波电路应用的新领域,是电力电子领域的一大热点。

DC/DC变换是将固定的直流电压变换成可变的直流电压,也称为直流斩波。

直流变换电路的用途非常广泛,包括直流电动机传动、开关电源、单相功率因数校正,以及用于其他领域的交直流电源。

斩波器的工作方式有:脉宽调制方式,频率调制方式和混合型。

脉宽调制方式较为通用。

当今世界软开关技术使得DC/DC变换器发生了质得变化和飞跃。

美国VICOR公司设计制造得多种ECI
软开关DC/DC变换器,最大输出功率有300W、600W、800W等,相应得功率密度为(6.2、10、17)W/cm3,效率为(80—90)%。

日本NemicLambda公司最新推出得一种采用软开关技术得高频开关电源模块RM系列,其开关频率为200—300KHz,功率密度已达
27W/cm3,采用同步整流器(MOS-FET代替肖特基二极管),使整个电路效率提高到90%。

1设计目的
直流斩波电路(DC Chopper)的功能是将直流电变为另一固定电压或可调电压的直流电,也称为直接直流—直流变换器(DC/DC Converter)。

直流斩波电路一般是指直接将直流电变为另一直流电的情况,不包括直流—交流—直流的情况,其中IGBT 降压斩波电路就是直流斩波中最基本的一种电路,是用IGBT作为全控型器件的降压斩波电路,用于直流到直流的降压变换。

IGBT是MOSFET与GTR的复合器件。

它既有MOSFET易驱动的特点,输入阻抗高,又具有功率晶体管电压、电流容量大等优点。

其频率特性介于MOSFET与功率晶体管之间,可正常工作于几十千赫兹频率范围内,故在较高频率的大、中功率应用中占据了主导地位。

所以用IGBT作为全控型器件的降压斩波电路就有了IGBT易驱动,电压、电流容量大的优点,因此发展很快。

2 设计任务与要求
2.1 设计任务
要求设计降压斩波电路的主电路、控制电路、驱动。

2.2 设计要求
对Buck降压电路的基本要求有以下几点:
1.输入直流电压:U d=15V
2.开关频率20KHz
3.输出电压8V
4.输出电压纹波:小于1%
5.具有稳压功能
3 设计内容
根据降压斩波电路设计任务要求设计主电路、控制电路、驱动,设计出降压斩波电路的结构框图如图1所示。

图1 电路框图
在图1结构框图中,控制电路是用来产生IGBT 降压斩波电路的控制信号,控制电路产生的控制信号传到驱动电路,驱动电路把控制信号转换为加在IGBT 控制端和公共端之间,可以使其开通或关断的信号。

通过控制IGBT 的开通和关断来控制IGBT 降压斩波电路的主电路工作。

3.1 设计方案的选定与说明 3.2 降压斩波电路 3.2.1 降压斩波电路原理
R
E U I E
E T
t
t t E t U M
on off on on -=
==+=000α
式中on t 为V 处于通态的时间;off t 为V 处于断态的时间;T 为开关周期;α为导通占空比,简称占空比或导通比。

降压斩波电路的占空比小于1。

根据对输出电压平均值进行调制的方式不同,斩波电路有三种控制方式:
1) 保持开关周期T 不变,调节开关导通时间on t 不变,称为PWM 。

2) 保持开关导通时间on t 不变,改变开关周期T ,称为频率调制或调频型。

3) on t 和T 都可调,使占空比改变,称为混合型
但是普遍采用的是脉冲宽调制工作方式。

因为采用频率调制工作方式,容易产生谐波干扰,而且滤波器设计也比较困难。

此电路就是采用脉冲宽调制控制IGBT 的通断。

3.3 降压斩波电路主电路设计 3.3.1 BUCK 降压斩波主电路
在电力系统中,直接承担电能的变换或控制任务的电路称为主电路。

IGBT 降压斩波电路的主电路图如下图2所示。

它是一种降压型变换器,其输出电压平均值U ,总是小于输入电压d U 。

该电路使用一个全控型器件V ,为IGBT 。

在V 关断时,为了给负载中电感电流提供通道,设置了续流二极管VD 。

i E M
图2 降压斩波主电路图
3.3.2主电路元器件参数选择
主电路中需要确定参数的元器件有直流电源、IGBT 、二极管、电感、电容、电阻值,其参数选择如下说明:
(1) 对于电源,因为题目要求输入直流电压为15V ,所以该直流稳压电源可直接作为系统电源。

(2)IGBT 由图2易知当IGBT 截止时,回路通过二极管续流,此时IGBT 两端承受最大正压为15V ;而当α=1时,IGBT 有最大电流,R=50Ω,计算约为0.3A 。

故需选择集电极最大连续电流c I >0.3A ,反向击穿电压B vceo >15v 的IGBT 。

如果考虑2倍的安全裕量需选择集电极最大连续电流c I 》0.6A ,反向击穿电压vceo B 》15V 的IGBT 。

(3)二极管 当α=1时,其承受最大反压15V ;而当α趋近于1时,其承受最大电流趋近于0.3A ,故需选择Vc >15v,I >0.3A 的二极管。

考虑2倍的安全裕量:
min U =21u X =15V min I =1x It =2x0.3=0.6A
(4)电感 选择大电感L ,使得电路能够续流,此时的临界电感为:
L =0U (d U —o U )/2f d U I 。

设输出电压为8V , 则L =8x (15—8)/2x1000x20x15x0.3=0.03mH
所以电感L >=0.03mH ,取L =0.1mH 。

(5) 电容 选择的电容既要使得输出的电压纹波小于1%,也不能取的太大,否则会使电路的速度变得很慢。

电容的选择:也取输出电压为80V 时来算
C =0U (d U —o U )/8L Δc U ff d U
=8x (15—8)/8x0.1mHx0.01x20Kx20Kx15=11.6mF 这里取C =12mF 。

3.4 降压斩波电路控制电路的设计 3.
4.1控制电路及器件选择
3.4.1.1 因为斩波电路有三种控制方式,又因为PWM 控制技术应用最为广泛,所以
采用PWM 控制方式来控制IGBT 的通断。

由此可以得出控制电路的电路图如图6所示:
3.5驱动电路核心芯片(IR2110)
1、IR2110简介:
IR2110内部功能由三部分组成:逻辑输入;电平平移及输出保护。

根据IR2110的特点,可以为装置的设计带来许多方便。

尤其是高端悬浮自举电源的设计,可以大大减少驱动电源的数目,即一组电源即可实现对上下端的控制。

IR2110可按如下方式接线:
这里利用IR2110的功率放大作用,将单片机生成的PWM 波进行放大后,再发送
给主电路的控制开关IGBT,基本接线图如下:
图6 控制电路图
4 元器件清单
回顾起此次电力电子课程设计,至今我仍感慨颇多,的确,从选题到定稿,从理
论到实践,可以学到很多很多的的东西,同时不仅可以巩固了以前所学过的知识,而且培养了我的自学能力,特别是对PWM控制技术的学习。

通过这次课程设计使我懂得了理论与实际相结合是很重要的,只有理论知识是远远不够的,只有把所学的理论知识与实践相结合起来,从理论中得出结论,从而提高自己的实际动手能力和独立思考的能力。

在设计的过程中我发现了自己的不足之处,对以前所学过的知识理解得不够深刻,掌握得不够牢固,通过这次课程设计之后,一定把以前所学过的知识重新温故。

相关文档
最新文档