圆锥曲线导数及其应用测试题含答案

合集下载

高二数学圆锥曲线试题答案及解析

高二数学圆锥曲线试题答案及解析

高二数学圆锥曲线试题答案及解析1.已知椭圆的离心率,右焦点为,方程的两个实根,,则点()A.必在圆内B.必在圆上C.必在圆外D.以上三种情况都有可能【答案】A【解析】本题只要判断与2的大小,时,点在圆上;时,点在圆内;时,点在圆外.由已知,,椭圆离心率为,从而,点在圆内,故选A.【考点】1.点与圆的位置关系;2.二次方程根与系数的关系.2.若抛物线y2=4x上的点A到其焦点的距离是6,则点A的横坐标是( )A.5B.6C.7D.8【答案】A【解析】由抛物线的方程可知抛物线的准线为,根据抛物线的定义可知点到其准线的距离也为6,即,所以。

故A正确。

【考点】抛物线的定义。

3.设一个焦点为,且离心率的椭圆上下两顶点分别为,直线交椭圆于两点,直线与直线交于点.(1)求椭圆的方程;(2)求证:三点共线.【答案】(1)(2)详见解析.【解析】(1)利用椭圆的定义和几何性质;(2)直线与圆锥曲线相交问题,可以设而不求,联立直线与椭圆方程,利用韦达定理结合题目条件来证明.试题解析:(1)由题知,,∴,3分∴椭圆.4分(2) 设点,由(1)知∴直线的方程为,∴.5分∴,,8分由方程组化简得:,,.10分∴,∴三点共线.12分【考点】1.椭圆的标准方程;2.直线与圆锥曲线相交问题;3.韦达定理.4.已知双曲线的右焦点为,若过且倾斜角为的直线与双曲线的右支有且只有一个交点,则双曲线离心率的取值范围是( )A.B.C.D.【答案】A【解析】由渐进线的斜率.又因为过且倾斜角为的直线与双曲线的右支有且只有一个交点,所以.所以.故选A.本小题关键是对比渐近线与过焦点的直线的斜率的大小.【考点】1.双曲线的渐近线.2.离心率.3.双曲线中量的关系.5.点P是抛物线y2 = 4x上一动点,则点P到点(0,-1)的距离与到抛物线准线的距离之和的最小值是 .【答案】【解析】抛物线y2 = 4x的焦点,点P到准线的距离与点P到点F的距离相等,本题即求点P到点的距离与到点的距离之和的最小值,画图可知最小值即为点与点间的距离,最小值为.【考点】抛物线的定义.6.准线方程为x=1的抛物线的标准方程是()A.B.C.D.【答案】A【解析】由题意可知:=1,∴p=2且抛物线的标准方程的焦点在x轴的负半轴上故可设抛物线的标准方程为:y2=-2px,将p代入可得y2=-4x.选A.【考点】抛物线的性质点评:本题主要考查抛物线的基本性质以及计算能力.在涉及到求抛物线的标准方程问题时,一定要先判断出焦点所在位置,避免出错.7.动点到两定点,连线的斜率的乘积为(),则动点P在以下哪些曲线上()(写出所有可能的序号)①直线②椭圆③双曲线④抛物线⑤圆A.①⑤B.③④⑤C.①②③⑤D.①②③④⑤【答案】C【解析】由题设知直线PA与PB的斜率存在且均不为零所以kPA •kPB=,整理得,点P的轨迹方程为kx2-y2=ka2(x≠±a);①当k>0,点P的轨迹是焦点在x轴上的双曲线(除去A,B两点)②当k=0,点P的轨迹是x轴(除去A,B两点)③当-1<k<0时,点P的轨迹是焦点在x轴上的椭圆(除去A,B两点)④当k=-1时,点P的轨迹是圆(除去A,B两点)⑤当k<-1时,点P的轨迹是焦点在y轴上的椭圆(除去A,B两点).故选C.【考点】圆锥曲线的轨迹问题.点评:本题考查圆锥曲线的轨迹问题,解题时要认真审题,注意分类讨论思想的合理运用.8.已知F1,F2是椭圆 (a>b>0)的左,右焦点,点P是椭圆在y轴右侧上的点,且∠F1PF2=,记线段PF1与y轴的交点为Q,O为坐标原点,若△F1OQ与四边形OF2PQ的面积之比为1∶2,则该椭圆的离心率等于【答案】-1【解析】根据题意,由于F1,F2是椭圆 (a>b>0)的左,右焦点,点P是椭圆在y轴右侧上的点,且∠F1PF2=,且有△F1OQ与四边形OF2PQ的面积之比为1∶2,则可知为点P到x轴的距离是Q到x轴距离的3:2倍,那么结合勾股定理可知该椭圆的离心率等于-1 ,故答案为-1 。

高二数学圆锥曲线与导数单元测试题

高二数学圆锥曲线与导数单元测试题

高二数学试题(圆锥曲线与导数)一、选择题1.若点12,F F 为椭圆2214x y +=的焦点,P 为椭圆上的点,当12F PF ∆的面积为1时,12PF PF ⋅的值是( ) A .0 B .1 C .3D .6 2.设23)(23++=x ax x f ,若4)1(=-'f ,则a 的值等于()A .319 B.316 C .313 D .310 3.已知直线)2(+=x k y (k >0)与抛物线2:8C y x =相交于A 、B 两点,F 为C 的焦点,若||2||FA FB =,则k 的值为( ) A .13 B .23 4.已知抛物线22y px =(p >0)的准线与圆22450x y y +--=相切,则p 的值为( )A .10B .6C .18 D .124 5.若曲线21:20C y px p =>()的焦点F 恰好是曲线22222:100x y C a b a b-=>>(,)的右焦点,且1C 与2C 交点的连线过点F ,则曲线2C 的离心率为( )A 1B 1CD 6.已知点P 在曲线y =41x e +上,α为曲线在点P 处的切线的倾斜角,则α的取值范围( ) A.[0,4π) B.[,)42ππ C. 3(,]24ππ D. 3[,)4ππ 7.双曲线22221(0,0)xy a b a b -=>>的右支上存在一点,它到右焦点及左准线的距离相等,则双曲线离心率的取值范围是( )A.1] B.)+∞ C. D.1,)+∞8.如果221||21x y k k+=---表示焦点在y 轴上的双曲线,那么它的半焦距C 的取值范围是( )A .(1,+∞) B .(0,2) C .(2,+∞) D .(1,2)9.设斜率为1的直线l 与椭圆124:22=+y x C 相交于不同的两点A 、B ,则使||AB 为整数的直线l 共有( ) A .4条 B .5条 C .6条D .7条 10.已知定义域为R 的奇函数f(x)的导函数为)(x f ',当0≠x 时,0)()(>+'xx f x f ,若)2(ln 21ln ),2(2),21(21f c f b f a =--==,则下列关于a ,b ,c 的大小关系正确的是( ) A. a >b >c B . a >c >b C . c >b >a D . b >a >c二、填空题11.在平面直角坐标系xOy 中,直线y x b =+是曲线ln y a x =的切线,则当a >0时,实数b 的最小值是______ .12.已知双曲线162x -92y =1,椭圆的焦点恰好为双曲线的两个顶点,椭圆与双曲线的离心率互为倒数,则椭圆的方程为_____13.抛物线上的一点到轴的距离为12,则与焦点间的距离 =____ 14.已知函数3221()(21)13f x x x a x a a =++-+-+,若()0f x '=在(1,3]上有解,则实数a 的取值范围为______ .15. 设点P 是双曲线12222=-b y a x 上除顶点外的任意一点,1F ,2F 分别为左、右焦点,c 为半焦距,12PF F 的内切圆与边12F F 切于点M ,求|1F M |·|2F M|=______ 16. 若曲线2ln y ax x =-在点(1,)a 处的切线平行于x 轴,则a =______.17. 已知函数f (x )=1-x ax +lnx ,若函数f (x )在[1,+∞)上为增函数,则正实数a 的取值范围是____三、解答题18.已知椭圆E :)0(12222>>=+b a b y a x 的离心率e =,并且经过定点31()22P ,. (Ⅰ)求曲线E 的方程;(Ⅱ)直线2:+=kx y l 交椭圆E 于不同的B A ,两点,O 是坐标原点,求AOB ∆面积的最大值.19.已知函数52)(23+-=x x x f 的定义域为区间[]2,2-. (1)求函数)(x f 的极大值与极小值;(2)求函数)(x f 的最大值与最小值.20、函数31()443f x x x =-+.(1)求函数()f x 的极值;(2)设函数()g x x m =+,对12,[0,3]x x ∀∈,都有12()()f x g x ≥,求实数m 的取值范围.21.已知中心在原点的椭圆2222:1(0,0)x y C a b a b +=>>的一个焦点为1(3,0),(4,)(0)F M y y >为椭圆上一点,1MOF ∆的面积为32.(1)求椭圆C 的方程;(2)是否存在平行于OM 的直线l ,使得直线l 与椭圆C 相交于A B 、两点,且以线段AB 为直经的圆恰好经过原点?若存在,求出l 的方程,若不存 在,说明理由.22.设函数21()ln ().2a f x x ax x a R -=+-∈(1)当1a =时,求函数()f x 的极值; (2)当1a >时,讨论函数()f x 的单调性.(3)若对任意(3,4)a ∈及任意12,[1,2]x x ∈,恒有212(1)ln 2()()2a m f x f x -+>- 成立,求实数m 的取值范围.。

导数与圆锥曲线

导数与圆锥曲线

导数与圆锥曲线一.解答题(共16小题)1.设函数f(x)=lnx+,m∈R.(Ⅰ)当m=e(e为自然对数的底数)时,求f(x)的极小值;(Ⅱ)讨论函数g(x)=f′(x)﹣零点的个数;(Ⅲ)若对任意b>a>0,<1恒成立,求m的取值范围.2.已知函数f(x)=.(Ⅰ)求f(x)的单调区间;(Ⅱ)证明:当f(x1)=f(x2)(x1≠x2)时,x1+x2<0.3.已知函数f(x)=x2+ax+b,g(x)=e x(cx+d)若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.(Ⅰ)求a,b,c,d的值;(Ⅱ)若x≥﹣2时,f(x)≤kg(x),求k的取值范围.4.已知函数f(x)满足f(x)=f′(1)e x﹣1﹣f(0)x+x2;(1)求f(x)的解析式及单调区间;(2)若,求(a+1)b的最大值.5.已知函数f(x)=e x﹣ax,其中a>0.(1)若对一切x∈R,f(x)≥1恒成立,求a的取值集合;(2)在函数f(x)的图象上取定点A(x1,f(x1)),B(x2,f(x2))(x1<x2),记直线AB的斜率为K,证明:存在x0∈(x1,x2),使f′(x0)=K恒成立.6.设函数f(x)=x﹣﹣alnx(a∈R).(Ⅰ)讨论函数f(x)的单调性.(Ⅱ)若f(x)有两个极值点x1,x2,记过点A(x1,f(x1)),B(x2,f(x2))的直线斜率为k.问:是否存在a,使得k=2﹣a?若存在,求出a的值;若不存在,请说明理由.7.已知椭圆C:(a>b>0)的离心率为,短轴一个端点到右焦点的距离为.(Ⅰ)求椭圆C的方程;(Ⅱ)设直线l与椭圆C交于A、B两点,坐标原点O到直线l的距离为,求△AOB面积的最大值.8.平面直角坐标系xOy中,过椭圆M:(a>b>0)右焦点的直线x+y ﹣=0交M于A,B两点,P为AB的中点,且OP的斜率为.(Ⅰ)求M的方程(Ⅱ)C,D为M上的两点,若四边形ACBD的对角线CD⊥AB,求四边形ACBD 面积的最大值.9.设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A∈C,已知以F为圆心,FA为半径的圆F交l于B,D两点;(1)若∠BFD=90°,△ABD的面积为,求p的值及圆F的方程;(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.10.已知平面内一动点P到点F(1,0)的距离与点P到y轴的距离的差等于1.(Ⅰ)求动点P的轨迹C的方程;(Ⅱ)过点F作两条斜率存在且互相垂直的直线l1,l2,设l1与轨迹C相交于点A,B,l2与轨迹C相交于点D,E,求的最小值.11.已知抛物线x2=4y的焦点为F,A、B是抛物线上的两动点,且.过A、B两点分别作抛物线的切线,设其交点为M.(Ⅰ)证明为定值;(Ⅱ)设△ABM的面积为S,写出S=f(λ)的表达式,并求S的最小值.12.在直角坐标系xoy中,曲线C1上的点均在C2:(x﹣5)2+y2=9外,且对C1上任意一点M,M到直线x=﹣2的距离等于该点与圆C2上点的距离的最小值.(Ⅰ)求曲线C1的方程(Ⅱ)设P(x0,y0)(y0≠±3)为圆C2外一点,过P作圆C2的两条切线,分别于曲线C1相交于点A,B和C,D.证明:当P在直线x=﹣4上运动时,四点A,B,C,D的纵坐标之积为定值.13.在直角坐标系xOy中,已知中心在原点,离心率为的椭圆E的一个焦点为圆C:x2+y2﹣4x+2=0的圆心.(Ⅰ)求椭圆E的方程;(Ⅱ)设P是椭圆E上一点,过P作两条斜率之积为的直线l1,l2.当直线l1,l2都与圆C相切时,求P的坐标.14.已知F1,F2分别是椭圆的左、右焦点F1,F2关于直线x+y﹣2=0的对称点是圆C的一条直径的两个端点.(Ⅰ)求圆C的方程;(Ⅱ)设过点F2的直线l被椭圆E和圆C所截得的弦长分别为a,b.当ab最大时,求直线l的方程.15.如图,椭圆C1:=1(a>b>0)的离心率为,x轴被曲线C2:y=x2﹣b截得的线段长等于C1的长半轴长.(Ⅰ)求C1,C2的方程;(Ⅱ)设C2与y轴的交点为M,过坐标原点O的直线l与C2相交于点A、B,直线MA,MB分别与C1相交于D,E.(i)证明:MD⊥ME;(ii)记△MAB,△MDE的面积分别是S1,S2.问:是否存在直线l,使得=?请说明理由.16.如图,过抛物线x2=4y的对称轴上任一点P(0,m)(m>0)作直线与抛物线交于A,B两点,点Q是点P关于原点的对称点.(I)设点P分有向线段所成的比为λ,证明:(Ⅱ)设直线AB的方程是x﹣2y+12=0,过A,B两点的圆C与抛物线在点A处有共同的切线,求圆C的方程.导数与圆锥曲线一.解答题(共16小题)1.设函数f(x)=lnx+,m∈R.(Ⅰ)当m=e(e为自然对数的底数)时,求f(x)的极小值;(Ⅱ)讨论函数g(x)=f′(x)﹣零点的个数;(Ⅲ)若对任意b>a>0,<1恒成立,求m的取值范围.【分析】(Ⅰ)m=e时,f(x)=lnx+,利用f′(x)判定f(x)的增减性并求出f(x)的极小值;(Ⅱ)由函数g(x)=f′(x)﹣,令g(x)=0,求出m;设φ(x)=m,求出φ(x)的值域,讨论m的取值,对应g(x)的零点情况;(Ⅲ)由b>a>0,<1恒成立,等价于f(b)﹣b<f(a)﹣a恒成立;即h(x)=f(x)﹣x在(0,+∞)上单调递减;h′(x)≤0,求出m的取值范围.【解答】解:(Ⅰ)当m=e时,f(x)=lnx+,∴f′(x)=;∴当x∈(0,e)时,f′(x)<0,f(x)在(0,e)上是减函数;当x∈(e,+∞)时,f′(x)>0,f(x)在(e,+∞)上是增函数;∴x=e时,f(x)取得极小值为f(e)=lne+=2;(Ⅱ)∵函数g(x)=f′(x)﹣=﹣﹣(x>0),令g(x)=0,得m=﹣x3+x(x>0);设φ(x)=﹣x3+x(x>0),∴φ′(x)=﹣x2+1=﹣(x﹣1)(x+1);当x∈(0,1)时,φ′(x)>0,φ(x)在(0,1)上是增函数,当x∈(1,+∞)时,φ′(x)<0,φ(x)在(1,+∞)上是减函数;∴x=1是φ(x)的极值点,且是极大值点,∴x=1是φ(x)的最大值点,∴φ(x)的最大值为φ(1)=;又φ(0)=0,结合y=φ(x)的图象,如图;可知:①当m>时,函数g(x)无零点;②当m=时,函数g(x)有且只有一个零点;③当0<m<时,函数g(x)有两个零点;④当m≤0时,函数g(x)有且只有一个零点;综上,当m>时,函数g(x)无零点;当m=或m≤0时,函数g(x)有且只有一个零点;当0<m<时,函数g(x)有两个零点;(Ⅲ)对任意b>a>0,<1恒成立,等价于f(b)﹣b<f(a)﹣a恒成立;设h(x)=f(x)﹣x=lnx+﹣x(x>0),则h(b)<h(a).∴h(x)在(0,+∞)上单调递减;∵h′(x)=﹣﹣1≤0在(0,+∞)上恒成立,∴m≥﹣x2+x=﹣+(x>0),∴m≥;对于m=,h′(x)=0仅在x=时成立;∴m的取值范围是[,+∞).【点评】本题考查了导数的综合应用问题,解题时应根据函数的导数判定函数的增减性以及求函数的极值和最值,应用分类讨论法,构造函数等方法来解答问题,是难题.2.已知函数f(x)=.(Ⅰ)求f(x)的单调区间;(Ⅱ)证明:当f(x1)=f(x2)(x1≠x2)时,x1+x2<0.【分析】(Ⅰ)利用导数的运算法则求出f′(x),分别解出f′(x)>0与f′(x)<0的x取值范围即可得到单调区间;(Ⅱ)当f(x1)=f(x2)(x1≠x2)时,不妨设x1<x2.由(I)可知:x1∈(﹣∞,0),x2∈(0,1).利用导数先证明:∀x∈(0,1),f(x)<f(﹣x).而x2∈(0,1),可得f(x2)<f(﹣x2).即f(x1)<f(﹣x2).由于x1,﹣x2∈(﹣∞,0),f(x)在(﹣∞,0)上单调递增,因此得证.【解答】解:(Ⅰ)易知函数的定义域为R.==,当x<0时,f′(x)>0;当x>0时,f′(x)<0.∴函数f(x)的单调递增区间为(﹣∞,0),单调递减区间为(0,+∞).(Ⅱ)当x<1时,由于,e x>0,得到f(x)>0;同理,当x>1时,f(x)<0.当f(x1)=f(x2)(x1≠x2)时,不妨设x1<x2.由(Ⅰ)可知:x1∈(﹣∞,0),x2∈(0,1).下面证明:∀x∈(0,1),f(x)<f(﹣x),即证<.此不等式等价于.令g(x)=,则g′(x)=﹣xe﹣x(e2x﹣1).当x∈(0,1)时,g′(x)<0,g(x)单调递减,∴g(x)<g(0)=0.即.∴∀x∈(0,1),f(x)<f(﹣x).而x2∈(0,1),∴f(x2)<f(﹣x2).从而,f(x1)<f(﹣x2).由于x1,﹣x2∈(﹣∞,0),f(x)在(﹣∞,0)上单调递增,∴x1<﹣x2,即x1+x2<0.【点评】本题综合考查了利用导数研究函数的单调性、等价转化问题等基础知识与基本技能,需要较强的推理能力和计算能力.3.已知函数f(x)=x2+ax+b,g(x)=e x(cx+d)若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.(Ⅰ)求a,b,c,d的值;(Ⅱ)若x≥﹣2时,f(x)≤kg(x),求k的取值范围.【分析】(Ⅰ)对f(x),g(x)进行求导,已知在交点处有相同的切线及曲线y=f (x)和曲线y=g(x)都过点P(0,2),从而解出a,b,c,d的值;(Ⅱ)由(I)得出f(x),g(x)的解析式,再求出F(x)及它的导函数,通过对k的讨论,判断出F(x)的最值,从而判断出f(x)≤kg(x)恒成立,从而求出k的范围.【解答】解:(Ⅰ)由题意知f(0)=2,g(0)=2,f′(0)=4,g′(0)=4,而f′(x)=2x+a,g′(x)=e x(cx+d+c),故b=2,d=2,a=4,d+c=4,从而a=4,b=2,c=2,d=2;(Ⅱ)由(I)知,f(x)=x2+4x+2,g(x)=2e x(x+1)设F(x)=kg(x)﹣f(x)=2ke x(x+1)﹣x2﹣4x﹣2,则F′(x)=2ke x(x+2)﹣2x﹣4=2(x+2)(ke x﹣1),由题设得F(0)≥0,即k≥1,令F′(x)=0,得x1=﹣lnk,x2=﹣2,①若1≤k<e2,则﹣2<x1≤0,从而当x∈(﹣2,x1)时,F′(x)<0,当x∈(x1,+∞)时,F′(x)>0,即F(x)在(﹣2,x1)上减,在(x1,+∞)上是增,故F(x)在[﹣2,+∞)上的最小值为F(x1),而F(x1)=﹣x1(x1+2)≥0,x≥﹣2时F(x)≥0,即f(x)≤kg(x)恒成立.②若k=e2,则F′(x)=2e2(x+2)(e x﹣e﹣2),从而当x∈(﹣2,+∞)时,F′(x)>0,即F(x)在(﹣2,+∞)上是增,而F(﹣2)=0,故当x≥﹣2时,F(x)≥0,即f(x)≤kg(x)恒成立.③若k>e2时,F′(x)>2e2(x+2)(e x﹣e﹣2),而F(﹣2)=﹣2ke﹣2+2<0,所以当x>﹣2时,f(x)≤kg(x)不恒成立,综上,k的取值范围是[1,e2].【点评】此题主要考查利用导数研究曲线上某点切线方程,函数恒成立问题,考查分类讨论思想,解题的关键是能够利用导数工具研究函数的性质,此题是一道中档题.4.已知函数f(x)满足f(x)=f′(1)e x﹣1﹣f(0)x+x2;(1)求f(x)的解析式及单调区间;(2)若,求(a+1)b的最大值.【分析】(1)对函数f(x)求导,再令自变量为1,求出f′(1)得到函数的解析式及导数,再由导数求函数的单调区间;(2)由题意,借助导数求出新函数的最小值,令其大于0即可得到参数a,b 所满足的关系式,再研究(a+1)b的最大值【解答】解:(1)f(x)=f'(1)e x﹣1﹣f(0)x+⇒f'(x)=f'(1)e x﹣1﹣f(0)+x令x=1得:f(0)=1∴f(x)=f'(1)e x﹣1﹣x+令x=0,得f(0)=f'(1)e﹣1=1解得f'(1)=e故函数的解析式为f(x)=e x﹣x+令g(x)=f'(x)=e x﹣1+x∴g'(x)=e x+1>0,由此知y=g(x)在x∈R上单调递增当x>0时,f'(x)>f'(0)=0;当x<0时,有f'(x)<f'(0)=0得:函数f(x)=e x﹣x+的单调递增区间为(0,+∞),单调递减区间为(﹣∞,0)(2)f(x)≥﹣(a+1)x﹣b≥0得h′(x)=e x﹣(a+1)①当a+1≤0时,h′(x)>0⇒y=h(x)在x∈R上单调递增,x→﹣∞时,h(x)→﹣∞与h(x)≥0矛盾②当a+1>0时,h′(x)>0⇔x>ln(a+1),h'(x)<0⇔x<ln(a+1)得:当x=ln(a+1)时,h(x)min=(a+1)﹣(a+1)ln(a+1)﹣b≥0,即(a+1)﹣(a+1)ln(a+1)≥b∴(a+1)b≤(a+1)2﹣(a+1)2ln(a+1),(a+1>0)令F(x)=x2﹣x2lnx(x>0),则F'(x)=x(1﹣2lnx)∴F'(x)>0⇔0<x<当x=时,F(x)max=即当a=时,(a+1)b的最大值为【点评】本题考查导数在最值问题中的应用及利用导数研究函数的单调性,解题的关键是第一题中要赋值求出f′(1),易因为没有将f′(1)看作常数而出错,第二题中将不等式恒成立研究参数关系的问题转化为最小值问题,本题考查了转化的思想,考查判断推理能力,是高考中的热点题型,计算量大,易马虎出错.5.已知函数f(x)=e x﹣ax,其中a>0.(1)若对一切x∈R,f(x)≥1恒成立,求a的取值集合;(2)在函数f(x)的图象上取定点A(x1,f(x1)),B(x2,f(x2))(x1<x2),记直线AB的斜率为K,证明:存在x0∈(x1,x2),使f′(x0)=K恒成立.【分析】(1)根据题意,对f(x)求导可得f′(x)=0,令f′(x)=0,解可得x=lna,分x<lna与x>lna两种情况讨论可得f(x)取最小值为f(lna)=a﹣alna,令g (t)=t﹣tlnt,对其求导可得g′(t)=﹣lnt,分析可得当t=1时,g(t)取得最大值1,因此当且仅当a=1时,a﹣alna≥1成立,即可得答案;(2)根据题意,由直线的斜率公式可得k=﹣a,令φ(x)=f′(x)﹣k=e x ﹣,可以求出φ(x1)与φ(x2)的值,令F(t)=e t﹣t﹣1,求导可得F′(t)=e t﹣1,分t>0与t<0讨论可得F(t)的最小值为F(0)=0,则当t≠0时,F(t)>F (0)=0,即e t﹣t﹣1>0,进而讨论可得φ(x1)<0、φ(x2)>0,结合函数的连续性分析可得答案.【解答】解:(1)f′(x)=e x﹣a,令f′(x)=0,解可得x=lna;当x<lna,f′(x)<0,f(x)单调递减,当x>lna,f′(x)>0,f(x)单调递增,故当x=lna时,f(x)取最小值,f(lna)=a﹣alna,对一切x∈R,f(x)≥1恒成立,当且仅当a﹣alna≥1,①令g(t)=t﹣tlnt,则g′(t)=﹣lnt,当0<t<1时,g′(t)>0,g(t)单调递增,当t>1时,g′(t)<0,g(t)单调递减,故当t=1时,g(t)取得最大值,且g(1)=1,因此当且仅当a=1时,①式成立,综上所述,a的取值的集合为{1}.(2)根据题意,k==﹣a,令φ(x)=f′(x)﹣k=e x﹣,则φ(x1)=﹣[﹣(x2﹣x1)﹣1],φ(x2)=[﹣(x1﹣x2)﹣1],令F(t)=e t﹣t﹣1,则F′(t)=e t﹣1,当t<0时,F′(t)<0,F(t)单调递减;当t>0时,F′(t)>0,F(t)单调递增,则F(t)的最小值为F(0)=0,故当t≠0时,F(t)>F(0)=0,即e t﹣t﹣1>0,从而﹣(x2﹣x1)﹣1>0,且>0,则φ(x1)<0,﹣(x1﹣x2)﹣1>0,>0,则φ(x2)>0,因为函数y=φ(x)在区间[x1,x2]上的图象是连续不断的一条曲线,所以存在x0∈(x1,x2),使φ(x0)=0,即f′(x0)=K成立.【点评】本题考查导数的应用,涉及最大值、最小值的求法以及恒成立问题,是综合题;关键是理解导数的符号与单调性的关系,并能正确求出函数的导数.6.设函数f(x)=x﹣﹣alnx(a∈R).(Ⅰ)讨论函数f(x)的单调性.(Ⅱ)若f(x)有两个极值点x1,x2,记过点A(x1,f(x1)),B(x2,f(x2))的直线斜率为k.问:是否存在a,使得k=2﹣a?若存在,求出a的值;若不存在,请说明理由.【分析】(Ⅰ)求导,令导数等于零,解方程,跟据f′(x)f(x)随x的变化情况即可求出函数的单调区间;(Ⅱ)假设存在a,使得k=2﹣a,根据(I)利用韦达定理求出直线斜率为k,根据(I)函数的单调性,推出矛盾,即可解决问题.【解答】解:(I)f(x)定义域为(0,+∞),f′(x)=1+,令g(x)=x2﹣ax+1,△=a2﹣4,①当﹣2≤a≤2时,△≤0,f′(x)≥0,故f(x)在(0,+∞)上单调递增,②当a<﹣2时,△>0,g(x)=0的两根都小于零,在(0,+∞)上,f′(x)>0,故f(x)在(0,+∞)上单调递增,③当a>2时,△>0,g(x)=0的两根为x1=,x2=,当0<x<x1时,f′(x)>0;当x1<x<x2时,f′(x)<0;当x>x2时,f′(x)>0;故f(x)分别在(0,x1),(x2,+∞)上单调递增,在(x1,x2)上单调递减.(Ⅱ)由(I)知,a>2.因为f(x1)﹣f(x2)=(x1﹣x2)+﹣a(lnx1﹣lnx2),所以k==1+﹣a,又由(I)知,x1x2=1.于是k=2﹣a,若存在a,使得k=2﹣a,则=1,即lnx1﹣lnx2=x1﹣x2,亦即(*)再由(I)知,函数在(0,+∞)上单调递增,而x2>1,所以>1﹣1﹣2ln1=0,这与(*)式矛盾,故不存在a,使得k=2﹣a.【点评】此题是个难题.考查利用导数研究函数的单调性和极值问题,对方程f'(x)=0有无实根,有实根时,根是否在定义域内和根大小进行讨论,体现了分类讨论的思想方法,其中问题(II)是一个开放性问题,考查了同学们观察、推理以及创造性地分析问题、解决问题的能力.7.已知椭圆C:(a>b>0)的离心率为,短轴一个端点到右焦点的距离为.(Ⅰ)求椭圆C的方程;(Ⅱ)设直线l与椭圆C交于A、B两点,坐标原点O到直线l的距离为,求△AOB面积的最大值.【分析】(Ⅰ)设椭圆的半焦距为c,依题意求出a,b的值,从而得到所求椭圆的方程.(Ⅱ)设A(x1,y1),B(x2,y2).(1)当AB⊥x轴时,.(2)当AB 与x轴不垂直时,设直线AB的方程为y=kx+m.由已知,得.把y=kx+m代入椭圆方程,整理得(3k2+1)x2+6kmx+3m2﹣3=0,然后由根与系数的关系进行求解.【解答】解:(Ⅰ)设椭圆的半焦距为c,依题意∴b=1,∴所求椭圆方程为.(Ⅱ)设A(x1,y1),B(x2,y2).(1)当AB⊥x轴时,.(2)当AB与x轴不垂直时,设直线AB的方程为y=kx+m.由已知,得.把y=kx+m代入椭圆方程,整理得(3k2+1)x2+6kmx+3m2﹣3=0,∴,.∴|AB|2=(1+k2)(x2﹣x1)2=====.当且仅当,即时等号成立.当k=0时,,综上所述|AB|max=2.∴当|AB|最大时,△AOB面积取最大值.【点评】本题考查圆锥曲线的性质和应用,解题时要注意公式的灵活运用,认真审题,仔细解答.8.平面直角坐标系xOy中,过椭圆M:(a>b>0)右焦点的直线x+y ﹣=0交M于A,B两点,P为AB的中点,且OP的斜率为.(Ⅰ)求M的方程(Ⅱ)C,D为M上的两点,若四边形ACBD的对角线CD⊥AB,求四边形ACBD 面积的最大值.【分析】(Ⅰ)把右焦点(c,0)代入直线可解得c.设A(x1,y1),B(x2,y2),线段AB的中点P(x0,y0),利用“点差法”即可得到a,b的关系式,再与a2=b2+c2联立即可得到a,b,c.(Ⅱ)由CD⊥AB,可设直线CD的方程为y=x+t,与椭圆的方程联立得到根与系数的关系,即可得到弦长|CD|.把直线x+y﹣=0与椭圆的方程联立得到根与=即可得到关于t 系数的关系,即可得到弦长|AB|,利用S四边形ACBD的表达式,利用二次函数的单调性即可得到其最大值.【解答】解:(Ⅰ)把右焦点(c,0)代入直线x+y﹣=0得c+0﹣=0,解得c=.设A(x1,y1),B(x2,y2),线段AB的中点P(x0,y0),则,,相减得,∴,∴,又=,∴,即a2=2b2.联立得,解得,∴M的方程为.(Ⅱ)∵CD⊥AB,∴可设直线CD的方程为y=x+t,联立,消去y得到3x2+4tx+2t2﹣6=0,∵直线CD与椭圆有两个不同的交点,∴△=16t2﹣12(2t2﹣6)=72﹣8t2>0,解﹣3<t<3(*).设C(x3,y3),D(x4,y4),∴,.∴|CD|===.联立得到3x2﹣4x=0,解得x=0或,∴交点为A(0,),B,∴|AB|==.===,∴S四边形ACBD∴当且仅当t=0时,四边形ACBD面积的最大值为,满足(*).∴四边形ACBD面积的最大值为.【点评】本题综合考查了椭圆的定义、标准方程及其性质、“点差法”、中点坐标公式、直线与椭圆相交问题转化为方程联立得到一元二次方程根与系数的关系、弦长公式、四边形的面积计算、二次函数的单调性等基础知识,考查了推理能力、数形结合的思想方法、计算能力、分析问题和解决问题的能力.9.设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A∈C,已知以F为圆心,FA为半径的圆F交l于B,D两点;(1)若∠BFD=90°,△ABD的面积为,求p的值及圆F的方程;(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.【分析】(1)由对称性知:△BFD是等腰直角△,斜边|BD|=2p点A到准线l的=,知距离,由△ABD的面积S△ABD=,由此能求出圆F的方程.(2)由对称性设,则点A,B关于点F对称得:,得:,由此能求出坐标原点到m,n距离的比值.【解答】解:(1)由对称性知:△BFD是等腰直角△,斜边|BD|=2p点A到准线l的距离,=,∵△ABD的面积S△ABD∴=,解得p=2,所以F坐标为(0,1),∴圆F的方程为x2+(y﹣1)2=8.(2)由题设,则,∵A,B,F三点在同一直线m上,又AB为圆F的直径,故A,B关于点F对称.由点A,B关于点F对称得:得:,直线,切点直线坐标原点到m,n距离的比值为.【点评】本题考查抛物线与直线的位置关系的综合应用,具体涉及到抛物线的简单性质、圆的性质、导数的应用,解题时要认真审题,仔细解答,注意合理地进行等价转化.10.已知平面内一动点P到点F(1,0)的距离与点P到y轴的距离的差等于1.(Ⅰ)求动点P的轨迹C的方程;(Ⅱ)过点F作两条斜率存在且互相垂直的直线l1,l2,设l1与轨迹C相交于点A,B,l2与轨迹C相交于点D,E,求的最小值.【分析】(Ⅰ)设动点P的坐标为(x,y),根据两点间距离公式和点到直线的距离公式,列方程,并化解即可求得动点P的轨迹C的方程;(Ⅱ)设出直线l1的方程,理想直线和抛物线的方程,消去y,得到关于x的一元二次方程,利用韦达定理,求出两根之和和两根之积,同理可求出直线l2的方程与抛物线的交点坐标,代入利用基本不等式求最值,即可求得其的最小值.【解答】解:(Ⅰ)设动点P的坐标为(x,y),由题意得,化简得y2=2x+2|x|.当x≥0时,y2=4x;当x<0时,y=0,所以动点P的轨迹C的方程为y2=4x(x≥0)和y=0(x<0).(Ⅱ)由题意知,直线l1的斜率存在且不为零,设为k,则l1的方程为y=k(x﹣1).由,得k2x2﹣(2k2+4)x+k2=0.设A,B的坐标分别为(x1,y1),(x2,y2),则x1+x2=2+,x1x2=1.∵l1⊥l2,∴直线l2的斜率为﹣.设D(x3,y3),E(x4,y4),则同理可得x3+x4=2+4k2,x3x4=1.故====(x1+1)(x2+1)+(x3+1)(x4+1)=x1x2+(x1+x2)+1+x3x4+x3+x4+11+2++1+1+2+4k2+1=8+4(k2+)≥8+4×2=16,当且仅当k2=,即k=±1时,的最小值为16.【点评】此题是个难题.考查代入法求抛物线的方程,以及直线与抛物线的位置关系,同时也考查了学生观察、推理以及创造性地分析问题、解决问题的能力.11.已知抛物线x2=4y的焦点为F,A、B是抛物线上的两动点,且.过A、B两点分别作抛物线的切线,设其交点为M.(Ⅰ)证明为定值;(Ⅱ)设△ABM的面积为S,写出S=f(λ)的表达式,并求S的最小值.【分析】(1)设A(x1,y1),B(x2,y2),M(x o,y o),根据抛物线方程可得焦点坐标和准线方程,设直线方程与抛物线方程联立消去y,根据判别式大于0求得x1+x2和x1x2,根据曲线4y=x2上任意一点斜率为y′=,可得切线AM和BM的方程,联立方程求得交点坐标,求得和,进而可求得•的结果为0,进而判断出AB⊥FM.(2)利用(1)的结论,根据x1+x2的关系式求得k和λ的关系式,进而求得弦长AB,可表示出△ABM面积.最后根据均值不等式求得S的范围,得到最小值.【解答】解:(1)设A(x1,y1),B(x2,y2),M(x o,y o),焦点F(0,1),准线方程为y=﹣1,显然AB斜率存在且过F(0,1)设其直线方程为y=kx+1,联立4y=x2消去y得:x2﹣4kx﹣4=0,判别式△=16(k2+1)>0.x1+x2=4k,x1x2=﹣4于是曲线4y=x2上任意一点斜率为y′=,则易得切线AM,BM方程分别为y=()x1(x﹣x1)+y1,y=()x2(x﹣x2)+y2,其中4y1=x12,4y2=x22,联立方程易解得交点M坐标,x o==2k,y o==﹣1,即M(,﹣1)从而,=(,﹣2),(x2﹣x1,y2﹣y1)•=(x1+x2)(x2﹣x1)﹣2(y2﹣y1)=(x22﹣x12)﹣2[(x22﹣x12)]=0,(定值)命题得证.这就说明AB⊥FM.(Ⅱ)由(Ⅰ)知在△ABM中,FM⊥AB,因而S=|AB||FM|.∵,∴(﹣x1,1﹣y1)=λ(x2,y2﹣1),即,而4y1=x12,4y2=x22,则x22=,x12=4λ,|FM|====.因为|AF|、|BF|分别等于A、B到抛物线准线y=﹣1的距离,所以|AB|=|AF|+|BF|=y1+y2+2=+2=λ++2=()2.于是S=|AB||FM|=()3,由≥2知S≥4,且当λ=1时,S取得最小值4.【点评】本题主要考查了抛物线的应用.抛物线与直线的关系和抛物线的性质等都是近几年高考的热点,故应重点掌握.12.在直角坐标系xoy中,曲线C1上的点均在C2:(x﹣5)2+y2=9外,且对C1上任意一点M,M到直线x=﹣2的距离等于该点与圆C2上点的距离的最小值.(Ⅰ)求曲线C1的方程(Ⅱ)设P(x0,y0)(y0≠±3)为圆C2外一点,过P作圆C2的两条切线,分别于曲线C1相交于点A,B和C,D.证明:当P在直线x=﹣4上运动时,四点A,B,C,D的纵坐标之积为定值.【分析】(Ⅰ)设M的坐标为(x,y),根据对C1上任意一点M,M到直线x=﹣2的距离等于该点与圆C2上点的距离的最小值,可得|x+2|=且圆C2上的点位于直线x=﹣2的右侧,从而可得曲线C1的方程;(Ⅱ)当点P在直线x=﹣4上运动时,P的坐标为(﹣4,y0),设切线方程为kx ﹣y+y0+4k=0,利用直线与圆相切可得,从而可得过P所作的两条切线PA,PC的斜率k1,k2是方程的两个实根,设四点A,B,C,D的纵坐标分别为y1,y2,y3,y4,从而可得;同理可得,由此可得当P在直线x=﹣4上运动时,四点A,B,C,D 的纵坐标之积为定值为6400.【解答】(Ⅰ)解:设M的坐标为(x,y),由已知得|x+2|=且圆C2上的点位于直线x=﹣2的右侧∴=x+5化简得曲线C1的方程为y2=20x(Ⅱ)证明:当点P在直线x=﹣4上运动时,P的坐标为(﹣4,y0),∵y0≠±3,∴过P且与圆C2相切的直线的斜率k存在且不为0,每条切线都与抛物线有两个交点,切线方程为y﹣y0=k(x+4),即kx﹣y+y0+4k=0,∴,整理得①设过P所作的两条切线PA,PC的斜率分别为k1,k2,则k1,k2是方程①的两个实根∴②由,消元可得③设四点A,B,C,D的纵坐标分别为y1,y2,y3,y4,∴y1,y2是方程③的两个实根∴④同理可得⑤由①②④⑤可得==6400∴当P在直线x=﹣4上运动时,四点A,B,C,D的纵坐标之积为定值为6400.【点评】本题考查轨迹方程,考查直线与圆相切,考查韦达定理的运用,解题的关键是切线与抛物线联立,属于中档题.13.在直角坐标系xOy中,已知中心在原点,离心率为的椭圆E的一个焦点为圆C:x2+y2﹣4x+2=0的圆心.(Ⅰ)求椭圆E的方程;(Ⅱ)设P是椭圆E上一点,过P作两条斜率之积为的直线l1,l2.当直线l1,l2都与圆C相切时,求P的坐标.【分析】(Ⅰ)确定x2+y2﹣4x+2=0的圆心C(2,0),设椭圆E的方程为:,其焦距为2c,则c=2,利用离心率为,即可求得椭圆E 的方程;(Ⅱ)设P(x0,y0),l1,l2的斜率分别为k1,k2,则k1k2=,由l1与圆C:x2+y2﹣4x+2=0相切,可得,同理可得,从而k1,k2是方程的两个实根,进而,利用,即可求得点P的坐标.【解答】解:(Ⅰ)由x2+y2﹣4x+2=0得(x﹣2)2+y2=2,∴圆心C(2,0)设椭圆E的方程为:,其焦距为2c,则c=2,∵,∴a=4,∴b2=a2﹣c2=12∴椭圆E的方程为:(Ⅱ)设P(x0,y0),l1,l2的斜率分别为k1,k2,则l1:y﹣y0=k1(x﹣x0)l2:y﹣y0=k2(x﹣x0),且k1k2=由l1与圆C:x2+y2﹣4x+2=0相切得∴同理可得从而k1,k2是方程的两个实根所以①,且∵,∴,∴x0=﹣2或由x0=﹣2得y0=±3;由得满足①故点P的坐标为(﹣2,3)或(﹣2,﹣3),或()或()【点评】本题考查椭圆的标准方程,考查直线与圆相切,解题的关键是确定k1,k2是方程的两个实根,属于中档题.14.已知F1,F2分别是椭圆的左、右焦点F1,F2关于直线x+y﹣2=0的对称点是圆C的一条直径的两个端点.(Ⅰ)求圆C的方程;(Ⅱ)设过点F2的直线l被椭圆E和圆C所截得的弦长分别为a,b.当ab最大时,求直线l的方程.【分析】(I)由题意可知:F1(﹣2,0),F2(2,0),可得⊙C的半径为2,圆心为原点O关于直线x+y﹣2=0的对称点.设圆心的坐标为(m,n).利用线段的垂直平行的性质可得,解出即可得到圆的方程;(II))由题意,可设直线l的方程为x=my+2,利用点到直线的距离公式可得圆心到直线l的距离d=,再利用弦长公式即可得到b=.把直线l的方程为x=my+2与椭圆的方程联立得到根与系数的关系,利用弦长公式即可得到a,进而得到ab,利用基本不等式的性质即可得出结论.【解答】解:(I)由题意可知:F1(﹣2,0),F2(2,0).故⊙C的半径为2,圆心为原点O关于直线x+y﹣2=0的对称点.设圆心的坐标为(m,n).则,解得.∴圆C的方程为(x﹣2)2+(y﹣2)2=4;(II)由题意,可设直线l的方程为x=my+2,则圆心到直线l的距离d=,∴b=.由得(5+m2)y2+4my﹣1=0.设l与E的两个交点分别为(x1,y1),(x2,y2).则,.∴a===,∴ab===.当且仅当,即时等号成立.故当时,ab最大,此时,直线l的方程为,即.【点评】本题综合考查了圆与椭圆的标准方程及其性质、轴对称的性质、圆的弦长公式b=、直线与椭圆相交的弦长公式a=、基本不等式的性质等基础知识与方法,需要较强的推理能力、计算能力、分析问题和解决问题的能力..15.如图,椭圆C1:=1(a>b>0)的离心率为,x轴被曲线C2:y=x2﹣b截得的线段长等于C1的长半轴长.(Ⅰ)求C1,C2的方程;(Ⅱ)设C2与y轴的交点为M,过坐标原点O的直线l与C2相交于点A、B,直线MA,MB分别与C1相交于D,E.(i)证明:MD⊥ME;(ii)记△MAB,△MDE的面积分别是S1,S2.问:是否存在直线l,使得=?请说明理由.【分析】(Ⅰ)先利用离心率得到一个关于参数的方程,再利用x轴被曲线C2:y=x2﹣b截得的线段长等于C1的长半轴长得另一个方程,两个方程联立即可求出参数进而求出C1,C2的方程;(Ⅱ)(i)把直线l的方程与抛物线方程联立可得关于点A、B坐标的等量关系,再代入求出k MA•k MB=﹣1,即可证明:MD⊥ME;(ii)先把直线MA的方程与抛物线方程联立可得点A的坐标,再利用弦长公式求出|MA|,同样的方法求出|MB|进而求出S1,同理可求S2.再代入已知就可知道是否存在直线l满足题中条件了.【解答】解:(Ⅰ)由题得e=,从而a=2b,又2=a,解得a=2,b=1,故C1,C2的方程分别为,y=x2﹣1.(Ⅱ)(i)由题得,直线l的斜率存在,设为k,则直线l的方程为y=kx,由得x2﹣kx﹣1=0.设A(x1,y1),B(x2,y2),则x1,x2是上述方程的两个实根,于是x1+x2=k,x1x2=﹣1,又点M的坐标为(0,﹣1),所以k MA•k MB=====﹣1.故MA⊥MB,即MD⊥ME.(ii)设直线MA的斜率为k1,则直线MA的方程为y=k1x﹣1.由,解得或.则点A的坐标为(k1,k12﹣1).又直线MB的斜率为﹣,同理可得点B的坐标为(﹣,﹣1).于是s1=|MA|•|MB|=•|k1|••|﹣|=.由得(1+4k12)x2﹣8k1x=0.解得或,,则点D的坐标为(,).又直线ME的斜率为﹣.同理可得点E的坐标为(,).于是s2=|MD|•|ME|=.故=,解得k12=4或k12=.又由点A,B的坐标得,k==k1﹣.所以k=±.故满足条件的直线存在,且有两条,其方程为y=x和y=﹣x.【点评】本题是对椭圆与抛物线以及直线与抛物线和直线与椭圆的综合问题的考查.是一道整理过程很麻烦的题,需要要认真,细致的态度才能把题目作好.16.如图,过抛物线x2=4y的对称轴上任一点P(0,m)(m>0)作直线与抛物线交于A,B两点,点Q是点P关于原点的对称点.(I)设点P分有向线段所成的比为λ,证明:(Ⅱ)设直线AB的方程是x﹣2y+12=0,过A,B两点的圆C与抛物线在点A处有共同的切线,求圆C的方程.【分析】(Ⅰ)依题意,可设直线AB的方程为y=kx+m,代入抛物线方程x2=4y 得x2﹣4kx﹣4m=0.设A、B两点的坐标分别是(x1,y1)、(x2,y2),x1x2=﹣4m.由点P(0,m)分有向线段所成的比为λ,得.由此可以推出.(Ⅱ)由得点A、B的坐标分别是(6,9)、(﹣4,4).设圆C的方程是(x﹣a)2+(y﹣b)2=r2,则解得.所以圆C的方程是x2+y2+3x﹣23y+72=0.【解答】解:(Ⅰ)依题意,可设直线AB的方程为y=kx+m,代入抛物线方程x2=4y 得x2﹣4kx﹣4m=0.①设A、B两点的坐标分别是(x1,y1)、(x2,y2),则x1、x2是方程①的两根.所以x1x2=﹣4m.由点P(0,m)分有向线段所成的比为λ,得.又点Q是点P关于原点的对称点,故点Q的坐标是(0,﹣m),从而..==.所以.(Ⅱ)由得点A、B的坐标分别是(6,9)、(﹣4,4).由x2=y得,所以抛物线x2=4y在点A处切线的斜率为y'|x=6=3设圆C的方程是(x﹣a)2+(y﹣b)2=r2,则解之得.所以圆C的方程是,即x2+y2+3x﹣23y+72=0.【点评】本题考查直线和圆锥曲线的位置关系,解题时要认真审题,仔细求解.。

高中数学圆锥曲线练习题及参考答案2023

高中数学圆锥曲线练习题及参考答案2023

高中数学圆锥曲线练习题及参考答案2023一、选择题1. 下列不是圆锥曲线的是:A. 椭圆B. 抛物线C. 双曲线D. 直线2. 椭圆的离心率范围是:A. 0 < e < 1B. e = 1C. e > 1D. e = 03. 若双曲线的离心率为1.5,焦点到准线的距离为6,则双曲线的方程为:A. $\frac{x^2}{4} - \frac{y^2}{16} = 1$B. $\frac{x^2}{25} - \frac{y^2}{9} = 1$C. $\frac{x^2}{9} - \frac{y^2}{25} = 1$D. $\frac{x^2}{16} - \frac{y^2}{4} = 1$4. 抛物线的焦点位于:A. 抛物线的顶点处B. 抛物线的准线上C. 抛物线的对称轴上D. 抛物线的焦点处5. 设双曲线的离心率为2,焦点到准线的距离为10,则双曲线的方程为:A. $\frac{x^2}{36} - \frac{y^2}{64} = 1$B. $\frac{x^2}{64} - \frac{y^2}{36} = 1$C. $\frac{x^2}{16} - \frac{y^2}{9} = 1$D. $\frac{x^2}{9} - \frac{y^2}{16} = 1$二、填空题1. 椭圆的离心率等于:答案:$\sqrt{1 - \frac{b^2}{a^2}}$2. 双曲线的焦点间距离等于:答案:$2ae$3. 抛物线的焦距等于:答案:$p = \frac{1}{4a}$4. 椭圆的离心率范围是:答案:$0 < e < 1$5. 双曲线的准线称为:答案:对称轴三、计算题1. 求椭圆 $\frac{x^2}{16} + \frac{y^2}{9} = 1$ 的焦点坐标。

解答:椭圆的方程为 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$,其中 $a = 4$,$b = 3$。

圆锥曲线导数练习题

圆锥曲线导数练习题

圆锥曲线导数练习题圆锥曲线是数学中的一个重要概念,它可以描述各种曲线的形状和性质。

在微积分学中,导数是一个关键的概念,它可以告诉我们曲线在某一点的切线斜率。

本文将通过一些圆锥曲线导数练习题来帮助读者更好地理解和应用这些概念。

一. 圆的导数练习题问题1:求圆的导数。

解答:对于一个圆,我们可以通过参数方程来描述它的运动。

设圆的半径为r,圆心坐标为(x, y),参数t表示圆在单位圆上的位置。

那么圆的参数方程可以表示为:x = r*cos(t)y = r*sin(t)对上述参数方程分别求导,我们得到:dx/dt = -r*sin(t)dy/dt = r*cos(t)所以,圆的导数可以表示为:dy/dx = (dy/dt)/(dx/dt) = (r*cos(t))/(-r*sin(t)) = -cot(t)问题2:已知一个圆的半径为4,求它在(3, 4)点的导数。

解答:根据问题1的结论,我们可得知圆的导数为-y/x = -4/3。

因此,在点(3, 4)处,该圆的切线斜率为-4/3。

二. 椭圆的导数练习题问题1:求椭圆的导数。

解答:椭圆可以通过参数方程来描述其形状。

设椭圆的长轴为a,短轴为b,圆心坐标为(h, k),参数t表示椭圆在单位圆上的位置。

那么椭圆的参数方程可以表示为:x = h + a*cos(t)y = k + b*sin(t)对上述参数方程分别求导,我们得到:dx/dt = -a*sin(t)dy/dt = b*cos(t)所以,椭圆的导数可以表示为:dy/dx = (dy/dt)/(dx/dt) = (b*cos(t))/(-a*sin(t)) = -b/a * cot(t)问题2:已知一个椭圆的长轴为6,短轴为4,圆心为(2, 3),求它在点(4, 3)处的导数。

解答:根据问题1的结论,我们可得知椭圆的导数为-b/a * cot(t)。

在点(4, 3)处,计算该椭圆的切线斜率可以通过计算导数在该点对应的参数t的值来求解。

高二下册数学圆锥曲线单元测试题有答案

高二下册数学圆锥曲线单元测试题有答案

高二下册数学圆锥曲线单元测试题有答案导读:本文高二下册数学圆锥曲线单元测试题有答案,仅供参考,如果觉得很不错,欢迎点评和分享。

一、选择题1 若抛物线上一点到准线的距离等于它到顶点的距离,则点的坐标为( )A B C D2 椭圆上一点与椭圆的两个焦点、的连线互相垂直,则△的面积为( )A B C D3 若点的坐标为,是抛物线的焦点,点在抛物线上移动时,使取得最小值的的坐标为( )A B C D4 与椭圆共焦点且过点的双曲线方程是( )A B C D5 若直线与双曲线的右支交于不同的两点,那么的取值范围是( )A ( )B ( )C ( )D ( )6 抛物线上两点、关于直线对称,且,则等于( )A B C D二、填空题1 椭圆的焦点、,点为其上的动点,当∠为钝角时,点横坐标的取值2 双曲线的一条渐近线与直线垂直,则这双曲线的离心率为___3 若直线与抛物线交于、两点,若线段的中点的横坐标是,则______4 若直线与双曲线始终有公共点,则取值范围是5 已知,抛物线上的点到直线的最段距离为__________三、解答题1 当变化时,曲线怎样变化?2 设是双曲线的两个焦点,点在双曲线上,且,求△的面积3 已知椭圆,、是椭圆上的两点,线段的垂直平分线与轴相交于点证明:4 已知椭圆,试确定的值,使得在此椭圆上存在不同两点关于直线对称(数学选修1-1)第二章圆锥曲线参考答案[提高训练C组]一、选择题1 B 点到准线的距离即点到焦点的距离,得,过点所作的高也是中线,代入到得,2 D ,相减得3 D 可以看做是点到准线的距离,当点运动到和点一样高时,取得最小值,即,代入得4 A 且焦点在轴上,可设双曲线方程为过点5 D 有两个不同的正根则得6 A ,且在直线上,即二、填空题1 可以证明且而,则即2 渐近线为,其中一条与与直线垂直,得3得,当时,有两个相等的实数根,不合题意当时,4当时,显然符合条件;当时,则5 直线为,设抛物线上的点三、解答题1 解:当时,,曲线为一个单位圆;当时,,曲线为焦点在轴上的椭圆;当时,,曲线为两条平行的垂直于轴的直线;当时,,曲线为焦点在轴上的双曲线;当时,,曲线为焦点在轴上的等轴双曲线2 解:双曲线的不妨设,则,而得3 证明:设,则中点,得得即,的垂直平分线的斜率的垂直平分线方程为当时,而,4 解:设,的中点,而相减得即,而在椭圆内部,则即。

(完整版)圆锥曲线知识点+例题+练习含答案(整理).docx

(完整版)圆锥曲线知识点+例题+练习含答案(整理).docx

(完整版)圆锥曲线知识点+例题+练习含答案(整理).docx圆锥曲线⼀、椭圆:( 1)椭圆的定义:平⾯内与两个定点F1 , F2的距离的和等于常数(⼤于| F1 F2 |)的点的轨迹。

其中:两个定点叫做椭圆的焦点,焦点间的距离叫做焦距。

注意: 2a | F1F2 | 表⽰椭圆;2a | F1F2|表⽰线段F1F2; 2a| F1F 2 |没有轨迹;(2)椭圆的标准⽅程、图象及⼏何性质:中⼼在原点,焦点在x 轴上中⼼在原点,焦点在y 轴上标准⽅程图形x2y2y2x2a2b 21( a b 0)a 2b21(ab 0)yB 2yB 2P F2 PA 1 A 2x A 1xA 2OF1O F21B 1FB 1顶点对称轴焦点焦距离⼼率通径2b2aA1 (a,0), A2 (a,0)A1( b,0), A2 (b,0)B1 (0, b), B2(0, b)B1( 0,a), B2 (0, a) x 轴,y轴;短轴为2b,长轴为2aF1 (c,0), F2(c,0)F1 ( 0,c), F2 (0,c)| F1 F2 | 2c(c 0)c2 a 2 b 2(0 e 1) (离⼼率越⼤,椭圆越扁)a(过焦点且垂直于对称轴的直线夹在椭圆内的线段)3.常⽤结论:(1)椭圆x2y21(a b 0) 的两个焦点为F1, F2,过F1的直线交椭圆于A, B两a2 b 2点,则ABF 2的周长=(2)设椭圆x2y2221( a b 0)左、右两个焦点为 F1, F2,过 F1且垂直于对称轴的直线a b交椭圆于 P, Q 两点,则 P, Q 的坐标分别是| PQ |⼆、双曲线:( 1)双曲线的定义:平⾯内与两个定点F1 , F2的距离的差的绝对值等于常数(⼩于| F1F2 | )的点的轨迹。

其中:两个定点叫做双曲线的焦点,焦点间的距离叫做焦距。

注意: | PF1 || PF2 | 2a 与 | PF2 | | PF1 |2a ( 2a| F1F2 | )表⽰双曲线的⼀⽀。

(完整版)圆锥曲线练习题含标准答案(最新整理)

(完整版)圆锥曲线练习题含标准答案(最新整理)

当 0 m 1 时,
y2 1
x2 1
1, e2
a2 b2 a2
1m
3,m 4
1 ,a2 4
1 m
4, a
2
m
20. x2 y2 1 20 5
设双曲线的方程为 x2 4 y2 , ( 0) ,焦距 2c 10, c2 25
5 /9

0 时,
x2
y2
1,
4
25,
20 ;
4

0
时,
y2
x2
1,
(
)
4
25,
20
4
21. (, 4) (1, ) (4 k)(1 k) 0, (k 4)(k 1) 0, k 1,或k 4
22. x 3 2 p 6, p 3, x p 3
2
22
23.1
焦点在 y 轴上,则 y2 x2 1, c2 5 1 4, k 1
28. ( 7, 0) 渐近线方程为 y m x ,得 m 3, c 7 ,且焦点在 x 轴上 2
29. b2 a2
设A( x1 ,y1), NhomakorabeaB(x2 ,
y2
)
,则中点
M
(
x1
2
x2
,
x
, 2
x2
8x
4
0,
x1
x2
8,
y1
y2
x1
x2
4
4
中点坐标为 ( x1 x2 , y1 y2 ) (4, 2)
2
2
27. , 2
t2 设 Q(
,t) ,由
PQ
a
t2 得(

高三数学圆锥曲线试题答案及解析

高三数学圆锥曲线试题答案及解析

高三数学圆锥曲线试题答案及解析1.设、是定点,且均不在平面上,动点在平面上,且,则点的轨迹为()A.圆或椭圆B.抛物线或双曲线C.椭圆或双曲线D.以上均有可能【答案】D【解析】以为高线,为顶点作顶角为的圆锥面,则点就在这个圆锥面上,用平面截这个圆锥面所得截线就是点的轨迹,它可能是圆、椭圆、抛物线、双曲线,因此选D.【考点】圆锥曲线的性质.2.已知点是双曲线右支上一点,是双曲线的左焦点,且双曲线的一条渐近线恰是线段的中垂线,则该双曲线的离心率是( )A.B.C.D.【答案】D【解析】设直线:求直线与渐近线的交点,解得:是的中点,利用中点坐标公式,得,在双曲线上,所以代入双曲线方程得:,整理得,解得.故选D.【考点】1.双曲线的几何性质;2.双曲线的方程.3.已知椭圆的焦点重合,则该椭圆的离心率是.【答案】【解析】抛物线的焦点为,椭圆的方程为:,所以离心率.【考点】1、椭圆与抛物线的焦点;2、圆的离心率.4.已知双曲线的左、右焦点分别为,以为直径的圆与双曲线渐近线的一个交点为,则此双曲线的方程为()A.B.C.D.【答案】C【解析】由条件得:,即,而,渐近线为,在上,所以,得,所以双曲线方程为.【考点】1.双曲线方程的求法;2.双曲线的渐近线.5.已知动点到定点和的距离之和为.(Ⅰ)求动点轨迹的方程;(Ⅱ)设,过点作直线,交椭圆异于的两点,直线的斜率分别为,证明:为定值.【答案】(Ⅰ);(Ⅱ)证明过程详见解析.【解析】本题考查椭圆的基本量间的关系及韦达定理的应用.第一问是考查椭圆的基本量间的关系,比较简单;第二问是直线与椭圆相交于两点,先设出两点坐标,本题的突破口是在消参后的方程中找出两根之和、两根之积,整理斜率的表达式,但是在本问中需考虑直线的斜率是否存在,此题中蕴含了分类讨论的思想的应用.试题解析:(Ⅰ)由椭圆定义,可知点的轨迹是以为焦点,以为长轴长的椭圆.由,得.故曲线的方程为. 5分(Ⅱ)当直线的斜率存在时,设其方程为,由,得. 7分设,,,.从而.11分当直线的斜率不存在时,得,得.综上,恒有. 12分【考点】1.三角形面积公式;2.余弦定理;3.韦达定理;4.椭圆的定义.6.已知双曲线的左、右焦点分别为,以为直径的圆与双曲线渐近线的一个交点为,则此双曲线的方程为()A.B.C.D.【答案】C【解析】由条件得:,即,而,渐近线为,在上,所以,得,所以双曲线方程为.【考点】1.双曲线方程的求法;2.双曲线的渐近线.7.已知椭圆的中心在坐标原点,右准线为,离心率为.若直线与椭圆交于不同的两点、,以线段为直径作圆.(1)求椭圆的标准方程;(2)若圆与轴相切,求圆被直线截得的线段长.【答案】(1);(2).【解析】(1)先根据题中的条件确定、的值,然后利用求出的值,从而确定椭圆的方程;(2)先确定点的坐标,求出圆的方程,然后利用点(圆心)到直线的距离求出弦心距,最后利用勾股定理求出直线截圆所得的弦长.试题解析:(1)设椭圆的方程为,由题意知,,解得,则,,故椭圆的标准方程为 5分(2)由题意可知,点为线段的中点,且位于轴正半轴,又圆与轴相切,故点的坐标为,不妨设点位于第一象限,因为,所以, 7分代入椭圆的方程,可得,因为,解得, 10分所以圆的圆心为,半径为,其方程为 12分因为圆心到直线的距离 14分故圆被直线截得的线段长为 16分【考点】椭圆的方程、点到直线的距离、勾股定理8.已知为抛物线的焦点,抛物线上点满足(Ⅰ)求抛物线的方程;(Ⅱ)点的坐标为(,),过点F作斜率为的直线与抛物线交于、两点,、两点的横坐标均不为,连结、并延长交抛物线于、两点,设直线的斜率为,问是否为定值,若是求出该定值,若不是说明理由.【答案】(Ⅰ),(Ⅱ).【解析】(Ⅰ)利用抛物线的定义得到,再得到方程;(Ⅱ)利用点的坐标表示直线的斜率,设直线的方程,通过联立方程,利用韦达定理计算的值.试题解析:(Ⅰ)由题根据抛物线定义,所以,所以为所求. 2分(Ⅱ)设则,同理 4分设AC所在直线方程为,联立得所以, 6分同理 (8分)所以 9分设AB所在直线方程为联立得, 10分所以所以 12分【考点】抛物线标准方程,直线与抛物线位置关系的应用.9.极坐标系中椭圆C的方程为以极点为原点,极轴为轴非负半轴,建立平面直角坐标系,且两坐标系取相同的单位长度. (Ⅰ)求该椭圆的直角标方程;若椭圆上任一点坐标为,求的取值范围;(Ⅱ)若椭圆的两条弦交于点,且直线与的倾斜角互补,求证:.【答案】(Ⅰ)(Ⅱ)详见解析【解析】将椭圆的极坐标方程转化为一般标准方程,再利用换元法求范围,利用参数方程代入,计算得到结果.试题解析:(Ⅰ)该椭圆的直角标方程为, 2分设,所以的取值范围是 4分(Ⅱ)设直线的倾斜角为,直线的倾斜角为,则直线的参数方程为(为参数),(5分)代入得:即 7分同理 9分所以(10分)【考点】极坐标、参数方程,换元法应用.10.已知直线,,过的直线与分别交于,若是线段的中点,则等于()A.12B.C.D.【答案】B【解析】设、,所以、.所以.故选B.【考点】两点之间的距离点评:主要是考查了两点之间的距离的运用,属于基础题。

圆锥曲线 导数及其应用测试题---含答案

圆锥曲线 导数及其应用测试题---含答案

导数及其应用、圆锥曲线测试题一、选择题1、双曲线1322=-y x 的离心率为 ( ) A .552 B .23 C .332 D .22、已知23)(23++=x ax x f 且4)1('=-f ,则实数a 的值等于 ( )A .193 B .163 C .133 D .1033、抛物线281x y -=的准线方程是( ).A. 321=xB. 2=yC. 321=y D. 2-=y4、函数x x x f +=3)(的单调递增区间是 ( )A .),0(∞+B .)1,(-∞C .),(∞+-∞D . ),1(∞+5、已知曲线24x y =的一条切线的斜率为12,则切点的横坐标为 ( )A .1B .2C .3D .46、双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为y =5e5x (e 为双曲线离心率),则有( )A . a =2bB .a =5bC . b =2aD .b =5a 7、函数)22(9323<<---=x x x x y 有( )A . 极大值5,极小值27-B . 极大值5,极小值11-C . 极大值5,无极小值D . 极小值27-,无极大值 8、设()f x '是函数()f x 的导函数,将()y f x =和()y f x '=的图象画在同一个直角坐标系中,不可能正确的是( )9、已知动点M 的坐标满足方程|12-4y 3x |522+=+y x ,则动点M 的轨迹是( )A . 椭圆B .抛物线C . 双曲线D . 以上都不对 10、函数5123223+--=x x x y 在[0,3]上的最大值与最小值分别是( )A .5 , —15B .18 , —15C .5 , —4D .5 , —16 11、已知二次函数2()f x ax bx c =++的导数为'()f x ,'(0)0f >,对于任意实数x都有()0f x ≥,则(1)'(0)f f 的最小值为( ) A .3 B .52 C .2 D .3212、已知12F F 、是双曲线22221(0,0)x y a b a b-=>>的两焦点,以线段12F F 、为边作正三角形12MF F ,若1MF 的中点在双曲线上,则双曲线的离心率是( ) A.324+ B. 13- C.213+ D. 13+二、填空题 13、=-+ii11 14、已知函数53123-++=ax x x y 若函数在R 总是单调函数,则a 的取值范围是 15、直线1-=kx y 与双曲线19422=-y x 有且只有一个交点,则k 为 16、已知函数)(x f 是定义在R 上的奇函数,0)1(=f ,0)()(2>-'xx f x f x )(0>x ,则不等式0)(2>x f x 的解集是 . 三、解答题17、已知顶点在x 轴上的双曲线满足两顶点间距离为8,离心率为45,求该双曲线的标准方程。

高二圆锥曲线与导数部分(含答案)

高二圆锥曲线与导数部分(含答案)

1.已知椭圆2222:1(0)x y C a b a b +=>>的左、右顶点分别为12,A A ,且以线段12A A 为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为( )A.B. C. D. 132.已知椭圆C : 22221x y a b +=(a>b>0F 且斜率为k (k>0)的直线于C 相交于A 、B 两点,若3AF FB =。

则k =(A )1 (B C D )23.设椭圆C :22221(0)x y a b a b+=>>的左、右焦点分别为1F 、2F ,P 是C 上的点,2PF ⊥1F 2F ,∠12PF F =30,则C 的离心率为( )(A (B )13 (C )12 (D 4.已知双曲线()2222:10,0x y C a b a b-=>>的左顶点为M ,右焦点为F ,过左顶点且斜率为1的直线l与双曲线C 的右支交于点N ,若MNF ∆的面积为232b ,则双曲线C 的离心率为( ) A. 3 B. 2 C.53 D. 435.已知椭圆2213216x y +=内有一点()2,2B , 12,F F 是其左、右焦点, M 为椭圆上的动点,则1MF MB +的最小值为( )A. B. C. 4 D. 66.已知12,F F 分别是椭圆22221(0)x y a b a b +=>>的左、右焦点, P 为椭圆上一点,且()110PF OF OP ⋅+=(O 为坐标原点),若122PF PF =,则椭圆的离心率为( )A. 63-B.2C. 5D.652-7.已知椭圆2222:1(0)x y C a b a b+=>>的左顶点和上顶点分别为,A B ,左、右焦点分别是12,F F ,在线段AB 上有且只有一个点P 满足12PF PF ⊥,则椭圆的离心率的平方为( )A.B. C. D.8.已知椭圆2222:1(0)x y E a b a b+=>>的左焦点为1,F y 轴上的点P 在椭圆外,且线段1PF 与椭圆E 交于点M ,若1OM MF ==,则E 椭圆的离心率为( )A.12 B. C. 1 D.9.若AB 是过椭圆2211625x y +=中心的弦, 1F 为椭圆的焦点,则1F AB ∆面积的最大值是( ) A. 6 B. 12 C. 24 D. 4810.点P 是双曲线22221(0,0)x y a b a b-=>>上的点, 12,F F 是其焦点,双曲线的离心率是54,且12•0PF PF =,若12F PF ∆的面积是18,则a b +的值等于( )A. 7B. 9C.D. 11.设椭圆C 的两个焦点是1F 、2F ,过1F 的直线与椭圆C 交于P 、Q ,若212P F F F =,且1156PF F Q =,则椭圆的离心率为( )A.B. 713C.D. 91112.已知椭圆 :( )的右焦点为 ,短轴的一个端点为 ,直线 : 交椭圆 于 , 两点,若 ,点 到直线 的距离等于,则椭圆 的焦距长为() A. B. C. D.13.已知双曲线22221x y a b-= (0a > , 0b > )与抛物线28y x = 有相同的焦点F ,过点F 且垂直于x 轴的直线l 与抛物线交于A 、B 两点,与双曲线交于C 、D 两点,当2AB CD = 时,双曲线的离心率为( )A.B. C. D. 214.已知双曲线E : 22221x y a b-= (0,0)a b >>的右顶点为A ,右焦点为F , B 为双曲线在第二象限上的一点, B 关于坐标原点O 的对称点为C ,直线CA 与直线BF 的交点M 恰好为线段BF 的中点,则双曲线的离心率为( ) A.12 B. 15C. 2D. 3 15.已知定义域为R 的奇函数()y f x =的导函数为()'y f x =,当0x ≠时, ()()'0f x f x x+>,若1122a f ⎛⎫=⎪⎝⎭, ()22b f =--, 11ln ln 22c f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,则a , b , c 的大小关系正确的是( ) A. a c b << B. b c a << C. a b c << D. c a b <<16.已知函数()f x 是定义在R 上的奇函数,且在区间()0,+∞上有()()3'0f x xf x +>恒成立,若()()3g x x f x =,令21log a g e ⎡⎤⎛⎫= ⎪⎢⎥⎝⎭⎣⎦, ()5log 2b g =, 12c g e -⎛⎫= ⎪⎝⎭,则( )A. a b c <<B. b a c <<C. b c a <<D. c b a <<17.设函数()f x '是奇函数()()f x x R ∈的导函数, ()20f -=,当0x >时, ()()0xf x f x -<',则使得()0f x >成立的x 的取值范围是( ) A. ()(),20,2-∞-⋃ B. ()()2,02,-⋃+∞ C. ()(),22,0-∞-⋃- D. ()()0,22,⋃+∞18.已知定义在R 上的可导函数()f x 的导函数为()'f x ,对任意实数x 均有()()()1'0x f x xf x -+>成立,且()1y f x e =+-是奇函数,则不等式()0xxf x e ->的解集是( )A. (),e -∞B. (),e +∞C. (),1-∞D. ()1,+∞19.已知函数()f x 是定义在R 上的奇函数,f (2)=0,当0x >时,有()()20xf x f x x->' 成立,则不等式x 2()0f x >的解集是 ( )A. ()()2,02,-⋃+∞B. ()()2,00,2-⋃C. ()2,+∞D. ()(),22,-∞-⋃+∞20.设函数()f x 是定义在()0+∞,上的可导函数,其导函数为()f x ',且有()()22f x xf x x '+>,则不等式()()()220162016420x f x f --->的解集为( ) A. ()2014+∞, B. ()0,2014 C. ()0,2018 D. ()2018+∞,参考答案1.A【解析】以线段12A A 为直径的圆的圆心为坐标原点()0,0,半径为r a =,圆的方程为222x y a +=,直线20bx ay ab -+=与圆相切,所以圆心到直线的距离等于半径,即d a ==,整理可得223a b =,即()2223,a a c =-即2223a c =,从而22223c e a ==,则椭圆的离心率c e a ===故选A.【名师点睛】解决椭圆和双曲线的离心率的求值及取值范围问题,其关键就是确立一个关于,,a b c 的方程或不等式,再根据,,a b c 的关系消掉b 得到,a c 的关系式,而建立关于,,a b c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.2.B 【解析】视频 3.D【解析】由题意,设2||PF x =,则1||2PF x =,12||F F =,所以由椭圆的定义知:23a x =,又因为 2c ,故选D. 【考点定位】本小题主要考查椭圆的定义、几何性质、数形结合与化归的数学思想,属中低档题,熟练椭圆的基础知识是解答好本类题目的关键. 4.B【解析】由22221{ x y a b y x a-==+,得32222222,a ab abN b a b a ⎛⎫+ ⎪--⎝⎭,则MNF ∆的面积为()()222222212322a c ab ab ac b b a b a ++⋅==--, ()()222232,a ac c a ∴+=- ()()22132,e e ∴+=- 23280,2e e e ∴--=∴=,故选B.【 方法点睛】本题主要考查双曲线的定义及离心率,属于难题.离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,a c ,从而求出e ;②构造,a c 的齐次式,求出e ;③采用离心率的定义以及圆锥曲线的定义来求解;④根据圆锥曲线的统一定义求解.本题中,根据MNF ∆的面积为232b ,建立关于焦半径和焦距的关系.从而找出,ac 之间的关系,求出离心率e .5.A【解析】因为()122+2282MF MB a MF MB a BF =--≥-=故162MF MB +≥以当且仅当2,,M F B 共线时取得最小值62,故选A. 6.A【解析】以1,OF OP 为邻边作平行四边形,根据向量加法的平行四边形法则,由()110PF OF OP ⋅+=知此平行四边形的对角线垂直,即此平行四边形为菱形,∴1OP OF =,∴12FPF ∆是直角三角形,即12PF PF ⊥,设2PF x =,则,∴36321c e a ===-+,故选A . 7.B【解析】作图如下:()()()1000A a B b F c --,,,,,, ()20F c ,∴直线AB 的方程为:椭圆22221x y a b+=整理得: 0bx ay ab -+=设直线AB 上的点()P x y , 则bx ay ab =-ax y a b∴=- 12PF PF ⊥, ()()12222222PF PF a c x y c x y x y c y c b ⎛⎫∴→⋅→=---⋅--=+-=+- ⎪⎝⎭,,令()222a f y y c b ⎛⎫=+- ⎪⎝⎭则()22a af y y a y b b⎛⎫=-⨯+⎪⎝⎭'∴由()0f y '=得22a by a b =+, 222ab x a b∴=-+ 122222222,0PF ab a b c a b a b ⎛⎫⎛⎫∴→=-+-= ⎪ ⎪++⎝⎭⎝⎭整理得: 2222ab c a b =+,又222b ac =-, 222c e a = 42310e e ∴-+=2e ∴=()01e ∈,232e -∴=故选B 8.C【解析】因为1OM MF ==,所以130F PO ∠= 1260MF F ∠=,连接2MF ,则可得三角形12MF F 为直角三角形,在12Rt MF F ∆中,12,MF c MF ==,则2c a =,则离心率1c e a ===,故选C. 【 方法点睛】本题主要考查椭圆的定义及离心率,属于难题. 离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,a c ,从而求出e ;②构造,a c 的齐次式,求出e ;③采用离心率的定义以及圆锥曲线的定义来求解;④根据圆锥曲线的统一定义求解.本题中,根据特殊直角三角形可以建立关于焦半径和焦距的关系.从而找出,a c 之间的关系,求出离心率e . 9.B【解析】因为1F AB ∆可以看做1OF A ∆与1OF B ∆的面积之和,所以112F AB A B s c x x ∆=⋅-,故当直线AB 垂直y 轴时, max ||28A B x x b -==,所以1138122F AB s ∆≥⨯⨯=,故选B. 10.C【解析】不妨设点P 是双曲线22221(0,0)x y a b a b -=>>右支上的点, 12,PF m PF n ==,则22211822{454mn m n a m n cc a =-=+==,解得a c b ==∴==,则a b +的值等于故选C. 11.D【解析】因为2122c PF F F == 则122PF a c =-,又因为1156PF F Q = 则()153F Q a c =- 21533F Q a c =+ ()()2221222441cos 42222a c c c a c ePF F c a c c e∠-+---===- ()()22221222251523493355cos 203a c c a c e e QF F e e ac c ∠⎛⎫-+-+-+⎪⎝⎭==-- 1212cos cos 0PF F QF F ∠∠+= 即22231552e e e e e e -+-=- 解得911e =故选D点睛:运用椭圆的定义结合题目条件可以求得各线段的表达式,在12ΔPF F 和12ΔQF F 中利用余弦定理,建立a c 、的数量关系,求解关于e 的方程即可,计算量较大。

圆锥曲线大题综合测试(含详细答案)

圆锥曲线大题综合测试(含详细答案)

.xy1A 2ATG PMON 圆锥曲线1.设椭圆222:12x y M a +=()2a >的右焦点为1F ,直线2:22-=a a x l 与x 轴交于点A ,若112OF F A =(其中O为坐标原点).(1)求椭圆M 的方程;(2)设P 是椭圆M 上的任意一点,EF 为圆()12:22=-+y x N 的任意一条直径(E 、F 为直径的两个端点),求PF PE ⋅的最大值.2 . 已知椭圆E :()222210x y a b a b +=>>的一个焦点为()13,0F -,而且过点13,2H ⎛⎫ ⎪⎝⎭.(Ⅰ)求椭圆E 的方程;(Ⅱ)设椭圆E 的上下顶点分别为12,A A ,P 是椭圆上异于12,A A 的任一点,直线12,PA PA 分别交x 轴于点,N M ,若直线OT 与过点,M N 的圆G 相切,切点为T .证明:线段OT 的长为定值,并求出该定值.3、已知圆O:222=+y x 交x 轴于A,B 两点,曲线C 是以AB 为长轴,离心率为22的椭圆,其左焦点为F,若P 是圆O上一点,连结PF,过原点O 作直线PF 的垂线交直线x=-2于点Q.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)若点P 的坐标为(1,1),求证:直线PQ 与圆O 相切; (Ⅲ)试探究:当点P 在圆O 上运动时(不与A 、B 重合),直线PQ 与圆O 是否保持相切的位置关系?若是,请证明;若不是,请说明理由.4设)0(1),(),,(22222211>>=+b a b x x y y x B y x A 是椭圆上的两点,满足0),(),(2211=⋅a y b x a y b x ,椭圆的离心率,23=e 短轴长为2,0为坐标原点.(1)求椭圆的方程; (2)若直线AB 过椭圆的焦点F (0,c ),(c 为半焦距),求直线AB 的斜率k 的值;(3)试问:△AOB 的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.xy O PF QA B5 、直线l:y = mx + 1,双曲线C:3x2- y2 = 1,问是否存在m的值,使l与C相交于A , B两点,且以AB为直径的圆过原点6 已知双曲线C:22221(0,0)x ya ba b-=>>的两个焦点为F1(-2,0),F2(2,0),点P(3,7)在曲线C上。

圆锥曲线测试题及答案

圆锥曲线测试题及答案

圆锥曲线测试题及答案1. 已知椭圆的方程为 \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\),其中 \(a > b > 0\),若椭圆的一个焦点在x轴上,且到椭圆中心的距离为 \(c\),则下列哪个选项是正确的?A. \(a^2 = b^2 + c^2\)B. \(a^2 = b^2 - c^2\)C. \(b^2 = a^2 - c^2\)D. \(c^2 = a^2 - b^2\)答案:D2. 双曲线的方程为 \(\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\),其中 \(a > 0\) 且 \(b > 0\),若双曲线的一条渐近线方程为 \(y = \frac{b}{a}x\),则下列哪个选项是错误的?A. 双曲线的焦点在x轴上B. 双曲线的离心率 \(e = \sqrt{1 + \frac{b^2}{a^2}}\)C. 双曲线的渐近线方程为 \(y = \pm \frac{b}{a}x\)D. 双曲线的离心率 \(e = \sqrt{1 - \frac{b^2}{a^2}}\)答案:D3. 抛物线 \(y^2 = 4ax\) 的焦点坐标为 \((a, 0)\),若抛物线上一点 \(P(x_0, y_0)\) 到焦点的距离等于它到准线的距离,则下列哪个选项是正确的?A. \(x_0 = a\)B. \(x_0 = -a\)C. \(x_0 = 2a\)D. \(x_0 = 0\)答案:C4. 已知圆的方程为 \((x - h)^2 + (y - k)^2 = r^2\),其中 \((h, k)\) 是圆心坐标,\(r\) 是半径。

若圆心在原点,半径为2,则下列哪个选项是正确的?A. 圆的方程是 \(x^2 + y^2 = 4\)B. 圆的方程是 \(x^2 + y^2 = 2\)C. 圆的方程是 \((x - 2)^2 + y^2 = 4\)D. 圆的方程是 \((x + 2)^2 + y^2 = 4\)答案:A5. 已知椭圆的方程为 \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\),其中 \(a > b > 0\),若椭圆的长轴长度为 \(2a\),短轴长度为\(2b\),则下列哪个选项是错误的?A. 椭圆的离心率 \(e = \sqrt{1 - \frac{b^2}{a^2}}\)B. 椭圆的离心率 \(e = \sqrt{1 + \frac{b^2}{a^2}}\)C. 椭圆的离心率 \(e = \frac{c}{a}\)D. 椭圆的离心率 \(e = \frac{a}{c}\)答案:B结束语:以上是关于圆锥曲线的测试题及答案,希望这些题目能帮助你更好地理解和掌握圆锥曲线的相关知识。

高二数学圆锥曲线测试题及参考答案

高二数学圆锥曲线测试题及参考答案

高二数学圆锥曲线测试题一.选择题:本大题共10小题,每小题5分,共50分.1.椭圆22146x y +=的长轴长为( )A .2BC .4D .622. 设椭圆1422=+m y x 的离心率为21,则m 的值是( ) A .3 B .316或3 C .316 D .316或2 3.抛物线24y x =的焦点坐标是( ) A .(1,0) B .(0,1) C .1(,0)16 D .1(0,)164.双曲线221916x y -=右支上一点P 到右焦点的距离是4,则点P 到左焦点的距离为( ) A.10 B.16 C.9 D.155. 顶点在原点,焦点在对称轴上的抛物线过圆096222=++-+y x y x 的圆心,则其方程为( ) A .23x y =或23x y -= B .23x y = C .x y 92-=或23x y = D .23x y -=或x y 92=6.已知双曲线)0,0(12222>>=-b a by a x 的离心率为2 )A .2y x =±B .x y 2±=C .x y 22±= D .12y x =± 7.曲线21x xy +=的图像关于( )A .x 轴对称B .y 轴对称C . 坐标原点对称D . 直线x y =对称8.若点A 的坐标为(3,2),F 是抛物线x y 22=的焦点,点M 在抛物线上移动时,使MA MF +取得最小值的M 的坐标为( )A .()0,0B .⎪⎭⎫⎝⎛1,21 C .()2,1 D .()2,2 二.填空题:本大题共4小题,每小题5分,满分20分.9.双曲线22x y k -=的一个焦点为,则k 的值为_________.10.如果方程224kx y +=表示焦点在x 轴上的椭圆,那么实数k 的取值范围是 .11.与椭圆2216x y +=共焦点且过点Q 的双曲线方程是 .12.双曲线221169x y -=的左、右焦点分别为F 1,F 2,在左支上过点F 1的弦AB 的长为5,那么△ABF 2的周长是 .13.椭圆192522=+y x 的焦点1F 、2F ,P 为椭圆上的一点,已知21PF PF ⊥,则△21PF F 的面积为________.14.若直线l 与抛物线216y x =交于点A ,B ,且弦AB 的中点为(2,2),则直线l 的方程为__________. 三.解答题:本大题共6小题,满分80分.15.(本小题满分12分)已知顶点在原点,焦点在x 轴上的抛物线被直线21y x =+截得的弦长为15,求抛物线的方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导数及其应用、圆锥曲线测试题
一、选择题
1、双曲线13
22
=-y x 的离心率为 ( ) A .
552 B .2
3
C .332
D .2 2、已知23)(23++=x ax x f 且4)1('=-f ,则实数a 的值等于 ( )
A .
193 B .163 C .133 D .103
3、抛物线281
x y -=的准线方程是( ).
A. 321=x
B. 2=y
C. 32
1
=y D. 2-=y
4、函数x x x f +=3)(的单调递增区间是 ( )
A .),0(∞+
B .)1,(-∞
C .),(∞+-∞
D . ),1(∞+
5、已知曲线24x y =的一条切线的斜率为1
2
,则切点的横坐标为 ( )
A .1
B .2
C .3
D .4
6、双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为y =5e
5x (e 为双曲线离心率),则有( ) A . a =2b B .a =5b C . b =2a D .b =5a 7、函数)22(9323<<---=x x x x y 有( )
A . 极大值5,极小值27-
B . 极大值5,极小值11-
C . 极大值5,无极小值
D . 极小值27-,无极大值
8、设()f x '是函数()f x 的导函数,将()y f x =和()y f x '=的图象画在同一个直角坐标系中,不可能正确的是
9、已知动点M 的坐标满足方程|12-4y 3x |522+=+y x ,则动点M 的轨迹是( ) A . 椭圆 B .抛物线 C . 双曲线 D . 以上都不对 10、函数5123223+--=x x x y 在[0,3]上的最大值与最小值分别是( )
A .5 , —15
B .18 , —15
C .5 , —4
D .5 , —16
11、已知二次函数2()f x ax bx c =++的导数为'()f x ,'(0)0f >,对于任意实数x 都有()0f x ≥,则
(1)
'(0)
f f 的最小值为( )
A .3
B .
52 C .2 D .32
12、已知12F F 、是双曲线22
221(0,0)x y a b a b
-=>>的两焦点,以线段12F F 、为边作正三角形12MF F ,若1MF 的
中点在双曲线上,则双曲线的离心率是( ) A.324+ B.
13- C.
2
1
3+ D. 13+
二、填空题 13、
=-+i
i
11 14、已知函数53
123
-++=
ax x x y 若函数在R 总是单调函数,则a 的取值范围是 15、直线1-=kx y 与双曲线19
42
2=-y x 有且只有一个交点,则k 为 16、已知函数)(x f 是定义在R 上的奇函数,0)1(=f ,0)
()(2
>-'x
x f x f x )(0>x ,则不等式0)(2
>x f x 的
解集是 .
三、解答题
17、已知顶点在x 轴上的双曲线满足两顶点间距离为8,离心率为
4
5
,求该双曲线的标准方程。

18、判断函数12432)(23+-+=x x x x f 的单调性,并求出单调区间。

19、相距1400m 的B A ,两个哨所,听到炮弹爆炸声的时间相差3s ,已知声速是340s m / (1)问炮弹爆炸点P 在怎样的曲线上,为什么?(不说明理由不得分) (2)建立适当的坐标系,求上述曲线的标准方程。

20、函数443
1)(3
+-=
x x x f . (1)求)(x f 的单调区间和极值;(2)当实数a 在什么范围内取值时,方程0)(=-a x f 有且只有三个零点。

21、已知过)23(-,T 的直线l 与抛物线x y 42=交于Q P ,两点,点)2,1(A (1)若直线l 的斜率为1,求弦PQ 的长
(2)证明直线AP 与直线AQ 的斜率乘积恒为定值,并求出该定值。

22、设cx bx ax x f ++=23)(的极小值为8-,其导函数)(x f y ‘=的图象经过点),0,32
(),0,2(-如图所示,
(1)求)(x f 的解析式; (2)求函数的单调区间和极值;
(3)若对[]3,3-∈x 都有()m m x f 142-≥恒成立,求实数m 的取值范围.
13、 i 14、),1[∞+ 15、2
3
210±=±
=k k 或 16、()()1,01,-+∞U 17、因为已知顶点在x 轴上的双曲线满足两顶点间距离为8,离心率为
4
5
所以4
5
82==
=a c e a 而222b a c += 即916
2
2
==b a 所以双曲线的标准方程为19
162
2=-y x
18、因为12432)(23+-+=x x x x f 所以 2466)(2'-+=x x x f 当02466)(2'>-+=x x x f 时,即2
1712171--<+->
x x 或时,函数递增 当02466)(2'<-+=x x x f 时,即
2
1712171+-<<--x 时,函数递减 所以,函数的增区间为),2
171[,]2171,
(∞++----∞ 函数的减增区间为]2
171,2171[
+---。

19、(1)由听到炮弹爆炸声的时间相差3s 可知,PB PA 与的距离之差的绝对值为一个定值3403⨯,且该定值||140010203403AB =<=⨯ 由双曲线的定义知爆炸点在一条双曲线上。

(2)以AB 所在的直线为x 轴,以线段AB 的垂直平分线为y 轴建立直角坐标系,则由(1)知
140021020
2==c a
所以,双曲线的标准方程为
1229900
2601002
2=-y x 20、解:⑴因为443
1)(3
+-=
x x x f 所以)2)(2(4)(2'+-=-=x x x x f 令0)(=x f ‘ 解得2221-==x x
版本可编辑.欢迎下载支持.
单调增区间为)2,(--∞,),2(+∞ 单调减区间为)2,2(- 因此当2-=x 时,)(x f 有极大值,且极大值为328)2-(=
f 当2=x 时,)(x f 有极小值,且极小值为3
4
)2(-=f
(2)由(1)知函数)(1x f y =的图像为右图所示 方程0)(=-a x f 只且只有三个零点等价于函数)(1x f y = 与函数a y =2的图像有且只有三个交点。

所以a 的取值范围是 3
28
34<
<-
a 。

21、由已知得,直线l 的方程为32-=+x y 即5-=x y
联立方程,⎩⎨⎧=-=x y x y 45
2 化简求解知025142=+-x x
设),(11y x P ),(22y x Q 所以1421=+x x 2521=x x 所以382541411||2=⨯-+=PQ
(2)当直线l 的斜率存在时,设斜率为k l 的方程为)3(2-=+x k y
联立方程,⎩⎨⎧=--=x y k kx y 42
32 化简的04129)446(2222=+++++-k k x k k x k
设),(11y x P ),(22y x Q
所以 2221446k k k x x ++=+ 2
2214
129k k k x x ++=
同理知 k y y 421=
+ k
k y y 81221--=⋅ 所以直线AP 与直线AQ 的斜率乘积为1
)(4
)(21212212121212211++-++-=--⋅--=x x x x y y y y x y x y m 所以2-=m
当直线l 的斜率不存在时,l 的方程为3=x 联立 ⎩⎨⎧==x
y x 43
2
)32,3(P )32,3(-Q 所以直线AP 与直线AQ 的斜率乘积为21
32
3213232-=---⋅--=
m 证明直线AP 与直线AQ 的斜率乘积恒为定值,该定值为—2。

文档来源为:从网络收集整理.word 版本可编辑.欢迎下载支持.
22、)),
0,32
(),0,2()(',23)('2-=++=的图像经过点且x f y c bx ax x f Θ
由图象可知函数)32,2(,)2,()(---∞=在上单调递减在x f y 上单调递增,在)
,32
(+∞上单调递减,
(3)要使对
m m x f x 14)(]3,3[2
-≥-∈都有恒成立, 只需
.14)(2min 即可m m x f -≥
由(1)可知
]
3,32(,)32,2(,)2,3[)(在上单调递增在上单调递减在函数---=x f y 上单调递减 故所求的实数m 的取值范围为}.113|{≤≤m m。

相关文档
最新文档