大学物理课后习题(赵近芳)第12章 习题

合集下载

大学物理第12章课后习题

大学物理第12章课后习题

第十二章 静电场中的导体和电介质12-1将一个带正电的带电体A 从远处移到一个不带电的导体B 附近,则导体B 的电势将如何变化.答:电场中通常以无穷远处的电势为零电势参考点。

导体B 离A 很远时,其电势为零。

A 带正电,所以其电场中各点的电势均为正值。

因此B 靠近A 后,处于带电体A 的电场中时,B 的电势为正,因而B 处的电势升高。

12-2 如附图所示,一导体球半径为R 1,外罩一半径为R 2的同心薄球壳,外球壳所带总电荷为Q ,而内球的电势为U 0,求此系统的电势和电场分布。

解:根据静电平衡时电荷的分布,可知电场分布呈球对称.设内球壳带电量为q 取同心球面为高斯面,由高斯定理()()∑⎰⋅=⋅=⋅02/π4d εq r E r r E S E ,根据不同半径的高斯面内的电荷分布,解得各区域内的电场分布为r <R 1时, ()01=r E R 1<r <R 2 时,()202π4rεq r E =r >R 2 时, ()202π4rεq Q r E +=由电场强度与电势的积分关系,可得各相应区域内的电势分布. r <R 1时,20103211π4π4d d d d 2211R Q R q U R R R R rrεε+=⋅+⋅+⋅=⋅=⎰⎰⎰⎰∞∞l E l E l E l ER 1<r <R 2 时,200322π4π4d d d 22R Q rq U R R rrεε+=⋅+⋅=⋅=⎰⎰⎰∞∞l E l E l Er >R 2 时,rQ q U r03π4d ε+=⋅=⎰∞l E 3由题意得201001π4π4R Q R q U U εε+==代入电场、电势的分布得 r <R 1时,01=E ;01U U =R 1<r <R 2 时,22012012π4rR Q R rU R E ε-=;rR Q R r rU R U 201012π4)(ε--=r >R 2 时,220122013π4)(rR Q R R rU R E ε--=;rR Q R R rU R U 2012013π4)(ε--=12-3证明:对于两个无限大的平行平面带电导体板来说,(1) 相向的两面上,电荷的面密度总是大小相等而符号相反;(2) 相背的两面上,电荷的面密度总是大小相等且符号相同。

赵近芳大学物理学 第五版 部分解答

赵近芳大学物理学 第五版 部分解答

第11章变化的电磁场11.1选择题(1)圆形线圈在磁场中作下列运动时,那些情况会产生感应电流( )。

(A)沿垂直磁场方向平移(B)以直径为轴转动,轴跟磁场垂直(C)沿平行磁场方向平移(D)以直径为轴转动,轴跟磁场平行[答案:B] (2)下列哪些矢量场为保守力场(阅读全文请关注VX公众号高校课后习题)。

(A)静电场(B)稳恒磁场(C)感生电场(D)变化的磁场[答案:A] (3)用线圈的自感系数L来表示载流线圈磁场能量的公式W m=LI2/2( )。

(A)只适用于无限长密绕线管(B)只适用于一个匝数很多,且密绕的螺线环(C)只适用于单匝圆线圈(D)适用于自感系数L一定的任意线圈[答案:D]第10章 稳恒磁场10.1选择题(1) 对于安培环路定理的理解,正确的是(A)若环流等千零,则在回路L 上必定是H 处处为零(B)若环流等于零,则在回路L 上必定不包围电流(C)若环流等于零,则在回路L 所包围传导电流的代数和为零(D)回路L 上各点的H 仅与回路L 包围的电流有关 [答案:C](2)对半径为R 载流为I 的无限长直圆柱体,距轴线r 处的磁感应强度B (A)内外部磁感应强度B 都与r 成正比(B)内部磁感应强度B 与r 成正比,外部磁感应强度B 与r 成反比(C)内外部磁感应强度B 都与r 成反比(D)内部磁感应强度B 与r 成反比,外部磁感应强度B 与r 成正比[答案:B]第12章 光的干涉12.1选择题(1)在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是 ( )(A)使屏靠近双缝 (B)使两缝的间距变小(C)把两个缝的宽度稍微调窄 (D))改用波长较小的单色光源[答案:C](2)两块平玻璃构成空气劈形膜,左边为棱边,用单色平行光垂直入射,若上面的平玻璃以棱边为轴,沿逆时针方向作微小转动,则于涉条纹的 ( )(A)间隔变小,并向棱边方向平移 (B)间隔变大,并向远离棱边方向平移(C)间隔不变,向棱边方向平移 (D)间隔变小,并向远离棱边方向平移[答案:A]第13章 光的衍射13.1选择题(1)在夫琅禾费单缝衍射实验中,对于给定的入射单色光,当缝宽度变小时,除中央亮纹的中心位置不变外,各级衍射条纹( )。

大学物理(赵近芳)练习册答案

大学物理(赵近芳)练习册答案

练习1 质点运动学(一)参考答案1. B ;2. D;3. 8m, 10m.4. 3, 3 6;5. 解:(1) 5.0/-==∆∆t x v m/s(2) v = d x /d t = 9t - 6t 2v (2) =-6 m/s(3) S = |x (1.5)-x (1)| + |x (2)-x (1.5)| = 2.25 m6. 答:矢径r是从坐标原点至质点所在位置的有向线段.而位移矢量是从某一个初始时刻质点所在位置到后一个时刻质点所在位置的有向线段.它们的一般关系为0r r r-=∆0r 为初始时刻的矢径, r 为末时刻的矢径,△r为位移矢量.若把坐标原点选在质点的初始位置,则0r =0,任意时刻质点对于此位置的位移为△r =r,即r既是矢径也是位移矢量.1. D ;2. -g /2 , ()g 3/322v3. 4t 3-3t 2 (rad/s), 12t 2-6t (m/s 2)4. 17.3 m/s, 20 m/s .5. 解: =a d v /d t 4=t , d v 4=t d t⎰⎰=vv 0d 4d tt tv 2=t 2v d =x /d t 2=t 2t t x txx d 2d 020⎰⎰=x 2= t 3 /3+x 0 (SI)6. 解:根据已知条件确定常量k()222/rad 4//s Rt t k ===v ω24t =ω, 24Rt R ==ωvt=1s 时, v = 4Rt 2 = 8 m/s2s /168/m Rt dt d a t ===v 22s /32/m R a n ==v()8.352/122=+=nt a a a m/s 21.D2.C3.4. l/cos 2θ5.如图所示,A ,B ,C 三物体,质量分别为M=0.8kg, m= m 0=0.1kg ,当他们如图a 放置时,物体正好做匀速运动。

(1)求物体A 与水平桌面的摩擦系数;(2)若按图b 放置时,求系统的加速度及绳的张力。

大学物理(赵近芳)练习册

大学物理(赵近芳)练习册

练习1 质点运动学(一) 班级 学号 成绩 .1. 一质点在平面上运动,已知质点位置矢量的表示式为 j bt i at r 22+=(其中a 、b 为常量),则该质点作(A) 匀速直线运动. (B) 变速直线运动.(C) 抛物线运动. (D)一般曲线运动. [ ]2.一质点在平面上作一般曲线运动,其瞬时速度为v ,瞬时速率为,某一时间的平均速度为v ,平均速率为v ,它们之间的关系必定有: (A )v v v,v == (B )v v v,v =≠(C )v v v,v ≠≠ (D )v v v,v ≠= [ ]3.一质点沿直线运动,其运动学方程为x = 6 t -t 2 (SI),则在t 由0至4s 的时间间隔,质点 的位移大小为___________,在t 由0到4s 的时间间隔质点走过的路程为_______________.4.一质点作直线运动,其坐标x 与时间t 的关系曲线如图所示.则该质点在第 秒瞬时 速度为零;在第 秒至第 秒间速度与加速度同方向.5. 有一质点沿x 轴作直线运动,t 时刻的坐标为x = 4.5 t 2 – 2 t 3 (SI) .试求:(1) 第2秒的平均速度;(2) 第2秒末的瞬时速度;(3) 第2秒的路程.6. 什么是矢径?矢径和对初始位置的位移矢量之间有何关系?怎样选取坐标原点才能够使两者一致?练习2 质点运动学(二) 班级 学号 成绩 .1. 质点作曲线运动,r 表示位置矢量,v 表示速度,a 表示加速度,S 表示路程,a t 表示切向加速度,下列表达式中,(1) a t = d d /v , (2) v =t r d d /,(3) v =t d d /S , (4) t a t =d d /v .(A) 只有(1)、(4)是对的.(B) 只有(2)、(4)是对的.(C) 只有(2)是对的.(D) 只有(3)是对的. [ ]2. 一物体作如图所示的斜抛运动,测得在轨道A 点处速度υ 的大小为,其方向与水平方向夹角成30°.则物体在A 点的切向加速度a t =__________________,轨道的曲率半径 =__________________.3.一质点从静止出发沿半径R =1 m 的圆周运动,其角加速度随时间t 的变化规律是=12t 2-6t (SI), 则质点的角速 =__________________;切向加速度 a t =_________________.4.当一列火车以10 m/s 的速率向东行驶时,若相对于地面竖直下落的雨滴在列车的窗子上形成的雨迹偏离竖直方向30°,则雨滴相对于地面的速率是________________;相对于列车的速率是________________.5. 一质点沿x 轴运动,其加速度为a = 4t (SI),已知t =0时,质点位于x 0=10 m 处,初速度0=0.试求其位置和时间的关系式.6. 如图所示,质点P 在水平面沿一半径为R =2 m 的圆轨道转动.转动的角速度与时间t 的函数关系为2kt =ω (k 为常量).已知s t 2=时,质点P 的速度值为32 m/s .试求1=t s 时,质点P 的速度与加速度的大小.练习3 质点动力学(一)班级学号成绩 .1.质量分别为m1和m2的两滑块A和B通过一轻弹簧水平连结后置于水平桌面上,滑块与桌面间的摩擦系数均为,系统在水平拉力F作用下匀速运动,如图所示.如突然撤消拉力,则刚撤消后瞬间,二者的加速度a A和a B分别为(A) a A=0 , a B=0. (B) a A>0 , a B<0.(C) a A<0 , a B>0. (D) a A<0 , a B=0.[]2. 体重、身高相同的甲乙两人,分别用双手握住跨过无摩擦轻滑轮的绳子各一端.他们从同一高度由初速为零向上爬,经过一定时间,甲相对绳子的速率是乙相对绳子速率的两倍,则到达顶点的情况是(A)甲先到达.(B)乙先到达.(C)同时到达.(D)谁先到达不能确定.[]3. 分别画出下面二种情况下,物体A的受力图.(1) 物体A放在木板B上,被一起抛出作斜上抛运动,A始终位于B的上面,不计空气阻力;(2) 物体A的形状是一楔形棱柱体,横截面为直角三角形,放在桌面C上.把物体B轻轻地放在A的斜面上,设A、B间和A与桌面C间的摩擦系数皆不为零,A、B系统静止.4.质量为m的小球,用轻绳AB、BC连接,如图,其中AB水平.剪断绳AB前后的瞬间,绳BC中的力比T : T′=____________.5.如图所示,A,B,C三物体,质量分别为M=0.8kg, m=m0=0.1kg,当他们如图a放置时,物体正好做匀速运动。

大学物理简明教程第二版课后习题答案赵进芳

大学物理简明教程第二版课后习题答案赵进芳

大学物理简明教程第二版课后习题答案赵进芳(共74页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--大学物理 简明教程 习题 解答 答案习题一1-1 |r ∆|与r ∆有无不同t d d r 和t d d r 有无不同 t d d v 和t d d v有无不同其不同在哪里试举例说明.解:(1)r ∆是位移的模,∆r 是位矢的模的增量,即r ∆12r r -=,12r r r -=∆;(2)t d d r 是速度的模,即t d d r ==v t s d d .t rd d 只是速度在径向上的分量.∵有r r ˆr =(式中r ˆ叫做单位矢),则t ˆr ˆt r t d d d d d d r rr += 式中t rd d 就是速度径向上的分量,∴t r t d d d d 与r 不同如题1-1图所示. 题1-1图(3)t d d v 表示加速度的模,即t v a d d=,t v d d 是加速度a 在切向上的分量. ∵有ττ (v =v 表轨道节线方向单位矢),所以 t v t v t v d d d d d d ττ +=式中dt dv就是加速度的切向分量.(t tr d ˆd d ˆd τ 与的运算较复杂,超出教材规定,故不予讨论) 1-2 设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度和加速度时,有人先求出r =22y x +,然后根据v =t rd d ,及a =22d d t r 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v =22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x 及a =222222d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛t y t x你认为两种方法哪一种正确为什么两者差别何在解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有j y i x r+=,jt y i t x t r a jt y i t x t r v222222d d d d d d d d d d d d +==+==∴故它们的模即为222222222222d d d d d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=+=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=+=t y t x a a a t y t x v v v y x yx而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作22d d d d t r a t r v ==其二,可能是将22d d d d t r t r 与误作速度与加速度的模。

大学物理第十二章 习题答案

大学物理第十二章 习题答案

第十二章 电磁感应及电磁场基本方程12–1 如图12-1所示,矩形线圈abcd 左半边放在匀强磁场中,右半边在磁场外,当线圈以ab 边为轴向纸外转过60º过程中,线圈中 产生感应电流(填会与不会),原因是 。

解:线圈以ab 边为轴向纸外转过60º过程中,尽管穿过磁感应线的线圈面积发生了变化,但线圈在垂直于磁场方向的投影的面积并未发生变化,因而穿过整个线圈的磁通量并没有发生变化,所以线圈中不会产生感应电流。

因而应填“不会”;“通过线圈的磁通量没有发生变化”。

12–2 产生动生电动势的非静电力是 力,产生感生电动势的非静电力是 力。

解:洛仑兹力;涡旋电场力(变化磁场激发的电场的电场力)。

12–3 用绝缘导线绕一圆环,环内有一用同样材料导线折成的内接正方形线框,如图12-2所示,把它们放在磁感应强度为B 的匀强磁场中,磁场方向与线框平面垂直,当匀强磁场均匀减弱时,圆环中与正方形线框中感应电流大小之比为___________。

解:设圆环的半径为a,圆环中的感应电动势1E 大小为2111d d d πd d d ΦB BS a t t t===E 同理,正方形线框中的感应电动势2E 大小为2212d d d 2d d d ΦB BS a t t t===E而同材料的圆环与正方形导线的电阻之比为12R R ==。

所以圆环与正方形线框中的感应电流之比为122I I a ==12–4 如图12-3所示,半径为R 的3/4圆周的弧形刚性导线在垂直于均匀磁感强度B 的平面内以速度v 平动,则导线上的动生电动势E = ,方向为 。

图12–5图12–4abdc图12–1Ba图12–2图12–3解:方法一:用动生电动势公式()d l =⨯⋅⎰B l v E 求解。

选积分路径l 的绕行方向为顺时针方向,建立如图12-4所示的坐标系,在导体上任意处取导体元d l ,d l 上的动生电动势为d ()d cos d B R θθ=⨯⋅B l =v v E所以导线上的动生电动势为3π3πd cos d 0BRBR θθ-===>⎰⎰v E E由于ε>0,所以动生电动势的方向为顺时方向,即bca 方向。

大学物理课后习题答案(赵近芳)下册演示教学

大学物理课后习题答案(赵近芳)下册演示教学

习题八8-1 电量都是q 的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解: 如题8-1图示(1) 以A 处点电荷为研究对象,由力平衡知:q '为负电荷2220)33(π4130cos π412a q q a q '=︒εε解得 q q 33-=' (2)与三角形边长无关.题8-1图 题8-2图8-2 两小球的质量都是m ,都用长为l 的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2θ ,如题8-2图所示.设小球的半径和线的质量都可以忽略不计,求每个小球所带的电量. 解: 如题8-2图示⎪⎩⎪⎨⎧===220)sin 2(π41sin cos θεθθl q F T mg T e解得 θπεθtan 4sin 20mg l q = 8-3 根据点电荷场强公式204r q E πε=,当被考察的场点距源点电荷很近(r→0)时,则场强→∞,这是没有物理意义的,对此应如何理解?解: 020π4r r q E ϖϖε=仅对点电荷成立,当0→r 时,带电体不能再视为点电荷,再用上式求场强是错误的,实际带电体有一定形状大小,考虑电荷在带电体上的分布求出的场强不会是无限大.8-4 在真空中有A ,B 两平行板,相对距离为d ,板面积为S ,其带电量分别为+q 和-q .则这两板之间有相互作用力f ,有人说f =2024d q πε,又有人说,因为f =qE ,S q E 0ε=,所以f =Sq 02ε.试问这两种说法对吗?为什么?f 到底应等于多少?解: 题中的两种说法均不对.第一种说法中把两带电板视为点电荷是不对的,第二种说法把合场强SqE 0ε=看成是一个带电板在另一带电板处的场强也是不对的.正确解答应为一个板的电场为Sq E 02ε=,另一板受它的作用力Sq S qq f 02022εε==,这是两板间相互作用的电场力. 8-5 一电偶极子的电矩为l q p ϖϖ=,场点到偶极子中心O 点的距离为r ,矢量rϖ与l ϖ的夹角为θ,(见题8-5图),且l r >>.试证P 点的场强E 在r 方向上的分量r E 和垂直于r 的分量θE 分别为r E =302cos r p πεθ, θE =304sin r p πεθ证: 如题8-5所示,将p ϖ分解为与r ϖ平行的分量θsin p 和垂直于r ϖ的分量θsin p .∵ l r >>∴ 场点P 在r 方向场强分量3π2cos r p E r εθ=垂直于r 方向,即θ方向场强分量300π4sin rp E εθ=题8-5图 题8-6图8-6 长l =15.0cm 的直导线AB 上均匀地分布着线密度λ=5.0x10-9C ·m -1的正电荷.试求:(1)在导线的延长线上与导线B 端相距1a =5.0cm 处P 点的场强;(2)在导线的垂直平分线上与导线中点相距2d =5.0cm 处Q 点的场强. 解: 如题8-6图所示(1)在带电直线上取线元x d ,其上电量q d 在P 点产生场强为20)(d π41d x a xE P -=λε 222)(d π4d x a xE E l l P P -==⎰⎰-ελ]2121[π40l a l a +--=ελ)4(π220l a l-=ελ用15=l cm ,9100.5-⨯=λ1m C -⋅, 5.12=a cm 代入得21074.6⨯=P E 1C N -⋅ 方向水平向右(2)同理2220d d π41d +=x xE Q λε 方向如题8-6图所示由于对称性⎰=l QxE 0d ,即Q E ϖ只有y 分量,∵ 22222220dd d d π41d ++=x x x E Qyλε22π4d d ελ⎰==l QyQy E E ⎰-+2223222)d (d l l x x2220d4π2+=l lελ以9100.5-⨯=λ1cm C -⋅, 15=l cm ,5d 2=cm 代入得21096.14⨯==Qy Q E E 1C N -⋅,方向沿y 轴正向8-7 一个半径为R 的均匀带电半圆环,电荷线密度为λ,求环心处O 点的场强.解: 如8-7图在圆上取ϕRd dl =题8-7图ϕλλd d d R l q ==,它在O 点产生场强大小为 20π4d d RR E εϕλ=方向沿半径向外则 ϕϕελϕd sin π4sin d d 0RE E x ==ϕϕελϕπd cos π4)cos(d d 0RE E y -=-=积分RR E x 000π2d sin π4ελϕϕελπ==⎰0d cos π400=-=⎰ϕϕελπRE y∴ RE E x 0π2ελ==,方向沿x 轴正向.8-8 均匀带电的细线弯成正方形,边长为l ,总电量为q .(1)求这正方形轴线上离中心为r 处的场强E ;(2)证明:在l r >>处,它相当于点电荷q 产生的场强E .解: 如8-8图示,正方形一条边上电荷4q在P 点产生物强P E ϖd 方向如图,大小为()4π4cos cos d 22021l r E P +-=εθθλ∵ 22cos 221l r l +=θ12cos cos θθ-=∴24π4d2222lrllrEP++=ελPEϖd在垂直于平面上的分量βcosddPEE=⊥∴424π4d222222lrrlrlrlE+++=⊥ελ题8-8图由于对称性,P点场强沿OP方向,大小为2)4(π44d42222lrlrlrEEP++=⨯=⊥ελ∵lq4=λ∴2)4(π42222lrlrqrEP++=ε方向沿OP8-9 (1)点电荷q位于一边长为a的立方体中心,试求在该点电荷电场中穿过立方体的一个面的电通量;(2)如果该场源点电荷移动到该立方体的一个顶点上,这时穿过立方体各面的电通量是多少?*(3)如题8-9(3)图所示,在点电荷q的电场中取半径为R的圆平面.q在该平面轴线上的A点处,求:通过圆平面的电通量.(xRarctan=α)解: (1)由高斯定理dεqSEs⎰=⋅ϖϖ立方体六个面,当q 在立方体中心时,每个面上电通量相等 ∴ 各面电通量06εqe =Φ. (2)电荷在顶点时,将立方体延伸为边长a 2的立方体,使q 处于边长a 2的立方体中心,则边长a 2的正方形上电通量06εq e =Φ 对于边长a 的正方形,如果它不包含q 所在的顶点,则024εqe =Φ, 如果它包含q 所在顶点则0=Φe .如题8-9(a)图所示.题8-9(3)图题8-9(a)图 题8-9(b)图 题8-9(c)图 (3)∵通过半径为R 的圆平面的电通量等于通过半径为22x R +的球冠面的电通量,球冠面积*]1)[(π22222xR x x R S +-+=∴ )(π42200x R Sq +=Φε02εq=[221xR x +-]*关于球冠面积的计算:见题8-9(c)图ααα⎰⋅=0d sin π2r r Sααα⎰⋅=02d sin π2r)cos 1(π22α-=r8-10 均匀带电球壳内半径6cm ,外半径10cm ,电荷体密度为2×510-C ·m -3求距球心5cm ,8cm ,12cm 各点的场强.解: 高斯定理0d ε∑⎰=⋅qS E sϖϖ,02π4ε∑=q r E当5=r cm 时,0=∑q ,0=E ϖ8=r cm 时,∑q 3π4p=3(r )3内r - ∴ ()2023π43π4rr r E ερ内-=41048.3⨯≈1C N -⋅, 方向沿半径向外. 12=r cm 时,3π4∑=ρq -3(外r )内3r ∴ ()420331010.4π43π4⨯≈-=rr r E ερ内外 1C N -⋅ 沿半径向外. 8-11 半径为1R 和2R (2R >1R )的两无限长同轴圆柱面,单位长度上分别带有电量λ和-λ,试求:(1)r <1R ;(2) 1R <r <2R ;(3) r >2R 处各点的场强.解: 高斯定理0d ε∑⎰=⋅q S E sϖϖ取同轴圆柱形高斯面,侧面积rl S π2= 则 rl E S E Sπ2d =⋅⎰ϖϖ对(1) 1R r <0,0==∑E q(2) 21R r R << λl q =∑∴ rE 0π2ελ=沿径向向外(3) 2R r >=∑q∴ 0=E题8-12图8-12 两个无限大的平行平面都均匀带电,电荷的面密度分别为1σ和2σ,试求空间各处场强.解: 如题8-12图示,两带电平面均匀带电,电荷面密度分别为1σ与2σ, 两面间, n E ϖϖ)(21210σσε-=1σ面外, n E ϖϖ)(21210σσε+-= 2σ面外, n E ϖϖ)(21210σσε+=n ϖ:垂直于两平面由1σ面指为2σ面.8-13 半径为R 的均匀带电球体内的电荷体密度为ρ,若在球内挖去一块半径为r <R 的小球体,如题8-13图所示.试求:两球心O 与O '点的场强,并证明小球空腔内的电场是均匀的.解: 将此带电体看作带正电ρ的均匀球与带电ρ-的均匀小球的组合,见题8-13图(a).(1) ρ+球在O 点产生电场010=E ϖ,ρ- 球在O 点产生电场'd π4π3430320OO r E ερ=ϖ∴ O 点电场'd33030OO r E ερ=ϖ; (2) ρ+在O '产生电场'd π4d 3430301OO E ερπ='ϖρ-球在O '产生电场002='E ϖ∴ O ' 点电场 003ερ='E ϖ'OO题8-13图(a) 题8-13图(b)(3)设空腔任一点P 相对O '的位矢为r ϖ',相对O 点位矢为r ϖ (如题8-13(b)图)则 03ερrE PO ϖϖ=,3ερr E O P '-='ϖϖ,∴ 0003'3)(3ερερερdOO r r E E E O P PO P ϖϖϖϖϖϖ=='-=+=' ∴腔内场强是均匀的.8-14 一电偶极子由q =1.0×10-6C 的两个异号点电荷组成,两电荷距离d=0.2cm ,把这电偶极子放在1.0×105N ·C -1的外电场中,求外电场作用于电偶极子上的最大力矩.解: ∵ 电偶极子p ϖ在外场E ϖ中受力矩E p M ϖϖϖ⨯= ∴ qlE pE M ==max 代入数字4536max 100.2100.1102100.1---⨯=⨯⨯⨯⨯⨯=M m N ⋅8-15 两点电荷1q =1.5×10-8C ,2q =3.0×10-8C ,相距1r =42cm ,要把它们之间的距离变为2r =25cm ,需作多少功? 解: ⎰⎰==⋅=22210212021π4π4d d r r r r q q r r q q r F A εεϖϖ)11(21r r -61055.6-⨯-=J外力需作的功 61055.6-⨯-=-='A A J题8-16图8-16 如题8-16图所示,在A ,B 两点处放有电量分别为+q ,-q 的点电荷,AB 间距离为2R ,现将另一正试验点电荷0q 从O 点经过半圆弧移到C 点,求移动过程中电场力作的功.解: 如题8-16图示0π41ε=O U 0)(=-RqR q 0π41ε=O U )3(R qR q -Rq 0π6ε-=∴ Rqq U U q A o C O 00π6)(ε=-=8-17 如题8-17图所示的绝缘细线上均匀分布着线密度为λ的正电荷,两直导线的长度和半圆环的半径都等于R .试求环中心O 点处的场强和电势. 解: (1)由于电荷均匀分布与对称性,AB 和CD 段电荷在O 点产生的场强互相抵消,取θd d R l =则θλd d R q =产生O 点E ϖd 如图,由于对称性,O 点场强沿y 轴负方向题8-17图θεθλππcos π4d d 2220⎰⎰-==R R E E yR 0π4ελ=[)2sin(π-2sin π-]R0π2ελ-=(2) AB 电荷在O 点产生电势,以0=∞U⎰⎰===AB200012ln π4π4d π4d R R x x x x U ελελελ 同理CD 产生 2ln π402ελ=U 半圆环产生 0034π4πελελ==R R U∴ 0032142ln π2ελελ+=++=U U U U O 8-18 一电子绕一带均匀电荷的长直导线以2×104m ·s -1的匀速率作圆周运动.求带电直线上的线电荷密度.(电子质量0m =9.1×10-31kg ,电子电量e =1.60×10-19C)解: 设均匀带电直线电荷密度为λ,在电子轨道处场强rE 0π2ελ=电子受力大小 re eE F e 0π2ελ== ∴ rv m r e 20π2=ελ得 1320105.12π2-⨯==emv ελ1m C -⋅ 8-19 空气可以承受的场强的最大值为E =30kV ·cm -1,超过这个数值时空气要发生火花放电.今有一高压平行板电容器,极板间距离为d =0.5cm ,求此电容器可承受的最高电压.解: 平行板电容器内部近似为均匀电场 ∴ 4105.1d ⨯==E U V8-20 根据场强E ϖ与电势U 的关系U E -∇=ϖ,求下列电场的场强:(1)点电荷q 的电场;(2)总电量为q ,半径为R 的均匀带电圆环轴上一点;*(3)偶极子ql p =的l r >>处(见题8-20图).解: (1)点电荷 rqU 0π4ε=题 8-20 图∴ 0200π4r rq r r U E ϖϖϖε=∂∂-= 0r ϖ为r 方向单位矢量. (2)总电量q ,半径为R 的均匀带电圆环轴上一点电势220π4xR q U +=ε∴ ()i x R qxi x U E ϖϖϖ2/3220π4+=∂∂-=ε(3)偶极子l q p ϖϖ=在l r >>处的一点电势200π4cos ])cos 21(1)cos 2(1[π4r ql llr q U εθθθε=+--=∴ 30π2cos r p r U E r εθ=∂∂-= 30π4sin 1rp U r E εθθθ=∂∂-= 8-21 证明:对于两个无限大的平行平面带电导体板(题8-21图)来说,(1)相向的两面上,电荷的面密度总是大小相等而符号相反;(2)相背的两面上,电荷的面密度总是大小相等而符号相同.证: 如题8-21图所示,设两导体A 、B 的四个平面均匀带电的电荷面密度依次为1σ,2σ,3σ,4σ题8-21图(1)则取与平面垂直且底面分别在A 、B 内部的闭合柱面为高斯面时,有0)(d 32=∆+=⋅⎰S S E sσσϖϖ∴ +2σ03=σ 说明相向两面上电荷面密度大小相等、符号相反;(2)在A 内部任取一点P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即0222204030201=---εσεσεσεσ 又∵ +2σ03=σ ∴ 1σ4σ=说明相背两面上电荷面密度总是大小相等,符号相同.8-22 三个平行金属板A ,B 和C 的面积都是200cm 2,A 和B 相距4.0mm ,A 与C 相距2.0 mm .B ,C 都接地,如题8-22图所示.如果使A 板带正电3.0×10-7C ,略去边缘效应,问B 板和C 板上的感应电荷各是多少?以地的电势为零,则A 板的电势是多少?解: 如题8-22图示,令A 板左侧面电荷面密度为1σ,右侧面电荷面密度为2σ题8-22图(1)∵ AB AC U U =,即 ∴ AB AB AC AC E E d d = ∴2d d 21===ACABAB AC E E σσ 且 1σ+2σSq A=得 ,32S q A =σ Sq A 321=σ 而 7110232-⨯-=-=-=A C q S q σC C10172-⨯-=-=S q B σ(2) 301103.2d d ⨯===AC AC AC A E U εσV 8-23 两个半径分别为1R 和2R (1R <2R )的同心薄金属球壳,现给内球壳带电+q ,试计算:(1)外球壳上的电荷分布及电势大小;(2)先把外球壳接地,然后断开接地线重新绝缘,此时外球壳的电荷分布及电势;*(3)再使内球壳接地,此时内球壳上的电荷以及外球壳上的电势的改变量.解: (1)内球带电q +;球壳内表面带电则为q -,外表面带电为q +,且均匀分布,其电势题8-23图⎰⎰∞∞==⋅=2220π4π4d d R R R qr r q r E U εεϖϖ (2)外壳接地时,外表面电荷q +入地,外表面不带电,内表面电荷仍为q -.所以球壳电势由内球q +与内表面q -产生:0π4π42020=-=R q R q U εε(3)设此时内球壳带电量为q ';则外壳内表面带电量为q '-,外壳外表面带电量为+-q q ' (电荷守恒),此时内球壳电势为零,且π4'π4'π4'202010=+-+-=R q q R q R q U A εεε得 q R R q 21=' 外球壳上电势()22021202020π4π4'π4'π4'R qR R R q q R q R q U B εεεε-=+-+-=8-24 半径为R 的金属球离地面很远,并用导线与地相联,在与球心相距为R d 3=处有一点电荷+q ,试求:金属球上的感应电荷的电量.解: 如题8-24图所示,设金属球感应电荷为q ',则球接地时电势0=O U8-24图由电势叠加原理有:=O U 03π4π4'00=+Rq R q εε得 -='q 3q 8-25 有三个大小相同的金属小球,小球1,2带有等量同号电荷,相距甚远,其间的库仑力为0F .试求:(1)用带绝缘柄的不带电小球3先后分别接触1,2后移去,小球1,2之间的库仑力;(2)小球3依次交替接触小球1,2很多次后移去,小球1,2之间的库仑力.解: 由题意知 2020π4rq F ε=(1)小球3接触小球1后,小球3和小球1均带电2q q =', 小球3再与小球2接触后,小球2与小球3均带电q q 43=''∴ 此时小球1与小球2间相互作用力00220183π483π4"'2F r qr q q F =-=εε (2)小球3依次交替接触小球1、2很多次后,每个小球带电量均为32q . ∴ 小球1、2间的作用力00294π432322F r qq F ==ε*8-26 如题8-26图所示,一平行板电容器两极板面积都是S ,相距为d ,分别维持电势A U =U ,B U =0不变.现把一块带有电量q 的导体薄片平行地放在两极板正中间,片的面积也是S ,片的厚度略去不计.求导体薄片的电势. 解: 依次设A ,C ,B 从上到下的6个表面的面电荷密度分别为1σ,2σ,3σ,4σ,5σ,6σ如图所示.由静电平衡条件,电荷守恒定律及维持UU AB =可得以下6个方程题8-26图⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧++++==+=+-==+=+===+6543215432065430021001σσσσσσσσσσεσσσσεσσd US q S qdU U C S S q B A 解得 Sq261==σσSq d U2032-=-=εσσ Sq dU2054+=-=εσσ 所以CB 间电场 S qd U E 00422εεσ+==)2d (212d 02Sq U E U U CB C ε+=== 注意:因为C 片带电,所以2U U C ≠,若C 片不带电,显然2U U C = 8-27 在半径为1R 的金属球之外包有一层外半径为2R 的均匀电介质球壳,介质相对介电常数为r ε,金属球带电Q .试求: (1)电介质内、外的场强;(2)电介质层内、外的电势; (3)金属球的电势.解: 利用有介质时的高斯定理∑⎰=⋅q S D Sϖϖd(1)介质内)(21R r R <<场强303π4,π4rrQ E r r Q D r εεϖϖϖϖ==内; 介质外)(2R r <场强303π4,π4rr Q E r Qr D εϖϖϖ==外 (2)介质外)(2R r >电势rQE U 0rπ4r d ε=⋅=⎰∞ϖϖ外 介质内)(21R r R <<电势2020π4)11(π4R Q R r qr εεε+-=)11(π420R r Qr r -+=εεε(3)金属球的电势r d r d 221ϖϖϖϖ⋅+⋅=⎰⎰∞R R R E E U 外内⎰⎰∞+=22220π44πdr R R Rr r Qdrr Q εεε)11(π4210R R Q r r-+=εεε 8-28 如题8-28图所示,在平行板电容器的一半容积内充入相对介电常数为r ε的电介质.试求:在有电介质部分和无电介质部分极板上自由电荷面密度的比值.rd r d ϖϖϖϖ⋅+⋅=⎰⎰∞∞rrE E U 外内解: 如题8-28图所示,充满电介质部分场强为2E ϖ,真空部分场强为1E ϖ,自由电荷面密度分别为2σ与1σ由∑⎰=⋅0d q S D ϖϖ得11σ=D ,22σ=D而 101E D ε=,202E D r εε=d21U E E == ∴r D D εσσ==1212题8-28图 题8-29图8-29 两个同轴的圆柱面,长度均为l ,半径分别为1R 和2R (2R >1R ),且l >>2R -1R ,两柱面之间充有介电常数ε的均匀电介质.当两圆柱面分别带等量异号电荷Q 和-Q 时,求:(1)在半径r 处(1R <r <2R =,厚度为dr ,长为l 的圆柱薄壳中任一点的电场能量密度和整个薄壳中的电场能量;(2)电介质中的总电场能量; (3)圆柱形电容器的电容. 解: 取半径为r 的同轴圆柱面)(S则 rlD S D S π2d )(=⋅⎰ϖϖ当)(21R r R <<时,Q q =∑∴ rlQD π2=(1)电场能量密度 22222π82l r Q D w εε==薄壳中 rlrQ rl r l r Q w W εευπ4d d π2π8d d 22222===(2)电介质中总电场能量⎰⎰===211222ln π4π4d d R R VR R l Q rl r Q W W εε (3)电容:∵ CQ W 22=∴ )/ln(π22122R R lW Q C ε== *8-30 金属球壳A 和B 的中心相距为r ,A 和B 原来都不带电.现在A 的中心放一点电荷1q ,在B 的中心放一点电荷2q ,如题8-30图所示.试求: (1) 1q 对2q 作用的库仑力,2q 有无加速度;(2)去掉金属壳B ,求1q 作用在2q 上的库仑力,此时2q 有无加速度. 解: (1)1q 作用在2q 的库仑力仍满足库仑定律,即2210π41r q q F ε=但2q 处于金属球壳中心,它受合力..为零,没有加速度. (2)去掉金属壳B ,1q 作用在2q 上的库仑力仍是2210π41rq q F ε=,但此时2q 受合力不为零,有加速度.题8-30图 题8-31图8-31 如题8-31图所示,1C =0.25μF ,2C =0.15μF ,3C =0.20μF .1C 上电压为50V .求:AB U . 解: 电容1C 上电量111U C Q =电容2C 与3C 并联3223C C C += 其上电荷123Q Q = ∴ 355025231123232⨯===C U C C Q U 86)35251(5021=+=+=U U U AB V 8-32 1C 和2C 两电容器分别标明“200 pF 、500 V ”和“300 pF 、900 V ”,把它们串联起来后等值电容是多少?如果两端加上1000 V 的电压,是否会击穿? 解: (1) 1C 与2C 串联后电容1203002003002002121=+⨯=+='C C C C C pF(2)串联后电压比231221==C C U U ,而100021=+U U ∴ 6001=U V ,4002=U V即电容1C 电压超过耐压值会击穿,然后2C 也击穿.8-33 将两个电容器1C 和2C 充电到相等的电压U 以后切断电源,再将每一电容器的正极板与另一电容器的负极板相联.试求: (1)每个电容器的最终电荷; (2)电场能量的损失.解: 如题8-33图所示,设联接后两电容器带电分别为1q ,2q题8-33图则⎪⎪⎩⎪⎪⎨⎧==-=-=+2122112*********U U U C U C q qU C U C q q q q 解得 (1) =1q U C C C C C q U C C C C C 21212221211)(,)(+-=+-(2)电场能量损失W W W -=∆0)22()2121(2221212221C q C q U C U C +-+= 221212U C C C C +=8-34 半径为1R =2.0cm 的导体球,外套有一同心的导体球壳,壳的内、外半径分别为2R =4.0cm 和3R =5.0cm ,当内球带电荷Q =3.0×10-8C时,求:(1)整个电场储存的能量;(2)如果将导体壳接地,计算储存的能量; (3)此电容器的电容值.解: 如图,内球带电Q ,外球壳内表面带电Q -,外表面带电Q题8-34图(1)在1R r <和32R r R <<区域0=E ϖ在21R r R <<时 301π4r rQ E εϖϖ= 3R r >时 302π4r rQ E εϖϖ=∴在21R r R <<区域⎰=21d π4)π4(21222001R R r r rQ W εε ⎰-==21)11(π8π8d 2102202R R R R Q rr Q εε 在3R r >区域⎰∞==32302220021π8d π4)π4(21R R Q r r rQ W εεε ∴ 总能量 )111(π83210221R R R Q W W W +-=+=ε41082.1-⨯=J(2)导体壳接地时,只有21R r R <<时30π4rrQ E εϖϖ=,02=W ∴ 4210211001.1)11(π8-⨯=-==R R Q W W ε J(3)电容器电容 )11/(π422102R R QW C -==ε 121049.4-⨯=F习题九9-1 在同一磁感应线上,各点B ϖ的数值是否都相等?为何不把作用于运动电荷的磁力方向定义为磁感应强度B ϖ的方向?解: 在同一磁感应线上,各点B ϖ的数值一般不相等.因为磁场作用于运动电荷的磁力方向不仅与磁感应强度B ϖ的方向有关,而且与电荷速度方向有关,即磁力方向并不是唯一由磁场决定的,所以不把磁力方向定义为B ϖ的方向.题9-2图9-2 (1)在没有电流的空间区域里,如果磁感应线是平行直线,磁感应强度Bϖ的大小在沿磁感应线和垂直它的方向上是否可能变化(即磁场是否一定是均匀的)?(2)若存在电流,上述结论是否还对?解: (1)不可能变化,即磁场一定是均匀的.如图作闭合回路abcd 可证明21B B ρϖ=∑⎰==-=⋅0d 021I bc B da B l B abcdμϖϖ∴ 21B B ρϖ=(2)若存在电流,上述结论不对.如无限大均匀带电平面两侧之磁力线是平行直线,但B ϖ方向相反,即21B B ρϖ≠.9-3 用安培环路定理能否求有限长一段载流直导线周围的磁场? 答: 不能,因为有限长载流直导线周围磁场虽然有轴对称性,但不是稳恒电流,安培环路定理并不适用.9-4 在载流长螺线管的情况下,我们导出其内部nI B 0μ=,外面B =0,所以在载流螺线管外面环绕一周(见题9-4图)的环路积分⎰外B L ϖ·d l ϖ=0 但从安培环路定理来看,环路L 中有电流I 穿过,环路积分应为⎰外B L ϖ·d l ϖ=I 0μ这是为什么?解: 我们导出nl B 0μ=内,0=外B 有一个假设的前提,即每匝电流均垂直于螺线管轴线.这时图中环路L 上就一定没有电流通过,即也是⎰∑==⋅LI l B 0d 0μϖϖ外,与⎰⎰=⋅=⋅Ll l B 0d 0d ϖϖϖ外是不矛盾的.但这是导线横截面积为零,螺距为零的理想模型.实际上以上假设并不真实存在,所以使得穿过L 的电流为I ,因此实际螺线管若是无限长时,只是外B ϖ的轴向分量为零,而垂直于轴的圆周方向分量rIB πμ20=⊥,r 为管外一点到螺线管轴的距离.题 9 - 4 图9-5 如果一个电子在通过空间某一区域时不偏转,能否肯定这个区域中没有磁场?如果它发生偏转能否肯定那个区域中存在着磁场?解:如果一个电子在通过空间某一区域时不偏转,不能肯定这个区域中没有磁场,也可能存在互相垂直的电场和磁场,电子受的电场力与磁场力抵消所致.如果它发生偏转也不能肯定那个区域存在着磁场,因为仅有电场也可以使电子偏转.9-6 已知磁感应强度0.2=B Wb ·m -2的均匀磁场,方向沿x 轴正方向,如题9-6图所示.试求:(1)通过图中abcd 面的磁通量;(2)通过图中befc 面的磁通量;(3)通过图中aefd 面的磁通量. 解: 如题9-6图所示题9-6图(1)通过abcd 面积1S 的磁通是24.04.03.00.211=⨯⨯=⋅=S B ϖϖΦWb(2)通过befc 面积2S 的磁通量022=⋅=S B ϖϖΦ(3)通过aefd 面积3S 的磁通量24.0545.03.02cos 5.03.0233=⨯⨯⨯=θ⨯⨯⨯=⋅=S B ϖϖΦWb (或曰24.0-Wb )题9-7图9-7 如题9-7图所示,AB 、CD 为长直导线,C B )为圆心在O 点的一段圆弧形导线,其半径为R .若通以电流I ,求O 点的磁感应强度.解:如题9-7图所示,O 点磁场由AB 、C B )、CD 三部分电流产生.其中AB 产生 01=B ϖCD 产生RIB 1202μ=,方向垂直向里CD 段产生 )231(2)60sin 90(sin 24003-πμ=-πμ=︒︒R I R I B ,方向⊥向里∴)6231(203210ππμ+-=++=R I B B B B ,方向⊥向里. 9-8 在真空中,有两根互相平行的无限长直导线1L 和2L ,相距0.1m ,通有方向相反的电流,1I =20A,2I =10A ,如题9-8图所示.A ,B 两点与导线在同一平面内.这两点与导线2L 的距离均为5.0cm .试求A ,B 两点处的磁感应强度,以及磁感应强度为零的点的位置.题9-8图解:如题9-8图所示,A B ϖ方向垂直纸面向里42010102.105.02)05.01.0(2-⨯=⨯+-=πμπμI I B A T(2)设0=B ϖ在2L 外侧距离2L 为r 处则02)1.0(220=-+rI r Iπμπμ 解得 1.0=r m题9-9图9-9 如题9-9图所示,两根导线沿半径方向引向铁环上的A ,B 两点,并在很远处与电源相连.已知圆环的粗细均匀,求环中心O 的磁感应强度. 解: 如题9-9图所示,圆心O 点磁场由直电流∞A 和∞B 及两段圆弧上电流1I 与2I 所产生,但∞A 和∞B 在O 点产生的磁场为零。

赵近芳-大学物理学答案--全

赵近芳-大学物理学答案--全

大学物理学(北邮第三版)赵近芳等编著 习题及解答(全)习题一1-1 |r ∆|与r ∆有无不同?t d d r 和t d d r 有无不同? t d d v 和t d d v有无不同?其不同在哪里?试举例说明.解:(1)r ∆是位移的模,∆r 是位矢的模的增量,即r ∆12r r -=,12r r r ϖϖ-=∆; (2)t d d r 是速度的模,即t d d r ==v tsd d .t rd d 只是速度在径向上的分量.∵有r r ˆr =(式中r ˆ叫做单位矢),则t ˆrˆt r t d d d d d d r r r += 式中t rd d 就是速度径向上的分量, ∴t r t d d d d 与r 不同如题1-1图所示.题1-1图(3)t d d v 表示加速度的模,即t v a d d ϖϖ=,t v d d 是加速度a 在切向上的分量. ∵有ττϖϖ(v =v 表轨道节线方向单位矢),所以t v t v t v d d d d d d ττϖϖϖ+=式中dt dv就是加速度的切向分量.(t t r d ˆd d ˆd τϖϖΘ与的运算较复杂,超出教材规定,故不予讨论) 1-2 设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度和加速度时,有人先求出r =22y x +,然后根据v =t rd d ,及a =22d d t r 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v =22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x 及a =222222d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛t y t x 你认为两种方法哪一种正确?为什么?两者差别何在?解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有j y i x r ϖϖϖ+=,jt y i t x t r a jt y i t x t r v ϖϖϖϖϖϖϖϖ222222d d d d d d d d d d d d +==+==∴故它们的模即为222222222222d d d d d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=+=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+=t y t x a a a t y t x v v v y x y x而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作22d d d d t r a trv ==其二,可能是将22d d d d t r tr 与误作速度与加速度的模。

大学物理简明教程赵近芳版练习题

大学物理简明教程赵近芳版练习题

练习题第一章质点运动学一、填空题度,则为速度度时,4、质点作沿半径R=10m的圆周运动,某时刻的角速度ω=2rad/s,角加速度α=5rad/s2,则该质点此时刻的速度大小为________,法向加速度大小为_________,其切向加速度大小为__________.5、设质点的运动方程为:10cos()10sin()x ty tππ==,则质点的运动方程矢量形式为;速度矢量表达式式速度,是10.质点运动学方程为r=ti+0.5t2j(m),当t=1秒时,质点切向加速度大小为;一质点沿x 轴运动,a=3+2t,t=0时,v0=5m/s,则t=3s时速度大小为。

21.一质点在在x-y平面内运动,运动学方程为x=3cos4t,y=3sin4t,则t时刻的位矢r(t)= ,速度v(t)= ,加速度a(t)= ,质点轨迹是。

1、一质点的运动方程为r=(Rωt-Rsinωt)i+(R-Rcos ωt)j,式中R和ω为常数,t为时间,则此质点的加速度的大小为()① ω2/R ② ω2/2R ③ 2R ω2 ④ R ω22、一质点的运动方程为r=(Rsin ωt )i+(Rcos ωt)j ,式中R 和ω为常数,t 为时间,则此质点的加速度的大④ T 可 (d)t=1)5、一质点沿x 轴运动的规律是542+-=t t x (SI 制)。

则前三秒内它的 ( )(A)位移和路程都是3m ;(B)位移和路程都是-3m ;(C)位移是-3m,路程是3m;(D)位移是-3m,路程是5m。

6、某人以4km/h的速率向东前进时,感觉风从正北吹来,如将速率增加一倍,则感觉风从东北方向吹来。

为,从,从45°2、一质点沿x轴运动,坐标与时间的变化关系为x=4t-2t 3(SI制),试计算⑴在最初2s内的平均速度,2s末的瞬时速度;⑵1s末到3s末的位移和平均速度;⑶1s末到3s末的平均加速度。

此平均加速度是否可以用a=(a1+a2)/2计算;⑷3s末的瞬时加速度。

大学物理课后习题答案第十二章

大学物理课后习题答案第十二章

第12章 机械振动 习题及答案1、什么是简谐振动?哪个或哪几个是表示质点作简谐振动时加速度和位移关系的? (1)a =8x ;(2)a =12x 2 ;(3) a =−24x ;(4)a =−2x 2 .答:系统在线性回复力的作用下,作周期性往复运动,即为简谐振动。

对于简谐振动,有a =−ω02x ,故(3)表示简谐振动。

2、对于给定的弹簧振子,当其振幅减为原来的1/2时,下列哪些物理量发生了变化?变化为原来的多少倍?(1)劲度系数;(2)频率;(3)总机械能;(4)最大速度;(5)最大加速度。

解:当 A ′=12A 时,(1)劲度系数k 不变。

(2)频率不变。

(3)总机械能 E ′=12kA ‘2=14E(4)最大速度 V ’=−A ′ω0sin(ω0t +φ)∴ V m ′=−A ′ω=12V m (5) 最大加速度 a′=−A′ω02cos(ω0t +φ)∴ a m ′=−A′ω02=12a m3、劲度系数为1k 和2k 的两根弹簧,与质量为m 的小球按题图所示的两种方式连接,试证明它们的振动均为谐振动,并分别求出它们的振动周期.解:(1)图(a)中为串联弹簧,对于轻弹簧在任一时刻应有21F F F ==,设串联弹簧的等效倔强系数为串K 等效位移为x ,则有111x k F x k F -=-=串222x k F -=又有 21x x x +=2211k F k F k Fx +==串 所以串联弹簧的等效倔强系数为2121k k k k k +=串即小球与串联弹簧构成了一个等效倔强系数为)/(2121k k k k k +=的弹簧振子系统,故小球作谐振动.其振动周期为2121)(222k k k k m k mT +===ππωπ串 (2)图(b)中可等效为并联弹簧,同上理,应有21F F F ==,即21x x x ==,设并联弹簧的倔强系数为并k ,则有 2211x k x k x k +=并 故 21k k k +=并 同上理,其振动周期为212k k mT +='π4. 完全相同的弹簧振子,t =0 时刻的状态如图所示,其相位分别为多少?解:对于弹簧振子,t =0时,x =A cos φ ,v =−Asinφ (a ) x =x max ,故 cos φ=1v =0 ,故 sinφ=0 ∴ φ=0 (b )x =0 ,故 cosφ=0v <0 ,故 sinφ>0 ∴ φ=π2(c )x =0 ,故 cosφ=0(a)(b)(c)(d)v >0 ,故 sinφ<0 ∴ φ=3π2(d )x =−x max ,故 cos φ=−1v =0 ,故 sinφ=0 ∴ φ=π5、如图所示,物体的质量为m ,放在光滑斜面上,斜面与水平面的夹角为θ,弹簧的倔强系数为k ,滑轮的转动惯量为I ,半径为R 。

《大学物理学》(赵近芳 主编)第二版 课后习题答案物理答案文库

《大学物理学》(赵近芳 主编)第二版 课后习题答案物理答案文库

经典电视剧搞笑对白默认分类 2008-04-12 17:48:16 阅读558 评论0 字号:大中小订阅我们浪费掉了太多的青春,那是一段如此自以为是、又如此狼狈不堪的青春岁月,有欢笑,也有泪水;有朝气,也有颓废;有甜蜜,也有荒唐;有自信,也有迷茫。

我们敏感,我们偏执,我们顽固到底地故作坚强;我们轻易的伤害别人,也轻易的被别人所伤,我们追逐于颓废的快乐,陶醉于寂寞的美丽;我们坚信自己与众不同,坚信世界会因我而改变;我们觉醒其实我们已经不再年轻,我们前途或许也不再是无限的,其实它又何曾是无限的?曾经在某一瞬间,我们都以为自己长大了。

但是有一天,我们终于发现,长大的含义除了欲望,还有勇气、责任、坚强以及某种必须的牺牲。

在生活面前我们还都是孩子,其实我们从未长大,还不懂爱和被爱。

巴拉万先生已经很不高兴了,那么大笔款子跟人欧洲调来调去,下不了崽儿净听故事,我都不好意思跟人家见面了。

你们唬弄别的洋鬼子我不管,巴拉万先生不合适,人那么热爱中国,要拨了奶子汽车人家给了,咱都是有身份的人,你们要是有难处,我给赵办李办打电话!(大妈:见天一通电话呀,不带重样的,这瘸子到底是干什么的?答:2国务院瘸办的负责人)这馆子忒小啊!不错!看什么菜谱啊,你们这都有什么呀?我们这有海参有大虾。

没劲最不爱吃这个了!那还有肉丸子蹄筋黄花鱼,忒俗气了老吃这个都吃腻了。

那你们想吃什么吧?炒豆角闷扁豆烧茄子。

时令菜一概没有想吃家吃去。

小馆子是不灵,什么都不全。

想好了叫我。

等会儿,还是我来吧,咱凑合点得了。

来个京酱肉丝,熘肉片,青椒肉丝,黄闷鸡块儿,再来个火爆腰花。

得嘞全是下饭的菜,给我来二斤米饭再来三瓶啤酒。

一共78!还8干吗呀?70得了!那不行!不是,这干吗呀?我来!别别别,我来吧!我来我来我来。

(摸口袋,翻包)咱们还来这套啊?不是,我来我来我来。

方言付钱!不是,不合适这是兄弟的地盘。

爱谁谁谁;孙子蒙你;你怎么还这德行啊;没这么踩乎人啊,这是社会主义国家,人民当家作主,我们说了算;滚蛋,没你这样的啊;小心看眼里拔不出来啊;这可是解放区的天一年土二年洋,三年不认爹和娘;十亿人民九亿侃,还有一亿在发展;狗咬尿泡空欢喜;雄纠纠气昂昂跨过咸菜缸;苍天无眼,小人当道,时运不济,怀才不遇;我日他个姐,俺没嫖娼是娼嫖俺;这都是哥们玩剩下的;哥哥祖上搁明朝就是锦衣卫的干活;属桃的皮烂肉不烂算白活;掏掏灰扑落扑落脏刷遍漆,扣上美地因拆那,全当新的卖咯——许逊,学董存瑞,摔他——你就是学黄继光也没戏——许逊,快学小兵张嘎里的胖墩儿,咱急了咬他——哟呵,土豆烧熟了,再加牛肉,不须放屁,试看天地翻覆你是我手里的风筝没有我你怎么能独自翱翔你是要文斗还是武斗我他妈要文攻武卫别毁人家了你就是将来我们祖国和民族的希望我们就是注定那个所谓垮掉的一带千村薜荔人遗矢,万户萧疏鬼唱歌。

大学物理学习题全解-赵近芳版(10-17章)

大学物理学习题全解-赵近芳版(10-17章)
显然, ,因此

由于δ≧0,所以 ,因此不论分子的速度的分布服从什么规律,都有 .
另外也可直接用平均值运算.
由于 ,展开得 ,
取平均值时得 .
因为 、 并且 ,所以 ,即 .证毕.
10.10将(11.19)式表示成以理想气体最可几速率vp为单位表示的形式,即令x = v/vp,若已知 ,试计算:
(1)分子速率小于最可几速率的分子占分子总数的百分比为多少?
当射线粒子能量全部转变成氖气的内能时,由公式 可得气体升高的温度为
= 1.28×10-6(K).
10.7某些恒星的温度达到108K的数量级,此时原子已不存在,只有质子存在,求:
(1)质子的平均动能是多少?
(2)质子的方均根速率多大?
[解答](1)质子的平动自由度为t= 3,平均平动动能为 = 2.07×10-15(J).
(2)nf(v)dv,n为分子数密度;
(3) ;
(4) ,vp为最可几速率;
(5) .
[解答](1)由公式dN/N = f(v)dv可知:f(v)dv表示分子数在速率区间v~v+dv之中分子数的比率dN/N.
(2)由于n = N/V,可得ndN/N =dN/V,因此nf(v)dv表示分子数在速率区间v~v+dv之中分子数密度.
(3) 表示分子在速率区间v1到v2之间的平均速率.
(4) 表示分子速率小于最可几速率的分子占分子总数的比率.
(5) 表示分子速率大于最可几速率的速率平方的平均值.
10.14质量为6.2×10-14g的微粒悬浮于27℃的液体中,观察到它的方均根速率为1.4cm·s-1.由这些结果计算阿佛加德罗常数NA.
当系统沿adc路径变化时,可得:Q1= ΔE1+A1,

大学物理课后习题答案全 赵近芳版

大学物理课后习题答案全 赵近芳版

t 习题十二12-1 某单色光从空气射入水中,其频率、波速、波长是否变化?怎样变化?解: υ不变,为波源的振动频率;nn 空λλ=变小;υλn u =变小.12-2 在杨氏双缝实验中,作如下调节时,屏幕上的干涉条纹将如何变化?试说明理由. (1)使两缝之间的距离变小;(2)保持双缝间距不变,使双缝与屏幕间的距离变小; (3)整个装置的结构不变,全部浸入水中; (4)光源作平行于1S ,2S 联线方向上下微小移动; (5)用一块透明的薄云母片盖住下面的一条缝. 解: 由λdDx =∆知,(1)条纹变疏;(2)条纹变密;(3)条纹变密;(4)零级明纹在屏幕上作相反方向的上下移动;(5)零级明纹向下移动.12-3 什么是光程? 在不同的均匀媒质中,若单色光通过的光程相等时,其几何路程是否相同?其所需时间是否相同?在光程差与位相差的关系式∆λπϕ∆2= 中,光波的波长要用真空中波长,为什么?解:nr =∆.不同媒质若光程相等,则其几何路程定不相同;其所需时间相同,为Ct ∆=∆. 因为∆中已经将光在介质中的路程折算为光在真空中所走的路程。

12-4 如题12-4图所示,A ,B 两块平板玻璃构成空气劈尖,分析在下列情况中劈尖干涉条纹将如何变化?(1) A 沿垂直于B 的方向向上平移[见图(a)]; (2) A 绕棱边逆时针转动[见图(b)].题12-4图 解: (1)由l2λθ=,2λke k =知,各级条纹向棱边方向移动,条纹间距不变;(2)各级条纹向棱边方向移动,且条纹变密. 12-5 用劈尖干涉来检测工件表面的平整度,当波长为λ的单色光垂直入射时,观察到的干涉条纹如题12-5图所示,每一条纹的弯曲部分的顶点恰与左邻的直线部分的连线相切.试说明工件缺陷是凸还是凹?并估算该缺陷的程度.解: 工件缺陷是凹的.故各级等厚线(在缺陷附近的)向棱边方向弯曲.按题意,每一条纹弯曲部分的顶点恰与左邻的直线部分连线相切,说明弯曲部分相当于条纹向棱边移动了一条,故相应的空气隙厚度差为2λ=∆e ,这也是工件缺陷的程度.题12-5图 题12-6图12-6 如题12-6图,牛顿环的平凸透镜可以上下移动,若以单色光垂直照射,看见条纹向中 心收缩,问透镜是向上还是向下移动?解: 条纹向中心收缩,透镜应向上移动.因相应条纹的膜厚k e 位置向中心移动. 12-7 在杨氏双缝实验中,双缝间距d =0.20mm ,缝屏间距D =1.0m ,试求: (1)若第二级明条纹离屏中心的距离为6.0mm ,计算此单色光的波长; (2)相邻两明条纹间的距离.解: (1)由λk dDx =明知,λ22.01010.63⨯⨯=, ∴ 3106.0-⨯=λmm oA 6000=(2) 3106.02.010133=⨯⨯⨯==∆-λd D x mm 12-8 在双缝装置中,用一很薄的云母片(n=1.58)覆盖其中的一条缝,结果使屏幕上的第七级明条纹恰好移到屏幕中央原零级明纹的位置.若入射光的波长为5500oA ,求此云母片的厚度.解: 设云母片厚度为e ,则由云母片引起的光程差为e n e ne )1(-=-=δ按题意 λδ7=∴ 610106.6158.1105500717--⨯=-⨯⨯=-=n e λm 6.6=m μ 12-9 洛埃镜干涉装置如题12-9图所示,镜长30cm ,狭缝光源S 在离镜左边20cm 的平面内,与镜面的垂直距离为2.0mm ,光源波长=λ7.2×10-7m ,试求位于镜右边缘的屏幕上第一条明条纹到镜边缘的距离.题12-9图解: 镜面反射光有半波损失,且反射光可视为虚光源S '发出.所以由S 与S '发出的两光束到达屏幕上距镜边缘为x 处的光程差为 22)(12λλδ+=+-=D x dr r 第一明纹处,对应λδ=∴25105.44.0250102.72--⨯=⨯⨯⨯==d Dx λmm 12-10 一平面单色光波垂直照射在厚度均匀的薄油膜上,油膜覆盖在玻璃板上.油的折射率为1.30,玻璃的折射率为1.50,若单色光的波长可由光源连续可调,可观察到5000 oA 与7000oA 这两个波长的单色光在反射中消失.试求油膜层的厚度.解: 油膜上、下两表面反射光的光程差为ne 2,由反射相消条件有λλ)21(2)12(2+=+=k k k ne ),2,1,0(⋅⋅⋅=k ① 当50001=λoA 时,有2500)21(21111+=+=λλk k ne ②当70002=λoA 时,有3500)21(22222+=+=λλk k ne ③因12λλ>,所以12k k <;又因为1λ与2λ之间不存在3λ满足33)21(2λ+=k ne 式即不存在 132k k k <<的情形,所以2k 、1k 应为连续整数,即 112-=k k ④ 由②、③、④式可得:51)1(75171000121221+-=+=+=k k k k λλ 得 31=k2112=-=k k可由②式求得油膜的厚度为67312250011=+=nk e λo A12-11 白光垂直照射到空气中一厚度为3800 oA 的肥皂膜上,设肥皂膜的折射率为1.33,试问该膜的正面呈现什么颜色?背面呈现什么颜色? 解: 由反射干涉相长公式有λλk ne =+22 ),2,1(⋅⋅⋅=k得 122021612380033.14124-=-⨯⨯=-=k k k ne λ 2=k , 67392=λoA (红色)3=k , 40433=λ oA (紫色)所以肥皂膜正面呈现紫红色.由透射干涉相长公式 λk ne =2),2,1(⋅⋅⋅=k 所以 kk ne 101082==λ 当2=k 时, λ =5054oA (绿色) 故背面呈现绿色.12-12 在折射率1n =1.52的镜头表面涂有一层折射率2n =1.38的Mg 2F 增透膜,如果此膜适用于波长λ=5500 oA 的光,问膜的厚度应取何值?解: 设光垂直入射增透膜,欲透射增强,则膜上、下两表面反射光应满足干涉相消条件,即λ)21(22+=k e n ),2,1,0(⋅⋅⋅=k∴ 222422)21(n n k n k e λλλ+=+=)9961993(38.14550038.125500+=⨯+⨯=k k o A 令0=k ,得膜的最薄厚度为996oA . 当k 为其他整数倍时,也都满足要求.12-13 如题12-13图,波长为6800oA 的平行光垂直照射到L =0.12m 长的两块玻璃片上,两玻璃片一边相互接触,另一边被直径d =0.048mm 的细钢丝隔开.求:(1)两玻璃片间的夹角=θ?(2)相邻两明条纹间空气膜的厚度差是多少? (3)相邻两暗条纹的间距是多少? (4)在这0.12 m 内呈现多少条明条纹?题12-13图解: (1)由图知,d L =θsin ,即d L =θ故 43100.41012.0048.0-⨯=⨯==L d θ(弧度) (2)相邻两明条纹空气膜厚度差为7104.32-⨯==∆λe m(3)相邻两暗纹间距641010850100.421068002---⨯=⨯⨯⨯==θλl m 85.0= mm (4)141≈=∆lLN 条 12-14 用=λ 5000oA 的平行光垂直入射劈形薄膜的上表面,从反射光中观察,劈尖的 棱边是暗纹.若劈尖上面媒质的折射率1n 大于薄膜的折射率n (n =1.5).求: (1)膜下面媒质的折射率2n 与n 的大小关系; (2)第10条暗纹处薄膜的厚度;(3)使膜的下表面向下平移一微小距离e ∆,干涉条纹有什么变化?若e ∆=2.0 μm ,原来的第10条暗纹处将被哪级暗纹占据?解: (1)n n >2.因为劈尖的棱边是暗纹,对应光程差2)12(22λλ+=+=∆k ne ,膜厚0=e 处,有0=k ,只能是下面媒质的反射光有半波损失2λ才合题意; (2)3105.15.12500092929-⨯=⨯⨯==⨯=∆n e nλλ mm (因10个条纹只有9个条纹间距)(3)膜的下表面向下平移,各级条纹向棱边方向移动.若0.2=∆e μm ,原来第10条暗纹处现对应的膜厚为)100.2105.1(33--⨯+⨯='∆e mm21100.55.12105.3243=⨯⨯⨯⨯='∆=∆--n e N λ 现被第21级暗纹占据.12-15 (1)若用波长不同的光观察牛顿环,1λ=6000oA ,2λ=4500oA ,观察到用1λ时的第k个暗环与用2λ时的第k+1个暗环重合,已知透镜的曲率半径是190cm .求用1λ时第k 个暗环的半径.(2)又如在牛顿环中用波长为5000oA 的第5个明环与用波长为2λ的第6个明环重合,求未知波长2λ.解: (1)由牛顿环暗环公式λkR r k =据题意有 21)1(λλR k kR r +==∴212λλλ-=k ,代入上式得2121λλλλ-=R r10101010210450010600010450010600010190-----⨯-⨯⨯⨯⨯⨯⨯= 31085.1-⨯=m(2)用A 50001 =λ照射,51=k 级明环与2λ的62=k 级明环重合,则有 2)12(2)12(2211λλR k R k r -=-=∴ 4091500016215212121212=⨯-⨯-⨯=--=λλk k o A 12-16 当牛顿环装置中的透镜与玻璃之间的空间充以液体时,第十个亮环的直径由1d =1.40×10-2m 变为2d =1.27×10-2m ,求液体的折射率.解: 由牛顿环明环公式2)12(21λR k D r -==空nR k D r 2)12(22λ-==液两式相除得n D D =21,即22.161.196.12221≈==D D n12-17 利用迈克耳逊干涉仪可测量单色光的波长.当1M 移动距离为0.322mm 时,观察到干涉条纹移动数为1024条,求所用单色光的波长. 解: 由 2λNd ∆=∆得 102410322.0223-⨯⨯=∆∆=N d λ 710289.6-⨯=m 6289=oA12-18 把折射率为n =1.632的玻璃片放入迈克耳逊干涉仪的一条光路中,观察到有150条干涉条纹向一方移过.若所用单色光的波长为λ= 5000oA ,求此玻璃片的厚度. 解: 设插入玻璃片厚度为d ,则相应光程差变化为λN d n ∆=-)1(2∴ )1632.1(2105000150)1(210-⨯⨯=-∆=-n N d λ5109.5-⨯=m 2109.5-⨯=mm习题十三13-1 衍射的本质是什么?衍射和干涉有什么联系和区别? 答:波的衍射现象是波在传播过程中经过障碍物边缘或孔隙时所发生的展衍现象.其实质是由被障碍物或孔隙的边缘限制的波阵面上各点发出的无数子波相互叠加而产生.而干涉则是由同频率、同方向及位相差恒定的两列波的叠加形成.13-2 在夫琅禾费单缝衍射实验中,如果把单缝沿透镜光轴方向平移时,衍射图样是否会 跟着移动?若把单缝沿垂直于光轴方向平移时,衍射图样是否会跟着移动? 答:把单缝沿透镜光轴方向平移时,衍射图样不会跟着移动.单缝沿垂直于光轴方向平移时,衍射图样不会跟着移动.13-3 什么叫半波带?单缝衍射中怎样划分半波带?对应于单缝衍射第3级明条纹和第4级暗 条纹,单缝处波面各可分成几个半波带?答:半波带由单缝A 、B 首尾两点向ϕ方向发出的衍射线的光程差用2λ来划分.对应于第3级明纹和第4级暗纹,单缝处波面可分成7个和8个半波带.∵由272)132(2)12(sin λλλϕ⨯=+⨯=+=k a284sin λλϕ⨯==a13-4 在单缝衍射中,为什么衍射角ϕ愈大(级数愈大)的那些明条纹的亮度愈小? 答:因为衍射角ϕ愈大则ϕsin a 值愈大,分成的半波带数愈多,每个半波带透过的光通量就愈小,而明条纹的亮度是由一个半波带的光能量决定的,所以亮度减小.13-5 若把单缝衍射实验装置全部浸入水中时,衍射图样将发生怎样的变化?如果此时用公式),2,1(2)12(sin =+±=k k a λϕ来测定光的波长,问测出的波长是光在空气中的还是在水中的波长?解:当全部装置浸入水中时,由于水中波长变短,对应='='λϕk a sin nk λ,而空气中为λϕk a =sin ,∴ϕϕ'=sin sin n ,即ϕϕ'=n ,水中同级衍射角变小,条纹变密.如用)12(sin +±=k a ϕ2λ),2,1(⋅⋅⋅=k 来测光的波长,则应是光在水中的波长.(因ϕsin a 只代表光在水中的波程差).13-6 在单缝夫琅禾费衍射中,改变下列条件,衍射条纹有何变化?(1)缝宽变窄;(2)入 射光波长变长;(3)入射平行光由正入射变为斜入射.解:(1)缝宽变窄,由λϕk a =sin 知,衍射角ϕ变大,条纹变稀; (2)λ变大,保持a ,k 不变,则衍射角ϕ亦变大,条纹变稀;(3)由正入射变为斜入射时,因正入射时λϕk a =sin ;斜入射时,λθϕk a '=-)sin (sin ,保持a ,λ不变,则应有k k >'或k k <'.即原来的k 级条纹现为k '级.13-7 单缝衍射暗条纹条件与双缝干涉明条纹的条件在形式上类似,两者是否矛盾?怎样 说明?答:不矛盾.单缝衍射暗纹条件为kk a 2sin ==λϕ2λ,是用半波带法分析(子波叠加问题).相邻两半波带上对应点向ϕ方向发出的光波在屏上会聚点一一相消,而半波带为偶数,故形成暗纹;而双缝干涉明纹条件为λθk d =sin ,描述的是两路相干波叠加问题,其波程差为波长的整数倍,相干加强为明纹.13-8 光栅衍射与单缝衍射有何区别?为何光栅衍射的明条纹特别明亮而暗区很宽?答:光栅衍射是多光束干涉和单缝衍射的总效果.其明条纹主要取决于多光束干涉.光强与缝数2N 成正比,所以明纹很亮;又因为在相邻明纹间有)1(-N 个暗纹,而一般很大,故实际上在两相邻明纹间形成一片黑暗背景.13-9 试指出当衍射光栅的光栅常数为下述三种情况时,哪些级次的衍射明条纹缺级?(1) a+b=2a;(2)a+b=3a;(3)a+b=4a.解:由光栅明纹条件和单缝衍射暗纹条件同时满足时,出现缺级.即⎩⎨⎧=''±==±=+)2,1(sin ),2,1,0(sin )( k k a k k b a λϕλϕ 可知,当k aba k '+=时明纹缺级. (1)a b a 2=+时,⋅⋅⋅=,6,4,2k 偶数级缺级; (2)a b a 3=+时,⋅⋅⋅=,9,6,3k 级次缺级;(3)a b a 4=+,⋅⋅⋅=,12,8,4k 级次缺级.13-10 若以白光垂直入射光栅,不同波长的光将会有不同的衍射角.问(1)零级明条纹能 否分开不同波长的光?(2)在可见光中哪种颜色的光衍射角最大?不同波长的光分开程度与什 么因素有关? 解:(1)零级明纹不会分开不同波长的光.因为各种波长的光在零级明纹处均各自相干加强. (2)可见光中红光的衍射角最大,因为由λϕk b a =+sin )(,对同一k 值,衍射角λϕ∞. 13-11 一单色平行光垂直照射一单缝,若其第三级明条纹位置正好与6000οA 的单色平行光的第二级明条纹位置重合,求前一种单色光的波长. 解:单缝衍射的明纹公式为)12(sin +=k a ϕ2λ 当6000=λoA 时,2=kx λλ=时,3=k重合时ϕ角相同,所以有)132(26000)122(sin +⨯=+⨯=ϕa 2x λ得 4286600075=⨯=x λo A13-12 单缝宽0.10mm ,透镜焦距为50cm ,用5000=λoA 的绿光垂直照射单缝.求:(1)位于透镜焦平面处的屏幕上中央明条纹的宽度和半角宽度各为多少?(2)若把此装置浸入水中(n=1.33),中央明条纹的半角宽度又为多少? 解:中央明纹的宽度为f nax λ2=∆半角宽度为naλθ1sin -=(1)空气中,1=n ,所以3310100.51010.01050005.02---⨯=⨯⨯⨯⨯=∆x m33101100.51010.0105000sin ----⨯=⨯⨯=θ rad (2)浸入水中,33.1=n ,所以有33101076.31010.033.110500050.02---⨯≈⨯⨯⨯⨯⨯=∆x m331011076.3101.033.1105000sin ----⨯≈⨯⨯⨯=θ rad 13-13 用橙黄色的平行光垂直照射一宽为a=0.60mm 的单缝,缝后凸透镜的焦距f=40.0cm ,观察屏幕上形成的衍射条纹.若屏上离中央明条纹中心1.40mm 处的P 点为一明条纹;求:(1)入射光的波长;(2)P 点处条纹的级数;(3)从P 点看,对该光波而言,狭缝处的波面可分成几个半波带?解:(1)由于P 点是明纹,故有2)12(sin λϕ+=k a ,⋅⋅⋅=3,2,1k由ϕϕsin tan 105.34004.13≈=⨯==-f x 故3105.3126.0212sin 2-⨯⨯+⨯=+=k k a ϕλ3102.4121-⨯⨯+=k mm 当 3=k ,得60003=λoA4=k ,得47004=λoA(2)若60003=λoA ,则P 点是第3级明纹; 若47004=λoA ,则P 点是第4级明纹. (3)由2)12(sin λϕ+=k a 可知,当3=k 时,单缝处的波面可分成712=+k 个半波带; 当4=k 时,单缝处的波面可分成912=+k 个半波带.13-14 用5900=λoA 的钠黄光垂直入射到每毫米有500条刻痕的光栅上,问最多能看到第几级明条纹?解:5001=+b a mm 3100.2-⨯= mm 4100.2-⨯=o A 由λϕk b a =+sin )(知,最多见到的条纹级数m ax k 对应的2πϕ=,所以有39.35900100.24max ≈⨯=+=λba k ,即实际见到的最高级次为3max =k .13-15 波长为5000oA 的平行单色光垂直照射到每毫米有200条刻痕的光栅上,光栅后的透镜焦距为60cm . 求:(1)屏幕上中央明条纹与第一级明条纹的间距;(2)当光线与光栅法线成30°斜入射时,中央明条纹的位移为多少?解:3100.52001-⨯==+b a mm 6100.5-⨯m (1)由光栅衍射明纹公式 λϕk b a =+sin )(,因1=k ,又f x ==ϕϕtan sin 所以有λ=+f x b a 1)( 即 62101100.51060105000---⨯⨯⨯⨯=+=b a fx λ 2100.6-⨯=m 6= cm(2)对应中央明纹,有0=k正入射时,0sin )(=+ϕb a ,所以0sin =≈ϕϕ斜入射时,0)sin )(sin (=±+θϕb a ,即0sin sin =±θϕ因︒=30θ,∴21tan sin ±==≈f x ϕϕ 故22103010602121--⨯=⨯⨯==f x m 30= cm 这就是中央明条纹的位移值.13-16 波长6000=λo A 的单色光垂直入射到一光栅上,第二、第三级明条纹分别出现在20.0sin =ϕ与30.0sin =ϕ处,第四级缺级.求:(1)光栅常数;(2)光栅上狭缝的宽度;(3)在90°>ϕ>-90°范围内,实际呈现的全部级数.解:(1)由λϕk b a =+sin )(式对应于20.0sin 1=ϕ与30.0sin 2=ϕ处满足:101060002)(20.0-⨯⨯=+b a101060003)(30.0-⨯⨯=+b a得 6100.6-⨯=+b a m(2)因第四级缺级,故此须同时满足 λϕk b a =+sin )(λϕk a '=sin解得 k k b a a '⨯='+=-6105.14取1='k ,得光栅狭缝的最小宽度为6105.1-⨯m(3)由λϕk b a =+sin )( λϕsin )(b a k +=当2πϕ=,对应max k k =∴ 10106000100.6106max =⨯⨯=+=--λb a k 因4±,8±缺级,所以在︒︒<<-9090ϕ范围内实际呈现的全部级数为9,7,6,5,3,2,1,0±±±±±±±=k 共15条明条纹(10±=k 在︒±=90k 处看不到).13-17 一双缝,两缝间距为0.1mm ,每缝宽为0.02mm ,用波长为4800oA 的平行单色光垂直入射双缝,双缝后放一焦距为50cm 的透镜.试求:(1)透镜焦平面上单缝衍射中央明条纹的宽度;(2)单缝衍射的中央明条纹包迹内有多少条双缝衍射明条纹?解:(1)中央明纹宽度为 02.010501048002270⨯⨯⨯⨯==-f a l λmm 4.2=cm (2)由缺级条件λϕk a '=sinλϕk b a =+sin )(知k k a b a k k '='=+'=502.01.0 ⋅⋅⋅=',2,1k 即⋅⋅⋅=,15,10,5k 缺级. 中央明纹的边缘对应1='k ,所以单缝衍射的中央明纹包迹内有4,3,2,1,0±±±±=k 共9条双缝衍射明条纹.13-18 在夫琅禾费圆孔衍射中,设圆孔半径为0.10mm ,透镜焦距为50cm ,所用单色光波长为5000oA ,求在透镜焦平面处屏幕上呈现的爱里斑半径.解:由爱里斑的半角宽度 47105.302.010500022.122.1--⨯=⨯⨯==D λθ∴ 爱里斑半径5.1105.30500tan 24=⨯⨯=≈=-θθf f d mm 13-19 已知天空中两颗星相对于一望远镜的角距离为4.84×10-6rad ,它们都发出波长为5500oA 的光,试问望远镜的口径至少要多大,才能分辨出这两颗星?解:由最小分辨角公式 D λθ22.1=∴ 86.131084.4105.522.122.165=⨯⨯⨯==--θλD cm 13-20 已知入射的X 射线束含有从0.95~1.30o A 范围内的各种波长,晶体的晶格常数为2.75o A ,当X 射线以45°角入射到晶体时,问对哪些波长的X 射线能产生强反射? 解:由布喇格公式 λϕk d =sin 2 得kd ϕλsin 2=时满足干涉相长 当1=k 时, 89.345sin 75.22=⨯⨯=︒λoA2=k 时,91.1245sin 75.22=⨯⨯=︒λo A 3=k 时,30.1389.3==λo A 4=k 时, 97.0489.3==λo A 故只有30.13=λo A 和97.04=λo A 的X 射线能产生强反射.。

大学物理学第四版课后习题答案(赵近芳)上册

大学物理学第四版课后习题答案(赵近芳)上册

大学物理学第四版课后习题答案(赵近芳)上册大学物理学第四版课后习题答案(赵近芳)上册I. 力学基础1.1 物理量、单位和量纲1.2 一维运动1.3 二维运动1.4 多维运动1.5 动力学定律1.6 四个基本定律的应用II. 力学进阶2.1 万有引力定律2.2 物体的机械平衡2.3 力的合成和分解2.4 刚体的平衡条件2.5 动力学定律的矢量形式2.6 力的合成与分解在动力学中的应用III. 力学应用3.1 动量和冲量3.2 动量定理和动量守恒定律3.3 质心运动3.4 矩和对称性3.5 碰撞和动能IV. 振动与波动4.1 简谐振动的基本概念4.2 简谐振动的物理规律4.3 简谐振动的叠加4.4 波的基本概念4.5 机械波的传播4.6 声波的特性V. 热学基础5.1 温度和热量5.2 热学平衡5.3 理想气体状态方程5.4 热力学第一定律5.5 热力学第二定律5.6 热力学循环VI. 热学进阶6.1 热传导6.2 理想气体的物态方程6.3 热机的工作原理6.4 理想气体的热力学过程6.5 热力学第三定律6.6 热力学中的熵VII. 光学基础7.1 几何光学的基本假设7.2 反射和折射7.3 薄透镜的成像7.4 光的衍射7.5 光的干涉与衍射VIII. 光学进阶8.1 光的波动性8.2 波动光学中的衍射现象8.3 干涉与衍射的应用8.4 偏振光的特性和产生8.5 偏振的应用IX. 电学基础9.1 电荷和电场9.2 电场中的电荷9.3 静电场中的电势能9.4 电介质中的电场9.5 电容器和电容9.6 电容器在电场中的应用X. 电学进阶10.1 电流和电阻10.2 欧姆定律和电功率10.3 理想电源和内阻10.4 串联和并联电路10.5 微观电流与输运过程10.6 磁场和电流的相互作用XI. 磁学基础11.1 磁场的基本概念11.2 安培力和磁场的作用11.3 安培环路定理和比奥-萨伐尔定律11.4 磁场中的磁矩和磁矢势11.5 磁场中的电荷和电流XII. 电磁感应12.1 法拉第电磁感应定律12.2 电磁感应的应用12.3 洛伦兹力和电磁感应的关系12.4 电磁感应中的能量转换XIII. 光学和电磁波13.1 光的多普勒效应13.2 光的全反射和光导纤维13.3 电磁波的基本特性13.4 电磁波的干涉和衍射13.5 电磁波的产生和传播XIV. 原子物理14.1 原子的组成和结构14.2 原子能级和辐射14.3 布拉格衍射和X射线的产生14.4 原子谱和拉曼散射14.5 布居和粒子统计XV. 物质内部结构15.1 固体的晶体结构15.2 固体的导电性15.3 半导体的性质和应用15.4 介质的极化和磁化15.5 核能和放射性以上是《大学物理学第四版课后习题答案(赵近芳)上册》的大纲,根据各个章节的内容进行详细解答可帮助学生更好地掌握物理学知识。

《大学物理简明教程》答案-赵近芳-1至12章

《大学物理简明教程》答案-赵近芳-1至12章

大学物理简明教程习题解答习题一1-1 |r ∆|与r ∆有无不同?t d d r 和t d d r 有无不同? t d d v 和t d d v有无不同?其不同在哪里?试举例说明.解:(1)r ∆是位移的模,∆r 是位矢的模的增量,即r ∆12r r -=,12r r r -=∆; (2)t d d r 是速度的模,即t d d r ==v tsd d . t rd d 只是速度在径向上的分量.∵有r r ˆr =(式中r ˆ叫做单位矢),则t ˆr ˆtr t d d d d d d r rr += 式中t rd d 就是速度径向上的分量,∴t r td d d d 与r 不同如题1-1图所示.题1-1图(3)t d d v 表示加速度的模,即t v a d d=,t v d d 是加速度a 在切向上的分量. ∵有ττ (v =v 表轨道节线方向单位矢),所以t v t v t v d d d d d d ττ +=式中dt dv就是加速度的切向分量.(t tr d ˆd d ˆd τ 与的运算较复杂,超出教材规定,故不予讨论) 1-2 设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度和加速度时,有人先求出r =22y x +,然后根据v =t rd d ,及a =22d d t r 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v =22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x 及a =222222d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛t y t x 你认为两种方法哪一种正确?为什么?两者差别何在?解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有j y i x r+=,jt y i t x t r a jt y i t x t r v222222d d d d d d d d d d d d +==+==∴故它们的模即为222222222222d d d d d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=+=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+=t y t x a a a t y t x v v v y x y x而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作22d d d d t r a trv ==其二,可能是将22d d d d t r tr 与误作速度与加速度的模。

赵近芳大学物理学 第五版 部分解答

赵近芳大学物理学 第五版 部分解答

第11章变化的电磁场11.1选择题(1)圆形线圈在磁场中作下列运动时,那些情况会产生感应电流( )。

(A)沿垂直磁场方向平移(B)以直径为轴转动,轴跟磁场垂直(C)沿平行磁场方向平移(D)以直径为轴转动,轴跟磁场平行[答案:B] (2)下列哪些矢量场为保守力场(阅读全文请关注VX公众号高校课后习题)。

(A)静电场(B)稳恒磁场(C)感生电场(D)变化的磁场[答案:A] (3)用线圈的自感系数L来表示载流线圈磁场能量的公式W m=LI2/2( )。

(A)只适用于无限长密绕线管(B)只适用于一个匝数很多,且密绕的螺线环(C)只适用于单匝圆线圈(D)适用于自感系数L一定的任意线圈[答案:D]第10章 稳恒磁场10.1选择题(1) 对于安培环路定理的理解,正确的是(A)若环流等千零,则在回路L 上必定是H 处处为零(B)若环流等于零,则在回路L 上必定不包围电流(C)若环流等于零,则在回路L 所包围传导电流的代数和为零(D)回路L 上各点的H 仅与回路L 包围的电流有关 [答案:C](2)对半径为R 载流为I 的无限长直圆柱体,距轴线r 处的磁感应强度B (A)内外部磁感应强度B 都与r 成正比(B)内部磁感应强度B 与r 成正比,外部磁感应强度B 与r 成反比(C)内外部磁感应强度B 都与r 成反比(D)内部磁感应强度B 与r 成反比,外部磁感应强度B 与r 成正比[答案:B]第12章 光的干涉12.1选择题(1)在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是 ( )(A)使屏靠近双缝 (B)使两缝的间距变小(C)把两个缝的宽度稍微调窄 (D))改用波长较小的单色光源[答案:C](2)两块平玻璃构成空气劈形膜,左边为棱边,用单色平行光垂直入射,若上面的平玻璃以棱边为轴,沿逆时针方向作微小转动,则于涉条纹的 ( )(A)间隔变小,并向棱边方向平移 (B)间隔变大,并向远离棱边方向平移(C)间隔不变,向棱边方向平移 (D)间隔变小,并向远离棱边方向平移[答案:A]第13章 光的衍射13.1选择题(1)在夫琅禾费单缝衍射实验中,对于给定的入射单色光,当缝宽度变小时,除中央亮纹的中心位置不变外,各级衍射条纹( )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2 三容器A、B、C中装有同种理想气体, 其分子数密度 n 相同,而方均根速率之比 2 1/ 2 2 1/ 2 2 1/ 2 为(vA ) : ( vB ) : (vC ) 1 : 2 : 4,则其压强 之比 pA : pB : pC为( ) ( A) 1 : 2 : 4 (C) 1 : 4 : 16 (B) 1 : 4 : 8 ( D) 4 : 2 : 1
第十二章 气体动理论
7
物理学
第五版
第十二章 习题
8 有N个质量均为m的同种气体分子,它们的 速率分布如图所示. (1)说明曲线与横坐标所 Nf( v) 包围面积的含义; a (2)由 N 和 v0 求 a 值; (3)求在速率 v0 / 2 ~ 3v0 / 2 v O 间隔内的分子数; 2v0 v0 (4)求分子的平均平动动能.
第十二章 气体动理论
2
物理学
第五版
第十二章 习题
3 已知n为单位体积的分子数, f ( v)为麦克斯 韦速率分布函数,则 nf ( v)dv 表示( ) (A) 速率v附近,d v 区间内的分子数 (B) 单位体积内速率在v~v+dv区间内的分子数 (C) 速率v附近dv区间内分子数占总分子数比率 (D) 单位时间内碰到单位器壁上速率在v ~v +dv 区间内的分子数
第十二章 气体动理论
4
物理学
第五版
第十二章 习题
5 一容器内储有氧气,其压强为1.01105 Pa, 温度为 27.0o C ,求: (1) 气体分子的数密度; (2) 氧气的密度; (3) 分子的平均平动动能; (4) 分子间的平均距离.(设分子间均匀等距 排列)
第十二章 气体动理论
5
物理学
物理学
第五版
第十二章 习题
1 处于平衡状态的一瓶氦气和一瓶氮气的 分 子数密度相同,分子的平均平动动能也 相同,则它们( ) (A)温度、压强均不相同. (B)温度相同,但氦气压强大于氮气压强. (C)温度、压强都相同. (D)温度相同,但氦气压强小于氮气压强.
第十二章 气体动理论
1
物理学
第五版
第十二章 习题
第十二章 气体动理论
9
第十二章 气体动理论
8
物理学
第五版
第十二章 习题
9 在一定的压强下,温度为 20o C 时,氩和 氮气分子的平均自由程分别为 9.9 108 m 和 27.5 108 m . 试求: (1) 氩气和氮气分子的有效直径之比; (2) 当温度不变且压强为原值的一半时,氮 气分子的平均自由程和平均碰撞频率.
v
第十二章 气体动理论
3
物理学
第五版
第十二章 习题
4 设想太阳是由氢原子组成的理想气体,其 密度可当作是均匀的,若此理想气体的压强 为 1.351014 Pa,试估计太阳的温度. (已知氢 27 原子质量 mH 1.6710 kg,太阳半径和质 30 量分别为Rs 6.96108 m , ms 1.9910 kg )
第五版
第十二章 习题
6 某些恒星的温度可达约 1.0 108 K ,这也 是发生聚变反应所需的温度,在此温度下, 恒星可视为质子组成. 问: (1) 质子的平均动能是多少? (2) 质子的方均根速率为多大?
第十二章 气体动理论
6
物理学
第五版
第十二章 习题
7 在容积为 2.0 103 m3 的容器中,有内能为 2 6.75பைடு நூலகம்0 J 的刚性双原子分子理想气体. (1)求气体的压强; (2)若容器中分子总数为 5.4 1022 ,求分子 的平均平动动能及气体的温度.
相关文档
最新文档