中考数学试题分类12 反比例函数

合集下载

2011年中考数学试题分类12 反比例函数(含答案)

2011年中考数学试题分类12 反比例函数(含答案)

第12章反比例函数一、选择题1. (2011广东汕头,6,4分)已知反比例函数kyx=的图象经过(1,-2).则k=.【答案】-22.(2011湖南邵阳,5,3分)已知点(1,1)在反比例函数kyx=(k为常数,k≠0)的图像上,则这个反比例函数的大致图像是()【答案】C提示:反比例函数过第一象限(也可由点(1,1)求得k=1),故选C。

3.(2011江苏连云港,4,3分)关于反比例函数4yx=的图象,下列说法正确的是()A.必经过点(1,1)B.两个分支分布在第二、四象限C.两个分支关于x轴成轴对称D.两个分支关于原点成中心对称【答案】D4. (2011甘肃兰州,15,4分)如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数221k kyx++=的图象上。

若点A的坐标为(-2,-2),则k的值为A.1 B.-3 C.4 D.1或-3xyOABCD【答案】D5. (2011湖南怀化,5,3分)函数2y x =与函数1y x-=在同一坐标系中的大致图像是【答案】D6. (2011江苏淮安,8,3分)如图,反比例函数ky x=的图象经过点A (-1,-2).则当x >1时,函数值y 的取值范围是( )A.y >1B.0<y <1C. y >2D.0< y <2【答案】D7. (2011四川乐山10,3分)如图(6),直线 6y x =- 交x 轴、y 轴于A 、B 两点,P 是反比例函数4(0)y x x=>图象上位于直线下方的一点,过点P 作x 轴的垂线,垂足为点M ,交AB 于点E ,过点P 作y 轴的垂线,垂足为点N ,交AB 于点F 。

则A F B E ⋅= A .8 B .6 C .4 D .62 【答案】A8. (2011湖北黄石,3,3分)若双曲线y=x k 12-的图象经过第二、四象限,则k 的取值范围是 A.k >21 B. k <21 C. k =21D. 不存在 【答案】B9. (2011湖南邵阳,5,3分)已知点(1,1)在反比例函数ky x=(k 为常数,k ≠0)的图像上,则这个反比例函数的大致图像是( )【答案】C10. (2011贵州贵阳,10,3分)如图,反比例函数y 1=k 1x和正比例函数y 2=k 2x 的图象交于A (-1,-3)、B (1,3)两点,若k 1x>k 2x ,则x 的取值范围是(第10题图)(A )-1<x <0 (B )-1<x <1(C )x <-1或0<x <1 (D )-1<x <0或x >1 【答案】C11. (2011广东茂名,6,3分)若函数xm y 2+=的图象在其象限内y 的值随x 值的增大而增大,则m 的取值范围是 A .2->mB .2-<mC .2>mD .2<m【答案】B12.(2011江苏盐城,6,3分)对于反比例函数y = 1x ,下列说法正确的是A .图象经过点(1,-1)B .图象位于第二、四象限C .图象是中心对称图形D .当x <0时,y 随x 的增大而增大 【答案】C13. (2011山东东营,10,3分)如图,直线l 和双曲线(0)ky k x=>交于A 、B 亮点,P 是线段AB 上的点(不与A 、B 重合),过点A 、B 、P 分别向x 轴作垂线,垂足分别是C 、D 、E,连接OA 、OB 、OP,设△AOC 面积是S 1、△B OD 面积是S 2、△P OE 面积是S 3、则( )A . S 1<S 2<S 3B . S 1>S 2>S 3C . S 1=S 2>S 3D . S 1=S 2<S 3 【答案】D14. (2011福建福州,4,4分)图1是我们学过的反比例函数图象,它的函数解析式可能是 ( ) A .2y x =B .4y x =C .3y x =-D .12y x =【答案】 B15. (2011江苏扬州,6,3分)某反比例函数的图象经过点(-1,6),则下列各点中,此函数图象也经过的点是( )A. (-3,2)B. (3,2)C. (2,3)D. (6,1) 【答案】AO xy图1y xOy x OyxOy xO 16. (2011山东威海,5,3分)下列各点中,在函数6y x=-图象上的是( ) A .(-2,-4)B .(2,3)C .(-1,6)D .1(,3)2-【答案】C17. (2011四川南充市,7,3分) 小明乘车从南充到成都,行车的平均速度y (km/h)和行车时间x (h)之间的函数图像是( )A B C D 【答案】B.18. (2011浙江杭州,6,3)如图,函数11y x =-和函数22y x=的图象相交于点M (2,m ),N (-1,n ),若12y y >,则x 的取值范围是( ) A .102x x <-<<或 B .12x x <->或 C .1002x x -<<<<或 D .102x x -<<>或【答案】D19. (2011浙江台州,9,4分)如图,反比例函数xmy =的图象与一次函数b kx y -=的图象交于点M ,N ,已点M 的坐标为(1,3),点N 的纵坐标为-1,根据图象信息可得关于x 的方程xm=b kx -的解为( ) A . -3,1 B . -3,3 C . -1,1 D .3,-1【答案】A20. (2011浙江温州,4,4分)已知点P (-l ,4)在反比例函数(0)ky k x=≠的图象上,则k 的值是( )A .14-B .14C .4D .-4【答案】D21. (2011甘肃兰州,2,4分)如图,某反比例函数的图象过点(-2,1),则此反比例函数表达式为 A .2y x=B .2y x=-C .12y x= D .12y x=-【答案】B22. (2011广东湛江12,3分)在同一直角坐标系中,正比例函数y x =与反比例函数2y x= 的图像大致是A B C D 【答案】Bxy-21O23. (2011河北,12,3分)根据图5—1所示的程序,得到了y 与x 的函数图象,过点M 作P Q ∥x 轴交图象于点P,Q ,连接OP,OQ.则以下结论 ①x <0时,x2y =;②△OPQ 的面积为定值;③x >0时,y 随x 的增大而增大;④MQ=2PM ;⑤∠POQ 可以等于90°。

中考数学复习考点知识归类讲解12 反比例函数比例系数k的几何意义

中考数学复习考点知识归类讲解12 反比例函数比例系数k的几何意义

中考数学复习考点知识归类讲解 专题12 反比例函数比例系数k 的几何意义知识对接考点一、反比例函数比例系数k 的几何意义(1)意义:从反比例函数y =(k≠0)图象上任意一点向x 轴和y 轴作垂线,垂线与坐标轴所围成的矩形面积为|k|,以该点、一个垂足和原点为顶点的三角形的面积为1/2|k|. (2)常见的面积类型:失分点警示已知相关面积,求反比例函数的表达式,注意若函数图象在第二、四象限,则k <0. 例:已知反比例函数图象上任一点作坐标轴的垂线所围成矩形为3,则该反比例函数解析式为:3y x=或3y x =-专项训练 一、单选题1.如图,已知反比例函数2y x=-的图像上有一点P ,过点P 作PA x ⊥轴,垂足为点A ,则POA 的面积是()A.2 B.1 C.1-D.122.如图,在平面直角坐标系中,A,B是反比例函数kyx=在第一象限的图象上的两点,且其横坐标分别为1,4,若AOB的面积为54,则k的值为()A.23B.1C.2D.1543.若图中反比例函数的表达式均为4yx=,则阴影面积为4的有()A.1个B.2个C.3个D.4个4.如图,点A是反比例函数4yx=-图象上的一个动点,过点A作AB⊥x轴,AC⊥y轴,垂足分别为B,C,则矩形ABOC的面积为()A .-4B .2C .4D .85.如图,等腰ABC 中,5AB AC ==,8BC =,点B 在y 轴上,//BC x 轴,反比例函数k y x=(0k >,0x >)的图象经过点A ,交BC 于点D .若AB BD =,则k 的值为()A .60B .48C .36D .206.在平面直角从标系中,30°的直角三角尺直角顶点与坐标原点重合,双曲线11k y x=(x >0),经过点B ,双曲线22k y x=(x <0),经过点C ,则12k k =( )A.﹣3 B.3 C.D7.如图,A、B是双曲线y=kx图象上的两点,过A点作AC⊥x轴于点C,交OB于点D,BD=2OD,且ADO的面积为8,则DCO的面积为()A.12B.1 C.32D.28.如图,平行于y轴的直线l分别与反比例函数kyx=(x>0)和1yx=-(x>0)的图象交于M、N两点,点P是y轴上一动点,若△PMN的面积为2,则k的值为()A.2 B.3 C.4 D.59.如图,过x轴正半轴上的任意一点P,作y轴的平行线,分别与反比例函数y3=x(x>0)和y6=x-(x>0)的图象交于B、A两点.若点C是y轴上任意一点,则△ABC的面积为()A .3B .6C .9D .9210.如图.在平面直角坐标系中,△AOB 的面积为278,BA 垂直x 轴于点A ,OB 与双曲线y =k x相交于点C ,且BC ∶OC =1∶2,则k 的值为()A .﹣3B .﹣94C .3D .92二、填空题11.如图,平面直角坐标系中,O 是坐标原点,点A 是反比例函数()0k y k x=≠图象上的一点,过点A 分别作AM x ⊥轴于点M ,AN y ⊥轴于点N .若四边形AMON 的面积为12,则k 的值是__________.12.如图,在反比例函数3yx=的图象上有一动点A,连接AO并延长交图象的另一支于点B,在第二象限内有一点C,满足AC=BC,当点A运动时,点C始终在函数kyx=的图象上运动,tan∠CAB=2,则k的值为_____13.如图,点P在反比例函数4yx=-的图像上,过点P作PA x⊥轴于点A,则POA的面积是_______.14.如图所示,反比例函数kyx=(0k≠,0x>)的图像经过矩形OABC的对角线AC的中点D .若矩形OABC 的面积为8,则k 的值为________.15.如图,点A 与点B 分别在函数11(0)k y k x =>与220)k y k x=<(的图象上,线段AB 的中点M 在y 轴上.若△AOB 的面积为3,则12k k -的值是___.三、解答题16.如图,一次函数122y x =-的图象分别交x 轴、y 轴于A 、B ,P 为AB 上一点且PC 为AOB 的中位线,PC 的延长线交反比例函数ky x=(0k >)的图象于点Q ,32OQCS=.(1)求A 点和B 点的坐标; (2)求k 的值和Q 点的坐标.17.点O 为平面直角坐标系的原点,点A 、C 在反比例函数a y x=的图象上,点B 、D 在反比例函数b y x=的图象上,且0a b >>.(1)若点A 的坐标为()6,4,点B 恰好为OA 的中点,过点A 作AN x ⊥轴于点N ,交b y x=的图象于点P . ①请求出a 、b 的值; ②试求OBP 的面积.(2)若////AB CD x 轴,32CD AB ==,AB 与CD 间的距离为6,试说明-a b 的值是否为某一固定值?如果是定值,试求出这个定值;若不是定值,请说明理由.18.如图,点C 在反比例函数y 1=x的图象上,CA ∥y 轴,交反比例函数y 3=x的图象于点A ,CB ∥x 轴,交反比例函数y 3=x的图象于点B ,连结AB 、OA 和OB ,已知CA =2,则△ABO 的面积为__.19.如图是反比例函数2yx=与反比例函数在第一象限中的图象,点P是4yx=图象上一动点,PA⊥X轴于点A,交函数2yx=图象于点C,PB⊥Y轴于点B,交函数2yx=图象于点D,点D的横坐标为a.(1)用字母a表示点P的坐标;(2)求四边形ODPC的面积;(3)连接DC交X轴于点E,连接DA、PE,求证:四边形DAEP是平行四边形.20.如图,点A(﹣2,y1)、B(﹣6,y2)在反比例函数y=kx(k<0)的图象上,AC⊥x轴,BD⊥y轴,垂足分别为C、D,AC与BD相交于点E.(1)根据图象直接写出y1、y2的大小关系,并通过计算加以验证;(2)结合以上信息,从①四边形OCED的面积为2,②BE=2AE这两个条件中任选一个作为补充条件,求k 的值.你选择的条件是(只填序号). 21.如图,一次函数()20y kx k k =-≠的图象与反比例函数1(10)m y m x-=-≠的图象交于点C ,与x 轴交于点A ,过点C 作CB y ⊥轴,垂足为B ,若3ABC S =△.(1)求点A 的坐标及m 的值;(2)若AB =22.如图,过C 点的直线y =﹣12x ﹣2与x 轴,y 轴分别交于点A ,B 两点,且BC =AB ,过点C 作CH ⊥x 轴,垂足为点H ,交反比例函数y =k x(x >0)的图象于点D ,连接OD ,△ODH 的面积为6(1)求k 值和点D 的坐标;(2)如图,连接BD ,OC ,点E 在直线y =﹣12x ﹣2上,且位于第二象限内,若△BDE 的面积是△OCD 面积的2倍,求点E 的坐标.11 / 11 23.如图,直线l 分别交x 轴,y 轴于A 、B 两点,交反比例函数(0)k y k x =≠的图象于P 、Q 两点.若2AB BP =,且AOB 的面积为4(1)求k 的值;(2)当点P 的横坐标为1-时,求POQ △的面积.。

中考数学专题训练---反比例函数的综合题分类含详细答案

中考数学专题训练---反比例函数的综合题分类含详细答案

一、反比例函数真题与模拟题分类汇编(难题易错题)1.如图,已知点D在反比例函数y= 的图象上,过点D作x轴的平行线交y轴于点B (0,3).过点A(5,0)的直线y=kx+b与y轴于点C,且BD=OC,tan∠OAC= .(1)求反比例函数y= 和直线y=kx+b的解析式;(2)连接CD,试判断线段AC与线段CD的关系,并说明理由;(3)点E为x轴上点A右侧的一点,且AE=OC,连接BE交直线CA与点M,求∠BMC的度数.【答案】(1)解:∵A(5,0),∴OA=5.∵,∴,解得OC=2,∴C(0,﹣2),∴BD=OC=2,∵B(0,3),BD∥x轴,∴D(﹣2,3),∴m=﹣2×3=﹣6,∴,设直线AC关系式为y=kx+b,∵过A(5,0),C(0,﹣2),∴,解得,∴;(2)解:∵B(0,3),C(0,﹣2),∴BC=5=OA,在△OAC和△BCD中∴△OAC≌△BCD(SAS),∴AC=CD,∴∠OAC=∠BCD,∴∠BCD+∠BCA=∠OAC+∠BCA=90°,∴AC⊥CD;(3)解:∠BMC=45°.如图,连接AD,∵AE=OC,BD=OC,AE=BD,∴BD∥x轴,∴四边形AEBD为平行四边形,∴AD∥BM,∴∠BMC=∠DAC,∵△OAC≌△BCD,∴AC=CD,∵AC⊥CD,∴△ACD为等腰直角三角形,∴∠BMC=∠DAC=45°.【解析】【分析】(1)由正切定义可求C坐标,进而由BD=OC求出D坐标,求出反比例函数解析式;由A、C求出直线解析式;(2)由条件可判定△OAC≌△BCD,得出AC=CD,∠OAC=∠BCD,进而AC⊥CD;(3)由已知可得AE=OC,BD=OC,得出AE=BD,再加平行得四边形AEBD为平行四边形,推出△OAC≌△BCD,∴AC=CD,∵AC⊥CD,∴△ACD为等腰直角三角形,∴∠BMC=∠DAC=45°.2.如图直角坐标系中,矩形ABCD的边BC在x轴上,点B,D的坐标分别为B(1,0),D(3,3).(1)点C的坐标________;(2)若反比例函数y= (k≠0)的图象经过直线AC上的点E,且点E的坐标为(2,m),求m的值及反比例函数的解析式;(3)若(2)中的反比例函数的图象与CD相交于点F,连接EF,在直线AB上找一点P,使得S△PEF= S△CEF,求点P的坐标.【答案】(1)(3,0)(2)解:∵AB=CD=3,OB=1,∴A的坐标为(1,3),又C(3,0),设直线AC的解析式为y=ax+b,则,解得:,∴直线AC的解析式为y=﹣ x+ .∵点E(2,m)在直线AC上,∴m=﹣ ×2+ = ,∴点E(2,).∵反比例函数y= 的图象经过点E,∴k=2× =3,∴反比例函数的解析式为y=(3)解:延长FC至M,使CM= CF,连接EM,则S△EFM= S△EFC, M(3,﹣0.5).在y= 中,当x=3时,y=1,∴F(3,1).过点M作直线MP∥EF交直线AB于P,则S△PEF=S△MEF.设直线EF的解析式为y=a'x+b',∴,解得,∴y=﹣ x+ .设直线PM的解析式为y=﹣ x+c,代入M(3,﹣0.5),得:c=1,∴y=﹣ x+1.当x=1时,y=0.5,∴点P(1,0.5).同理可得点P(1,3.5).∴点P坐标为(1,0.5)或(1,3.5).【解析】【解答】解:(1)∵D(3,3),∴OC=3,∴C(3,0).故答案为(3,0);【分析】(1)由D的横坐标为3,得到线段OC=3,即可确定出C的坐标;(2)由矩形的对边相等,得到AB=CD,由D的纵坐标确定出CD的长,即为AB的长,再由B的坐标确定出OB的长,再由A为第一象限角,确定出A的坐标,由A与C的坐标确定出直线AC的解析式,将E坐标代入直线AC解析式中,求出m的值,确定出E的坐标,代入反比例解析式中求出k的值,即可确定出反比例解析式;(3)延长FC至M,使CM=CF,连接EM,则S△EFM=S△EFC, M(3,﹣0.5).求出F(3,1),过点M作直线MP∥EF交直线AB于P,利用平行线间的距离处处相等得到高相等,再利用同底等高得到S△PEF=S△MEF.此时直线EF与直线PM的斜率相同,由F的横坐标与C横坐标相同求出F 的横坐标,代入反比例解析式中,确定出F坐标,由E与F坐标确定出直线EF斜率,即为直线PM的斜率,再由M坐标,确定出直线PM解析式,由P横坐标与B横坐标相同,将B横坐标代入直线PM解析式中求出y的值,即为P的纵坐标,进而确定出此时P的坐标.3.已知:O是坐标原点,P(m,n)(m>0)是函数y= (k>0)上的点,过点P作直线PA⊥OP于P,直线PA与x轴的正半轴交于点A(a,0)(a>m).设△OPA的面积为s,且s=1+ .(1)当n=1时,求点A的坐标;(2)若OP=AP,求k的值;(3)设n是小于20的整数,且k≠ ,求OP2的最小值.【答案】(1)解:过点P作PQ⊥x轴于Q,则PQ=n,OQ=m,当n=1时,s= ,∴a= = .(2)解:解法一:∵OP=AP,PA⊥OP,∴△OPA是等腰直角三角形.∴m=n= .∴1+ = •an.即n4﹣4n2+4=0,∴k2﹣4k+4=0,∴k=2.解法二:∵OP=AP,PA⊥OP,∴△OPA是等腰直角三角形.∴m=n.设△OPQ的面积为s1则:s1= ∴•mn= (1+ ),即:n4﹣4n2+4=0,∴k2﹣4k+4=0,∴k=2.(3)解:解法一:∵PA⊥OP,PQ⊥OA,∴△OPQ∽△OAP.设:△OPQ的面积为s1,则 =即: = 化简得:化简得:2n4+2k2﹣kn4﹣4k=0(k﹣2)(2k﹣n4)=0,∴k=2或k= (舍去),∴当n是小于20的整数时,k=2.∵OP2=n2+m2=n2+ 又m>0,k=2,∴n是大于0且小于20的整数.当n=1时,OP2=5,当n=2时,OP2=5,当n=3时,OP2=32+ =9+ = ,当n是大于3且小于20的整数时,即当n=4、5、6…19时,OP2的值分别是:42+ 、52+ 、62+ …192+ ,∵192+ >182+ >32+ >5,∴OP2的最小值是5.【解析】【分析】(1)利用△OPA面积定义构建关于a的方程,求出A的坐标;(2)由已知OP=AP,PA⊥OP,可得△OPA是等腰直角三角形,由其面积构建关于n的方程,转化为k的方程,求出k;(3)利用相似三角形的面积比等于相似比的平方构建关于k的方程,最值问题的基本解决方法就是函数思想,利用勾股定理用m、n的代数式表达OP2,,在n的范围内求出OP2的最值.4.平面直角坐标系xOy中,点A、B分别在函数y1= (x>0)与y2=﹣(x<0)的图象上,A、B的横坐标分别为a、b.(1)若AB∥x轴,求△OAB的面积;(2)若△OAB是以AB为底边的等腰三角形,且a+b≠0,求ab的值;(3)作边长为2的正方形ACDE,使AC∥x轴,点D在点A的左上方,那么,对大于或等于3的任意实数a,CD边与函数y1= (x>0)的图象都有交点,请说明理由.【答案】(1)解:由题意知,点A(a,),B(b,﹣),∵AB∥x轴,∴,∴a=﹣b;∴AB=a﹣b=2a,∴S△OAB= •2a• =3(2)解:由(1)知,点A(a,),B(b,﹣),∴OA2=a2+()2, OB2=b2+(﹣)2,∵△OAB是以AB为底边的等腰三角形,∴OA=OB,∴OA2=OB2,∴a2+()2=b2+(﹣)2,∴a2﹣b2=()2﹣()2,∴(a+b)(a﹣b)=( + )(﹣)= ,∵a>0,b<0,∴ab<0,a﹣b≠0,∵a+b≠0,∴1= ,∴ab=3(舍)或ab=﹣3,即:ab的值为﹣3;(3)解:对大于或等于3的任意实数a,CD边与函数y1= (x>0)的图象都有交点.理由:如图,∵a≥3,AC=2,∴直线CD在y轴右侧且平行于y轴,∴直线CD一定与函数y1= (x>0)的图象有交点,∵四边形ACDE是边长为2的正方形,且点D在点A(a,)的左上方,∴C(a﹣2,),∴D(a﹣2, +2),设直线CD与函数y1= (x>0)相交于点F,∴F(a﹣2,),∴FC= ﹣ = ,∴2﹣FC=2﹣ = ,∵a≥3,∴a﹣2>0,a﹣3≥0,∴≥0,∴2﹣FC≥0,∴FC≤2,∴点F在线段CD上,即:对大于或等于3的任意实数a,CD边与函数y1= (x>0)的图象都有交点.【解析】【分析】(1)先判断出a=﹣b,即可得出AB=2a,再利用三角形的面积公式即可得出结论;(2)利用等腰三角形的两腰相等建立方程求解即可得出结论;(3)先判断出直线CD和函数y1= (x>0)必有交点,根据点A的坐标确定出点C,F的坐标,进而得出FC,再判断FC与2的大小即可.5.平面直角坐标系xOy中,已知函数y1= (x>0)与y2=﹣(x<0)的图象如图所示,点A、B是函数y1= (x>0)图象上的两点,点P是y2=﹣(x<0)的图象上的一点,且AP∥x轴,点Q是x轴上一点,设点A、B的横坐标分别为m、n(m≠n).(1)求△APQ的面积;(2)若△APQ是等腰直角三角形,求点Q的坐标;(3)若△OAB是以AB为底的等腰三角形,求mn的值.【答案】(1)解:过点P、A、Q分别作PM x轴交x轴于点M,PN x轴交x轴于点N,QR AP轴交AP轴于点R,则四边形APMN、四边形PMQR、四边形ARQN是矩形,如图所示:∵点A的横坐标为m,且在函数上,AP∥x轴,且点P在函数上,∴点A(m, ),点P(-m, ),∴MN=m-(-m)=2m,PM= ,∴S矩形PMNA=2m╳ =8,∵四边形PMQR、四边形ARQN是矩形,∴S△PQM=S△PRQ, S△ANQ=S△ARQ,∴S△APQ=S△PRQ+ S△ARQ= S矩形PMNA=4(2)解:当PQ x轴时,则PQ=,,AP=2m,∵PQ=AP∴2m= ,∴m=∴ ,当PQ=AQ时,则(3)解:∵△OAB是以AB为底的等腰三角形,∴OA=OB,∵A(m, ),B(n, ),∴∴mn=4.【解析】【分析】(1)过点P、A、Q分别作PM ⊥ x轴交x轴于点M,PN ⊥ x轴交x轴于点N,QR ⊥ AP轴交AP轴于点R,则四边形APMN、四边形PMQR、四边形ARQN是矩形,根据点A的横坐标为m,利用函数解析式表示出点A的坐标和点P的坐标,最后用三角形的面积公式即可得出结论。

2025年中考数学总复习专题12 反比例函数(附答案解析)

2025年中考数学总复习专题12 反比例函数(附答案解析)

第1页(共64页)2025年中考数学总复习专题12
反比例函数
一、反比例函数的概念
1.反比例函数的概念:一般地,函数k y x
=(k 是常数,k ≠0)叫做反比例函数.反比例函数的解析式也可以写成1y kx -=的形式.自变量x 的取值范围是x ≠0的一切实数,函数的取值范围也是一切非零实数.2.反比例函数k y x
=(k 是常数,k ≠0)中x ,y 的取值范围自变量x 和函数值y 的取值范围都是不等于0的任意实数.
二、反比例函数的图象和性质
1.反比例函数的图象与性质
(1)图象:反比例函数的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限.由于反比例函数中自变量x ≠0,函数y ≠0,所以,它的图象与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴.
(2)性质:当k >0时,函数图象的两个分支分别在第一、三象限,在每个象限内,y 随x 的增大而减小.当k <0时,函数图象的两个分支分别在第二、四象限,在每个象限内,y 随x 的增大而增大.
表达式
k y x =(k 是常数,k ≠0)k k >0k <0
大致图象
所在象限
第一、三象限第二、四象限增减性在每个象限内,y 随x 的增大而减小在每个象限内,y 随x 的增大而增大2.反比例函数图象的对称性
反比例函数的图象既是轴对称图形,又是中心对称图形,其对称轴为直线y =x 和y =-x ,对称中心为原点.3.注意。

部编版初中九年级数学反比例函数(含中考真题解析答案)

部编版初中九年级数学反比例函数(含中考真题解析答案)

部编版初中九年级数学反比例函数(含中考真题解析答案)反比例函数(含答案)?解读考点知识点 1.反比例函数概念反比例函数概2.反比例函数图象念、图象和性3.反比例函数的性质质 4.一次函数的解析式确定名师点晴会判断一个函数是否为反比例函数。

知道反比例函数的图象是双曲线,。

会分象限利用增减性。

能用待定系数法确定函数解析式。

会用数形结合思想解决此类问题.反比例函5.反比例函数中比例系数的几何能根据图象信息,解决相应的实际问题.数的应用意义能解决与三角形、四边形等几何图形相关的计算和证明。

?2年中考【2021年题组】y?1.(2021崇左)若反比例函数kx的图象经过点(2,-6),则k的值为()A.-12 B.12 C.-3 D.3【答案】A.【解析】y?试题分析:∵反比例函数kx的图象经过点(2,��6),∴k?2?(?6)??12,解得k=��12.故选A.考点:反比例函数图象上点的坐标特征. 2.(2021苏州)若点A(a,b)在反比例函数A.0 B.��2 C.2 D.��6 【答案】B.【解析】y?y?2x的图象上,则代数式ab��4的值为()试题分析:∵点(a,b)反比例函数22b?x上,∴a,即ab=2,∴原式=2��4=��2.故选B.考点:反比例函数图象上点的坐标特征. 3.(2021来宾)已知矩形的面积为10,长和宽分别为x和y,则y关于x的函数图象大致是()- 1 -A. B. C.D.【答案】C.考点:1.反比例函数的应用;2.反比例函数的图象.4.(2021河池)反比例函数y1?mx(x?0)的图象与一次函数y2??x?b的图象交于A,B两点,其中A(1,2),当y2?y1时,x的取值范围是()A.x<1 B.1<x<2 C.x>2 D.x<1或x>2 【答案】B.【解析】试题分析:根据双曲线关于直线y=x对称易求B(2,1).依题意得:如图所示,当1<x<2时,y2?y1.故选B.考点:反比例函数与一次函数的交点问题.- 2 -5.(2021贺州)已知k1?0?k2,则函数y?k1x和y?k2x?1的图象大致是()A.【答案】C.B.C. D.考点:1.反比例函数的图象;2.一次函数的图象. 6.(2021宿迁)在平面直角坐标系中,点A,B的坐标分别为(��3,0),(3,0),点P在y?反比例函数2x的图象上,若△PAB为直角三角形,则满足条件的点P的个数为()A.2个 B.4个 C.5个 D.6个【答案】D.【解析】y?试题分析:①当∠PAB=90°时,P点的横坐标为��3,把x=��3代入此时P点有1个;22y??x得3,所以2222222(x?3)?()(x?3)?()22x,PB=x,AB2 ②当∠APB=90°,设P(x,x),PA=222222(x?3)?()?(x?3)?()222(3?3)xxPA?PB?AB==36,因为,所以=36,整理得2x4?9x2?4?0,所以x2?9?659?65x2?22,或,所以此时P点有4个;y?22y?x得3,所以此时P点有1个;③当∠PBA=90°时,P点的横坐标为3,把x=3代入综上所述,满足条件的P点有6个.故选D.考点:1.反比例函数图象上点的坐标特征;2.圆周角定理;3.分类讨论;4.综合题.7.(2021自贡)若点(的点,并且x1,y1),(x2,y2),(x3,y3y??),都是反比例函数1x图象上y1?0?y2?y3,则下列各式中正确的是()- 3 -A.D.x1?x2?x3 B.x1?x3?x2 C.x2?x1?x3x2?x3?x1【答案】D.【解析】试题分析:由题意得,点(的点,且(x1,y1)xy,xy,(2,2)(3,3)都是反比例函数y??1x上y1?0?y2?y3,xy,xy位于第三象限,x?x3,则(2,2)(3,3)y随x的增大而增大,2 x1,y1)位于第一象限,x1最大,故x1、x2、x3的大小关系是x2?x3?x1.故选D.考点:反比例函数图象上点的坐标特征.8.(2021凉山州)以正方形ABCD两条对角线的交点O为坐标原点,建立如图所示的平面y?直角坐标系,双曲线3x经过点D,则正方形ABCD的面积是()A.10 B.11 C.12 D.13 【答案】C.考点:反比例函数系数k的几何意义.y?9.(2021眉山)如图,A、B是双曲线kx上的两点,过A点作AC⊥x轴,交OB于D点,垂足为C.若△ADO的面积为1,D为OB的中点,则k的值为()48A.3 B.3 C.3 D.4- 4 -【答案】B.考点:1.反比例函数系数k的几何意义;2.相似三角形的判定与性质. 10.(2021内江)如图,正方形ABCD位于第一象限,边长为3,点A在直线y=x上,点Ay?的横坐标为1,正方形ABCD的边分别平行于x轴、y轴.若双曲线有公共点,则k的取值范围为()kx与正方形ABCDA.1<k<9 B.2≤k≤34 C.1≤k≤16 D.4≤k<16 【答案】C.【解析】试题分析:点A在直线y=x上,其中A点的横坐标为1,则把x=1代入y=x解得y=1,则Ay?的坐标是(1,1),∵AB=BC=3,∴C点的坐标是(4,4),∴当双曲线kx经过点(1,1)时,k=1;当双曲线kx经过点(4,4)时,k=16,因而1≤k≤16.故选C.考点:1.反比例函数与一次函数的交点问题;2.综合题.- 5 -11.(2021孝感)如图,△AOB是直角三角形,∠AOB=90°,OB=2OA,点A在反比例函y?数1ky?x的图象上.若点B在反比例函数x的图象上,则k的值为()A.��4 B.4 C.��2 D.2【答案】A.考点:1.反比例函数图象上点的坐标特征;2.相似三角形的判定与性质;3.综合题.41012.(2021宜昌)如图,市煤气公司计划在地下修建一个容积为m3的圆柱形煤气储存室,则储存室的底面积S(单位:m2)与其深度d(单位:m)的函数图象大致是()- 6 -【答案】A.B. C. D.考点:1.反比例函数的应用;2.反比例函数的图象.y?13.(2021三明)如图,已知点A是双曲线2x在第一象限的分支上的一个动点,连接AO并延长交另一分支于点B,过点A作y轴的垂线,过点B作x轴的垂线,两垂线交于点C,随着点A的运动,点C的位置也随之变化.设点C的坐标为(m,n),则m,n满足的关系式为()A.n??2m B.【答案】B.【解析】n??24n??m C.n??4m D.m2试题分析:∵点C的坐标为(m,n),∴点A的纵坐标是n,横坐标是:n,∴点A 的坐22标为(n,n),∵点C的坐标为(m,n),∴点B的横坐标是m,纵坐标是:m,∴点B2nm?2222mmn??mn,∴m2n2?4,又∵m<0,n>0,∴的坐标为(m,m),又∵n,∴- 7 -mn??2,∴n??2m,故选B.考点:反比例函数图象上点的坐标特征.y?14.(2021株洲)从2,3,4,5中任意选两个数,记作a和b,那么点(a,b)在函数图象上的概率是()12x1111A.2 B.3 C.4 D.6【答案】D.考点:1.列表法与树状图法;2.反比例函数图象上点的坐标特征.OA3?OB4.15.(2021乌鲁木齐)如图,在直角坐标系xOy中,点A,B分别在x轴和y轴,∠y?AOB的角平分线与OA的垂直平分线交于点C,与AB交于点D,反比例函数kx的图象2过点C.当以CD为边的正方形的面积为7时,k的值是()- 8 -A.2 B.3 C.5 D.7 【答案】D.考点:1.反比例函数综合题;2.综合题;3.压轴题. 16.(2021重庆市)如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴y?平行,A,B两点的纵坐标分别为3,1.反比例函数ABCD的面积为()3x的图象经过A,B两点,则菱形A.2 B.4 C.22 D.42 【答案】D.【解析】y?试题分析:过点A作x轴的垂线,与CB的延长线交于点E,∵A,B两点在反比例函数3x的图象上且纵坐标分别为3,1,∴A,B横坐标分别为1,3,∴AE=2,BE=2,∴AB=22,S菱形ABCD=底×高=22×2=42,故选D.- 9 -考点:1.菱形的性质;2.反比例函数图象上点的坐标特征;3.综合题.17.(2021临沂)在平面直角坐标系中,直线y??x?2与反比例函数1y?x的图象有2个公共点,则b的取值范围是公共点,若直线y??x?b与反比例函数()y?1x的图象有唯一A.b>2 B.��2<b<2 C.b>2或b<��2 D.b<��2 【答案】C.考点:反比例函数与一次函数的交点问题. 18.(2021滨州)如图,在x轴的上方,直角∠BOA绕原点O按顺时针方向旋转,若∠BOA12y??y?x、x的图象交于B、A两点,则∠OAB的大小的变化趋势为的两边分别与函数()- 10 -A.逐渐变小 B.逐渐变大 C.时大时小 D.保持不变【答案】D.考点:1.相似三角形的判定与性质;2.反比例函数图象上点的坐标特征;3.综合题. 19.(2021扬州)已知一个正比例函数的图象与一个反比例函数的一个交点坐标为(1,3),则另一个交点坐标是.【答案】(��1,��3).【解析】试题分析:∵反比例函数的图象与经过原点的直线的两个交点一定关于原点对称,∴另一个交点的坐标与点(1,3)关于原点对称,∴该点的坐标为(��1,��3).故答案为:(��1,��3).考点:反比例函数图象的对称性.20.(2021泰州)点(a��1,1)、(a+1,2)在反比例函数yyy?k?k?0?x的图象上,若y1?y2,- 11 -则a的范围是.【答案】��1<a<1.考点:1.反比例函数图象上点的坐标特征;2.分类讨论.y?21.(2021南宁)如图,点A在双曲线23ky?x(x?0)上,x(x?0)点B在双曲线上(点B在点A的右侧),且AB∥x轴.若四边形OABC是菱形,且∠AOC=60°,则k= .【答案】63.【解析】y?试题分析:因为点A在双曲线2323x(x?0)上,设A点坐标为(a,a),因为四23边形OABC是菱形,且∠AOC=60°,所以OA=2a,可得B点坐标为(3a,a),可得:3a?k=23a=63,故答案为:63.考点:1.菱形的性质;2.反比例函数图象上点的坐标特征;3.综合题. 22.(2021桂林)如图,以?ABCO的顶点O为原点,边OC所在直线为x轴,建立平面直y?角坐标系,顶点A、C的坐标分别是(2,4)、(3,0),过点A的反比例函数交BC于D,连接AD,则四边形AOCD的面积是.kx的图象- 12 -【答案】9.考点:1.平行四边形的性质;2.反比例函数系数k的几何意义;3.综合题;4.压轴题. 23.(2021贵港)如图,已知点A1,A2,…,An均在直线y?x?1上,点B1,B2,…,y??Bn均在双曲线1x上,并且满足:A1B1⊥x轴,B1A2⊥y轴,A2B2⊥x轴,B2A3⊥y轴,…,AnBn⊥x轴,BnAn+1⊥y轴,…,记点An的横坐标为an(n为正整数).若则a2021= .a1??1,【答案】2.- 13 -考点:1.反比例函数图象上点的坐标特征;2.一次函数图象上点的坐标特征;3.规律型;4.综合题.24.(2021南京)如图,过原点O的直线与反比例函数y1,y2的图象在第一象限内分别交于点A,B,且A为OB的中点,若函数y1?1x,则y2与x的函数表达式是.【答案】【解析】y2?4x.试题分析:过A作AC⊥x轴于C,过B作BD⊥x轴于D,∵点A在反比例函数y1?1x上,11∴设A(a,a),∴OC=a,AC=a,∵AC⊥x轴,BD⊥x轴,∴AC∥BD,∴△OAC∽△ACOCOAACOCOA12?????OBD,∴BDODOB,∵A为OB的中点,∴BDODOB2,∴BD=2AC=a,- 14 -2k2y2?2a??4yx,∴k=aOD=2OC=2a,∴B(2a,a),设,∴2与x的函数表达式是:y2?44y2?x.故答案为:x.考点:1.反比例函数与一次函数的交点问题;2.综合题;3.压轴题.y?25.(2021攀枝花)如图,若双曲线kx(k?0)与边长为3的等边△AOB(O为坐标原点)的边OA、AB分别交于C、D两点,且OC=2BD,则k的值为.363【答案】25.- 15 -考点:1.反比例函数图象上点的坐标特征;2.等边三角形的性质;3.综合题.93(x>0)y?x26.(2021荆门)如图,点A1,A2依次在的图象上,点B1,B2依次在x轴的正半轴上,若△A1OB1,△A2B1B2均为等边三角形,则点B2的坐标为.【答案】(62,0).- 16 -考点:1.反比例函数图象上点的坐标特征;2.等边三角形的性质;3.综合题;4.压轴题. 27.(2021南平)如图,在平面直角坐标系xOy中,△OAB的顶点A在x轴正半轴上,OCy?是△OAB的中线,点B,C在反比例函数于.3x(x?0)的图象上,则△OAB的面积等9【答案】2.考点:1.反比例函数系数k的几何意义;2.综合题. 28.(2021烟台)如图,矩形OABC的顶点A、C的坐标分别是(4,0)和(0,2),反比y?例函数kx(x>0)的图象过对角线的交点P并且与AB,BC分别交于D,E两点,连接OD,OE,DE,则△ODE的面积为.- 17 -15【答案】4.考点:1.反比例函数系数k的几何意义;2.反比例函数综合题;3.综合题. 29.(2021玉林防城港)已知:一次函数y??2x?10的图象与反比例函数y?kx(k?0)的图象相交于A,B两点(A在B的右侧).(1)当A(4,2)时,求反比例函数的解析式及B点的坐标;(2)在(1)的条件下,反比例函数图象的另一支上是否存在一点P,使△PAB是以AB为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.(3)当A(a,��2a+10),B(b,��2b+10)时,直线OA与此反比例函数图象的另一支交BC5?BD2,求△ABC的面积.于另一点C,连接BC交y轴于点D.若y?【答案】(1)81?x,B(1,8);(2)(��4,��2)、(��16,2);(3)10.- 18 -【解析】y?试题分析:(1)把点A的坐标代入kx,就可求出反比例函数的解析式;解一次函数与反比例函数的解析式组成的方程组,就可得到点B的坐标;(2)①若∠BAP=90°,过点A作AH⊥OE于H,设AP与x轴的交点为M,如图1,对于y=��2x+10,当y=0时,��2x+10=0,解得x=5,∴点E(5,0),OE=5.∵A(4,2),∴OH=4,AH=2,∴HE=5��4=1.∵AH⊥OE,∴∠AHM=∠AHE=90°.又∵∠BAP=90°,∴∠AME+∠AEM=90°,∠AME+∠MAH=90°,∴∠MAH=∠AEM,∴△AHM∽△EHA,∴AHMH2MH??EHAH,∴12,∴MH=4,∴M(0,0),可设直线AP的解析式为y?mx,1?y?x??2??x?4811?y??y?xy?2?x,2,则有4m?2,解得m=2,∴直线AP的解析式为解方程组?得:??x??4?y??2,∴点P的坐标为(��4,��2)或?.1②若∠ABP=90°,同理可得:点P的坐标为(��16,2).?- 19 -1综上所述:符合条件的点P的坐标为(��4,��2)、(��16,2);?(3)过点B作BS⊥y轴于S,过点C作CT⊥y轴于T,连接OB,如图2,则有BS∥CT,CDCTBC5CTCD3????BD2.∵A(a,��2a+10)∴△CTD∽△BSD,∴BDBS.∵BD2,∴BS,B(b,��2b+10),∴C(��a,2a��考点:1.反比例函数综合题;2.待定系数法求一次函数解析式;3.反比例函数与一次函数的交点问题;4.相似三角形的判定与性质;5.压轴题.【2021年题组】1. (2021年湖南湘潭)如图,A、B两点在双曲线线段,已知S阴影=1,则S1+S2=()y?4x上,分别经过A、B两点向轴作垂- 20 -④若OABC是菱形,则两双曲线既关于x轴对称,也关于y轴对称.其中正确的结论是(把所有正确的结论的序号都填上).【答案】①④.考点:1.反比例函数综合题;2. 反比例函数的图象和k的几何意义;3.平行四边形、矩形的性质和菱形的性质.- 26 -9. (2021年湖北荆州)如图,已知点A是双曲线y?2x在第一象限的分支上的一个动点,连结AO并延长交另一分支于点B,以AB为边作等边△ABC,点C在第四象限.随着点A的运动,点C的位置也不断变化,但点C始终在双曲线是.y?kx(k<0)上运动,则k的值【答案】��6.考点:1.单动点问题;2.曲线上点的坐标与方程的关系;3. 等边三角形的性质;4.相似三角形的判定和性质;5.锐角三角函数定义;6.特殊角的三角函数值.- 27 -10. (2021年江苏淮安)如图,点A(1,6)和点M(m,n)都在反比例函数y?kx(x>0)的图象上,(1)k的值为;(2)当m=3,求直线AM的解析式;(3)当m>1时,过点M作MP⊥x轴,垂足为P,过点A作AB⊥y轴,垂足为B,试判断直线BP与直线AM的位置关系,并说明理由.【答案】(1)6;(2)y=��2x+8;(3)直线BP与直线AM的位置关系为平行,.- 28 -考点:1.反比例函数综合题;2.待定系数法的应用;3.曲线上点的坐标与方程的关系;4.相似三角形的判定和性质;5.平行的判定.?考点归纳归纳 1:反比例函数的概念基础知识归纳:一般地,函数(k是常数,k0)叫做反比例函数。

中考数学真题分类函数专题(反比例函数)试题及答案详解

中考数学真题分类函数专题(反比例函数)试题及答案详解

中考数学真题分类之函数专题——反比例函数一.反比例函数的定义(共2小题) 1.已知反比例函数的解析式为y =|a|−2x,则a 的取值范围是( )A .a ≠2B .a ≠﹣2C .a ≠±2D .a =±2 2.等腰三角形底角与顶角之间的函数关系是( )A .正比例函数B .一次函数C .反比例函数D .二次函数二.反比例函数的图象(共1小题)3.已知ab <0,一次函数y =ax ﹣b 与反比例函数y =ax在同一直角坐标系中的图象可能( )A .B .C .D .三.反比例函数的性质(共2小题)4.反比例函数y =2x的图象位于( )A .第一、三象限B .第二、三象限C .第一、二象限D .第二、四象限5.关于反比例函数y =5x 的图象,下列说法正确的( ) A .经过点(2,3) B .分布在第二、第四象限 C .关于直线y =x 对称D .x 越大,越接近x 轴四.反比例函数系数k 的几何意义(共3小题)6.如图,矩形OABC 的边AB 与x 轴交于点D ,与反比例函数y =kx(k >0)在第一象限的图象交于点E ,∠AOD =30°,点E 的纵坐标为1,△ODE 的面积是4√33,则k 的值是 .7.如图,矩形ABCD 的顶点A ,B 在x 轴上,且关于y 轴对称,反比例函数y =k1x(x >0)的图象经过点C ,反比例函数y =k 2x(x <0)的图象分别与AD ,CD 交于点E ,F ,若S △BEF =7,k 1+3k 2=0,则k 1等于 .8.如图,菱形ABCD 的边AB 在x 轴上,点A 的坐标为(1,0),点D (4,4)在反比例函数y =k x(x >0)的图象上,直线y =23x +b 经过点C ,与y 轴交于点E ,连接AC ,AE .(1)求k ,b 的值; (2)求△ACE 的面积.五.反比例函数图象上点的坐标特征(共8小题)9.如图,点A ,B 是直线y =x 上的两点,过A ,B 两点分别作x 轴的平行线交双曲线y =1x(x >0)于点C ,D .若AC =√3BD ,则3OD 2﹣OC 2的值为( )A .5B .3√2C .4D .2√310.、若点(﹣1,y 1),(2,y 2),(3,y 3)在反比例函数y =kx(k <0)的图象上,则y 1,y 2,y 3的大小关系是( )A .y 1>y 2>y 3B .y 3>y 2>y 1C .y 1>y 3>y 2D .y 2>y 3>y 111.如图,点A ,B 在双曲线y =3x(x >0)上,点C 在双曲线y =1x(x >0)上,若AC ∥y 轴,BC ∥x 轴,且AC =BC ,则AB 等于( ) A .√2 B .2√2 C .4 D .3√212.反比例函数y =k x(x <0)的图象如图所示,下列关于该函数图象的四个结论:①k >0;②当x <0时,y 随x 的增大而增大;③该函数图象关于直线y =﹣x 对称;④若点(﹣2,3)在该反比例函数图象上,则点(﹣1,6)也在该函数的图象上.其中正确结论的个数有 个.13.已知:函数y 1=|x |与函数y 2=1|x|的部分图象如图所示,有以下结论:①当x <0时,y 1,y 2都随x 的增大而增大; ②当x <﹣1时,y 1>y 2;③y 1与y 2的图象的两个交点之间的距离是2; ④函数y =y 1+y 2的最小值是2. 则所有正确结论的序号是 . 14.如图,在平面直角坐标系中,反比例y =kx(k >0)的图象和△ABC 都在第一象限内,AB =AC =52,BC ∥x 轴,且BC =4,点A 的坐标为(3,5).若将△ABC 向下平移m 个单位长度,A ,C 两点同时落在反比例函数图象上,则m 的值为 .15.一个不透明的口袋中有三个完全相同的小球,球上分别标有数字﹣1,1,2.第一次从袋中任意摸出一个小球(不放回),得到的数字作为点M 的横坐标x ;再从袋中余下的两个小球中任意摸出一个小球,得到的数字作为点M 的纵坐标y .(1)用列表法或树状图法,列出点M (x ,y )的所有可能结果;(2)求点M (x ,y )在双曲线y =−2x上的概率.16.如图,已知菱形ABCD 的对称中心是坐标原点O ,四个顶点都在坐标轴上,反比例函数y =k x(k ≠0)的图象与AD 边交于E (﹣4,12),F (m ,2)两点. (1)求k ,m 的值;(2)写出函数y =kx图象在菱形ABCD 内x 的取值范围.六.待定系数法求反比例函数解析式(共3小题) 17.如图,在平面直角坐标系xOy 中,A (﹣1,2).(1)将点A 向右平移3个单位长度,再向上平移1个单位长度,得到点B ,则点B 的坐标是 .(2)点C 与点A 关于原点O 对称,则点C 的坐标是 . (3)反比例函数的图象经过点B ,则它的解析式是 . (4)一次函数的图象经过A ,C 两点,则它的解析式是 .18.如图,已知平行四边形OABC 中,点O 为坐标原点,点A (3,0),C (1,2),函数y =kx (k ≠0)的图象经过点C . (1)求k 的值及直线OB 的函数表达式: (2)求四边形OABC 的周长.19.如图,直线AB 与x 轴交于点A (1,0),与y 轴交于点B (0,2),将线段AB绕点A 顺时针旋转90°得到线段AC ,反比例函数y =kx(k ≠0,x >0)的图象经过点C .(1)求直线AB 和反比例函数y =kx (k ≠0,x >0)的解析式;(2)已知点P 是反比例函数y =kx (k ≠0,x >0)图象上的一个动点,求点P 到直线AB 距离最短时的坐标.七.反比例函数与一次函数的交点问题(共5小题)20.如图,在同一平面直角坐标系中,一次函数y 1=kx +b (k 、b 是常数,且k ≠0)与反比例函数y 2=cx(c 是常数,且c ≠0)的图象相交于A (﹣3,﹣2),B (2,3)两点,则不等式y 1>y 2的解集是( )A .﹣3<x <2B .x <﹣3或x >2C .﹣3<x <0或x >2D .0<x <221.如图,一次函数y 1=(k ﹣5)x +b 的图象在第一象限与反比例函数y 2=kx的图象相交于A ,B 两点,当y 1>y 2时,x 的取值范围是1<x <4,则k = .22.已知直线y =ax (a ≠0)与反比例函数y =kx(k ≠0)的图象一个交点坐标为(2,4),则它们另一个交点的坐标是 .23.如图,已知反比例函数y =k x(x >0)的图象与一次函数y =−12x +4的图象交于A 和B (6,n )两点. (1)求k 和n 的值;(2)若点C (x ,y )也在反比例函数y =kx(x >0)的图象上,求当2≤x ≤6时,函数值y 的取值范围.24.如图,一次函数y =mx +b 的图象与反比例函数y =kx的图象交于A (3,1),B (−12,n )两点.(1)求该反比例函数的解析式;(2)求n 的值及该一次函数的解析式.八.反比例函数的应用(共1小题)25.南宁至玉林高速铁路已于去年开工建设.玉林良睦隧道是全线控制性工程,首期打通共有土石方总量为600千立方米,设计划平均每天挖掘土石方x 千立方米,总需用时间y 天,且完成首期工程限定时间不超过600天. (1)求y 与x 之间的函数关系式及自变量x 的取值范围;(2)由于工程进度的需要,实际平均每天挖掘土石方比原计划多0.2千立方米,工期比原计划提前了100天完成,求实际挖掘了多少天才能完成首期工程?九.反比例函数综合题(共1小题)26.在平面直角坐标系中,矩形ABCD的顶点坐标为A(0,0),B(6,0),C(6,8),D(0,8),AC,BD交于点E.(1)如图(1),双曲线y=k1x过点E,直接写出点E的坐标和双曲线的解析式;(2)如图(2),双曲线y=k2x 与BC,CD分别交于点M,N,点C关于MN的对称点C′在y轴上.求证△CMN~△CBD,并求点C′的坐标;(3)如图(3),将矩形ABCD向右平移m(m>0)个单位长度,使过点E的双曲线y=k3x与AD交于点P.当△AEP为等腰三角形时,求m的值.参考答案与试题解析一.反比例函数的定义(共2小题) 1.【解答】解:根据反比例函数解析式中k 是常数,不能等于0,由题意可得:|a |﹣2≠0, 解得:a ≠±2, 故选:C . 2.【解答】解:设等腰三角形的底角为y ,顶角为x ,由题意,得y =−12x +90°, 故选:B .二.反比例函数的图象(共1小题)3.【解答】解:若反比例函数y =ax经过第一、三象限,则a >0.所以b <0.则一次函数y =ax ﹣b 的图象应该经过第一、二、三象限;若反比例函数y =ax经过第二、四象限,则a <0.所以b >0.则一次函数y =ax ﹣b 的图象应该经过第二、三、四象限. 故选项A 正确; 故选:A .三.反比例函数的性质(共2小题) 4.【解答】解:∵k =2>0,∴反比例函数经过第一、三象限; 故选:A .5.【解答】解:A 、把点(2,3)代入反比例函数y =5x得2.5≠3不成立,故A 选项错误;B 、∵k =5>0,∴它的图象在第一、三象限,故B 选项错误;C 、反比例函数有两条对称轴,y =x 和y =﹣x ;当x <0时,x 越小,越接近x 轴,故C 选项正确;D 、反比例函数有两条对称轴,y =x 和y =﹣x ;当x <0时,x 越小,越接近x 轴,故D 选项错误. 故选:C .四.反比例函数系数k 的几何意义(共3小题) 6.【解答】解:如图,作EM ⊥x 轴于点M ,则EM =1. ∵△ODE 的面积是4√33, ∴12OD •EM =4√33,∴OD =8√33. 在直角△OAD 中,∵∠A =90°,∠AOD =30°, ∴∠ADO =60°,∴∠EDM =∠ADO =60°.在直角△EMD 中,∵∠DME =90°,∠EDM =60°, ∴DM =EM tan60°=√3=√33, ∴OM =OD +DM =3√3, ∴E (3√3,1).∵反比例函数y =kx(k >0)的图象过点E ,∴k =3√3×1=3√3. 故答案为3√3.7.【解答】解:设点B 的坐标为(a ,0),则A 点坐标为(﹣a ,0) 由图象可知,点C (a ,k 1a),E (﹣a ,−k 2a),D (﹣a ,k 1a),F (−a3,k 1a) 矩形ABCD 面积为:2a •k 1a=2k 1∴S △DEF =DE⋅DF 2=23a×(−2k 2a)2=−23k 2S △BCF =CF⋅BC2=43a×k 1a2=23k 1S △ABE =AB⋅AE2=2a×(−k 2a)2=−k 2∵S △BEF =7∴2k 1+23k 2−23k 1+k 2=7 ①∵k 1+3k 2=0∴k 2=−13k 1代入①式得43k 1+53×(−13k 1)=7解得k 1=9 故答案为:9 8.【解答】解:(1)由已知可得AD =5, ∵菱形ABCD ,∴B (6,0),C (9,4),∵点D (4,4)在反比例函数y =kx(x >0)的图象上, ∴k =16,将点C (9,4)代入y =23x +b ,∴b =﹣2;(2)E (0,﹣2),直线y =23x ﹣2与x 轴交点为(3,0), ∴S △AEC =12×2×(2+4)=6;五.反比例函数图象上点的坐标特征(共8小题) 9.【解答】解:延长CA 交y 轴于E ,延长BD 交y 轴于F . 设A 、B 的横坐标分别是a ,b , ∵点A 、B 为直线y =x 上的两点, ∴A 的坐标是(a ,a ),B 的坐标是(b ,b ).则AE =OE =a ,BF =OF =b .∵C 、D 两点在交双曲线y =1x (x >0)上,则CE =1a,DF =1b. ∴BD =BF ﹣DF =b −1b,AC =1a−a .又∵AC =√3BD , ∴1a−a =√3(b −1b),两边平方得:a 2+1a2−2=3(b 2+1b2−2),即a 2+1a 2=3(b 2+1b2)﹣4,在直角△ODF 中,OD 2=OF 2+DF 2=b 2+1b2,同理OC 2=a 2+1a2, ∴3OD 2﹣OC 2=3(b 2+1b 2)﹣(a 2+1a2)=4.故选:C .10.【解答】解:∵k <0,∴在每个象限内,y 随x 值的增大而增大, ∴当x =﹣1时,y 1>0, ∵2<3, ∴y 2<y 3<y 1 故选:C .11.【解答】解:点C在双曲线y=1x上,AC∥y轴,BC∥x轴,设C(a,1a ),则B(3a,1a),A(a,3a),∵AC=BC,∴3a −1a=3a﹣a,解得a=1,(负值已舍去)∴C(1,1),B(3,1),A(1,3),∴AC=BC=2,∴Rt△ABC中,AB=2√2,故选:B.12.【解答】解:观察反比例函数y=kx (x<0)的图象可知:图象过第二象限,∴k<0,所以①错误;因为当x<0时,y随x的增大而增大;所以②正确;因为该函数图象关于直线y=﹣x对称;所以③正确;因为点(﹣2,3)在该反比例函数图象上,所以k=﹣6,则点(﹣1,6)也在该函数的图象上.所以④正确.所以其中正确结论的个数为3个.故答案为3.13.【解答】解:补全函数图象如图:①当x<0时,y1随x的增大而减小,y2随x的增大而增大;故①错误;②当x<﹣1时,y1>y2;故②正确;③y1与y2的图象的两个交点之间的距离是2;故③正确;④∵(x﹣1)2≥0,∴x2+1≥2|x|,∵y=y1+y2=|x|+1|x|=x2+1|x|≥2,∴函数y =y 1+y 2的最小值是2. 故④正确.综上所述,正确的结论是②③④. 故答案为②③④.14.【解答】解:∵AB =AC =52,BC =4,点A (3,5). ∴B (1,72),C (5,72), 将△ABC 向下平移m 个单位长度,∴A (3,5﹣m ),C (5,72−m ), ∵A ,C 两点同时落在反比例函数图象上,∴3(5﹣m )=5(72−m ), ∴m =54;故答案为54;15.【解答】解:(1)用树状图表示为: 点M (x ,y )的所有可能结果;(﹣1,1)(﹣1,2)(1,﹣1)(1,2)(2,﹣1)(2,1)共六种情况.(2)在点M 的六种情况中,只有(﹣1,2)(2,﹣1)两种在双曲线y =−2x上, ∴P =26=13;因此,点M (x ,y )在双曲线y =−2x上的概率为13.16.【解答】解:(1)∵点E (﹣4,12)在y =k x上,∴k =﹣2,∴反比例函数的解析式为y =−2x, ∵F (m ,2)在y =−2x上,∴m =﹣1.(2)函数y =kx图象在菱形ABCD 内x 的取值范围为:﹣4<x <﹣1或1<x <4.六.待定系数法求反比例函数解析式(共3小题) 17.【解答】解:(1)将点A 向右平移3个单位长度,再向上平移1个单位长度,得到点B ,则点B 的坐标是(2,3);(2)点C 与点A 关于原点O 对称,则点C 的坐标是(1,﹣2);(3)设反比例函数解析式为y =kx, 把B (2,3)代入得:k =6,∴反比例函数解析式为y =6x;(4)设一次函数解析式为y =mx +n ,把A (﹣1,2)与C (1,﹣2)代入得:{−m +n =2m +n =−2,解得:{m =−2n =0,则一次函数解析式为y =﹣2x .故答案为:(1)(2,3);(2)(1,﹣2);(3)y =6x;(4)y =﹣2x .18.【解答】解:(1)依题意有:点C (1,2)在反比例函数y =kx(k ≠0)的图象上,∴k =xy =2, ∵A (3,0) ∴CB =OA =3, 又CB ∥x 轴, ∴B (4,2),设直线OB 的函数表达式为y =ax , ∴2=4a ,∴a =12,∴直线OB 的函数表达式为y =12x ;(2)作CD ⊥OA 于点D , ∵C (1,2),∴OC =√12+22=√5, 在平行四边形OABC 中, CB =OA =3,AB =OC =√5,∴四边形OABC 的周长为:3+3+√5+√5=6+2√5, 即四边形OABC 的周长为6+2√5.19.【解答】解:(1)将点A(1,0),点B(0,2),代入y=mx+b,∴b=2,m=﹣2,∴y=﹣2x+2;∵过点C作CD⊥x轴,∵线段AB绕点A顺时针旋转90°得到线段AC,∴△ABO≌△CAD(AAS),∴AD=OB=2,CD=OA=1,∴C(3,1),∴k=3,∴y=3x ;(2)设与AB平行的直线y=﹣2x+h,联立﹣2x+h=3x ,∴﹣2x2+hx﹣3=0,当△=h2﹣24=0时,h=2√6或﹣2√6(舍弃),此时点P到直线AB距离最短;∴P(√62,√6);七.反比例函数与一次函数的交点问题(共5小题)20.【解答】解:∵一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=c x (c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,∴不等式y1>y2的解集是﹣3<x<0或x>2.故选:C.21.【解答】解:由已知得A、B的横坐标分别为1,4,所以有{k −5+b =k4(k −5)+b =k 4解得k =4, 故答案为4. 22.【解答】解:∵反比例函数的图象与经过原点的直线的两个交点一定关于原点对称,∴另一个交点的坐标与点(2,4)关于原点对称, ∴该点的坐标为(﹣2,﹣4). 故答案为:(﹣2,﹣4).23.【解答】解:(1)当x =6时,n =−12×6+4=1, ∴点B 的坐标为(6,1). ∵反比例函数y =kx 过点B (6,1),∴k =6×1=6. (2)∵k =6>0,∴当x >0时,y 随x 值增大而减小, ∴当2≤x ≤6时,1≤y ≤3.24.【解答】解:(1)∵反比例函数y =kx的图象经过A (3,1), ∴k =3×1=3,∴反比例函数的解析式为y =3x;(2)把B (−12,n )代入反比例函数解析式,可得 −12n =3, 解得n =﹣6,∴B (−12,﹣6),把A (3,1),B (−12,﹣6)代入一次函数y =mx +b ,可得{1=3m +b−6=−12m +b,解得{m =2b =−5,∴一次函数的解析式为y =2x ﹣5.八.反比例函数的应用(共1小题)25.【解答】解:(1)根据题意可得:y =600x, ∵y ≤600, ∴x ≥1;(2)设实际挖掘了m天才能完成首期工程,根据题意可得:600 m −600m+100=0.2,解得:m=﹣600(舍)或500,检验得:m=500是原方程的根,答:实际挖掘了500天才能完成首期工程.九.反比例函数综合题(共1小题)26.【解答】解:(1)如图1中,∵四边形ABCD是矩形,∴DE=EB,∵B(6,0),D(0,8),∴E(3,4),∵双曲线y=k1x 过点E,∴k1=12.∴反比例函数的解析式为y=12x.(2)如图2中,∵点M,N在反比例函数的图象上,∴DN•AD=BM•AB,∵BC=AD,AB=CD,∴DN•BC=BM•CD,∴DNBM =CDBC,∴DNCD =BMCB,∴CNCD =CMCB,∵∠MCN =∠BCD , ∴△MCN ∽△BCD , ∴∠CNM =∠CDB , ∴MN ∥BD ,∴△CMN ∽△CBD . ∵B (6,0),D (0,8),∴直线BD 的解析式为y =−43x +8, ∵C ,C ′关于MN 对称, ∴CC ′⊥MN , ∴CC ′⊥BD , ∵C (6,8),∴直线CC ′的解析式为y =34x +72, ∴C ′(0,72).(3)如图3中,①当AP =AE =5时,∵P (m ,5),E (m +3,4),P ,E 在反比例函数图象上, ∴5m =4(m +3), ∴m =12.②当EP =AE 时,点P 与点D 重合,∵P (m ,8),E (m +3,4),P ,E 在反比例函数图象上, ∴8m =4(m +3), ∴m =3.③显然PA ≠PE ,若相等,点P 在点E 的下方,显然不可能. 综上所述,满足条件的m 的值为3或12.。

2024年中考数学真题分类汇编(全国通用)(第一期)专题13 反比例函数及其应用(41题)(解析版)

2024年中考数学真题分类汇编(全国通用)(第一期)专题13 反比例函数及其应用(41题)(解析版)

专题13反比例函数及其应用(41题)一、单选题1.(2024·安徽·中考真题)已知反比例函数()0ky k x=≠与一次函数2y x =-的图象的一个交点的横坐标为3,则k 的值为()A .3-B .1-C .1D .3【答案】A【分析】题目主要考查一次函数与反比例函数的交点问题,根据题意得出231y =-=-,代入反比例函数求解即可【详解】解:∵反比例函数()0ky k x=≠与一次函数2y x =-的图象的一个交点的横坐标为3,∴231y =-=-,∴13k-=,∴3k =-,故选:A2.(2024·重庆·中考真题)反比例函数10y x=-的图象一定经过的点是()A .()1,10B .()2,5-C .()2,5D .()2,8【答案】B【分析】本题考查了求反比例函数值.熟练掌握求反比例函数值是解题的关键.分别将各选项的点坐标的横坐标代入,求纵坐标,然后判断作答即可.【详解】解:解:当1x =时,10101y =-=-,图象不经过()1,10,故A 不符合要求;当2x =-时,1052y =-=-,图象一定经过()2,5-,故B 符合要求;当2x =时,1052y =-=-,图象不经过()2,5,故C 不符合要求;当2x =时,1052y =-=-,图象不经过()2,8,故D 不符合要求;故选:B .3.(2024·天津·中考真题)若点()()()123,1,,1,,5A x B x C x -都在反比例函数5y x=的图象上,则123,,x x x 的大小关系是()A .123x x x <<B .132x x x <<C .321x x x <<D .213x x x <<4.(2024·广西·中考真题)已知点()11,M x y ,()22,N x y 在反比例函数y x=的图象上,若120x x <<,则有()A .120y y <<B .210y y <<C .120y y <<D .120y y <<5.(2024·浙江·中考真题)反比例函数y x=的图象上有()1,P t y ,()24,Q t y +两点.下列正确的选项是()A .当4t <-时,210y y <<B .当40t -<<时,210y y <<C .当40t -<<时,120y y <<D .当0t >时,120y y <<【答案】A【分析】本题考查了反比例函数图象上的点的坐标特征,由于反比例函数4y x=,可知函数位于一、三象限,分情况讨论,根据反比例函数的增减性判断出1y 与2y 的大小.【详解】解:根据反比例函数4y x=,可知函数图象位于一、三象限,且在每个象限中,y 都是随着x 的增大而减小,反比例函数4y x=的图象上有()1,P t y ,()24,Q t y +两点,当40t t <+<,即4t <-时,120y y >>;当04t t <<+,即40t -<<时,120y y <<;当04t t <<+,即0t >时,120y y >>;故选:A .6.(2024·河北·中考真题)节能环保已成为人们的共识.淇淇家计划购买500度电,若平均每天用电x 度,则能使用y 天.下列说法错误的是()A .若5x =,则100y =B .若125y =,则4x =C .若x 减小,则y 也减小D .若x 减小一半,则y 增大一倍【答案】C【分析】本题考查的是反比例函数的实际应用,先确定反比例函数的解析式,再逐一分析判断即可.【详解】解:∵淇淇家计划购买500度电,平均每天用电x 度,能使用y 天.∴500xy =,∴500y x=,当5x =时,100y =,故A 不符合题意;当125y =时,5004125x ==,故B 不符合题意;∵0x >,0y >,∴当x 减小,则y 增大,故C 符合题意;若x 减小一半,则y 增大一倍,表述正确,故D 不符合题意;故选:C .7.(2024·四川泸州·中考真题)已知关于x 的一元二次方程2210x x k ++-=无实数根,则函数y kx =与函数2y x=的图象交点个数为()A .0B .1C .2D .38.(2024·重庆·中考真题)已知点()3,2-在反比例函数()0y k x=≠的图象上,则k 的值为()A .3-B .3C .6-D .69.(2024·黑龙江牡丹江·中考真题)矩形OBAC 在平面直角坐标系中的位置如图所示,反比例函数y x=的图象与AB 边交于点D ,与AC 边交于点F ,与OA 交于点E ,2OE AE =,若四边形ODAF 的面积为2,则k 的值是()A .25B .35C .45D .85【答案】D【分析】本题考查了矩形的性质、三角形面积的计算、反比例函数的图象和性质、相似三角形的判定和性质;熟练掌握矩形的性质和反比例函数的性质是解决问题的关键.过点E 作EM OC ⊥,则EM AC ,设k E a a ⎛⎫⎪⎝⎭,,由OME OCA ∽,可得3322k OC a AC a ==⋅,,再由O O F OBD CF A OBAC D S S S S =++ 矩形四边形,列方程,即可得出k 的值.【详解】过点E 作EM OC ⊥,则EM AC ,∴OME OCA ∽,∴OM EM OEOC AC OA==设k E a a ⎛⎫ ⎪⎝⎭,,∵2OE AE =∴23OM EM OC AC ==,∴3322kOC a AC a==⋅,∴3322O OBD DAF OCF OBAC kS S S S a a=++=⋅⋅ 矩形四边形即3322222k k k a a++=⋅⋅,解得:85k =故选D10.(2024·黑龙江大兴安岭地·中考真题)如图,双曲线()0y x x=>经过A 、B 两点,连接OA 、AB ,过点B 作BD y ⊥轴,垂足为D ,BD 交OA 于点E ,且E 为AO 的中点,则AEB △的面积是()A .4.5B .3.5C .3D .2.5设12,A a a ⎛⎫⎪⎝⎭,0a >,∵BD y ⊥轴,AF BD ⊥∴AF y ∥轴,DF =∴AFE ODE ∽,∴116394.52222ABE S AF BE a a =⨯⨯=⨯⨯== ,故选:A .11.(2024·江苏扬州·中考真题)在平面直角坐标系中,函数42=+y x 的图像与坐标轴的交点个数是()A .0B .1C .2D .4【答案】B【分析】根据函数表达式计算当0x =时y 的值,可得图像与y 轴的交点坐标;由于42x +的值不可能为0,即0y ≠,因此图像与x 轴没有交点,由此即可得解.本题主要考查了函数图像与坐标轴交点个数,掌握求函数图像与坐标轴交点的计算方法是解题的关键.【详解】当0x =时,422y ==,∴42=+y x 与y 轴的交点为()0,2;由于42x +是分式,且当2x ≠-时,402x ≠+,即0y ≠,∴42=+y x 与x 轴没有交点.∴函数42=+y x 的图像与坐标轴的交点个数是1个,故选:B .12.(2024·吉林长春·中考真题)如图,在平面直角坐标系中,点O 是坐标原点,点()4,2A 在函数()0,0ky k x x=>>的图象上.将直线OA 沿y 轴向上平移,平移后的直线与y 轴交于点B ,与函数()0,0ky k x x=>>的图象交于点C .若5BC =,则点B 的坐标是()A .(5B .()0,3C .()0,4D .(0,5【答案】B【分析】本题主要考查反比例函数、解直角三角形、平移的性质等知识点,掌握数形结合思想成为解题的关键.∵()4,2A ,∴4OE =,222425OA =+=∴42sin 5525OE OAE OA ∠===∵()4,2A 在反比例函数的图象上,∴221BD BC CD =-=,∴413OB OD BD =-=-=,∴()0,3B 故选:B .13.(2024·四川宜宾·中考真题)如图,等腰三角形ABC 中,AB AC =,反比例函数()0y k x=≠的图象经过点A 、B 及AC 的中点M ,BC x ∥轴,AB 与y 轴交于点N .则ANAB的值为()A .13B .14C .15D .25【答案】B【分析】本题考查反比例函数的性质,平行线分线段成比例定理,等腰三角形的性质等知识,找到坐标之间的关系是解题的关键.作辅助线如图,利用函数表达式设出A 、B 两点的坐标,利用D ,M 是中点,找到坐标之间的关系,利用平行线分线段成比例定理即可求得结果.【详解】解:作过A 作BC 的垂线垂足为D ,BC 与y 轴交于E 点,如图,在等腰三角形ABC 中,AD BC ⊥,D 是BC 中点,设,k A a a ⎛⎫ ⎪⎝⎭,,k B b b ⎛⎫ ⎪⎝⎭,由BC 中点为D ,AB AC =,故等腰三角形ABC 中,∴BD DC a b ==-,二、填空题14.(2024·北京·中考真题)在平面直角坐标系xOy 中,若函数()0ky k x=≠的图象经过点()13,y 和()23,y -,则12y y +的值是.15.(2024·云南·中考真题)已知点()2,P n 在反比例函数y x=的图象上,则n =.【答案】5【分析】本题考查反比例函数图象上点的坐标特征,将点()2,P n 代入10y x=求值,即可解题.【详解】解: 点()2,P n 在反比例函数10y x=的图象上,1052n ∴==,故答案为:5.16.(2024·山东威海·中考真题)如图,在平面直角坐标系中,直线()10y ax b a =+≠与双曲线()20y k x=≠交于点()1,A m -,()2,1B -.则满足12y y ≤的x 的取值范围.【答案】10x -≤<或2x ≥【分析】本题考查了一次函数与反比例函数的交点问题,根据图象解答即可求解,利用数形结合思想解答是解题的关键.【详解】解:由图象可得,当10x -≤<或2x ≥时,12y y ≤,∴满足12y y ≤的x 的取值范围为10x -≤<或2x ≥,故答案为:10x -≤<或2x ≥.17.(2024·湖南·中考真题)在一定条件下,乐器中弦振动的频率f 与弦长l 成反比例关系,即kf l=(k 为常数.0k ≠),若某乐器的弦长l 为0.9米,振动频率f 为200赫兹,则k 的值为.【答案】180【分析】本题考查了待定系数法求反比例函数解析式,把0.9l =,200f =代入kf l=求解即可.【详解】解:把0.9l =,200f =代入kf l =,得2000.9k =,解得180k =,故答案为:180.18.(2024·陕西·中考真题)已知点()12,A y -和点()2,B m y 均在反比例函数y x=-的图象上,若01m <<,则12y y +0.【答案】</小于19.(2024·湖北武汉·中考真题)某反比例函数y x=具有下列性质:当0x >时,y 随x 的增大而减小,写出一个满足条件的k 的值是.【答案】1(答案不唯一)【分析】本题考查的是反比例函数的性质,反比例函数的图象是双曲线,当0k >,双曲线的两支分别位于第一、第三象限,在每一象限内y 随x 的增大而减小,当0k <,双曲线的两支分别位于第二、第四象限,在每一象限内y 随x 的增大而增大.直接根据反比例函数的性质写出符合条件的的值即可.【详解】解:∵当0x >时,y 随x 的增大而减小,∴0k >故答案为:1(答案不唯一).20.(2024·黑龙江齐齐哈尔·中考真题)如图,反比例函数(0)ky x x=<的图象经过平行四边形ABCO 的顶点A ,OC 在x 轴上,若点()1,3B -,3ABCO S = ,则实数k 的值为.【答案】6-【分析】本题考查了反比例函数,根据,A B 的纵坐标相同以及点A 在反比例函数上得到A 的坐标,进而用代数式表达AB 的长度,然后根据3ABCO S = 列出一元一次方程求解即可.【详解】ABCO 是平行四边形,A B ∴纵坐标相同()1,3B - A ∴的纵坐标是3A 在反比例函数图象上∴将3y =代入函数中,得到3k x =,33k A ⎛⎫∴ ⎪⎝⎭13k AB ∴=--3,ABCO S B = 的纵坐标为333AB ∴⨯=即:1333k ⎛⎫--⨯= ⎪⎝⎭解得:6k =-故答案为:6-.21.(2024·内蒙古包头·中考真题)若反比例函数12y x =,23y x=-,当13x ≤≤时,函数1y 的最大值是a ,函数2y 的最大值是b ,则b a =.【答案】12/0.5【分析】此题主要考查了反比例函数的性质,负整数指数幂,正确得出a 与b 的关系是解题关键.直接利用反比例函数的性质分别得出a 与b ,再代入b a 进而得出答案.【详解】解: 函数12y x=,当13x ≤≤时,函数1y 随x 的增大而减小,最大值为a ,1x ∴=时,12y a ==,23y x =- ,当13x ≤≤时,函数2y 随x 的增大而减大,函数2y 的最大值为21y b =-=,1122b a -∴==.故答案为:12.22.(2024·四川遂宁·中考真题)反比例函数1k y x-=的图象在第一、三象限,则点()3k -,在第象限.【答案】四/423.(2024·江苏扬州·中考真题)如图,在平面直角坐标系中,点A 的坐标为(1,0),点B 在反比例函数(0)ky x x=>的图像上,BC x ⊥轴于点C ,30BAC ∠=︒,将ABC 沿AB 翻折,若点C 的对应点D 落在该反比例函数的图像上,则k 的值为.∴33(13,),1,22B a a D a a ⎛⎫++ ⎪ ⎪⎝⎭,∵点B 的对应点D 落在该反比例函数的图像上,∴()3313122k a a a a ⎛⎫=+=⋅+ ⎪ ⎪⎝⎭,解得:233a =,∵反比例函数图象在第一象限,∴2321332333k ⎛⎫=+⨯= ⎪⎝⎭,故答案为:23.24.(2024·内蒙古呼伦贝尔·中考真题)如图,在平面直角坐标系中,点A ,B 的坐标分别为()5,0,()2,6,过点B 作BC x ∥轴交y 轴于点C ,点D 为线段AB 上的一点,且2BD AD =.反比例函数(0)ky x x=>的图象经过点D 交线段BC 于点E ,则四边形ODBE 的面积是.【答案】12【分析】本题主要考查了反比例函数的图象与性质,反比例函数图象上点的坐标特征,反比例函数k 的几何意义,作BM x ⊥轴于M ,作DN x ⊥轴于N ,则DN BM ∥,由点A ,B 的坐标分别为()5,0,()2,6得2BC OM ==,6BM OC ==,3AM =,然后证明ADN ABM ∽△△得DN AN ADBM AM AB ==,求出2DN =,则4ON OA AN =-=,故有D 点坐标为()4,2,求出反比例函数解析式8y x =,再求出4,63E ⎛⎫⎪⎝⎭,最后根据∵点A ,B 的坐标分别为∴2BC OM ==,BM =∵DN BM ∥,∴ADN ABM ∽△△,∴DN AN ADBM AM AB==,25.(2024·四川广元·中考真题)已知y =与()0y x x=>的图象交于点()2,A m ,点B 为y 轴上一点,将OAB 沿OA 翻折,使点B 恰好落在()0ky x x=>上点C 处,则B 点坐标为.【答案】()0,4【分析】本题考查了反比例函数的几何综合,折叠性质,解直角三角形的性质,勾股定理,正确掌握相关性质内容是解题的关键.先得出()2,23A 以及()430y x x=>,根据解直角三角形得130∠=︒,根据折叠性质,330∠=︒,然后根据勾股定理进行列式,即()222324OB OC ==+=.【详解】解:如图所示:过点A 作AH y ⊥轴,过点C 作CD x ⊥轴,∵3y x =与()0ky x x=>的图象交于点()2,A m ,∴把()2,A m 代入3y x =,得出3223m =⨯=,∴()2,23A ,把()2,23A 代入()0ky x x=>,解得22343k =⨯=,∴()430y x x=>,设43C m m ⎛⎫ ⎪ ⎪⎝⎭,,在23Rt tan 1323AH AHO OH ∠=== ,,26.(2024·广东深圳·中考真题)如图,在平面直角坐标系中,四边形AOCB 为菱形,tan 3AOC ∠=,且点A 落在反比例函数3y x=上,点B 落在反比例函数()0ky k x=≠上,则k =.∵4tan 3AOC ∠=,∴43AD OD =,∴设4AD a =,则3OD a =,∴点()34A a a ,,∵点A 在反比例函数3y x=上,∴343a a ⋅=,∴12a =(负值已舍),则点322A ⎛⎫⎪⎝⎭,,∴2AD =,32OD =,∴2252OA OD AD =+=,∵四边形AOCB 为菱形,∴52AB OA ==,AB CO ∥,∴点()42B ,,∵点B 落在反比例函数()0ky k x=≠上,∴428k =⨯=,故答案为:8.27.(2024·广东广州·中考真题)如图,平面直角坐标系xOy 中,矩形OABC 的顶点B 在函数(0)k y x x=>的图象上,(1,0)A ,(0,2)C .将线段AB 沿x 轴正方向平移得线段A B ''(点A 平移后的对应点为A '),A B ''交函数(0)k y x x=>的图象于点D ,过点D 作DE y ⊥轴于点E ,则下列结论:①2k =;②OBD 的面积等于四边形ABDA '的面积;③A E '2④B BD BB O ''∠=∠.其中正确的结论有.(填写所有正确结论的序号)∵1212AOB A OD S S '==⨯= ,∴BOK AKDA S S '= 四边形,∴BOK BKD AKDA S S S S '+=+ 四边形∴OBD 的面积等于四边形ABDA 如图,连接A E ',∵DE y ⊥轴,90DA O EOA ''∠=∠=︒,∴四边形A DEO '为矩形,∴A E OD '=,∴当OD 最小,则A E '最小,设()2,0D x x x ⎛⎫> ⎪⎝⎭,∴2224224OD x x x x=+≥⋅⋅=,∴2OD ≥,∴A E '的最小值为2,故③不符合题意;如图,设平移距离为n ,∴()1,2B n '+,∵反比例函数为2y x=,四边形A B CO ''为矩形,∴90BB D OA B '''∠=∠=︒,21,1D n n ⎛⎫+ ⎪+⎝⎭,∴BB n '=,1OA n '=+,22211n B D n n '=-=++,2A B ''=,∴2112n BB n B D n OA n A B ''+==='''+,∴B BD A OB ''' ∽,∴B BD B OA '''∠=∠,∵B C A O ''∥,∴CB O A OB '''∠=∠,∴B BD BB O ''∠=∠,故④符合题意;故答案为:①②④【点睛】本题考查的是反比例函数的图象与性质,平移的性质,矩形的判定与性质,相似三角形的判定与性质,勾股定理的应用,作出合适的辅助线是解本题的关键.28.(2024·四川乐山·中考真题)定义:函数图象上到两坐标轴的距离都小于或等于1的点叫做这个函数图象的“近轴点”.例如,点()0,1是函数1y x =+图象的“近轴点”.(1)下列三个函数的图象上存在“近轴点”的是(填序号);①3y x =-+;②2y x =;③221y x x =-+-.(2)若一次函数3y mx m =-图象上存在“近轴点”,则m 的取值范围为.(2)()33y mx m m x =-=-中,3x =时,0y =,∴图象恒过点()3,0,当直线过()1,1-时,()113m -=-,∴12m =,∴102m <≤;当直线过()1,1时,()113m =-,∴12m =-,∴102m -≤<;∴m 的取值范围为102m -≤<或102m <≤.故答案为:102m -≤<或102m <≤.三、解答题29.(2024·甘肃·中考真题)如图,在平面直角坐标系中,将函数y ax =的图象向上平移3个单位长度,得到一次函数y ax b =+的图象,与反比例函数()0k y x x =>的图象交于点()24A ,.过点()02B ,作x 轴的平行线分别交y ax b =+与()0k y x x=>的图象于C ,D 两点.(1)求一次函数y ax b =+和反比例函数k y x=的表达式;(2)连接AD ,求ACD 的面积.∵()24A ,,∴()()11642622ACD A C S CD y y =⋅-=⨯⨯-=△.30.(2024·青海·中考真题)如图,在同一直角坐标系中,一次函数y x b =-+和反比例函数y x=的图象相交于点()1,A m ,(),1B n .(1)求点A ,点B 的坐标及一次函数的解析式;(2)根据图象,直接写出不等式9x b x-+>的解集.【答案】(1)()1,9A ,()9,1B ,10y x =-+(2)0x <或19x <<【分析】本题主要考查了一次函数与反比函数的交点问题:(1)分别把点()1,A m ,点(),1B n 代入9y x =,可求出点A ,B 的坐标,即可求解;(2)直接观察图象,即可求解.【详解】(1)解:把点()1,A m 代入9y x =中,得:991m ==,∴点A 的坐标为()1,9,把点(),1B n 代入9y x =中,得:991n ==,∴点B 的坐标为()9,1,把1x =,9y =代入y x b =-+中得:19b -+=,∴10b =,∴一次函数的解析式为10y x =-+,(2)解:根据一次函数和反比例函数图象,得:当0x <或19x <<时,一次函数y x b =-+的图象位于反比例函数9y x=的图象的上方,31.(2024·吉林·中考真题)已知蓄电池的电压为定值,使用蓄电池时,电流I (单位:A )与电阻R (单位:Ω)是反比例函数关系,它的图象如图所示.(1)求这个反比例函数的解析式(不要求写出自变量R 的取值范围).(2)当电阻R 为3Ω时,求此时的电流I .32.(2024·山东·中考真题)列表法、表达式法、图像法是三种表示函数的方法,它们从不同角度反映了自变量与函数值之间的对应关系.下表是函数2y x b =+与k y x=部分自变量与函数值的对应关系:x72-a 12x b +a1________kx ________________7(1)求a 、b 的值,并补全表格;(2)结合表格,当2y x b =+的图像在k y x=的图像上方时,直接写出x 的取值范围.【答案】(1)25a b =-⎧⎨=⎩,补全表格见解析(2)x 的取值范围为702x -<<或1x >;【分析】本题考查的是一次函数与反比例函数的综合,利用图像法写自变量的取值范围;(1)根据表格信息建立方程组求解,a b 的值,再求解k 的值,再补全表格即可;(2)由表格信息可得两个函数的交点坐标,再结合函数图像可得答案.【详解】(1)解:当72x =-时,2x b a +=,即7b a -+=,当x a =时,21x b +=,即21a b +=,∴721a b a b -=-⎧⎨+=⎩,解得:25a b =-⎧⎨=⎩,∴一次函数为25y x =+,当1x =时,7y =,∵当1x =时,7k y x==,即7k =,∴反比例函数为:7y x =,当72x =-时,7722y ⎛⎫=÷-=- ⎪⎝⎭,当1y =时,2x a ==-,当2x =-时,72y =-,补全表格如下:x72-2-12x b +2-17∴当2y x b =+的图像在k y x =的图像上方时,33.(2024·湖北·中考真题)一次函数y x m =+经过点()3,0A -,交反比例函数y x =于点(),4B n .(1)求m n k ,,;(2)点C 在反比例函数k y x=第一象限的图象上,若AO OB C A S S <△△,直接写出C 的横坐标a 的取值范围.∴304m n m -+=⎧⎨+=⎩,解得31m n =⎧⎨=⎩,∴点()1,4B ,∵反比例函数k y x=经过点()1,4B ,∴144k =⨯=;(2)解:∵点()30A -,,点()1,4B ,∴3AO =,∴1134622AOB B S AO y =⨯=⨯⨯=△,1322AOC C C S AO y y =⨯=△,由题意得362C y <,∴4C y <,∴1C x >,∴C 的横坐标a 的取值范围为1a >.34.(2024·四川凉山·中考真题)如图,正比例函数12y x =与反比例函数()20y x x=>的图象交于点()2A m ,.(1)求反比例函数的解析式;(2)把直线112y x =向上平移3个单位长度与()20k y x x=>的图象交于点B ,连接,AB OB ,求AOB 的面积.【答案】(1)28y x =(2)6【分析】本题考查了一次函数与反比例函数的交点问题,待定系数法求函数解析式,一次函数的平移等知识,熟练掌握函数的平移法则是关键.联立方程组8132yxy x⎧=⎪⎪⎨⎪=+⎪⎩,解得24xy=⎧⎨=⎩,81xy=-⎧⎨=-⎩(舍去),(2,4)B∴35.(2024·贵州·中考真题)已知点()1,3在反比例函数y x=的图象上.(1)求反比例函数的表达式;(2)点()3,a -,()1,b ,()3,c 都在反比例函数的图象上,比较a ,b ,c 的大小,并说明理由.【答案】(1)3y x=(2)a c b <<,理由见解析【分析】本题主要考查了反比例函数的性质,以及函数图象上点的坐标特点,待定系数法求反比例函数解析式,关键是掌握凡是函数图象经过的点必能满足解析式.(1)把点()1,3代入ky x=可得k 的值,进而可得函数的解析式;(2)根据反比例函数表达式可得函数图象位于第一、三象限,再根据点A 、点B 和点C 的横坐标即可比较大小.【详解】(1)解:把()1,3代入k y x =,得31k =,∴3k =,∴反比例函数的表达式为3y x=;(2)解:∵30k =>,∴函数图象位于第一、三象限,∵点()3,a -,()1,b ,()3,c 都在反比例函数的图象上,3013-<<<,∴0a c b <<<,∴a c b <<.36.(2024·河南·中考真题)如图,矩形ABCD 的四个顶点都在格点(网格线的交点)上,对角线AC ,BD 相交于点E ,反比例函数()0ky x x=>的图象经过点A .(1)求这个反比例函数的表达式.(2)请先描出这个反比例函数图象上不同于点A 的三个格点,再画出反比例函数的图象.(3)将矩形ABCD 向左平移,当点E 落在这个反比例函数的图象上时,平移的距离为________.(3)解:∵()6,4E 向左平移后,E 在反比例函数的图象上,∴平移后点E 对应点的纵坐标为4,当4y =时,64x=,解得32x =,∴平移距离为39622-=.故答案为:92.37.(2024·四川乐山·中考真题)如图,已知点()1,A m 、(),1B n 在反比例函数()30y x x=>的图象上,过点A 的一次函数y kx b =+的图象与y 轴交于点()0,1C .(1)求m 、n 的值和一次函数的表达式;(2)连接AB ,求点C 到线段AB 的距离.【答案】(1)3m =,3n =,21y x =+(2)点C 到线段AB 的距离为322【分析】(1)根据点()1,A m 、(),1B n 在反比例函数3y x=图象上,代入即可求得m 、n 的值;根据一次函数y kx b =+过点()1,3A ,()0,1C ,代入求得k ,b ,即可得到表达式;(2)连接BC ,过点A 作AD BC ⊥,垂足为点D ,过点C 作CE AB ⊥,垂足为点E ,可推出BC x ∥轴,BC 、AD 、DB 的长度,然后利用勾股定理计算出AB 的长度,最后根据1122ABC S BC AD AB CE =⋅=⋅ ,计算得CE 的长度,即为点C 到线段AB 的距离.【详解】(1) 点()1,A m 、(),1B n 在反比例函数3y x=图象上∴3m =,3n =又 一次函数y kx b =+过点()1,3A ,()0,1C ∴31k b b +=⎧⎨=⎩∴BC x ∥轴,3BC = 点()1,3A ,()3,1B ,AD ∴点()1,1D ,2AD =,DB 在Rt ADB 中,AB AD =38.(2024·四川眉山·中考真题)如图,在平面直角坐标系xOy 中,一次函数y kx b =+与反比例函数()0my x x=>的图象交于点()1,6A ,(),2B n ,与x 轴,y 轴分别交于C ,D 两点.(1)求一次函数和反比例函数的表达式;(2)若点P 在y 轴上,当PAB 的周长最小时,请直接写出点P 的坐标;(3)将直线AB 向下平移a 个单位长度后与x 轴,y 轴分别交于E ,F 两点,当12EF AB =时,求a 的值.【答案】(1)一次函数的表达式为28y x =-+,反比例函数的表达式为6y x=(2)点P 的坐标为()0,5(3)6a =或10a =【分析】本题考查了待定系数法求函数的解析式,轴对称-最短路径问题,勾股定理,正确地求出函数的解析式是解题的关键.(1)根据已知条件列方程求得6m =,得到反比例函数的表达式为6y x=,求得()3,2B ,解方程组即可得到结论;(2)如图,作点A 关于y 轴的对称点E ,连接EB 交y 轴于P ,则此时,PAB 的周长最小,根据轴对称的性质得到()1,6E -,得到直线BE 的解析式为5y x =-+,当0x =时,5y =,于是得到点P 的坐标为()0,5;(3)将直线AB 向下平移a 个单位长度后得直线EF 的解析式为28y x a =-+-,得到()8,0082a E F a -⎛⎫- ⎪⎝⎭.,,根据勾股定理即可得到结论.【详解】(1)解: 一次函数y kx b =+与反比例函数()0my x x=>的图象交于点()1,6A ,(),2B n ,61m∴=,6m ∴=,∴反比例函数的表达式为6y x=,把(),2B n 代入6y x=得,62n=,3n ∴=,()3,2B ∴,把()1,6A ,()3,2B 代入y kx b =+得,632k b k b +=⎧⎨+=⎩,解得28k b =-⎧⎨=⎩,∴一次函数的表达式为28y x =-+;此时,PAB 的周长最小,点()1,6A ,()1,6E ∴-,39.(2024·甘肃临夏·中考真题)如图,直线y kx =与双曲线4y x=-交于A ,B 两点,已知A 点坐标为(),2a .(1)求a ,k 的值;(2)将直线y kx =向上平移()0m m >个单位长度,与双曲线4y x=-在第二象限的图象交于点C ,与x 轴交于点E ,与y 轴交于点P ,若PE PC =,求m 的值.【答案】(1)2,1a k =-=-(2)2m =【分析】(1)直接把点A 的坐标代入反比例函数解析式,求出a ,然后利用待定系数法即可求得k 的值;(2)根据直线y x =-向上平移m 个单位长度,可得直线CD 解析式为y x m =-+,根据三角形全等的判定和性质即可得到结论.【详解】(1)解:∵点A 在反比例函数图象上,∴42a=-,解得2a =-,将()2,2A -代入y kx =,1k ∴=-;(2)解:如图,过点C 作CF y ⊥轴于点F ,CF OE ∴∥,FCP OEP ∴∠=∠,CFP EOP ∠=∠,PE PC = ,()AAS CFP EOP ∴ ≌,CF OE\=,OP PF =,∵直线y x =-向上平移m 个单位长度得到y x m =-+,令0x =,得y m =,令0y =,得x m =,40.(2024·四川广元·中考真题)如图,已知反比例函数1y x=和一次函数2y mx n =+的图象相交于点()3,A a -,3,22B a ⎛⎫+- ⎪⎝⎭两点,O 为坐标原点,连接OA ,OB .(1)求1ky x=与2y mx n =+的解析式;(2)当12y y >时,请结合图象直接写出自变量x 的取值范围;(3)求AOB 的面积.(1)根据题意可得3322a a ⎛⎫-=-+ ⎪⎝⎭,即有3a =,问题随之得解;(2)12y y >表示反比例函数1ky x=的图象在一次函数2y mx n =+的图象上方时,对应的自变量的取值范围,据此数形结合作答即可;(3)若AB 与y 轴相交于点C ,可得()0,1C ,则1OC =,根据()12AOB AOC BOC B A S S S OC x x =+=- ,问题即可得解.【详解】(1)由题知3322a a ⎛⎫-=-+ ⎪⎝⎭,∴3a =,∴()3,3A -,9,22B ⎛⎫- ⎪⎝⎭,∴19y x=-,把()3,3A -,9,22B ⎛⎫- ⎪⎝⎭代入2y mx n =+得33922m n m n -+=⎧⎪⎨+=-⎪⎩,∴231m n ⎧=-⎪⎨⎪=⎩,∴2213y x =-+;(2)由图象可知自变量x 的取值范围为30x -<<或92x >(3)若AB 与y 轴相交于点C ,当0x =时,22113y x =-+=,∴()0,1C ,即:1OC =,∴()11915132224AOB AOC BOC B A S S S OC x x ⎛⎫=+=-=⨯⨯+= ⎪⎝⎭ .41.(2024·内蒙古赤峰·中考真题)在平面直角坐标系中,对于点()11,M x y ,给出如下定义:当点()22,N x y ,满足1212x x y y +=+时,称点N 是点M 的等和点.(1)已知点()1,3M ,在()14,2N ,()23,1N -,()30,2N -中,是点M 等和点的有_____;(2)若点()3,2M -的等和点N 在直线y x b =+上,求b 的值;(3)已知,双曲线1ky x=和直线22y x =-,满足12y y <的x 取值范围是4x >或20x -<<.若点P 在双曲线1ky x=上,点P 的等和点Q 在直线22y x =-上,求点P 的坐标.故答案为:()14,2N 和()30,2N -;(2)解:设点N 的横坐标为a ,∵点N 是点()3,2M -的等和点,∴点N 的纵坐标为()325a a +--=+,∴点N 的坐标为(),5a a +,∵点N 在直线y x b =+上,∴5a a b +=+,∴5b =;(3)解:由题意可得,0k >,双曲线分布在一、三象限内,设直线与双曲线的交点分别为点A B 、,如图,由12y y <时x 的取值范围是4x >或20x -<<,可得点A 的横坐标为4,点B 的横坐标为2-,把4x =代入2y x =-得,422y =-=,∴()4,2A ,把()4,2A 代入1k y x =得,24k =,∴8k =,∴反比例函数解析式为18y x =,设8,P m m ⎛⎫ ⎪⎝⎭,点Q 的横坐标为n ,∵点Q 是点P 的等和点,∴点Q 的纵坐标为8m n m+-,∴8,Q n m n m ⎛⎫+- ⎪⎝⎭,∵点Q 在直线22y x =-上,∴82m n n m+-=-,整理得,820m m -+=,去分母得,2280m m +-=,解得14m =-,12m =,经检验,4,2m m =-=是原方程的解,∴点P 的坐标为()4,2--或()2,4.。

中考数学复习----《反比例函数之综合应用》知识点总结与练习题(含答案解析)

中考数学复习----《反比例函数之综合应用》知识点总结与练习题(含答案解析)

中考数学复习----《反比例函数之综合应用》知识点总结与练习题(含答案解析)知识点总结1. 反比例函数k 的集合意义:①过反比例函数图像上任意一点作坐标轴的垂线,两垂线与坐标轴构成一个矩形,矩形的面积等于k 。

②过反比例函数图像上任意一点作其中一条坐标轴的垂线,并连接这个点与原点,则构成一个三角形。

这个三角形的面积等于2k 。

2. 待定系数法求反比例函数解析式:在反比例函数中只有一个系数k ,所以只需要在图像上找一个对应的点即可求出k 的值,从而求出反比例函数解析式。

3. 反比例函数与一次函数的不等式问题: 若反比例函数()0≠=k x ky 与一次函数()0≠+=k b kx y 有交点,则不等式b kx xk +>的解集取反比例函数图像在一次函数图像上方的部分所对应的自变量取值范围;等式b kx xk+<的解集取反比例函数图像在一次函数图像下方的部分所对应的自变量取值范围。

反比例函数与一次函数的交点把自变量分成三部分。

练习题1、(2022•日照)如图,矩形OABC 与反比例函数y 1=xk1(k 1是非零常数,x >0)的图像交于点M ,N ,与反比例函数y 2=xk2(k 2是非零常数,x >0)的图像交于点B ,连接OM ,ON .若四边形OMBN 的面积为3,则k 1﹣k 2=( )A .3B .﹣3C .23 D .﹣23【分析】根据矩形的性质以及反比例函数系数k 的几何意义即可得出结论. 【解答】解:∵y 1、y 2的图像均在第一象限, ∴k 1>0,k 2>0,∵点M 、N 均在反比例函数y 1=(k 1是非零常数,x >0)的图像上,∴S △OAM =S △OCN =k 1,∵矩形OABC 的顶点B 在反比例函数y 2=(k 2是非零常数,x >0)的图像上,∴S 矩形OABC =k 2,∴S 四边形OMBN =S 矩形OABC ﹣S △OAM ﹣S △OCN =3, ∴k 2﹣k 1=3, ∴k 1﹣k 2=﹣3, 故选:B .2、(2022•牡丹江)如图,等边三角形OAB ,点B 在x 轴正半轴上,S △OAB =43,若反比例函数y =xk(k ≠0)图像的一支经过点A ,则k 的值是( )A .233 B .23C .433 D .43【分析】根据正三角形的性质以及反比例函数系数k 的几何意义,得出S △AOC =S △AOB =2=|k |,即可求出k 的值.【解答】解:如图,过点A 作AC ⊥OB 于点C , ∵△OAB 是正三角形, ∴OC =BC ,∴S △AOC =S △AOB =2=|k |,又∵k >0, ∴k =4,故选:D .3、(2022•郴州)如图,在函数y =x2(x >0)的图像上任取一点A ,过点A 作y 轴的垂线交函数y =﹣x8(x <0)的图像于点B ,连接OA ,OB ,则△AOB 的面积是( )A .3B .5C .6D .10【分析】根据反比例函数系数k 的几何意义进行计算即可. 【解答】解:∵点A 在函数y =(x >0)的图像上, ∴S △AOC =×2=1,又∵点B 在反比例函数y =﹣(x <0)的图像上, ∴S △BOC =×8=4, ∴S △AOB =S △AOC +S △BOC =1+4 =5, 故选:B .4、(2022•黑龙江)如图,在平面直角坐标系中,点O 为坐标原点,平行四边形OBAD 的顶点B 在反比例函数y =x 3的图像上,顶点A 在反比例函数y =xk的图像上,顶点D 在x 轴的负半轴上.若平行四边形OBAD 的面积是5,则k 的值是( )A .2B .1C .﹣1D .﹣2【分析】设B (a ,),根据四边形OBAD 是平行四边形,推出AB ∥DO ,表示出A 点的坐标,求出AB =a ﹣,再根据平行四边形面积公式列方程,解出即可.【解答】解:设B (a ,), ∵四边形OBAD 是平行四边形, ∴AB ∥DO , ∴A (,),∴AB =a ﹣,∵平行四边形OBAD 的面积是5, ∴(a ﹣)=5,解得k =﹣2, 故选:D .5、(2022•十堰)如图,正方形ABCD 的顶点分别在反比例函数y =xk 1(k 1>0)和y =xk 2(k 2>0)的图像上.若BD ∥y 轴,点D 的横坐标为3,则k 1+k 2=( )A .36B .18C .12D .9【分析】连接AC交BD于E,延长BD交x轴于F,连接OD、OB,设AE=BE=CE=DE =m,D(3,a),根据BD∥y轴,可得B(3,a+2m),A(3+m,a+m),即知k1=3(a+2m)=(3+m)(a+m),从而m=3﹣a,B(3,6﹣a),由B(3,6﹣a)在反比例函数y=(k1>0)的图像上,D(3,a)在y=(k2>0)的图像上,得k1=3(6﹣a)=18﹣3a,k2=3a,即得k1+k2=18﹣3a+3a=18.【解答】解:连接AC交BD于E,延长BD交x轴于F,连接OD、OB,如图:∵四边形ABCD是正方形,∴AE=BE=CE=DE,设AE=BE=CE=DE=m,D(3,a),∵BD∥y轴,∴B(3,a+2m),A(3+m,a+m),∵A,B都在反比例函数y=(k1>0)的图像上,∴k1=3(a+2m)=(3+m)(a+m),∵m≠0,∴m=3﹣a,∴B(3,6﹣a),∵B(3,6﹣a)在反比例函数y=(k1>0)的图像上,D(3,a)在y=(k2>0)的图像上,∴k1=3(6﹣a)=18﹣3a,k2=3a,∴k1+k2=18﹣3a+3a=18;故选:B .6、(2022•邵阳)如图是反比例函数y =x1的图像,点A (x ,y )是反比例函数图像上任意一点,过点A 作AB ⊥x 轴于点B ,连接OA ,则△AOB 的面积是( )A .1B .C .2D .【分析】由反比例函数的几何意义可知,k =1,也就是△AOB 的面积的2倍是1,求出△AOB 的面积是.【解答】解:∵A (x ,y ), ∴OB =x ,AB =y ,∵A 为反比例函数y =图像上一点, ∴xy =1,∴S △ABO =AB •OB =xy =1=,故选:B .7、(2022•内江)如图,在平面直角坐标系中,点M 为x 轴正半轴上一点,过点M 的直线l ∥y 轴,且直线l 分别与反比例函数y =x 8和y =xk的图像交于P 、Q 两点.若S △POQ =15,则k 的值为( )A .38B .22C .﹣7D .﹣22【分析】利用k 的几何意义解题即可. 【解答】解:∵直线l ∥y 轴, ∴∠OMP =∠OMQ =90°,∴S △OMP =×8=4,S △OMQ =﹣k . 又S △POQ =15, ∴4﹣k =15, 即k =11,∴k =﹣22. 故选:D .8、(2022•东营)如图,△OAB 是等腰直角三角形,直角顶点与坐标原点重合,若点B 在反比例函数y =x1(x >0)的图像上,则经过点A 的函数图像表达式为 .【分析】作AD ⊥x 轴于D ,BC ⊥x 轴于C ,根据△OAB 是等腰直角三角形,可证明△BOC ≌△OAD ,利用反比例函数k 的几何意义得到S △OBC =,则S △OAD =,所以|k |=,然后求出k 得到经过点A 的反比例函数解析式. 【解答】解:如图,作AD ⊥x 轴于D ,BC ⊥x 轴于C , ∴∠ADO =∠BCO =90°,∵∠AOB =90°, ∴∠AOD +∠BOC =90°, ∴∠AOD +∠DAO =90°, ∴∠BOC =∠DAO , ∵OB =OA ,∴△BOC ≌△OAD (AAS ),∵点B 在反比例函数y =(x >0)的图像上, ∴S △OBC =, ∴S △OAD =, ∴k =﹣1,∴经过点A 的反比例函数解析式为y =﹣. 故答案为:y =﹣.9、(2022•盐城)已知反比例函数的图像经过点(2,3),则该函数表达式为 . 【分析】利用反比例函数的定义列函数的解析式,运用待定系数法求出函数的解析式即可. 【解答】解:令反比例函数为y =(k ≠0), ∵反比例函数的图像经过点(2,3), ∴3=, k =6,∴反比例函数的解析式为y =. 故答案为:y =.10、(2022•湖北)在反比例函数y =xk 1−的图像的每一支上,y 都随x 的增大而减小,且整式x 2﹣kx +4是一个完全平方式,则该反比例函数的解析式为 . 【分析】由整式x 2﹣kx +4是一个完全平方式,可得k =±4,由反比例函y =的图像的每一支上,y 都随x 的增大而减小,可得k ﹣1>0,解得k >1,则k =4,即可得反比例函数的解析式.【解答】解:∵整式x 2﹣kx +4是一个完全平方式,∴k =±4, ∵反比例函数y =的图像的每一支上,y 都随x 的增大而减小,∴k ﹣1>0, 解得k >1, ∴k =4,∴反比例函数的解析式为y =. 故答案为:y =.35.(2022•陕西)已知点A (﹣2,m )在一个反比例函数的图像上,点A '与点A 关于y 轴对称.若点A '在正比例函数y =21x 的图像上,则这个反比例函数的表达式为 .【分析】根据轴对称的性质得出点A '(2,m ),代入y =x 求得m =1,由点A (﹣2,1)在一个反比例函数的图像上,从而求得反比例函数的解析式. 【解答】解:∵点A '与点A 关于y 轴对称,点A (﹣2,m ), ∴点A '(2,m ),∵点A '在正比例函数y =x 的图像上, ∴m ==1,∴A (﹣2,1),∵点A (﹣2,1)在一个反比例函数的图像上, ∴反比例函数的表达式为y =﹣, 故答案为:y =﹣.11、(2022•攀枝花)如图,正比例函数y =k 1x 与反比例函数y =xk 2的图像交于A (1,m )、B 两点,当k 1x ≤xk2时,x 的取值范围是( )A .﹣1≤x <0或x ≥1B .x ≤﹣1或0<x ≤1C .x ≤﹣1或x ≥1D .﹣1≤x <0或0<x ≤1【分析】根据反比例函数的对称性求得B 点的坐标,然后根据图像即可求得. 【解答】解:∵正比例函数y =k 1x 与反比例函数y =的图像交于A (1,m )、B 两点,∴B (﹣1,﹣m ), 由图像可知,当k 1x ≤时,x 的取值范围是﹣1≤x <0或x ≥1,故选:A .37.(2022•东营)如图,一次函数y 1=k 1x +b 与反比例函数y 2=xk 2的图像相交于A ,B 两点,点A 的横坐标为2,点B 的横坐标为﹣1,则不等式k 1x +b <xk2的解集是( )A .﹣1<x <0或x >2B .x <﹣1或0<x <2C .x <﹣1或x >2D .﹣1<x <2【分析】根据两函数图像的上下位置关系结合交点横坐标,即可得出不等式k 1x +b <的解集,此题得解.【解答】解:观察函数图像可知,当﹣1<x <0或x >2时,一次函数y 1=k 1x +b 的图像在反比例函数y 2=的图像的下方,∴不等式k 1x +b <的解集为:﹣1<x <0或x >2,故选:A .12、(2022•朝阳)如图,正比例函数y =ax (a 为常数,且a ≠0)和反比例函数y =xk(k 为常数,且k ≠0)的图像相交于A (﹣2,m )和B 两点,则不等式ax >xk的解集为( )A .x <﹣2或x >2B .﹣2<x <2C .﹣2<x <0或x >2D .x <﹣2或0<x <2【分析】根据关于原点对称的点的坐标特征求得B (2,﹣m ),然后根据函数的图像的交点坐标即可得到结论.【解答】解:∵正比例函数y =ax (a 为常数,且a ≠0)和反比例函数y =(k 为常数,且k ≠0)的图像相交于A (﹣2,m )和B 两点, ∴B (2,﹣m ),∴不等式ax >的解集为x <﹣2或0<x <2, 故选:D .13、(2022•无锡)一次函数y =mx +n 的图像与反比例函数y =xm的图像交于点A 、B ,其中点A 、B 的坐标为A (﹣m1,﹣2m )、B (m ,1),则△OAB 的面积是( ) A .3B .413C .27D .415【分析】根据反比例函数图像上点的坐标特征求出m ,进而求出点A 、B 的坐标,根据三角形的面积公式计算即可.【解答】解:∵点A (﹣,﹣2m )在反比例函数y =上, ∴﹣2m =,解得:m =2,∴点A 的坐标为:(﹣,﹣4),点B 的坐标为(2,1), ∴S △OAB =××5﹣××4﹣×2×1﹣×1=,故选:D .14、(2022•荆州)如图是同一直角坐标系中函数y 1=2x 和y 2=x2的图像.观察图像可得不等式2x >x2的解集为( )A .﹣1<x <1B .x <﹣1或x >1C .x <﹣1或0<x <1D .﹣1<x <0或x >1【分析】结合图像,数形结合分析判断.【解答】解:由图像,函数y 1=2x 和y 2=的交点横坐标为﹣1,1, ∴当﹣1<x <0或x >1时,y 1>y 2,即2x >, 故选:D .15、(2022•怀化)如图,直线AB 交x 轴于点C ,交反比例函数y =xa 1−(a >1)的图像于A 、B 两点,过点B 作BD ⊥y 轴,垂足为点D ,若S △BCD =5,则a 的值为( )A.8B.9C.10D.11【分析】设点B的坐标为(m,),然后根据三角形面积公式列方程求解.【解答】解:设点B的坐标为(m,),∵S△BCD=5,且a>1,∴×m×=5,解得:a=11,故选:D.16、(2022•宁夏)在显示汽车油箱内油量的装置模拟示意图中,电压U一定时,油箱中浮子随油面下降而落下,带动滑杆使滑动变阻器滑片向上移动,从而改变电路中的电流,电流表的示数对应油量体积,把电流表刻度改为相应油量体积数,由此知道油箱里剩余油量.在不考虑其他因素的条件下,油箱中油的体积V与电路中总电阻R总(R总=R+R0)是反比例关系,电流I与R总也是反比例关系,则I与V的函数关系是()A.反比例函数B.正比例函数C.二次函数D.以上答案都不对【分析】由油箱中油的体积V与电路中总电阻R总是反比例关系,电流I与R总是反比例关系,可得V=I(为常数),即可得到答案.【解答】解:由油箱中油的体积V与电路中总电阻R总是反比例关系,设V•R总=k(k为常数),由电流I与R总是反比例关系,设I•R总=k'(k为常数),∴=,∴V=I(为常数),∴I与V的函数关系是正比例函数,故选:B.17、(2022•宜昌)已知经过闭合电路的电流I(单位:A)与电路的电阻R(单位:Ω)是反比例函数关系.根据下表判断a和b的大小关系为()A.a>b B.a≥b C.a<b D.a≤b【分析】根据等量关系“电流=”,即可求解.【解答】解:∵闭合电路的电流I(单位:A)与电路的电阻R(单位:Ω)是反比例函数关系,∴40a=80b,∴a=2b,∴a>b,故选:A.18、(2022•丽水)已知电灯电路两端的电压U为220V,通过灯泡的电流强度I(A)的最大限度不得超过0.11A.设选用灯泡的电阻为R(Ω),下列说法正确的是()A.R至少2000ΩB.R至多2000ΩC.R至少24.2ΩD.R至多24.2Ω【分析】利用已知条件列出不等式,解不等式即可得出结论.【解答】解:∵电压U一定时,电流强度I(A)与灯泡的电阻为R(Ω)成反比例,∴I=.∵已知电灯电路两端的电压U为220V,∴I=.∵通过灯泡的电流强度I(A)的最大限度不得超过0.11A,∴≤0.11,∴R≥2000.故选:A.19、(2022•郴州)科技小组为了验证某电路的电压U(V)、电流I(A)、电阻R(Ω)三者之间的关系:I=U,测得数据如下:那么,当电阻R=55Ω时,电流I=A.【分析】由表格数据求出反比例函数的解析式,再将R=55Ω代入即可求出答案.【解答】解:把R=220,I=1代入I=得:1=,解得U=220,∴I=,把R=55代入I=得:I==4,故答案为:4.20、(2022•山西)根据物理学知识,在压力不变的情况下,某物体承受的压强p(Pa)是它的受力面积S(m2)的反比例函数,其函数图像如图所示.当S=0.25m2时,该物体承受的压强p的值为Pa.【分析】设p=,把(0.1,1000)代入得到反比例函数的解析式,再把S=0.25代入解析式即可解决问题.【解答】解:设p=,∵函数图像经过(0.1,1000),∴k=100,∴p=,当S=0.25m2时,物体所受的压强p==400(Pa),故答案为:400.。

2021年中考数学真题分类汇编--函数:反比例函数(学生版)

2021年中考数学真题分类汇编--函数:反比例函数(学生版)

中考真题分类汇编(函数)----反比例函数一、选择题1. (2021•怀化市)如图,菱形ABCD 的四个顶点均在坐标轴上,对角线AC 、BD 交于原点O ,AE ⊥BC 于E 点,交BD 于M 点,反比例函数y =(x >0)的图象经过线段DC 的中点N ,若BD =4,则ME 的长为( )A .ME =B .ME =C .ME =1D .ME =2. (2021•宿迁市)已知双曲线k y (0)k x =<过点(3,1y )、(1,2 y )、(-2,3y ),则下列结论正确的是( )A. 312y y y >>B. 321y y y >>C. 213y y y >>D. 231y y y >> 3.(江苏省扬州)如图,点P 是函数()110,0k y k x x=>>的图像上一点,过点P 分别作x 轴和y 轴的垂线,垂足分别为点A 、B ,交函数()220,0k y k x x=>>的图像于点C 、D ,连接OC 、OD 、CD 、AB ,其中12k k >,下列结论:①//CD AB ;②122OCD k k S -=;③()21212DCP k k S k -=,其中正确的是( )A. ①②B. ①③C. ②③D. ① 4.(2021•山西)已知反比例函数6y x=,则下列描述不正确的是( ) A.图象位于第一、第三象限 B.图象必经过点(4,32)C.图象不可能与坐标轴相交D. y 随 x 的增大而减小5. (2021•湖北省宜昌市)某气球内充满了一定质量m 的气体,当温度不变时,气球内气体的气压p (单位:kPa )是气体体积V (单位:m 3)的反比例函数:p =,能够反映两个变量p 和V 函数关系的图象是( )A .B .C .D . 6.(2021•四川省达州市)在反比例函数y =(k 为常数)上有三点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),若x 1<0<x 2<x 3,则y 1,y 2,y 3的大小关系为( )A .y 1<y 2<y 3B .y 2<y 1<y 3C .y 1<y 3<y 2D .y 3<y 2<y 17. (2021•四川省乐山市)如图,直线1l 与反比例函数3(0)y x x=>的图象相交于A 、B 两点,线段AB 的中点为点C ,过点C 作x 轴的垂线,垂足为点D .直线2l 过原点O 和点C .若直线2l 上存在点(,)P m n ,满足APB ADB ∠=∠,则m n +的值为( )A. 35-B. 3或32C. 35+或35-D. 38. (2021•天津市)若点()()()1235,,1,,5,A y B y C y -都在反比例函数5y x =-的图象上,则123,,y y y 的大小关系是( )A. 123y y y <<B. 231y y y <<C. 132y y y <<D. 312y y y << 9. (2021•浙江省嘉兴市)已知三个点(x 1,y 1),(x 2,y 2),(x 3,y 3)在反比例函数y =的图象上,其中x 1<x 2<0<x 3,下列结论中正确的是( )A .y 2<y 1<0<y 3B .y 1<y 2<0<y 3C .y 3<0<y 2<y 1D .y 3<0<y 1<y 210、(2021•浙江省温州市)如图,点A ,B 在反比例函数y =(k >0,x >0),AC ⊥x 轴于点C ,BD ⊥x 轴于点D ,连结AE .若OE =1,OC =,AC =AE ,则k 的值为( )A .2B .C .D .211. (2021•湖北省荆门市)在同一直角坐标系中,函数y =kx ﹣k 与y =(k ≠0)的大致图象是( )A .①②B .②③C .②④D .③④12. (2021•湖北省十堰市)如图,反比例函数()0k y x x=>的图象经过点(2,1)A ,过A 作AB y ⊥轴于点B ,连OA ,直线CD OA ⊥,交x 轴于点C ,交y 轴于点D ,若点B 关于直线CD 的对称点B '恰好落在该反比例函数图像上,则D 点纵坐标为( )551- B. 52 C. 73 551+ 13. (2021•重庆市A )如图,在平面直角坐标系中,菱形ABCD 的顶点D 在第二象限,其余顶点都在第一象限,AB ∥X 轴,AO ⊥AD ,AO =A D .过点A 作AE ⊥CD ,垂足为E ,DE =4CE .反比例函数()0k y x x =>的图象经过点E ,与边AB 交于点F ,连接OE ,OF ,EF .若118EOF S =,则k 的值为( )A. 73B. 214C. 7D. 21214. (2021•重庆市B )如图,在平面直角坐标系中,矩形ABCD 的顶点A ,B 在x 轴的正半轴上,反比例函数y =(k >0,x >0)的图象经过顶点D ,分别与对角线AC ,边BC 交于点E ,F ,连接EF ,AF .若点E 为AC 的中点,△AEF 的面积为1,则k 的值为( )A .B .C .2D .315. (2021•黑龙江省龙东地区)如图,在平面直角坐标系中,菱形ABCD 的边AD y ⊥轴,垂足为E ,顶点A 在第二象限,顶点B 在y 轴正半轴上,反比例函数(0k y k x=≠,0)x >的图象同时经过顶点C D 、.若点C 的横坐标为5,2BE DE =,则k 的值为( )A. 403B. 52C. 54D. 20316. (2021•贵州省贵阳市)已知反比例函数y =(k ≠0)的图象与正比例函数y =ax (a≠0)的图象相交于A ,B 两点,若点A 的坐标是(1,2),则点B 的坐标是( )A .(﹣1,2)B .(1,﹣2)C .(﹣1,﹣2)D .(2,1)17. (2021•江苏省无锡市)8.一次函数y =x +n 的图象与x 轴交于点B ,与反比例函数y =(m >0)的图象交于点A (1,m ),且△AOB 的面积为1,则m 的值是( )A .1B .2C .3D .418 . (2021•内蒙古包头市)如图,在平面直角坐标系中,矩形OABC 的OA 边在x 轴的正半轴上,OC 边在y 轴的正半轴上,点B 的坐标为(4,2),反比例函数2(0)y x x=>的图象与BC 交于点D ,与对角线OB 交于点E ,与AB 交于点F ,连接OD ,DE ,EF ,DF .下列结论:①sin cos DOC BOC ∠=∠;②OE BE =;③DOE BEF S S =△△;④:2:3OD DF =.其中正确的结论有( )A. 4个B. 3个C. 2个D. 1个二.填空题 1. (2021•甘肃省定西市)若点A (﹣3,y 1),B (﹣4,y 2)在反比例函数y =的图象上,则y 1 y 2.(填“>”或“<”或“=”)2. (2021•湖北省武汉市)已知点A (a ,y 1),B (a +1,y 2)在反比例函数y =(m 是常数)的图象上,且y 1<y 2,则a 的取值范围是 .3. (2021•株洲市)点()11,A x y 、()121,B x y +是反比例函数k y x =图像上的两点,满足:当1>0x 时,均有12y y <,则k 的取值范围是__________.4.(2021•江苏省南京市)如图,正比例函数y kx =与函数6y x=的图像交于A ,B 两点,//BC x 轴,//AC y 轴,则ABC S =________.5. (2021•宿迁市)如图,点A 、B 在反比例函数()k y 0x x=>的图像上,延长AB 交x 轴于C 点,若△AOC 的面积是12,且点B 是AC 的中点,则k =__________.6. (2021•四川省广元市)如图,点()2,2A -在反比例函数k y x=的图象上,点M 在x 轴的正半轴上,点N 在y 轴的负半轴上,且5OM ON ==.点(),P x y 是线段MN 上一动点,过点A 和P 分别作x 轴的垂线,垂足为点D 和E ,连接OA 、OP .当OAD OPE SS <时,x的取值范围是________.7. (2021•浙江省绍兴市)如图,在平面直角坐标系中,正方形ABCD 的顶点A 在x 轴正半轴上,C 在第一象限,顶点D 的坐标(,2),反比例函数y =(常数k >0,x >0)的图象恰好经过正方形ABCD 的两个顶点,则k 的值是 5或22.5 .8. (2021•湖北省荆门市)如图,在平面直角坐标系中,Rt△OAB斜边上的高为1,∠AOB =30°,将Rt△OAB绕原点顺时针旋转90°得到Rt△OCD,点A的对应点C恰好在函数y =(k≠0)的图象上,若在y=的图象上另有一点M使得∠MOC=30°,则点M的坐标为.9.2021•北京市)在平面直角坐标系xOy中,若反比例函数y=(k≠0)的图象经过点A(1,2)和点B(﹣1,m),则m的值为.10.(2021•福建省)若反比例函数y=的图象过点(1,1),则k的值等于.11.(2021•广西玉林市)如图,ABC是等腰三角形,AB过原点O,底边//BC x轴双曲线kyx=过A,B两点,过点C作//CD y轴交双曲线于点D,若8BCDS=△,则k的值是______.12. (2021•山东省威海市)已知点A 为直线2y x =-上一点,过点A 作//AB x 轴,交双曲线4y x =于点B .若点A 与点B 关于y 轴对称,则点A 的坐标为_____________. 13. (2021•呼和浩特市)正比例函数1y k x =与反比例函数2k y x =的图象交于A ,B 两点,若A 点坐标为(3,23)-,则12k k +=__________.14. (2021•齐齐哈尔市)如图,点A 是反比例函数1(0)k y x x =<图象上一点,AC x ⊥轴于点C 且与反比例函数2(0)k y x x=<的图象交于点B ,3AB BC = ,连接OA ,OB ,若OAB 的面积为6,则12k k +=_________.15. (2021•贵州省铜仁市)如图,矩形ABOC 的顶点A 在反比例函数k y x=的图象上,矩形ABOC 的面积为3,则k =______________;16. (2021•浙江省衢州卷) 将一副三角板如图放置在平面直角坐标系中,顶点A 与原点O 重合,AB 在x 轴正半轴上,且43AB =E 在AD 上,14DE AD =,将这副三角板整体向右平移_______个单位,C ,E 两点同时落在反比例函数k y x=的图象上.17. (2021•绥化市)如图,在平面直角坐标系中,O 为坐标原点,MN 垂直于x 轴,以MN 为对称轴作ODE 的轴对称图形,对称轴MN 与线段DE 相交于点F ,点D 的对应点B 恰好落在(0,0)k y k x x=≠<的双曲线上.点O E 、的对应点分别是点C A 、.若点A 为OE 的中点,且1AEF S =△,则k 的值为____.18.(2021•深圳)如图,已知反比例函数过A ,B 两点,A 点坐标(2,3),直线AB 经过原点,将线段AB 绕点B 顺时针旋转90°得到线段BC ,则C 点坐标为________.三、解答题1. (2021•湖北省黄冈市)如图,反比例函数k y x =的图象与一次函数y =mx +n 的图象相交于A (a ,﹣1),B (﹣1,3)(1)求反比例函数和一次函数的解析式;(2)设直线AB 交y 轴于点C ,点N (t ,0)是x 轴正半轴上的一个动点的图象于点M ,连接CN 四边形COMN >3,求t 的取值范围.2. (2021•湖南省常德市)如图,在Rt AOB 中,AO BO ⊥.AB y ⊥轴,O 为坐标原点,A 的坐标为(),3n ,反比例函数11k y x=的图象的一支过A 点,反比例函数22k y x =的图象的一支过B 点,过A 作AH x ⊥轴于H ,若AOH △的面积为32.(1)求n 的值;(2)求反比例函数2y 的解析式.3. (2021•岳阳市) 如图,已知反比例函数()0k y k x=≠与正比例函数2y x =的图象交于()1,A m ,B 两点.(1)求该反比例函数的表达式;(2)若点C 在x 轴上,且BOC 的面积为3,求点C 的坐标.4. (2021•株洲市)如图所示,在平面直角坐标系Oxy 中,一次函数2y x =的图像l 与函数()0,0k y k x x=>>的图像(记为Γ)交于点A ,过点A 作AB y ⊥轴于点B ,且1AB =,点C 在线段OB 上(不含端点),且OC t =,过点C 作直线1//l x 轴,交l 于点D ,交图像Γ于点E .(1)求k 的值,并且用含t 的式子表示点D 的横坐标;(2)连接OE 、BE 、AE ,记OBE △、ADE 的面积分别为1S 、2S ,设12U S S =-,求U 的最大值.5. (2021•江西省)如图,正比例函数y =x 的图象与反比例函数y =(x >0)的图象交于点A (1,a )在△ABC 中,∠ACB =90°,CA =CB ,点C 坐标为(﹣2,0).(1)求k的值;(2)求AB所在直线的解析式.6.(2021•山东省聊城市)如图,过C点的直线y=﹣12x﹣2与x轴,y轴分别交于点A,B两点,且BC=AB,过点C作CH⊥x轴,垂足为点H,交反比例函数y=kx(x>0)的图象于点D,连接OD,△ODH的面积为6 (1)求k值和点D的坐标;(2)如图,连接BD,OC,点E在直线y=﹣12x﹣2上,且位于第二象限内,若△BDE的面积是△OCD面积的2倍,求点E的坐标.7.(2021•山东省泰安市)如图,点P为函数y=x+1与函数y=(x>0)图象的交点,点P的纵坐标为4,PB⊥x轴,垂足为点B.(1)求m的值;(2)点M是函数y=(x>0)图象上一动点,过点M作MD⊥BP于点D,若tan∠PMD=,求点M 的坐标.8. (2021•湖北省随州市)如图,一次函数1y kx b =+的图象与x 轴、y 轴分别交于点A ,B ,与反比例函数2m y x=(0m >)的图象交于点()1,2C ,()2,D n .(1)分别求出两个函数的解析式;(2)连接OD ,求BOD 的面积.(1)22y x =,13y x =-+;(2)39. (2021•山东省菏泽市)如图,在平面直角坐标系中,矩形OABC 的两边OC 、OA 分别在坐标轴上,且OA =2,OC =4,连接OB .反比例函数y =(x >0)的图象经过线段OB 的中点D ,并与AB 、BC 分别交于点E 、F .一次函数y =k 2x +b 的图象经过E 、F 两点.(1)分别求出一次函数和反比例函数的表达式;(2)点P 是x 轴上一动点,当PE +PF 的值最小时,点P 的坐标为 (,0) .10. (2021•四川省成都市)如图,在平面直角坐标系xOy 中,一次函数y =x +的图象与反比例函数y =(x >0)的图象相交于点A (a ,3),与x 轴相交于点B .(1)求反比例函数的表达式;(2)过点A 的直线交反比例函数的图象于另一点C ,交x 轴正半轴于点D ,当△ABD 是以BD 为底的等腰三角形时,求直线AD 的函数表达式及点C 的坐标.11. (2021•广东省)在平面直角坐标系xOy 中,一次函数()0y kx b k =+>的图象与x 轴、y 轴分别交于A 、B 两点,且与反比例函数4y x=图象的一个交点为()1,P m .(1)求m 的值;(2)若2PA AB =,求k 的值.12. (2021•四川省广元市)如图,直线2y kx =+与双曲线 1.5y x=相交于点A 、B ,已知点A 的横坐标为1,(1)求直线2y kx =+的解析式及点B 的坐标;(2)以线段AB 为斜边在直线AB 的上方作等腰直角三角形ABC .求经过点C 的双曲线的解析式.13. (2021•四川省乐山市) 如图,直线l 分别交x 轴,y 轴于A 、B 两点,交反比例函数(0)k y k x=≠的图象于P 、Q 两点.若2AB BP =,且AOB 的面积为4(1)求k 的值;(2)当点P 的横坐标为1-时,求POQ △的面积.14. (2021•四川省凉山州)如图,AOB 中,90∠=︒ABO ,边OB 在x 轴上,反比例函数(0)k y x x =>的图象经过斜边OA 的中点M ,与AB 相交于点N ,912,2AOB S AN ==.(1)求k 的值;(2)求直线MN 的解析式.15. (2021•四川省南充市)如图,反比例函数的图象与过点A (0,﹣1),B (4,1)的直线交于点B 和C .(1)求直线AB 和反比例函数的解析式;(2)已知点D (﹣1,0),直线CD 与反比例函数图象在第一象限的交点为E ,直接写出点E 的坐标,并求△BCE 的面积.16. (2021•遂宁市)如图,一次函数1y =kx + b (k ≠0)与反比例函数2m y x=(m ≠0)的图象交于点A (1,2)和B (-2,a ),与y 轴交于点M .(1)求一次函数和反比例函数的解析式;(2)在y 轴上取一点N ,当△AMN 的面积为3时,求点N 的坐标;(3)将直线1y 向下平移2个单位后得到直线y 3,当函数值123y y y >>时,求x 的取值范围.17.(2021•湖北省恩施州)如图,在平面直角坐标系中,Rt△ABC的斜边BC在x轴上,坐标原点是BC的中点,∠ABC=30°,BC=4,双曲线y=经过点A.(1)求k;(2)直线AC与双曲线y=﹣在第四象限交于点D,求△ABD的面积.18.(2021•浙江省湖州市)已知在平面直角坐标系xOy中,点A是反比例函数1yx=(x>0)图象上的一个动点,连结AO,AO的延长线交反比例函数kyx=(k>0,x<0)的图象于点B,过点A作AE⊥y轴于点E.(1)如图1,过点B作BF⊥x轴于点F,连结EF.①若k=1,求证:四边形AEFO 是平行四边形;②连结BE,若k=4,求△BOE的面积.(2)如图2,过点E作EP∥AB,交反比例函数kyx(k>0,x<0)的图象于点P,连结OP.试探究:对于确定的实数k,动点A在运动过程中,△POE的面积是否会发生变化?请说明理由.19.(2021•山东省济宁市)如图,Rt△ABC中,∠ACB=90°,AC=BC,点C(2,0),点B(0,4),反比例函数y=(x>0)的图象经过点A.(1)求反比例函数的解析式;(2)将直线OA向上平移m个单位后经过反比例函数y=(x>0)图象上的点(1,n),求m,n的值.。

中考数学考点12反比例函数的图像与性质及实际应用总复习(原卷版)

中考数学考点12反比例函数的图像与性质及实际应用总复习(原卷版)

反比例函数的图像与性质及实际应用【命题趋势】在中考中.反比例函数的图像与性质常以选择题和填空形式考查;反比例函数解析式主要在反比例函数综合题中与一次函数、几何图形结合考查。

【中考考查重点】一、结合具体情境体会反比例函数的意义.能根据已知条件确定反比例函数的表达式;二、能画出反比例函数的图像.根据图像和表达式探索并理解k>0和k<0时.图像的变化情况;三、结合具体情境体会反比例函数的意义四、能用反比例函数解决简单实际问题考点一:反比例函数的概念一般地.形如.叫做反比例函数.自变量x的取值概念范围是≠0的一切实数【提分要点】反比例函数图像上的点的横纵坐标之积是定值k1.(2021秋•南召县期末)下列函数是y关于x的反比例函数的是()A.y=B.y=C.y=﹣D.y=﹣2.(2021•门头沟区一模)在物理实验室实验中.为了研究杠杆的平衡条件.设计了如下实验.如图.铁架台左侧钩码的个数与位置都不变.在保证杠杆水平平衡的条件下.右侧采取变动钩码数量即改变力F.或调整钩码位置即改变力臂L.确保杠杆水平平衡.则力F与力臂L满足的函数关系是()A.正比例函数关系B.反比例函数关系C.一次函数关系D.二次函数关系3.(2021秋•越秀区校级期末)函数y=(m﹣1)x|m|﹣2是反比例函数.则m的值为.考点二:反比例函数的图像与性质概念kk >0k <0图像所在象限一、三二、四增减性 在每个象限内.y 随x 的增大而减少在每个象限内.y 随x 的增大而增大图像特征图像无限接近于坐标轴.但不与坐标轴相交;关于直线y=±x 成轴对称;关于原点成中心对称4.(2021秋•南开区期末)若反比例函数y =的图象在其所在的每一象限内.y 随x的增大而减小.则k 的取值范围是( ) A .k <﹣2B .k >﹣2C .k <2D .k >25.(2021秋•揭阳期末)点(x 1.y 1)、(x 2.y 2)、(x 3.y 3)在反比例函数y =﹣的图象上.且x 1<0<x 2<x 3.则有( ) A .y 1<y 2<y 3B .y 2<y 3<y 1C .y 1<y 3<y 2D .y 3<y 2<y 16.(2020秋•浦东新区校级期末)已知函数y =kx .y 随x 的增大而减小.另有函数.两个函数在同一平面直角坐标系内的大致图象可能是( )A .B .C .D .7.(2020秋•孝义市期末)近视眼镜的度数y (度)与镜片焦距x (米)之间具有如图所示的反比例函数关系.若要配制一副度数小于400度的近视眼镜.则镜片焦距x 的取值范围是( )A .0米<x <0.25米B .x >0.25米C .0米<x <0.2米D .x >0.2米考点三:反比例函数系数k 的几何意义8.(2021秋•铁西区期末)如图.A 是反比例函数y =的图象上一点.过点A 作AB ⊥y 轴于点B .点C 在x 轴上.且S △ABC =2.则k 的值为( )K 的几何意义在反比例函数上任取一点P(x.y),过这个点分别作x 轴.y 轴的垂线PM 、PN.于坐标轴围成的矩形PMON 的面积S=PM ·PN===k基本图形面积基本图形面积A .4B .﹣4C .﹣2D .29.(2021•铜仁市)如图.矩形ABOC 的顶点A 在反比例函数y =的图象上.矩形ABOC 的面积为3.则k= .考点四:反比例函数解析式的确定10.2021秋•房山区期末)若反比例函数的图象经过点(3.﹣2).则该反比例函数的表达式为( ) A .y = B .y =﹣C .y =D .y =﹣11.(2021秋•泰山区期中)如果等腰三角形的面积为6.底边长为x .底边上的高为y .则y 与x 的函数关系式为( ) A .y =B .y =C .y =D .y =12.(2021•江西模拟)小明学习了物理中的杠杆平衡原理发现:阻力×阻力臂=动力待定系数法 1. 设所求反比例函数解析式为:2. 找出反比例函数图像上一点P (a,b ).并将其代入解析式得k=ab ;3. 确定反比例函数解析式利用k 得几何意义 题中已知面积时.考虑利用k 得几何意义.由面积得.再综合图像所在象限判段k 得正负.从而得出k 的值.代入解析式即可×动力臂.现已知某一杠杆的阻力和阻力臂分别为2400N和1m.则动力F(单位:N)关于动力臂l(单位:m)的函数图象大致是()A.B.C.D.1.(2021秋•隆回县期中)下面的函数是反比例函数的是()A.y=B.y=C.y=D.y=2.(2021秋•大东区期末)如果反比例函数的图象经过点P(﹣3.﹣1).那么这个反比例函数的表达式为()A.y=B.y=﹣C.y=x D.y=﹣x 3.(2021春•海淀区校级月考)某物体对地面的压力为定值.物体对地面的压强p(Pa)与受力面积S(m2)之间的函数关系如图所示.这一函数表达式为()A.B.C.D.4.(2020秋•瓜州县期末)如图.在某温度不变的条件下.通过一次又一次地对气缸顶部的活塞加压.测出每一次加压后气缸内气体的体积V(mL)与气体对气缸壁产生的压强p(kPa)的关系可以用如图所示的反比例函数图象进行表示.下列说法错误的是()A.气压p与体积V表达式为p=.则k>0B.当气压p=70时.体积V的取值范围为70<V<80C.当体积V变为原来的时.对应的气压p变为原来的D.当60≤V≤100时.气压p随着体积V的增大而减小5.(2020秋•东莞市校级期末)已知点(3.y1).(﹣2.y2).(2.y3)都在反比例函数的图象上.那么y1.y2与y3的大小关系是()A.y3<y1<y2B.y3<y2<y1C.y1<y2<y3D.y1<y3<y2 6.(2021秋•西湖区期中)已知y1和y2均是以x为自变量的函数.当x=m时.函数值分别是M1和M2.若存在实数m.使得M1+M2=1.则称函数y1和y2具有性质P.以下函数y1和y2不具有性质P的是()A.y1=x2+2x和y2=﹣x﹣1B.y1=x2+2x和y2=﹣x+1C.y1=﹣和y2=﹣x﹣1D.y1=﹣和y2=﹣x+17.(2021秋•会宁县期末)如图.A.B是反比例函数的图象上关于原点对称的两点.BC ∥x轴.AC∥y轴.若△ABC的面积为6.则k的值是.8.(2021春•沙坪坝区校级期末)已知函数y=(m﹣1)是反比例函数.则m的值为.1.(2018•柳州)已知反比例函数的解析式为y=.则a的取值范围是()A.a≠2B.a≠﹣2C.a≠±2D.a=±2 2.(2020•上海)已知反比例函数的图象经过点(2.﹣4).那么这个反比例函数的解析式是()A.y=B.y=﹣C.y=D.y=﹣3.(2021•黔西南州)对于反比例函数y=.下列说法错误的是()A.图象经过点(1.﹣5)B.图象位于第二、第四象限C.当x<0时.y随x的增大而减小D.当x>0时.y随x的增大而增大4.(2021•济南)反比例函数y=(k≠0)图象的两个分支分别位于第一、三象限.则一次函数y=kx﹣k的图象大致是()A.B.C.D.5.(2021•宜昌)某气球内充满了一定质量m的气体.当温度不变时.气球内气体的气压p(单位:kPa)是气体体积V(单位:m3)的反比例函数:p=.能够反映两个变量p和V函数关系的图象是()A.B.C.D.6.(2021•沈阳)如图.平面直角坐标系中.O是坐标原点.点A是反比例函数y=(k≠0)图象上的一点.过点A分别作AM⊥x轴于点M.AN⊥y轴于点N.若四边形AMON 的面积为12.则k的值是.7.(2021•阜新)已知点A(x1.y1).B(x2.y2)都在反比例函数y=﹣的图象上.且x1<0<x2.则y1.y2的关系一定成立的是()A.y1>y2B.y1<y2C.y1+y2=0D.y1﹣y2=0 8.(2020•大庆)已知正比例函数y=k1x和反比例函数y=.在同一平面直角坐标系下的图象如图所示.其中符合k1•k2>0的是()A.①②B.①④C.②③D.③④9.(2021•自贡)已知蓄电池的电压为定值.使用蓄电池时.电流I(单位:A)与电阻R (单位:Ω)是反比例函数关系.它的图象如图所示.下列说法正确的是()A.函数解析式为I=B.蓄电池的电压是18VC.当I≤10A时.R≥3.6ΩD.当R=6Ω时.I=4A10.(2020•河北)如图是8个台阶的示意图.每个台阶的高和宽分别是1和2.每个台阶凸出的角的顶点记作T m(m为1~8的整数).函数y=(x<0)的图象为曲线L.(1)若L过点T1.则k=;(2)若L过点T4.则它必定还过另一点T m.则m=;(3)若曲线L使得T1~T8这些点分布在它的两侧.每侧各4个点.则k的整数值有个.1.(2021•抚顺模拟)下列函数中.y是x的反比例函数的是()A.B.C.D.2.(2021•卧龙区二模)已知反比例函数.在下列结论中.不正确的是()A.图象必经过点(﹣1.﹣2)B.图象在第一、三象限C.若x<﹣1.则y<﹣2D.点A(x1.y1).B(x2.y2)图象上的两点.且x1<0<x2.则y1<y23.(2021•富阳区二模)已知反比例函数y=.当﹣2<x<﹣1.则下列结论正确的是()A.﹣3<y<0B.﹣2<y<﹣1C.﹣10<y<﹣5D.y>﹣104.(2021•武陟县模拟)某气球内充满了一定质量的气体.当温度不变时.气球内气体的气压P(kpa)是气体体积V(m3)的反比例函数其图象如图所示.当气体体积为1m3时.气压为()kPa.A.150B.120C.96D.84 5.(2021•云岩区模拟)阿基米德说:“给我一个支点.我就能撬动整个地球”这句话精辟地阐明了一个重要的物理学知识﹣﹣杠杆原理.即“阻力×阻力臂=动力×动力臂”.若已知某一杠杆的阻力和阻力臂分别为1200N和0.5m.则这一杠杆的动力F和动力臂l之间的函数图象大致是()A.B.C.D.6.(2021•昆明模拟)如图.点P在双曲线第一象限的图象上.P A⊥x轴于点A.则△OP A的面积为()A .2B .3C .4D .67.(2021•乐陵市一模)为预防新冠病毒.某学校每周末用药熏消毒法对教室进行消毒.已知药物释放过程中.教室内每立方米空气中含药量y (mg )与时间t (h )成正比例;药物释放完毕后.y 与t 成反比例.如图所示.根据图象信息.下列选项错误的是( )A .药物释放过程需要小时B .药物释放过程中.y 与t 的函数表达式是y =tC .空气中含药量大于等于0.5mg /m 3的时间为hD .若当空气中含药量降低到0.25mg /m 3以下时对身体无害.那么从消毒开始.至少需要经过4.5小时学生才能进入教室8.(2021•山西模拟)已知.A (﹣3.n ).C (3n ﹣6.2)是反比例函数y =(x <0)图象上的两点.则反比例函数的解析式为 .9.(2021•雁塔区校级模拟)已知同一象限内的两点A (3.n ).B (n ﹣4.n +3)均在反比例函数y =的图象上.则该反比例函数关系式为 .10.(2021•昭通模拟)若函数y =是关于x 的反比例函数.则a 满足的条件是 .。

中考数学分类(含答案)反比例函数

中考数学分类(含答案)反比例函数

反比例函数分类精选一、选择题1.(2010安徽芜湖)二次函数y =ax 2+bx +c 的图象如图所示,反比例函数y = a x与正比例函数y =(b +c )x 在同一坐标系中的大致图象可能是()A .B .C .D .【答案】B2.(2010甘肃兰州) 已知点(-1,1y ),(2,2y ),(3,3y )在反比例函数x k y 12--=的图像上. 下列结论中正确的是A .321y y y >>B .231y y y >>C .213y y y >>D . 132y y y >>【答案】B3.(2010山东青岛)函数y ax a =-与ay x=(a ≠0)在同一直角坐标系中的图象可能是( )【答案】D4.(2010山东日照)已知反比例函数y =x2,则下列点中在这个反比例函数图象的上的是 (A )(-2,1) (B )(1,-2) (C )(-2,-2) (D )(1,2) 【答案】D5.(2010四川凉山)已知函数25(1)m y m x -=+是反比例函数,且图像在第二、四象限内,则m 的值是A .2B .2-C .2±D .12- 【答案】B6.(2010浙江宁波)已知反比例函数1y x=,下列结论不正确...的是 (A)图象经过点(1,1) (B)图象在第一、三象限(C)当1x >时,01y << (D)当0x <时,y 随着x 的增大而增大 【答案】D7.(2010 浙江台州市)反比例函数xy 6=图象上有三个点)(11y x ,,)(22y x ,,)(33y x ,,其中3210x x x <<<,则1y ,2y ,3y 的大小关系是(▲)A .321y y y <<B .312y y y <<C .213y y y <<D .123y y y << 【答案】B 8.(2010四川眉山)如图,已知双曲线(0)ky k x=<经过直角三角形OAB 斜边OA 的中点D ,且与直角边AB 相交于点C .若点A 的坐标为(6-,4),则△AOC 的面积为A .12B .9C .6D .4【答案】B9.(2010浙江绍兴)已知(x 1, y 1),(x 2, y 2),(x 3, y 3)是反比例函数xy 4-=的图象上的三个点,且x 1<x 2<0,x 3>0,则y 1,y 2,y 3的大小关系是( )A. y 3<y 1<y 2B. y 2<y 1<y 3C. y 1<y 2<y 3D. y 3<y 2<y 1 【答案】A10.(2010 嵊州市)如图,直线)0(<=k kx y 与双曲线xy 2-=交于),(),,(2211y x B y x A 两点,则122183y x y x -的值为( )A.-5B.-10C.5D.10【答案】B11.(2010山东聊城)函数y 1=x (x ≥0),y 2=4x(x>0)的图象如图所示,下列结论:①两函数图象的交点坐标为A (2,2);②当x >2时,y 2>y 1;③直线x =1分别与两函数图象相交于B 、C 两点,则线段BC 的长为3; ④当x 逐渐增大时,y 1的值随x 的增大而增大,y 2的值随x 的增大减少. 其中正确的是( )A .只有①②B .只有①③C .只有②④D .只有①③④【答案】D12.(2010 四川南充)如图,直线2y x =+与双曲线ky x=相交于点A ,点A 的纵坐标为3,k 的值为( ).(A )1 (B )2 (C )3 (D )4 【答案】C13.(2010江西)如图,反例函数4y x=图象的对称轴的条数是( ) A .0 B .1 C .2 D .3(第9题)yy 1=xy 2=4xx第11题图【答案】C14.(2010福建福州)已知反比例函数的图象y =kx过点P (1,3),则该反比例函数图象位于( )A .第一、二象限B .第一、三象限C .第二、四象限D .第三、四象限 【答案】B 15.(2010江苏无锡)如图,已知梯形ABCO 的底边AO 在x 轴上,BC ∥AO ,AB ⊥AO ,过点C 的双曲线ky x=交OB 于D ,且OD :DB=1:2,若△OBC 的面积等于3,则k 的值()A . 等于2B .等于34C .等于245D .无法确定16.(2010年上海)在平面直角坐标系中,反比例函数 y = kx ( k <0 ) 图像的量支分别在( )A.第一、三象限B.第二、四象限C.第一、二象限D.第三、四象限【答案】B17.(2010山东临沂) 已知反比例函数7y x=-图象上三个点的坐标分别是1(2,)A y -、(第6题图)2(1,)B y -、3(2,)C y ,能正确反映1y 、2y 、3y 的大小关系的是(A )123y y y >>(B )132y y y >>(C )213y y y >>(D )231y y y >> 【答案】C18.(2010 山东莱芜)已知反比例函数xy 2-=,下列结论不正确...的是 A .图象必经过点(-1,2) B .y 随x 的增大而增大 C .图象在第二、四象限内 D .若x >1,则y >-2【答案】B19.(2010福建宁德)反比例函数1y x=(x >0)的图象如图所示,随着x 值的增大,y 值( ).A .减小B .增大C .不变D .先减小后不变 【答案】A20.(2010年贵州毕节)函数1ky x-=的图象与直线y x =没有交点,那么k 的取值范围是( )A .1k >B .1k <C .1k >-D .1k <- 【答案】A. 21.(2010浙江湖州)如图,已知在直角梯形AOBC 中,AC ∥OB ,CB ⊥OB ,OB =18,BC =12,AC =9,对角线OC 、AB 交于点D ,点E 、F 、G 分别是CD 、BD 、BC 的中点,以O 为原点,直线OB 为x 轴建立平面直角坐标系,则G 、E 、D 、F 四个点中与点A 在同一反比例函数图像上的是( ) A .点G B .点E C .点D D .点F .【答案】A .22.(2010江苏常州)函数2y x=的图像经过的点是第8题图(第10题)A.(2,1)B.(2,1)-C.(2,4)D.1(,2)2-【答案】A23.(2010 山东滨州)如图,P 为反比例函数y=kx的图象上一点,PA ⊥x 轴于点A, △PAO 的面积为6.下面各点中也在这个反比例函数图象上的点是( )A.(2,3)B. (-2,6)C. (2,6)D. (-2,3)【答案】B24.(2010湖北荆门)在同一直角坐标系中,函数y=kx+1和函数y=xk(k 是常数且k ≠0)的图象只可能是A .B .C .D .【答案】B25.(2010山东潍坊)若正比例函数y =2kx 与反比例函数y =kx(k ≠0)的图象交于点A (m ,1),则k 的值是( ). AB.2或-2 C.2D【答案】B26.(2010湖南怀化)反比例函数)0(1>-=x xy 的图象如图1所示, 随着x 值的增大,y 值( )图1A .增大B .减小C.不变 D.先增大后减小 【答案】A27.(2010湖北荆州)如图,直线l是经过点(1,0)且与y 轴平行的直线.Rt △ABC 中直角边AC=4,BC=3.将BC 边在直线l上滑动,使A ,B 在函数xky =的图象上. 那么k 的值是A .3B .6 C.12 D .415【答案】D28.(2010湖北鄂州)正比例函数y=x 与反比例函数ky x=(k ≠0)的图像在第一象限交于点A,且,则k 的值为A.2B.1C.D.2【答案】B29.(2010山东泰安)函数y=2x+1与函数y=kx的图象相交于点(2,m),则下列各点不在函数y=kx 的图象上的是 ()A.(-2,-5) B.(52,4) C.(-1,10) D.(5,2)【答案】C30.(2010云南红河哈尼族彝族自治州)不在函数xy 12=图像上的点是 A .(2,6) B.(-2,-6) C.(3,4) D.(-3,4) 【答案】D31.(2010黑龙江哈尔滨)反比例函数xk y 3-=的图像,当0>x 时,y 随x 的增大而增大,则k 的数值范围是( ) (A )2<k (B )3≤k (C )3>k(D ).3≥k【答案】A32.(2010四川内江)函数y =x +1x中自变量x 的取值范围是A .x ≥-1B .x >-1C .x ≥-1且x ≠0D .x >-1且x ≠0【答案】C33.(2010四川内江)如图,反比例函数y =kx(x >0)的图象经过矩形OABC 对角线的交点M ,分别与AB 、BC 相交于点D 、E .若四边形ODBE 的面积为6,则k 的值为A .1B .2C .3D .4【答案】B34.(2010 福建三明)在反比例函数xky -=1的图象的每一条曲线上,y 都随x 的增大而增大,则k 的值可能是( ) A .—1 B .0 C .1D .2【答案】D35.(2010 山东东营)如图所示,反比例函数1y 与正比例函数2y 的图象的一个交点是(21)A ,,若210y y >>,则x 的取值范围在数轴上表示为()(A【答案】D36.(2010 湖北孝感)双曲线xyxy21==与在第一象限内的图象如图所示,作一条平行于y轴的直线分别交双曲线于A、B两点,连接OA、OB,则△AOB的面积为()A.1 B.2C.3 D.4【答案】A37.(2010 广东汕头)已知一次函数1-=kxy的图像与反比例函数xy2=的图像的一个交点坐标为(2,1),那么另一个交点的坐标是()A.(-2,1) B.(-1,-2) C.(2,-1) D.(-1,2) 【答案】B38.(2010 云南玉溪)如图2所示的计算程序中,y与x之间的函数关系对应的图象所在的象限是A. 第一象限B. 第一、三象限C. 第二、四象限D. 第一、四象限【答案】C39.(2010 湖南湘潭)在同一坐标系中,正比例函数xy=与反比例函数xy2=的图象大致是图2【答案】B40.(2010 甘肃)如图,矩形ABOC 的面积为3,反比例函数ky x=的图象过点A ,则k =( )A .3B .5.1-C .3-D .6-【答案】C41.(2010广西桂林)若反比例函数ky x=的图象经过点(-3,2),则k 的值为 ( ). A .-6 B .6 C .-5 D .5【答案】A42.(2010湖北十堰)方程x 2+2x -1=0的根可看成函数y =x +2与函数1y x=的图象交点的横坐标,用此方法可推断方程x 3+x -1=0的实根x 所在范围为( ) A . 102x -<< B .102x << C .112x << D .312x << 【答案】C43.(2010 广西玉林、防城港)直线l 与双曲线C 在第一象限相交于A 、B 两点,其图象信息如图4所示,则阴影部分(包括边界)横、纵坐标都是整数的点(俗称格点)有: ( )A .4个B .5 个C .6个D .8个【答案】B 44.(2010 山东荷泽)某种气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P (kPa )是气球体积V 的反比例函数,其图象如图所示,当气球内的气压大于120 kPa 时,气球将爆炸,为了安全,气球的体积应该A .不大于45m 3 B .小于45m 3C .不小于54m 3D .小于54m 3第8题图【答案】C45.如图,平面直角坐标系中,OB 在x 轴上,∠ABO =90°,点A 的坐标为(1,2)。

中考数学复习《反比例函数》专题练习-附带参考答案

中考数学复习《反比例函数》专题练习-附带参考答案

中考数学复习《反比例函数》专题练习-附带参考答案一、选择题1.下列函数关系式中,y 是x 的反比例函数的是( )A .y =x +3B .y =x 3C .y =3x 2D .y =3x 2.若反比例函数y=6x 的图像经过点(﹣2,a ),则a 的值是( )A .6B .﹣2C .﹣3D .3 3.已知反比例函数y =−1x ,下列结论不正确...的是( ) A .该函数图象经过点(−1,1)B .该函数图象位于第二、四象限C .y 的值随着x 值的增大而增大D .该函数图象关于原点成中心对称 4.反比例函数(其中),当时,y 随x 的增大而增大,那么m 的取值范围是( ) A . B .C .D . 5.在同一直角坐标系中,函数y =−kx +k 与y =k x (k ≠0)的大致图象可能为( )A .B .C .D .6.反比例函数y =6x 图象上有三个点(x 1,y 1),(x 2,y 2),(x 3,y 3)其中y 1<y 2<0<y 3,则x 1,x 2,x 3的大小关系是( )A .x 1<x 2<x 3B .x 3<x 1<x 2C .x 2<x 1<x 3D .x 3<x 2<x 1 7.如图,A 、B 是第二象限内双曲线y =k x 上的点,A 、B 两点的横坐标分别是a ,3a ,线段AB 的延长线交x轴于点C ,S △AOC =12.则k 的值为( )A .﹣6B .﹣5C .﹣4D .﹣38.如图,矩形OABC与反比例函数y1=k1x(k1是非零常数,x>0)的图象交于点M,N,与反比例函数y2=k2x(k2是非零常数,x>0)的图象交于点B,连接OM,ON.若四边形OMBN的面积为3,则k1﹣k2=()A.3 B.﹣3 C.32D.−32二、填空题9.已知点A(−3,2)在反比例函数y=kx的图象上,则k的值为.10.若点P1(﹣1,m),P2(﹣2,n)在反比例函数y=kx(k<0)的图象上,则m n.(填“>”,“<”或“=”)11.正比例函数y=k1x(k1≠0)和反比例函数y= k2x(k2≠0)的一个交点为(m,n),则另一个交点为12.如图,在平面直角坐标系中,点A是x轴上任意一点,BC∥x轴,分别交y=2x (x>0),y=kx(x<0)的图象于B,C两点,若△ABC的面积是3,则k的值为.13.如图,在平面直角坐标系中,过点M(-3,2)分别作x轴、y轴的垂线与反比例函数y=4x的图象交于A,B两点,则四边形MAOB的面积为.三、解答题14.如图,一次函数的图象与反比例函数的图象在第一象限交于点,与轴的负半轴交于点,且.(1)求一次函数与反比例函数的表达式;(2)请直接写出不等式的解集.15.1896年,挪威生理学家古德贝发现,每个人有一条腿迈出的步子比另一条腿迈出的步子长的特点,这就导致每个人在蒙上眼睛行走时,虽然主观上沿某一方向直线前进,但实际上走出的是一个大圆圈!这就是有趣的“嗐转圈”现象.经研究,某人蒙上眼睛走出的大圆圈的半径y/米是其两腿迈出的步长之差x/厘米(x>0)的反比例函数,y与x之间有如表关系:请根据表中的信息解决下列问题:(1)求出y与x之间的函数解析式;(2)若某人蒙上眼睛走出的大圆圈的半径为35米,则其两腿迈出的步长之差是多少厘米?(k>0).16.如图,设反比例函数的解析式为y=3kx(1)若反比例函数与正比例函数y=2x的图象有一个交点的纵坐标为2,求k的值;(2)若反比例函数的图象与过点M (﹣2,0)的直线l :y =kx+b 的图象交于A 、B 两点,如图,当△ABO 的面积为12时,求直线l 的解析式.17.某医药研究所研制了一种新药,在试验药效时发现:成人按规定剂量服用后,检测到从第10分钟起每分钟每毫升血液中含药量增加0.3微克,第100分钟达到最高,接着开始衰退.血液中含药量y (微克)与时间x (分钟)的函数关系如图,并发现衰退时y 与x 成反比例函数关系.(1) ; (2)分别求出当和时,y 与x 之间的函数关系式; (3)如果每毫升血液中含药量不低于12微克时是有效的,求一次服药后的有效时间是多少分钟?18.如图,一次函数 y ax b =+ 的图象与反比例函数 k y x=的图象交于第一象限C ,D 两点,坐标轴交于A 、B 两点,连结OC ,OD (O 是坐标原点).(1)利用图中条件,求反比例函数的解析式和m 的值;(2)求△DOC 的面积.(3)双曲线上是否存在一点P ,使得△POC 和△POD 全等?若存在,给出证明并求出点P 的坐标;若不存在,说明理由.参考答案1.B2.C3.C4.A5.D6.C7.A8.B9.k=-610.>11.(-m,-n).12.−413.1014.(1)解:点在反比例函数的图象上反比例函数解析式为;OA=OB,点在轴负半轴上点.把点、代入中得解得:一次函数的解析式为;(2) 15.(1)解:设y 与x 之间的函数解析式为y =k x 将(2,7)代入得7=k 2∴k =14∴y 与x 之间的函数解析式为y =14x . (2)解:当y =35时,即14x =35,解得x =0.4∴某人蒙上眼睛走出的大圆圈的半径为35米,其两腿迈出的步长之差是0.4厘米.16.(1)解:∵反比例函数与正比例函数y =2x 的图象有一个交点的纵坐标为2 把y =2代入y =2x 求得x =1∴反比例函数与正比例函数y =2x 的图象交点的坐标为(1,2)把(1,2)代入y =3k x (k >0),得到3k =2 ∴k =23;(2)解:把M (﹣2,0)代入y =kx+b ,可得b =2k∴y =kx+2k解{y =3k x y =kx +2k 得{x =−3y =−k 或{x =1y =3k∴B (﹣3,﹣k ),A (1,3k )∵△ABO 的面积为12∴12•2•3k+12•2•k =12解得k =3∴直线l 的解析式为y =3x+6.17.(1)27(2)解:当时,设y 与x 之间的函数关系式为∵经过点 ∴解得:,∴解析式为;当时,y 与x 之间的函数关系式为∵经过点∴解得:∴函数的解析式为; (3)解:令解得:令,解得:∴分钟 ∴服药后能持续175分钟.18.(1)∵点C (1,2)在反比例函数 图象上 ∴k=2∴反比例函数解析式为 2y x= ∵点B (2,m )在反比例函数 图象上 ∴m= 22=1. (2)如图,过点C 作⊥OA 于E ,过点D 作DF ⊥OA 于 Fk y x =2y x =∵C (1,2),D (2,1)∴CE=2,DF=1∵C 、D 在一次函数 的图象上∴221a b a b +=⎧⎨+=⎩解得: 13a b =-⎧⎨=⎩∴一次函数解析式为y=-x+3当y=0时,x=3∴A 点坐标为(3,0)∴OA=3∴DOC S =S △AOC -S △AOD = 1122OA CE OA DF ⋅-⋅ = 11323122⨯⨯-⨯⨯ =1.5.(3)设点P 坐标为(n , 2n )∵C (2,1),D (1,2)∴OC=OD∵△POC 和△POD 全等∴PC=PD ∴222222(1)(2)(2)(1)n n n n -+-=-+-解得: 2n =∴P (, )或P ( 2 , ) ∴双曲线上存在一点P ,使得△POC 和△POD 全等,P ( , )或P ( , ). y ax b =+222-2222。

中考数学总复习《反比例函数》练习题(附答案)

中考数学总复习《反比例函数》练习题(附答案)

中考数学总复习《反比例函数》练习题(附答案)班级:___________姓名:___________考号:_____________一、单选题1.一次函数y1=k1x+b(k1≠0)与反比例函数y2=k2x(k2≠0)的图象交于点A(−1,−2),点B(2,1).当y1<y2时,x的取值范围是()A.x<−1B.−1<x<0或x>2 C.0<x<2D.0<x<2或x<−12.关于函数y=−2x,下列说法中正确的是()A.图像位于第一、三象限B.图像与坐标轴没有交点C.图像是一条直线D.y的值随x的值增大而减小3.如图,在直角坐标系中,点A是双曲线y= 3x(x>0)上的一个动点,点B是x轴正半轴上的一个定点,当点A的横坐标逐渐增大时,△OAB的面积将会()A.逐渐减小B.不变C.逐渐增大D.先减小后增大4.在同一平面直角坐标系中,反比例函数y=-8x与一次函数y=-x+2交于A,B两点,O为坐标原点,则△AOB的面积为()A.2B.6C.10D.85.如图,△ABC的三个顶点分别为A(1,2),B(4,2),C(4,4).若反比例函数y= k x在第一象限内的图象与△ABC有交点,则k的取值范围是()A.1≤k≤4B.2≤k≤8C.2≤k≤16D.8≤k≤166.如图,过反比例函数y= 1x(x>0)的图象上任意两点A、B分别作x轴的垂线,垂足分别为C、D,连接OA、OB,设AC与OB的交点为E,△AOE与梯形ECDB的面积分别为S1、S2,比较它们的大小,可得()A.S1>S2B.S1=S2C.S l<S2D.大小关系不能确定7.某村耕地总面积为50公顷,且该村人均耕地面积y(单位:公顷/人)与总人口x(单位:人)的函数图象如图所示,则下列说法正确的是()A.该村人均耕地面积随总人口的增多而增多B.该村人均耕地面积y与总人口x成正比例C.若该村人均耕地面积为2公顷,则总人口有100人D.当该村总人口为50人时,人均耕地面积为1公顷8.在同一直角坐标系中,函数y=kx+1与y=−k x(k≠0)的图象大致是()A.B.C.D.9.如图,在平面直角坐标系xOy中,函数y=kx+b(k≠0)与y= mx(m≠0)的图象相交于点A(-2,3),B(6,-1),则不等式kx+b>mx的解集为()A.x<−2B.−2<x<0或x>6 C.x<6D.0<x<6或x<−210.已知两个函数y1=k1x+b与y2= k2x的图象如图所示,其中A(-1,2),B(2,-1),则不等式k1x+b>k2x的解集为()A.x<−1或x>2B.x<−1或0<x<2 C.−1<x<2D.−1<x<0或0<x<211.在反比例函数y=−3x图象上有三个点A(x1,y1)、B(x2,y2)、C(x3,y3),若x1<0<x2<x3,则下列结论正确的是()A.y3<y2<y1B.y1<y3<y2C.y2<y3<y1D.y3<y1<y2 12.图所示矩形ABCD中,BC=x,CD=y,y与x满足的反比例函数关系如图2所示,等腰直角三角形AEF的斜边EF过C点,M为EF的中点,则下列结论正确的是A.当x=3时,EC<EM B.当y=9时,EC>EMC.当x增大时,EC·CF的值增大。

2024年四川中考数学真题分类汇编——反比例函数

2024年四川中考数学真题分类汇编——反比例函数

2024年四川中考数学真题分类汇编——反比例函数一成都如图,在平面直角坐标系xOy 中,直线y x m =-+与直线2y x =相交于点()2,A a ,与x 轴交于点(),0B b ,点C 在反比例函数()0k y k x=<图象上.(1)求a ,b ,m 的值;(2)若O ,A ,B ,C 为顶点的四边形为平行四边形,求点C 的坐标和k 的值;(3)过A ,C 两点的直线与x 轴负半轴交于点D ,点E 与点D 关于y 轴对称.若有且只有一点C ,使得ABD △与ABE 相似,求k 的值.如图,一次函数y kx b =+(k 、b 为常数,0k ≠)的图象与反比例函数m y x=(m 为常数,0m ≠)的图象交于点()2,3A ,(),2B a -.(1)求反比例函数和一次函数的解析式;(2)若点C 是x 轴正半轴上的一点.且90BCA ∠=︒.求点C 的坐标.如图,一次函数22y x =-+与反比例函数(0)k y x x=<的图象交于点()1,A m -.(1)求m 的值和反比例函数k y x=的解析式;(2)将直线22y x =-+向下平移h 个单位长度(0)h >后得直线y ax b =+,若直线y ax b =+与反比例函数(0)k y x x =<的图象的交点为(),2B n ,求h 的值,并结合图象求不等式k ax b x<+的解集.如图,一次函数y ax b =+(a ,b 为常数,0a ≠)的图象与反比例函数k y x=(k 为常数,0k ≠)的图象交于(2,4)A ,(,2)B n -两点.(1)求一次函数和反比例函数的解析式.(2)直线AB 与x 轴交于点C ,点(,0)P m 是x 轴上的点,若PAC △的面积大于12,请直接写出m 的取值范围.如图,已知反比例函数1k y x=和一次函数2y mx n =+的图象相交于点()3,A a -,3,22B a ⎛⎫+- ⎪⎝⎭两点,O 为坐标原点,连接OA ,OB .(1)求1k y x=与2y mx n =+的解析式;(2)当12y y >时,请结合图象直接写出自变量x 的取值范围;(3)求AOB 的面积.如图,已知点、在反比例函数的图象上,过点的一次函数的图象与轴交于点.(1)求、的值和一次函数的表达式;(2)连结,求点到线段的距离.如图,在平面直角坐标系xOy 中,一次函数y kx b =+与x 轴相交于点()2,0A -,与反比例函数a y x=的图象相交于点()2,3B .(1)求一次函数和反比例函数的解析式;(2)直线()2x m m =>与反比例函数()0a y x x =>和()20y x x=->的图象分别交于点C ,D ,且2OBC OCD S S =△△,求点C 的坐标.如图,在平面直角坐标系中,一次函数与反比例函数的图象交于点,,与轴,轴分别交于,两点.(1)求一次函数和反比例函数的表达式;(2)若点在轴上,当的周长最小时,请直接写出点的坐标;(3)将直线向下平移个单位长度后与轴,轴分别交于,两点,当时,求的值.如图,直线y kx b =+经过(0,2),(1,0)A B --两点,与双曲线(0)my x x =<交于点(,2)C a .(1)求直线和双曲线的解析式.(2)过点C 作CD x ⊥轴于点D ,点P 在x 轴上,若以O ,A ,P 为顶点的三角形与BCD △相似,直接写出点P 的坐标.如图,一次函数y ax b =+的图象与反比例函数k y x=的图象相交于A 、B 两点,其中点A 的坐标为()2,3-,点B 的坐标为()3,n (1)求这两个函数的表达式;(2)根据图象,直接写出关于x 的不等式k ax b x+<的解集十一遂宁如图,一次函数()10y kx b k =+≠的图象与反比例函数()20m y m x=≠的图象相交于()()1,3,1A B n -,两点.(1)求一次函数和反比例函数的表达式;(2)根据图象直接写出12y y >时,x 的取值范围;(3)过点B 作直线OB ,交反比例函数图象于点C ,连结AC ,求ABC 的面积.十二宜宾如图,一次函数.()0y ax b a =+≠的图象与反比例函数()0k y k x=≠的图象交于点()()1,4,1A B n -、.(1)求反比例函数和一次函数的表达式;(2)利用图象,直接写出不等式k ax b x+<的解集;(3)已知点D 在x 轴上,点C 在反比例函数图象上.若以A 、B 、C 、D 为顶点的四边形是平行四边形,求点C 的坐标.十三自贡如图,在平面直角坐标系中,一次函数y kx b =+的图象与反比例函数m y x=的图象交于(6,1)A -,(1,)B n两点.(1)求反比例函数和一次函数的解析式;(2)P 是直线2x =-上的一个动点,PAB 的面积为21,求点P 坐标;(3)点Q 在反比例函数m y x =位于第四象限的图象上,QAB 的面积为21,请直接写出Q 点坐标.十四凉山如图,正比例函数112y x =与反比例函数()20k y x x =>的图象交于点()2A m ,.(1)求反比例函数的解析式;(2)把直线112y x =向上平移3个单位长度与()20k y x x =>的图象交于点B ,连接,AB OB ,求AOB 的面积.。

2014年全国中考数学试题分类汇编12 反比例函数(含解析)

2014年全国中考数学试题分类汇编12 反比例函数(含解析)

反比例函数一、选择题1. (2014•福建泉州,第7题3分)在同一平面直角坐标系中,函数y=mx+m与y =(m≠0)的图象可能是()B C D.=的图象可知2. (2014•广西贺州,第10题3分)已知二次函数y=ax2+bx+c(a,b,c是常数,且a≠0)的图象如图所示,则一次函数y=cx+与反比例函数y=在同一坐标系内的大致图象是()A.B.C.D.考点:二次函数的图象;一次函数的图象;反比例函数的图象.分析:先根据二次函数的图象得到a>0,b<0,c<0,再根据一次函数图象与系数的关系和反比例函数图象与系数的关系判断它们的位置.解答:解:∵抛物线开口向上,∴a>0,∵抛物线的对称轴为直线x=﹣>0,∴b<0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴一次函数y=cx +的图象过第二、三、四象限,反比例函数y =分布在第二、四象限.故选B.点评:本题考查了二次函数的图象:二次函数y=ax2+bx+c(a、b、c为常数,a≠0)的图象为抛物线,当a>0,抛物线开口向上;当a<0,抛物线开口向下.对称轴为直线x=﹣;与y轴的交点坐标为(0,c).也考查了一次函数图象和反比例函数的图象.3.(2014年天津市,第9 题3分)已知反比例函数y =,当1<x<2时,y的取值范围是()A.0<y<5 B.1<y<2 C.5<y<10 D.y>10考点:反比例函数的性质.菁优网分析:将x=1和x=2分别代入反比例函数即可确定函数值的取值范围.解答:解:∵反比例函数y=中当x=1时y=10,当x=2时,y=5,∴当1<x<2时,y的取值范围是5<y<10,故选C.点评:本题考查了反比例函数的性质:(1)反比例函数y=(k≠0)的图象是双曲线;(2)当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;(3)当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.4.(2014•新疆,第11题5分)若点A(1,y1)和点B(2,y2)在反比例函数y=图象上,则y1与y2的大小关系是:y1y2(填“>”、“<”或“=”).的图象上,=1,>5.(2014•温州,第10题4分)如图,矩形ABCD的顶点A在第一象限,AB∥x轴,AD∥y 轴,且对角线的交点与原点O重合.在边AB从小于AD到大于AD的变化过程中,若矩形ABCD的周长始终保持不变,则经过动点A的反比例函数y=(k≠0)中k的值的变化情况是()AB•AB•ADAB•AD6.(2014•四川自贡,第9题4分)关于x的函数y=k(x+1)和y=(k≠0)在同一坐标系中的图象大致是()...D.关于x的函数y=k(x+1)和y=(k≠0)在同一坐标系中的图象大致是()...D.7.(2014·云南昆明,第8题3分)左下图是反比例函数)0(≠=k k xky 为常数,的图像,则一次函数k kx y -=的图像大致是( )8. (2014•湘潭,第8题,3分)如图,A 、B 两点在双曲线y =上,分别经过A 、B 两点向轴作垂线段,已知S 阴影=1,则S 1+S 2=( )(第1题图)DC BA9. (2014•益阳,第6题,4分)正比例函数y=6x的图象与反比例函数y=的图象的交点位于()根据反比例函数与一次函数的交点问题解方程组得或的图象的交点坐标为(10. (2014•株洲,第4题,3分)已知反比例函数y=的图象经过点(2,3),那么下列四个点中,也在这个函数图象上的是()11. (2014•扬州,第3题,3分)若反比例函数y=(k≠0)的图象经过点P(﹣2,3),则该函数的图象的点是()(二.填空题1. (2014•广西玉林市、防城港市,第18题3分)如图,OABC是平行四边形,对角线OB 在轴正半轴上,位于第一象限的点A和第二象限的点C分别在双曲线y=和y=的一支上,分别过点A、C作x轴的垂线,垂足分别为M和N,则有以下的结论:①=;②阴影部分面积是(k1+k2);③当∠AOC=90°时,|k1|=|k2|;④若OABC是菱形,则两双曲线既关于x轴对称,也关于y轴对称.其中正确的结论是①④(把所有正确的结论的序号都填上).||ON,所以有|=(||ON=||((2.(2014年天津市,第14题3分)已知反比例函数y=(k为常数,k≠0)的图象位于第一、第三象限,写出一个符合条件的k的值为1.考点:反比例函数的性质.菁优网专题:开放型.分析:反比例函数y=(k为常数,k≠0)的图象在第一,三象限,则k>0,符合上述条件的k的一个值可以是1.(正数即可,答案不唯一)解答:解:∵反比例函数的图象在一、三象限,∴k>0,只要是大于0的所有实数都可以.例如:1.故答案为:1.点评:此题主要考查反比例函数图象的性质:(1)k>0时,图象是位于一、三象限;(2)k<0时,图象是位于二、四象限.3.(2014•武汉,第15题3分)如图,若双曲线y=与边长为5的等边△AOB的边OA,AB分别相交于C,D两点,且OC=3BD,则实数k的值为.x坐标为(,﹣,x﹣=故答案为:4.(2014•邵阳,第13题3分)若反比例函数的图象经过点(﹣1,2),则k的值是﹣2 .5.(2014•孝感,第17题3分)如图,Rt△AOB的一条直角边OB在x轴上,双曲线y=经过斜边OA的中点C,与另一直角边交于点D.若S△OCD=9,则S△OBD的值为6.==.,=kk三角形的面积是6.(2014•浙江湖州,第15题4分)如图,已知在Rt△OAC中,O为坐标原点,直角顶点C在x轴的正半轴上,反比例函数y=(k≠0)在第一象限的图象经过OA的中点B,交AC于点D,连接OD.若△OCD∽△ACO,则直线OA的解析式为.分析:设OC=a,根据点D在反比例函数图象上表示出CD,再根据相似三角形对应边成比例列式求出AC,然后根据中点的定义表示出点B的坐标,再根据点B在反比例函数图象上表示出a、k的关系,然后用a表示出点B的坐标,再利用待定系数法求一次函数解析式解答.解:设OC=a,∵点D在y=上,∴CD=,∵△OCD∽△ACO,∴=,∴AC==,∴点A(a,),∵点B是OA的中点,∴点B的坐标为(,),∵点B在反比例函数图象上,∴=,解得,a2=2k,∴点B的坐标为(,a),设直线OA的解析式为y=mx,则m•=a,解得m=2,所以,直线OA的解析式为y=2x.故答案为:y=2x.点评:本题考查了相似三角形的性质,反比例函数图象上点的坐标特征,用OC的长度表示出点B的坐标是解题的关键,也是本题的难点.7.(2014年江苏南京,第11题,2分)已知反比例函数y=的图象经过点A(﹣2,3),则当x=﹣3时,y=.考点:反比例函数分析:先把点A(﹣2,3)代入y=求得k的值,然后将x=﹣3代入,即可求出y的值.解答:∵反比例函数y=的图象经过点A(﹣2,3),∴k=﹣2×3=﹣6,∴反比例函数解析式为y=﹣,∴当x=﹣3时,y=﹣=2.故答案是:2.点评:本题考查了反比例函数图象上点的坐标特征.利用待定系数法求得反比例函数解析式是解题的关键.8.(2014•滨州,第17题4分)如图,菱形OABC的顶点O是原点,顶点B在y轴上,菱形的两条对角线的长分别是6和4,反比例函数的图象经过点C,则k的值为﹣6 .=,解得9.(2014•菏泽,第13题3分)如图,Rt△ABO中,∠AOB=90°,点A在第一象限、点B在第四象限,且AO:BO=1:,若点A(x0,y0)的坐标x0,y0满足y0=,则点B(x,y)的坐标x,y所满足的关系式为y=﹣2x.))10.(2014•济宁,第14题3分)如图,四边形OABC是矩形,ADEF是正方形,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在反比例函数y=的图象上,OA=1,OC=6,则正方形ADEF的边长为2.,设,=(三.解答题1. (2014•福建泉州,第26题14分)如图,直线y=﹣x+3与x,y轴分别交于点A,B,与反比例函数的图象交于点P(2,1).(1)求该反比例函数的关系式;(2)设PC⊥y轴于点C,点A关于y轴的对称点为A′;①求△A′BC的周长和sin∠BA′C的值;②对大于1的常数m,求x轴上的点M的坐标,使得sin∠BMC=.,然后把点=.的图象上,.=3+BC3=3.+.==.的坐标为(的坐标为(﹣=═=′=﹣+﹣,)和(﹣﹣+(﹣联想到点2. (2014•广东,第23题9分)如图,已知A(﹣4,),B(﹣1,2)是一次函数y=kx+b 与反比例函数y=(m≠0,m<0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于D.(1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值?(2)求一次函数解析式及m的值;(3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.考点:反比例函数与一次函数的交点问题.分析:(1)根据一次函数图象在上方的部分是不等式的解,观察图象,可得答案;(2)根据待定系数法,可得函数解析式;(3)根据三角形面积相等,可得答案.解答:解:(1)由图象得一次函数图象在上的部分,﹣4<x<﹣1,当﹣4<x<﹣1时,一次函数大于反比例函数的值;(2)设一次函数的解析式为y=kx+b,y=kx+b的图象过点(﹣4,),(﹣1,2),则,解得一次函数的解析式为y=x+,反比例函数y=图象过点(﹣1,2),m=﹣1×2=﹣2;(3)连接PC、PD,如图,设P(x,x+)由△PCA和△PDB面积相等得(x+4)=|﹣1|×(2﹣x﹣),x=﹣,y=x+=,∴P点坐标是(﹣,).点评:本题考查了反比例函数与一次函数的交点问题,利用了函数与不等式的关系,待定系数法求解析式.3. (2014•珠海,第19题7分)如图,在平面直角坐标系中,边长为2的正方形ABCD关于y轴对称,边在AD在x轴上,点B在第四象限,直线BD与反比例函数y=的图象交于点B、E.(1)求反比例函数及直线BD的解析式;(2)求点E的坐标.的图象过点﹣,解得.,解得4.(2014年四川资阳,第20题8分)如图,一次函数y=kx+b(k≠0)的图象过点P(﹣,0),且与反比例函数y=(m≠0)的图象相交于点A(﹣2,1)和点B.(1)求一次函数和反比例函数的解析式;(2)求点B的坐标,并根据图象回答:当x在什么范围内取值时,一次函数的函数值小于反比例函数的函数值?考点:反比例函数与一次函数的交点问题.菁优网分析:(1)根据待定系数法,可得函数解析式;(2)根据二元一次方程组,可得函数图象的交点,根据一次函数图象位于反比例函数图象的下方,可得答案.解答:解:(1)一次函数y=kx+b(k≠0)的图象过点P(﹣,0)和A(﹣2,1),∴,解得,∴一次函数的解析式为y=﹣2x﹣3,反比例函数y=(m≠0)的图象过点A(﹣2,1),∴,解得m=﹣2,∴反比例函数的解析式为y=﹣;(2),解得,或,∴B(,﹣4)由图象可知,当﹣2<x<0或x>时,一次函数的函数值小于反比例函数的函数值.点评:本题考查了反比例函数与一次函数的交点问题,待定系数法是求函数解析式的关键.5.(2014年云南省,第17题6分)将油箱注满k升油后,轿车科行驶的总路程S(单位:千米)与平均耗油量a(单位:升/千米)之间是反比例函数关系S=(k是常数,k≠0).已知某轿车油箱注满油后,以平均耗油量为每千米耗油0.1升的速度行驶,可行驶700千米.(1)求该轿车可行驶的总路程S与平均耗油量a之间的函数解析式(关系式);(2)当平均耗油量为0.08升/千米时,该轿车可以行驶多少千米?考点:反比例函数的应用.分析:(1)将a=0.1,s=700代入到函数的关系S=中即可求得k的值,从而确定解析式;(2)将a=0.08代入求得的函数的解析式即可求得s的值.解答:解:(1)由题意得:a=0.1,s=700,代入反比例函数关系S=中,解得:k=sa=70,所以函数关系式为:s=;(2)将a=0.08代入s=得:s===875千米,故该轿车可以行驶多875米;点评:本题考查了反比例函数的应用,解题的关键是从实际问题中抽象出反比例函数模型.6.(2014•舟山,第22题10分)实验数据显示,一般成人喝半斤低度白酒后,1.5小时内其血液中酒精含量y(毫克/百毫升)与时间x(时)的关系可近似地用二次函数y=﹣200x2+400x 刻画;1.5小时后(包括1.5小时)y与x可近似地用反比例函数y=(k>0)刻画(如图所示).(1)根据上述数学模型计算:①喝酒后几时血液中的酒精含量达到最大值?最大值为多少?②当x=5时,y=45,求k的值.(2)按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上20:00在家喝完半斤低度白酒,第二天早上7:00能否驾车去上班?请说明理由.,则>7.(2014•襄阳,第22题6分)如图,一次函数y1=﹣x+2的图象与反比例函数y2=的图象相交于A,B两点,与x轴相交于点C.已知tan∠BOC=,点B的坐标为(m,n).(1)求反比例函数的解析式;(2)请直接写出当x<m时,y2的取值范围.= =,﹣=,=,即得﹣8.(2014•四川自贡,第22题12分)如图,一次函数y=kx+b与反比例函数的图象交于A(m,6),B(3,n)两点.(1)求一次函数的解析式;(2)根据图象直接写出的x的取值范围;(3)求△AOB的面积.)代入得,时,9.(2014•浙江湖州,第20题分)如图,已知在平面直角坐标系xOy中,O是坐标原点,点A(2,5)在反比例函数y=的图象上,过点A的直线y=x+b交x轴于点B.(1)求k和b的值;(2)求△OAB的面积.分析:(1)根据待定系数法,可得答案;(2)根据三角形的面积公式,可得答案.解:(1)把A(2,5)分别代入y=和y=x+b,得,解得k=10b=3;(2)作AC⊥x轴与点C,,由(1)得直线AB的解析式为y=x+3,∴点B的坐标为(﹣3,0),OB=3,点A的坐标是(2,5),∴AC=5,∴=5=.点评:本题考查了反比例函数与一次函数的交点问题,利用了待定系数法,三角形的面积公式.10.(2014•浙江宁波,第22题10分)如图,点A、B分别在x,y轴上,点D在第一象限内,DC⊥x轴于点C,AO=CD=2,AB=DA=,反比例函数y=(k>0)的图象过CD的中点E.(1)求证:△AOB≌△DCA;(2)求k的值;(3)△BFG和△DCA关于某点成中心对称,其中点F在y轴上,是判断点G是否在反比例函数的图象上,并说明理由.=的图象上.,=,==1=的图象上.11. (2014•泰州,第26题,14分)平面直角坐标系xOy中,点A、B分别在函数y1=(x >0)与y2=﹣(x<0)的图象上,A、B的横坐标分别为a、b.(第1题图)(1)若AB∥x轴,求△OAB的面积;(2)若△OAB是以AB为底边的等腰三角形,且a+b≠0,求ab的值;(3)作边长为3的正方形ACDE,使AC∥x轴,点D在点A的左上方,那么,对大于或等于4的任意实数a,CD边与函数y1=(x>0)的图象都有交点,请说明理由.的纵坐标分别为、﹣((﹣))(﹣﹣=0=(,),﹣,然后比较﹣(﹣,而××的纵坐标分别为、﹣)))))﹣(=0)=0=(),,﹣,﹣(﹣)(12.(2014•呼和浩特,第23题8分)如图,已知反比例函数y=(x>0,k是常数)的图象经过点A(1,4),点B(m,n),其中m>1,AM⊥x轴,垂足为M,BN⊥y轴,垂足为N,AM与BN的交点为C.(1)写出反比例函数解析式;(2)求证:△ACB∽△NOM;(3)若△ACB与△NOM的相似比为2,求出B点的坐标及AB所在直线的解析式.==,再根据反比例函数解析式可得=,则,而=,可得=,再由(;==上,===,=)x.13.(2014•德州,第21题10分)如图,双曲线y=(x>0)经过△OAB的顶点A和OB的中点C,AB∥x轴,点A的坐标为(2,3).(1)确定k的值;(2)若点D(3,m)在双曲线上,求直线AD的解析式;(3)计算△OAB的面积.,得:,得:=2)代入得:,=)=,得到14.(2014•菏泽,第17题7分)(2)如图,在平面直角坐标系xOy中,已知一次函数y=kx+b的图象经过点A(1,0),与反比例函数y=(x>0)的图象相交于点B(2,1).①求m的值和一次函数的解析式;②结合图象直接写出:当x>0时,不等式kx+b>的解集.,15.(2014年山东泰安,第26题)如图①,△OAB中,A(0,2),B(4,0),将△AOB向右平移m个单位,得到△O′A′B′.(1)当m=4时,如图②.若反比例函数y=的图象经过点A′,一次函数y=ax+b的图象经过A′、B′两点.求反比例函数及一次函数的表达式;(2)若反比例函数y=的图象经过点A′及A′B′的中点M,求m的值.分析:(1)根据题意得出:A′点的坐标为:(4,2),B′点的坐标为:(8,0),进而利用待定系数法求一次函数解析式即可;(2)首先得出A′B′的中点M的坐标为:(m+4﹣2,1)则2m=m+2,求出m的值即可.解:(1)由图②值:A′点的坐标为:(4,2),B′点的坐标为:(8,0),∴k=4×2=8,∴y=,把(4,2),(8,0)代入y=ax+b得:,解得:,∴经过A′、B′两点的一次函数表达式为:y=﹣x+4;(2)当△AOB向右平移m个单位时,A′点的坐标为:(m,2),B′点的坐标为:(m+4,0)则A′B′的中点M的坐标为:(m+4﹣2,1)∴2m=m+2,解得:m=2,∴当m=2时,反比例函数y=的图象经过点A′及A′B′的中点M.点评:此题主要考查了待定系数法求一次函数解析式以及坐标的平移等知识,得出A′,B′点坐标是解题关键.。

中考数学分类(含答案)反比例函数

中考数学分类(含答案)反比例函数

反比例函数分类精选一、选择题1.(2010安徽芜湖)二次函数y =ax 2+bx +c 的图象如图所示,反比例函数y = a x与正比例函数y =(b +c )x 在同一坐标系中的大致图象可能是()A .B .C .D .【答案】B2.(2010甘肃兰州) 已知点(-1,1y ),(2,2y ),(3,3y )在反比例函数x k y 12--=的图像上. 下列结论中正确的是A .321y y y >>B .231y y y >>C .213y y y >>D . 132y y y >>【答案】B3.(2010山东青岛)函数y ax a =-与ay x=(a ≠0)在同一直角坐标系中的图象可能是( )【答案】D4.(2010山东日照)已知反比例函数y =x2,则下列点中在这个反比例函数图象的上的是 (A )(-2,1) (B )(1,-2) (C )(-2,-2) (D )(1,2) 【答案】D5.(2010四川凉山)已知函数25(1)m y m x -=+是反比例函数,且图像在第二、四象限内,则m 的值是A .2B .2-C .2±D .12- 【答案】B6.(2010浙江宁波)已知反比例函数1y x=,下列结论不正确...的是 (A)图象经过点(1,1) (B)图象在第一、三象限(C)当1x >时,01y << (D)当0x <时,y 随着x 的增大而增大 【答案】D7.(2010 浙江台州市)反比例函数xy 6=图象上有三个点)(11y x ,,)(22y x ,,)(33y x ,,其中3210x x x <<<,则1y ,2y ,3y 的大小关系是(▲)A .321y y y <<B .312y y y <<C .213y y y <<D .123y y y << 【答案】B 8.(2010四川眉山)如图,已知双曲线(0)ky k x=<经过直角三角形OAB 斜边OA 的中点D ,且与直角边AB 相交于点C .若点A 的坐标为(6-,4),则△AOC 的面积为A .12B .9C .6D .4【答案】B9.(2010浙江绍兴)已知(x 1, y 1),(x 2, y 2),(x 3, y 3)是反比例函数xy 4-=的图象上的三个点,且x 1<x 2<0,x 3>0,则y 1,y 2,y 3的大小关系是( )A. y 3<y 1<y 2B. y 2<y 1<y 3C. y 1<y 2<y 3D. y 3<y 2<y 1 【答案】A10.(2010 嵊州市)如图,直线)0(<=k kx y 与双曲线xy 2-=交于),(),,(2211y x B y x A 两点,则122183y x y x -的值为( )A.-5B.-10C.5D.10【答案】B11.(2010山东聊城)函数y 1=x (x ≥0),y 2=4x(x>0)的图象如图所示,下列结论:①两函数图象的交点坐标为A (2,2);②当x >2时,y 2>y 1;③直线x =1分别与两函数图象相交于B 、C 两点,则线段BC 的长为3; ④当x 逐渐增大时,y 1的值随x 的增大而增大,y 2的值随x 的增大减少. 其中正确的是( )A .只有①②B .只有①③C .只有②④D .只有①③④【答案】D12.(2010 四川南充)如图,直线2y x =+与双曲线ky x=相交于点A ,点A 的纵坐标为3,k 的值为( ).(A )1 (B )2 (C )3 (D )4 【答案】C13.(2010江西)如图,反例函数4y x=图象的对称轴的条数是( ) A .0 B .1 C .2 D .3(第9题)yy 1=xy 2=4xx第11题图【答案】C14.(2010福建福州)已知反比例函数的图象y =kx过点P (1,3),则该反比例函数图象位于( )A .第一、二象限B .第一、三象限C .第二、四象限D .第三、四象限 【答案】B 15.(2010江苏无锡)如图,已知梯形ABCO 的底边AO 在x 轴上,BC ∥AO ,AB ⊥AO ,过点C 的双曲线ky x=交OB 于D ,且OD :DB=1:2,若△OBC 的面积等于3,则k 的值()A . 等于2B .等于34C .等于245D .无法确定16.(2010年上海)在平面直角坐标系中,反比例函数 y = kx ( k <0 ) 图像的量支分别在( )A.第一、三象限B.第二、四象限C.第一、二象限D.第三、四象限【答案】B17.(2010山东临沂) 已知反比例函数7y x=-图象上三个点的坐标分别是1(2,)A y -、(第6题图)2(1,)B y -、3(2,)C y ,能正确反映1y 、2y 、3y 的大小关系的是(A )123y y y >>(B )132y y y >>(C )213y y y >>(D )231y y y >> 【答案】C18.(2010 山东莱芜)已知反比例函数xy 2-=,下列结论不正确...的是 A .图象必经过点(-1,2) B .y 随x 的增大而增大 C .图象在第二、四象限内 D .若x >1,则y >-2【答案】B19.(2010福建宁德)反比例函数1y x=(x >0)的图象如图所示,随着x 值的增大,y 值( ).A .减小B .增大C .不变D .先减小后不变 【答案】A20.(2010年贵州毕节)函数1ky x-=的图象与直线y x =没有交点,那么k 的取值范围是( )A .1k >B .1k <C .1k >-D .1k <- 【答案】A. 21.(2010浙江湖州)如图,已知在直角梯形AOBC 中,AC ∥OB ,CB ⊥OB ,OB =18,BC =12,AC =9,对角线OC 、AB 交于点D ,点E 、F 、G 分别是CD 、BD 、BC 的中点,以O 为原点,直线OB 为x 轴建立平面直角坐标系,则G 、E 、D 、F 四个点中与点A 在同一反比例函数图像上的是( ) A .点G B .点E C .点D D .点F .【答案】A .22.(2010江苏常州)函数2y x=的图像经过的点是第8题图(第10题)A.(2,1)B.(2,1)-C.(2,4)D.1(,2)2-【答案】A23.(2010 山东滨州)如图,P 为反比例函数y=kx的图象上一点,PA ⊥x 轴于点A, △PAO 的面积为6.下面各点中也在这个反比例函数图象上的点是( )A.(2,3)B. (-2,6)C. (2,6)D. (-2,3)【答案】B24.(2010湖北荆门)在同一直角坐标系中,函数y=kx+1和函数y=xk(k 是常数且k ≠0)的图象只可能是A .B .C .D .【答案】B25.(2010山东潍坊)若正比例函数y =2kx 与反比例函数y =kx(k ≠0)的图象交于点A (m ,1),则k 的值是( ). AB.2或-2 C.2D【答案】B26.(2010湖南怀化)反比例函数)0(1>-=x xy 的图象如图1所示, 随着x 值的增大,y 值( )图1A .增大B .减小C.不变 D.先增大后减小 【答案】A27.(2010湖北荆州)如图,直线l是经过点(1,0)且与y 轴平行的直线.Rt △ABC 中直角边AC=4,BC=3.将BC 边在直线l上滑动,使A ,B 在函数xky =的图象上. 那么k 的值是A .3B .6 C.12 D .415【答案】D28.(2010湖北鄂州)正比例函数y=x 与反比例函数ky x=(k ≠0)的图像在第一象限交于点A,且,则k 的值为A.2B.1C.D.2【答案】B29.(2010山东泰安)函数y=2x+1与函数y=kx的图象相交于点(2,m),则下列各点不在函数y=kx 的图象上的是 ()A.(-2,-5) B.(52,4) C.(-1,10) D.(5,2)【答案】C30.(2010云南红河哈尼族彝族自治州)不在函数xy 12=图像上的点是 A .(2,6) B.(-2,-6) C.(3,4) D.(-3,4) 【答案】D31.(2010黑龙江哈尔滨)反比例函数xk y 3-=的图像,当0>x 时,y 随x 的增大而增大,则k 的数值范围是( ) (A )2<k (B )3≤k (C )3>k(D ).3≥k【答案】A32.(2010四川内江)函数y =x +1x中自变量x 的取值范围是A .x ≥-1B .x >-1C .x ≥-1且x ≠0D .x >-1且x ≠0【答案】C33.(2010四川内江)如图,反比例函数y =kx(x >0)的图象经过矩形OABC 对角线的交点M ,分别与AB 、BC 相交于点D 、E .若四边形ODBE 的面积为6,则k 的值为A .1B .2C .3D .4【答案】B34.(2010 福建三明)在反比例函数xky -=1的图象的每一条曲线上,y 都随x 的增大而增大,则k 的值可能是( ) A .—1 B .0 C .1D .2【答案】D35.(2010 山东东营)如图所示,反比例函数1y 与正比例函数2y 的图象的一个交点是(21)A ,,若210y y >>,则x 的取值范围在数轴上表示为()(A【答案】D36.(2010 湖北孝感)双曲线xyxy21==与在第一象限内的图象如图所示,作一条平行于y轴的直线分别交双曲线于A、B两点,连接OA、OB,则△AOB的面积为()A.1 B.2C.3 D.4【答案】A37.(2010 广东汕头)已知一次函数1-=kxy的图像与反比例函数xy2=的图像的一个交点坐标为(2,1),那么另一个交点的坐标是()A.(-2,1) B.(-1,-2) C.(2,-1) D.(-1,2) 【答案】B38.(2010 云南玉溪)如图2所示的计算程序中,y与x之间的函数关系对应的图象所在的象限是A. 第一象限B. 第一、三象限C. 第二、四象限D. 第一、四象限【答案】C39.(2010 湖南湘潭)在同一坐标系中,正比例函数xy=与反比例函数xy2=的图象大致是图2【答案】B40.(2010 甘肃)如图,矩形ABOC 的面积为3,反比例函数ky x=的图象过点A ,则k =( )A .3B .5.1-C .3-D .6-【答案】C41.(2010广西桂林)若反比例函数ky x=的图象经过点(-3,2),则k 的值为 ( ). A .-6 B .6 C .-5 D .5【答案】A42.(2010湖北十堰)方程x 2+2x -1=0的根可看成函数y =x +2与函数1y x=的图象交点的横坐标,用此方法可推断方程x 3+x -1=0的实根x 所在范围为( ) A . 102x -<< B .102x << C .112x << D .312x << 【答案】C43.(2010 广西玉林、防城港)直线l 与双曲线C 在第一象限相交于A 、B 两点,其图象信息如图4所示,则阴影部分(包括边界)横、纵坐标都是整数的点(俗称格点)有: ( )A .4个B .5 个C .6个D .8个【答案】B 44.(2010 山东荷泽)某种气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P (kPa )是气球体积V 的反比例函数,其图象如图所示,当气球内的气压大于120 kPa 时,气球将爆炸,为了安全,气球的体积应该A .不大于45m 3 B .小于45m 3C .不小于54m 3D .小于54m 3第8题图【答案】C45.如图,平面直角坐标系中,OB 在x 轴上,∠ABO =90°,点A 的坐标为(1,2)。

中考数学《反比例函数》专项练习题(附带答案)

中考数学《反比例函数》专项练习题(附带答案)

中考数学《反比例函数》专项练习题(附带答案)一、单选题1.如图,反比例函数y= 2x的图象经过矩形OABC的边AB的中点D,则矩形OABC的面积为()A.2B.4C.5D.82.小兰画了一个函数y= ax−1的图象如图,那么关于x的分式方程ax−1=2的解是()A.x=1B.x=2C.x=3D.x=43.若A(a1,b1),B(a2,b2)是反比例函数y = –√2x图象上的两点,且a1<a2,则b1与b2的大小关系是()A.b1<b2B.b1 = b2C.b1>b2D.不能确定4.某公司计划新建一个容积V(m3)一定的长方体污水处理池,池的底面积S(m2)与其深度h(m)之间的函数关系式为S=Vℎ(ℎ≠0),这个函数的图象大致是()A.B.C.D.5.若反比例函数y=k x(k为常数,且k≠0)的图象过点(3,-4),则下列各点在该图象上的是()A.(6,-8)B.(-6,8)C.(-3,4)D.(-3,-4)6.已知反比例函数y=k x(k>0)的图象与直线y=﹣x+6相交于第一象限A、B的两点.如图所示,过A、B两点分别作x、y轴的垂线,线段AC、BD相交与P,给出以下结论:①OA=OB;②四边形OCPD 是正方形;③若k=5.则△ABP的面积是8;④P点一定在直线y=x上,其中正确命题的个数是几个()A.4B.3C.2D.17.已知点P(3,2)在反比例函数y=k x(k≠0)图象上,则下列各点中在此反比例函数图象上的是()A.(−3,−2)B.(3,−2)C.(−2,3)D.(2,−3)8.下列函数:①y=−x;②y=−1x;③y=√2x;④y=120x2+240x+3(x<0)中,y随x的增大而减小的函数有()A.1个B.2个C.3个D.4个9.如图,在平面直角坐标系中,菱形OABC的顶点A在x轴的正半轴上,顶点B在函数y=k x(x >0)的图象上,若△C=60°,AB=2,则k的值为()A.√2B.√3C.1D.2 10.对于反比例函数y=﹣1x,下列说法正确的是()A.图象经过点(1,1)B.图象位于第一、三象限C.图象是中心对称图形D.当x<0时,y随x的增大而减小11.一次函数y=ax+a与反比例函数y=−ax(a≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.12.面积为2的△ABC,一边长为x,这边上的高为y,则y与x的变化规律用图象表示大致是() A.B.C.D.二、填空题13.如图,在平面直角坐标系中,菱形ABCD的顶点A与D在函数y=k x(x>0)的图象上,AC⊥x轴,垂足为C,∠BCO=30°,点B的坐标为(0,1),则k的值为.14.如图,反比例函数y=6x在第一象限的图象上有两点A,B,它们的横坐标分别是2,6,则△AOB 的面积是.15.反比例函数y=7x图象与正比例函数y=kx图象交于A(x1,y1),B(x2,y2),则x1y2+x2y1的值为.16.如图,正比例函数y1=ax(a≠0)与反比例函数y2=k x(k≠0)的图象相交于A,B两点,其中点A的坐标为(1,3).当y1<y2时,x的取值范围是.17.如图,在平面直角坐标系中,O为坐标原点,平行四边形ABCD的边AB在x轴上、顶点D在y 轴的正半轴上,点C在第二象限,将△AOD沿y轴翻折,使点A落在x轴上的点E处、点B恰好为OE的中点.DE与BC交于点F.若y=kx(k≠0)图象经过点C,且S△BEF=12,则k的值为.18.如图,一次函数y=x+k(k>0)的图象与x轴和y轴分别交于点M,N,与反比例函数y=kx的图象在第一象限内交于点B,过点B作BA△x轴,BC△y轴.垂足分别为点A,C.当矩形OABC与△OMN 的面积相等时,点B的坐标为.三、综合题19.如图,双曲线y1=k x(k为常数,且k≠0)与直线y2=﹣13x+b交于点A(﹣2,a)和B(3c,2﹣c).(1)求k,b的值;(2)求直线与x轴的交点坐标.20.如图,已知一次函数y=2x+2的图象与y轴交于点B,与反比例函数y= k1x的图象的一个交点为A(1,m).过点B作AB的垂线BD,与反比例函数y= k2x(x>0)的图象交于点D(n,﹣2).(1)求k1和k2的值;(2)若直线AB、BD分别交x轴于点C、E,试问在y轴上是否存在一个点F,使得△BDF△△ACE?若存在,求出点F的坐标;若不存在,请说明理由.21.如图,直线y=2x+1与双曲线相交于点A(m,32)与x轴交于点B.(1)求双曲线的函数表达式:(2)点P在x轴上,如果△ABP的面积为6,求点P坐标.22.在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,观察分析函数特征,概括函数性质的过程,已知函数y=﹣2|x−2|x−1上,结合已有的学习经验,完成下列各小题.(1)请在表格中空白处填入恰当的数据:x…﹣3﹣2﹣101243322345…y (5)2834﹣40﹣1﹣43…(2)根据表中的数据,在所给的平面直角坐标系中画出函数y=﹣2|x−2|x−1的图象;(3)根据函数图象,写出该函数的一条性质:;(4)结合所画函数图象,直接写出不等式﹣2|x−2|x−1<﹣53x+5的解集为:.(保留1位小数,误差不超过0.2)23.在平面直角坐标系xOy中,点A(x1,y1),B(x2,y2)在抛物线y=−x2+2ax−a2−a+2(a 是常数)上.(1)若该二次函数图象的顶点在第二象限时,求a的取值范围;(2)若抛物线的顶点在反比例函数y=−8x(x<0)的图象上,且y1=y2,求x1+x2的值;(3)若当1<x1<x2时,都有y2<y1<1,求a的取值范围.24.如图,点A(m,m+1),B(m+3,m﹣1)是反比例函数y=k x(x>0)与一次函数y=ax+b的交点.求:(1)反比例函数与一次函数的解析式;(2)根据图象直接写出当反比例函数的函数值大于一次函数的函数值时x的取值范围.参考答案1.【答案】B2.【答案】A3.【答案】D4.【答案】C5.【答案】C6.【答案】A7.【答案】A8.【答案】A9.【答案】B10.【答案】C11.【答案】A12.【答案】B13.【答案】2√314.【答案】815.【答案】-1416.【答案】x<-1或0<x<117.【答案】-1218.【答案】(−1+√3,1+√3)19.【答案】(1)解:∵点B(3c,2﹣c)在直线y2=﹣13x+b的图象上∴−13×3c+b=2−c解得:b=2∴直线解析式为y2=﹣13x+2∵点A(﹣2,a)在直线y2=﹣13x+2的图象上∴a=−13×(−2)+2=83∴点A坐标为(-2,8 3)∵点A(-2,83)在y1=kx图象上∴83=k−2解得:k=−16 3 .(2)解:∵直线解析式为y2=﹣13x+2∴当y2=0时,x=6∴直线与x轴的交点坐标为(6,0).20.【答案】(1)解:将A(1,m)代入一次函数y=2x+2中,得:m=2+2=4,即A(1,4)将A(1,4)代入反比例解析式y= k1x得:k1=4;过A作AM△y轴,过D作DN△y轴∴△AMB=△DNB=90°∴△BAM+△ABM=90°∵AC△BD,即△ABD=90°∴△ABM+△DBN=90°∴△BAM=△DBN∴△ABM△△BDN∴AMBN=BMDN,即14=2DN∴DN=8∴D(8,﹣2)将D坐标代入y= k2x得:k2=﹣16(2)解:符合条件的F坐标为(0,﹣8),理由为:由y=2x+2,求出C坐标为(﹣1,0)∵OB=ON=2,DN=8∴OE=4可得AE=5,CE=5,AC=2 √5,BD=4 √5,△EBO=△ACE=△EAC若△BDF△△ACE,则BDAC=BFAE,即√52√5=BF5解得:BF=10则F(0,﹣8).综上所述:F点坐标为(0,﹣8)时,△BDF△△ACE.21.【答案】(1)解:把A(m,32)代入直线y=2x+1得:32=2m+1,即m=14∴A(14,32)∵点A(14,32)为直线与反比例函数y=kx的交点把A点坐标代入y=k x,得k=14× 32=38则双曲线解析式为y=38x;(2)解:对于直线y=2x+1,令y=0,得到x=−12,即B(−12,0)设P(x,0),可得PB=|x+1 2|∵△ABP面积为6∴12×|x+12|×32=6,即|x+12|=8解得:x=7.5或x=﹣8.5则P坐标为(7.5,0)或(﹣8.5,0). 22.【答案】(1)解:如下表所示:x…﹣3﹣2﹣101243322345…y (5)283346﹣4-20﹣1﹣43-32…(3)当x<1时,y随x的增大而增大(4)x<0.3或1<x<3.723.【答案】(1)解:∵y=−x2+2ax−a2−a+2=−(x−a)2−a+2第 11 页 共 11 页 ∴ 抛物线 y =−x 2+2ax −a 2−a +2 的顶点为 (a ,−a +2) ∵ 抛物线的顶点在第二象限∴{a <0−a +2>0解得 2<a <0 ;(2)解: ∵ 抛物线 y =−x 2+2ax −a 2−a +2 的顶点在反比例函数 y =−8x(x <0) 的图象上 ∴a(−a +2)=−8解得 a =4 或 a =−2∵a <0∴a =−2∴ 顶点为 (−2,4)∵y 1=y 2∴ 点 A(x 1,y 1) , B(x 2,y 2) 关于直线 x =−2 对称∴x 1+x22=−2∴x 1+x 2=−4 ;(3)解: ∵ 当 1<x 1<x 2 时,都有 y 2<y 1<1∴ 抛物线的对称轴 x =a <1 ,经过点为 (1,1)∴{a <1−1+2a −a 2−a +2=1解得 a =0 或 a =−3故 a 的取为0或-3.24.【答案】(1)解:由题意可知,m (m+1)=(m+3)(m ﹣1). 解得m=3.∴A (3,4),B (6,2); ∴k=4×3=12, ∴y =12x∵A 点坐标为(3,4),B 点坐标为(6,2), ∴{3a +b =46a +b =2 , ∴{a =−23b =6 ,∴y=﹣ 23 x+6 (2)解:根据图象得x 的取值范围:0<x <3或x >6.。

中考数学《反比例函数》专项练习(附答案解析)

中考数学《反比例函数》专项练习(附答案解析)

中考数学《反比例函数》专项练习(附答案解析)一、综合题1.已知:如图1,函数y1=kx 和y2=xk(k>1)的图象相交于点A和点B .(1)求点A和点B的坐标(用含k的式子表示);(2)如图2,点C的坐标为(1,k),点D是第一象限内函数y1的图象上的动点,且在点A的右侧,直线AC、BC、AD、BD分别与x轴相交于点E、F、G、H .①判定△CEF的形状,并说明理由;②点D在运动的过程中,∠CAD和∠CBD的度数和是否变化?如果变化,说明理由;如果不变,求出∠CAD和∠CBD的度数和.2.在平面直角坐标系中,我们把横坐标和纵坐标相等的点叫“梦之点”,例如点(1,1),(-2,-2),(√2,√2),…都是“梦之点”,显然“梦之点”有无数个.(1)若点P(2,m)是反比例函数y=nx(n为常数,n≠0)的图象上的“梦之点”,求这个反比例函数的解析式;(2)函数y=3kx+s-1(k,s为常数)的图象上存在“梦之点”吗?若存在,请求出“梦之点”的坐标,若不存在,说明理由.3.如图,点A是坐标原点,点D是反比例函数y=6x(x>0)图象上一点,点B在x轴上,AD=BD,四边形ABCD是平行四边形,BC交反比例函数y=6x(x>0)图象于点E.(1)平行四边形BCD 的面积等于 ;(2)设D 点横坐标为m ,试用m 表示点E 的坐标;(要有推理和计算过程) (3)求 CE:EB 的值; (4)求 EB 的最小值.4.如图,一次函数y=kx+b 的图象与反比例函数y= mx 的图象交于点A (﹣3,m+8),B (n ,﹣6)两点.(1)求一次函数与反比例函数的解析式; (2)求△AOB 的面积.5.已知双曲线y=1x (x >0),直线l 1:y ﹣√2=k (x ﹣√2)(k <0)过定点F 且与双曲线交于A ,B 两点,设A (x 1,y 1),B (x 2,y 2)(x 1<x 2),直线l 2:y=﹣x+√2. (1)若k=﹣1,求△OAB 的面积S ; (2)若AB=52√2,求k 的值;(3)设N (0,2√2),P 在双曲线上,M 在直线l 2上且PM ∥x 轴,求PM+PN 最小值,并求PM+PN 取得最小值时P 的坐标.(参考公式:在平面直角坐标系中,若A (x 1,y 1),B (x 2,y 2)则A ,B 两点间的距离为AB=√(x 1−x 2)2+(y 1−y 2)2)6.已知反比例函数y=1−2mx( m为常数)的图象在一、三象限.(1)求m的取值范围.(2)如图,若该反比例函数的图象经过▱ ABCD的顶点D,点A,B的坐标分别为(0,3),(-2,0).①求出反比例函数表达式;②设点P是该反比例函数图象上的一点,若OD=OP,则P点的坐标为▲ .若以D,O,P为顶点的三角形是等腰三角形,则满足条件的点P的个数为▲ .7.绘制函数y=x+1x的图象,我们经历了如下过程:确定自变量x的取值范围是x≠0;列表﹣﹣描点﹣﹣连线,得到该函数的图象如图所示.x …-4 -3 -2 -1 −12−13−141413121 2 3 4 …y …−414−313−212−2−212−313−4144143132122 212313414…观察函数图象,回答下列问题:(1)函数图象在第象限;(2)函数图象的对称性是A.既是轴对称图形,又是中心对称图形B.只是轴对称图形,不是中心对称图形C.不是轴对称图形,而是中心对称图形D.既不是轴对称图形,也不是中心对称图形(3)在x>0时,当x=时,函数y有最(大,小)值,且这个最值等于;在x<0时,当x=时,函数y有最(大,小)值,且这个最值等于;=−2x+1是否有实数解?说明理由.(4)方程x+1x8.菱形ABCD在平面直角坐标系中的位置如图所示,对角线AC与BD的交点E恰好在y轴上,过点D和BC的中点H的直线交AC于点F,线段DE,CD的长是方程x2﹣9x+18=0的两根,请解答下列问题:(1)求点D的坐标;(k≠0)的图象经过点H,则k= ;(2)若反比例函数y= kx(3)点Q在直线BD上,在直线DH上是否存在点P,使以点F,C,P,Q为顶点的四边形是平行四边形?若存在,请直接写出点P的坐标;若不存在,请说明理由.9.设P(x,0)是x轴上的一个动点,它与原点的距离为y1.(1)求y1关于x的函数解析式,并画出这个函数的图象;的图象与函数y1的图象相交于点A,且点A的纵坐标为2.(2)若反比例函数y2=kx①求k的值;②结合图象,当y1>y2时,写出x的取值范围.10.受新冠肺炎疫情的影响,运城市某化工厂从2020年1月开始产量下降.借此机会,为了贯彻“发展循环经济,提高工厂效益”的绿色发展理念;管理人员对生产线进行为期5个月的升级改造,改造期间的月利润与时间成反比例函数;到5月底开始恢复全面生产后,工厂每月的利润都比前一个月增加10万元.设2020年1月为第1个月,第x个月的利润为y万元,其图象如图所示,试解决下列问题:(1)分别写出该化工厂对生产线进行升级改造前后,y与x的函数表达式.(2)到第几个月时,该化工厂月利润才能再次达到100万元?(3)当月利润少于50万元时,为该化工厂的资金紧张期,问该化工厂资金紧张期共有几个月?11.(如图,四边形ABCD在平面直角坐标系的第一象限内,其四个顶点分别在反比例函数y1=nx 与y2=4nx的图象上,对角线AC⊥BD于点P,AC⊥x轴于点N(2,0)(1)若CN=12,试求n的值;(2)当n=2,点P是线段AC的中点时,试判断四边形ABCD的形状,并说明理由;(3)直线AB与y轴相交于E点.当四边形ABCD为正方形时,请求出OE的长度.12.如图点A、B分别在x,y轴上,点D在第一象限内,DC⊥x轴于点C,AO=CD=2,AB=DA= √5,反比例函数y= kx(k>0)的图象过CD的中点E.(1)求证:△AOB≌△DCA;(2)求k的值;(3)△BFG和△DCA关于某点成中心对称,其中点F在y轴上,试判断点G是否在反比例函数的图象上,并说明理由.13.如图所示,一次函数y=kx+b的图象与x轴、y轴分别交于点A、B,且与反比例函数y=m的图象在第二象限交于点C,CD⊥x轴,垂足为点D.若OB=2OA=3OD= x12 .(1)求一次函数与反比例函数的解析式;(2)若两函数图象的另一个交点为E,连结DE,求△CDE的面积;(3)直接写出不等式kx+b≤m的解集.x与y2= 14.某校九年级数学小组在课外活动中,研究了同一坐标系中两个反比例函数y1=k1xk2(k2>k1>0)在第一象限图象的性质,经历了如下探究过程:x操作猜想:(1)如图①,当k1=2,k2=6时,在y轴的正方向上取一点A作x轴的平行线交y1于点B,交y2于点C .当OA=1时,AB=,BC=,BC AB =;当OA=3时,AB=,BC=,BCAB=;当OA=a时,猜想BCAB=(2)在y轴的正方向上任意取点A作x轴的平行线,交y1于点B、交y2于点C,请用含k1、k2的式子表示BCAB的值,并利用图②加以证明.(3)如图③,若k2=12,BCAB =12,在y轴的正方向上分别取点A、D(OD>OA)作x轴的平行线,交y1于点B、E,交y2于点C、F,是否存在四边形ADFB是正方形?如果存在,求OA的长和点B的坐标;如果不存在,请说明理由.15.如图,直线y=2x+2与y轴交于A点,与反比例函数y=kx(x>0)的图象交于点M,过M作MH⊥x轴于点H,且tan∠AHO=2.(1)求H点的坐标及k的值;(2)点P在y轴上,使△AMP是以AM为腰的等腰三角形,请直接写出所有满足条件的P 点坐标;(3)点N(a,1)是反比例函数y=kx(x>0)图象上的点,点Q(m,0)是x轴上的动点,当△MNQ的面积为3时,请求出所有满足条件的m的值.16.如图,双曲线y1=k1x与直线y2=xk2的图象交于A、B两点.已知点A的坐标为(4,1),点P(a,b)是双曲线y1=k1x上的任意一点,且0<a<4.(1)分别求出y1、y2的函数表达式;(2)连接PA、PB,得到△PAB,若4a=b,求三角形ABP的面积;(3)当点P在双曲线y1=k1x上运动时,设PB交x轴于点E,延长PA交x轴于点F,判断PE与PF的大小关系,并说明理由.参考答案与解析1.【答案】(1)解:由题意,联立{y=kxy=xk,解得{x=ky=1或{x=−ky=−1,∵点A在第一象限,点B在第二象限,且k>1,∴A(k,1),B(−k,−1)(2)解:①△CEF是等腰直角三角形,理由如下:设直线BC的解析式为y=k0x+b0,将点B(−k,−1),C(1,k)代入得:{−kk0+b0=−1k0+b0=k,解得{k0=1b0=k−1,则直线BC的解析式为y=x+k−1,当y=0时,x+k−1=0,解得x=1−k,即F(1−k,0),同理可得:点E的坐标为E(1+k,0),∴CF=√(1−k−1)2+(0−k)2=√2k,CE=√(1+k−1)2+(0−k)2=√2k,EF=1+k−(1−k)=2k,∴CE=CF,CE2+CF2=4k2=EF2,∴△CEF是等腰直角三角形;②由题意,设点D的坐标为D(m,km),则m>k>1,∵△CEF是等腰直角三角形,∴∠CFE=∠CEF=45°,∴∠BFH=∠AEG=135°,设直线BD的解析式为y=k1x+b1,将点B(−k,−1),D(m,km )代入得:{−kk1+b1=−1mk1+b1=km,解得{k1=1mb1=k−mm,则直线BD的解析式为y=1m x+k−mm,当y=0时,1m x+k−mm=0,解得x=m−k,即H(m−k,0),同理可得:点G的坐标为G(k+m,0),∴DH=√(m−k−m)2+(0−km )2=km√1+m2,DG=√(k+m−m)2+(0−km )2=km√1+m2,∴DH=DG,∴∠DHG=∠DGH,∵∠DHG=∠BHF,∴∠DGH=∠BHF,∴∠CAD+∠CBD=∠AEG+∠DGH+∠CBD,=∠BFH+∠BHF+∠CBD,=180°,即∠CAD与∠CBD的度数和不变,度数和为180°2.【答案】(1)解:根据题意,“梦之点”就是有关函数图象与直线y=x的交点,其坐标就是对应的方程组的解.由题意可得:m=2由点P(2, 2)在反比例函数y=nx图象上,可得n=2×2=4故所求的反比例函数的解析式为y=4x(2)解:由题意可得:(Ⅰ)当k=0时,y=s−1,此时“梦之点”的坐标为(s−1, s−1 ) . (Ⅱ)当k≠0 时, (3k−1)x=1−s显然,此方程的解的情况决定函数y=3kx+s−1的图象上“梦之点”的存在情况,当k=13, s≠1时,方程无解,不存在“梦之点”;当k=13, s=1时,方程有无数个解,此时存在无数个“梦之点”,“梦之点”的坐标可表示为(ℎ,ℎ)(ℎ为任意实数);当k≠13时,得{x=1−s3k−1y=1−s3k−1,即“梦之点”的坐标为(1−s3k−1, 1−s3k−1)3.【答案】(1)12(2)解:由题意D(m,6m),由(1)可知AB=2m,∵四边形ABCD是平行四边形,∴CD=AB=2m,∴C(3m,6m) .∵B(2m,0),C(3m,6m),∴直线BC的解析式为y=6m2x−12m,由{y=6xy=6m2x−12m,解得{x=(√2+1)my=6√2−6m或{x=(1−√2)my=6(1+√2)m(舍弃),∴E((√2+1)m,6√2−6m);(3)解:作EF⊥x轴于F,CG⊥x轴于G . ∵EF//CG,∴CE BE=FG BF=√2+1)m (√2+1)m−2m =√2√2−1=√2 ;(4)解:∵CEBE =√2 ∴BE =√2+1 ,要使得 BE 最小,只要 AD 最小, ∵AD =√m 2+36m 2=√(m −6m )2+12 ,∴AD 的最小值为 2√3 , ∴BE 的最小值为√3√2+1=2√6−2√3 .4.【答案】(1)解:将A (﹣3,m+8)代入反比例函数y= mx 得,m −3=m+8,解得m=﹣6, m+8=﹣6+8=2,所以,点A 的坐标为(﹣3,2), 反比例函数解析式为y=﹣ 6x ,将点B (n ,﹣6)代入y=﹣ 6x 得,﹣ 6n =﹣6, 解得n=1,所以,点B 的坐标为(1,﹣6),将点A (﹣3,2),B (1,﹣6)代入y=kx+b 得, {−3k +b =2k +b =−6 , 解得 {k =−2b =−4,所以,一次函数解析式为y=﹣2x ﹣4; (2)解:设AB 与x 轴相交于点C , 令﹣2x ﹣4=0解得x=﹣2, 所以,点C 的坐标为(﹣2,0), 所以,OC=2, S △AOB =S △AOC +S △BOC , = 12 ×2×3+ 12 ×2×1,=3+1, =4.5.【答案】(1)解:当k=-1时,l 1:y=﹣x+2√2, 联立得,{y =−x +2√2y =1x ,化简得x 2﹣2√2x+1=0, 解得:x 1=√2﹣1,x 2=√2+1,设直线l 1与y 轴交于点C ,则C (0,2√2). S △OAB =S △AOC ﹣S △BOC =12•2√2•(x 2﹣x 1)=2√2;(2)解:根据题意得:{y −√2=k(x −√2)y =1x 整理得:kx 2+√2(1﹣k )x ﹣1=0(k <0), ∵△=[√2(1﹣k )]2﹣4×k ×(﹣1)=2(1+k 2)>0, ∴x 1、x 2 是方程的两根, ∴{x 1+x 2=√2(k−1)k x 1·x 2=−1k①, ∴AB=√(x 1−x 2)2+(y 1−y 2)2=√(x 1−x 2)2+(1x 1−1x 2)2=√(x 1−x 2)2(1+1x 12·x 22)=√[(x 1+x 2)2−4x 1x 2](1+1x 12·x 22),将①代入得,AB=√2(k 2+1)2k 2=√2(k 2+1)−k (k <0),∴√2(k 2+1)−k =5√22,整理得:2k2+5k+2=0,解得:k=﹣2,或 k=12;(3)解:∵直线l1:y﹣√2=k(x﹣√2)(k<0)过定点F, ∴ F(√2,√2).如图:设P(x,1x ),则M(﹣1x+√2,1x),则PM=x+1x ﹣√2=√(x+1x−√2)2=√x2+1x2−2√2(x+1x)+4,∵PF=√(x−√2)2+(1x −√2)2=√x2+1x2−2√2(x+1x)+4,∴PM=PF.∴PM+PN=PF+PN≥NF=2,当点P在NF上时等号成立,此时NF的方程为y=﹣x+2√2,由(1)知P(√2﹣1,√2+1),∴当P(√2﹣1,√2+1)时,PM+PN最小值是2.6.【答案】(1)解:根据题意,得1−2m>0,解得m<12,∴m的取值范围是m<12.(2)解:①∵四边形ABCD是平行四边形,A(0,3),B(−2,0),∴D(2,3) .把D(2,3)代入y=1−2mx ,得3=1−2m2,∴1−2m=6 .∴反比例函数表达式为y=6x;②(3,2)或(-2,-3)或(-3,-2);4 7.【答案】(1)一、三(2)C(3)1;小;2;−1;大;−2(4)解:方程x + 1x =﹣2x +1没有实数解,理由为:y =x + 1x 与y =﹣2x +1在同一直角坐标系中无交点.8.【答案】(1)解:x 2﹣9x+18=0, (x ﹣3)(x ﹣6)=0, x=3或6, ∵CD >DE , ∴CD=6,DE=3, ∵四边形ABCD 是菱形,∴AC ⊥BD ,AE=EC= √62−32 =3 √3 , ∴∠DCA=30°,∠EDC=60°, Rt △DEM 中,∠DEM=30°, ∴DM= 12 DE= 32 , ∵OM ⊥AB ,∴S 菱形ABCD = 12 AC •BD=CD •OM , ∴12×6√3×6 =6OM ,OM=3 √3 , ∴D (﹣ 32 ,3 √3 ) (2)解:(3)解:如图1,①∵DC=BC ,∠DCB=60°, ∴△DCB 是等边三角形, ∵H 是BC 的中点,∴DH⊥BC,∴当Q与B重合时,如图1,四边形CFQP是平行四边形,∵FC=FB,∴∠FCB=∠FBC=30°,∴∠ABF=∠ABC﹣∠CBF=120°﹣30°=90°,∴AB⊥BF,CP⊥AB,Rt△ABF中,∠FAB=30°,AB=6,∴FB=2 √3 =CP,,√3);∴P(92②如图2,∵四边形QPFC是平行四边形,∴CQ∥PH,由①知:PH⊥BC,∴CQ⊥BC,Rt△QBC中,BC=6,∠QBC=60°,∴∠BQC=30°,∴CQ=6 √3,连接QA,∵AE=EC,QE⊥AC,∴QA=QC=6 √3,∴∠QAC=∠QCA=60°,∠CAB=30°,∴∠QAB=90°,∴Q(﹣92,6 √3),由①知:F(32,2 √3),由F到C的平移规律可得P到Q的平移规律,则P(﹣92﹣3,6 √3﹣√3),即P(﹣152,5 √3);③如图3,四边形CQFP是平行四边形,同理知:Q(﹣92,6 √3),F(32,2 √3),C(92,3 √3),∴P(212,﹣√3);综上所述,点P的坐标为:(92,√3)或(﹣152,5 √3)或(212,﹣√3).9.【答案】(1)解:由题意y1=|x|.函数图象如图所示:(2)解:①当点A在第一象限时,由题意A(2,2),∴2=k2,∴k=4.同法当点A在第二象限时,k=−4,②观察图象可知:当k>0时,x>2时,y1>y2或x<0时,y1>y2.当k<0时,x<−2时,y1>y2或x>0时,y1>y2.10.【答案】(1)解:由题意得,设前5个月中y= kx,把x=1,y=100代入得,k=100,∴y与x之间的函数关系式为y= 100x(0<x<5,且x为整数),把x=5代入,得y=20,由题意设5月份以后y与x的函数关系式为y=10x+b,把x=5,y=20代入得,20=10×5+b,解得:b=-30,∴y与x之间的函数关系式为y=10x-30(x>5且x为整数);(2)解:在函数y=10x−30中,令y=100,得10x−30=100解得:x=13答:到第13个月时,该化工厂月利润再次达到100万元.(3)解:在函数y=100x中,当y=50时,x=2,∵100>0,y随x的增大而减小,∴当y<50时,x>2在函数y=10x−30中,当y<50时,得10x−30<50解得:x<8∴2<x<8且x为整数;∴x可取3,4,5,6,7;共5个月.答:该化工厂资金紧张期共有5个月.11.【答案】(1)解:∵点N的坐标为(2,0),CN⊥x轴,且CN=12,∴点C的坐标为(2,12).∵点C在反比例函数y1=nx的图象上,∴n=2×12=1.(2)解:四边形ABCD为菱形,理由如下:当n=2时,y1=nx=2x,y2=4nx=8x.当x=2时,y1=2x=1,y2=8x=4,∴点C的坐标为(2,1),点A的坐标为(2,4).∵点P是线段AC的中点,∴点P 的坐标为(2, 52 ). 当y = 52 时, 2x = 52 , 8x = 52 , 解得:x = 45 ,x = 165 ,∴点B 的坐标为( 45 , 52 ),点D 的坐标为( 165 , 52 ), ∴BP =2﹣ 45 = 65 ,DP = 165 ﹣2= 65 , ∴BP =DP .又∵AP =CP ,AC ⊥BD , ∴四边形ABCD 为菱形.(3)解:∵四边形ABCD 为正方形, ∴AC =BD ,且点P 为线段AC 及BD 的中点. 当x =2时,y 1= 12 n ,y 2=2n ,∴点A 的坐标为(2,2n ),点C 的坐标为(2, 12 n ),AC = 32 n , ∴点P 的坐标为(2, 54 n ).同理,点B 的坐标为( 45 , 54 n ),点D 的坐标为( 165 , 54 n ),BD = 125 . ∵AC =BD , ∴32 n = 125 , ∴n = 85 ,∴点A 的坐标为(2, 165 ),点B 的坐标为( 45 ,2). 设直线AB 的解析式为y =kx+b (k ≠0),将A (2, 165 ),B ( 45 ,2)代入y =kx+b ,得: {2k +b =16545k +b =2 ,解得: {b =65k =1 ,∴直线AB 的解析式为y =x+ 65 . 当x =0时,y =x+ 65 = 65 , ∴点E 的坐标为(0, 65 ),∴当四边形ABCD为正方形时,OE的长度为6.512.【答案】(1)证明:∵点A、B分别在x,y轴上,点D在第一象限内,DC⊥x轴,∴∠AOB=∠DCA=90°,在Rt△AOB和Rt△DCA中,AO=CD,AB=DA∴Rt△AOB≌Rt△DCA(HL)(2)解:在Rt△ACD中,CD=2,AD= √5,∴AC= =1,∴OC=OA+AC=2+1=3,∴D点坐标为(3,2),∵点E为CD的中点,∴点E的坐标为(3,1),k=3×1=3(3)解:点G在反比例函数的图象上.理由如下:∵△BFG和△DCA关于某点成中心对称,∴△BFG≌△DCA,∴FG=CA=1,BF=DC=2,∠BFG=∠DCA=90°,而OB=AC=1,∴OF=OB+BF=1+2=3,∴G点坐标为(1,3),∵1×3=3,∴G(1,3)在反比例函数y= 的图象上13.【答案】(1)解:∵OB =2OA =3OD =12 ∴OA =6,OD =4 ∴A(6,0),B(0,12)把 A(6,0),B(0,12) 分别代入 y =kx +b 得: {6k +b =0b =12 ,解之得: m =−4×20=−80 ∴一次函数的解析式为 y =−2x +12 令 x =−4 ,则 y =20 ∴C(−4,20)把 C(−4,20) 代入 y =mx 得:m =−4×20=−80∴反比例函数的解析式为 y =−80x ; (2)解:解方程组 {y =−2x +12y =−80x 得: {x 1=−4y 1=20,{x 2=10y 2=−8∴E(10,−8)∴S ΔCDE =S ΔADC +S ΔADE=12AD ⋅(CD +|y E |)=12×(4+6)×(20+8) =140(3)解:如图:当x <-4时, y =mx 的图象在 y =kx +b 的下方,即 kx +b > mx ; 当 −4 ≤ x <0 时, y =mx 的图象在 y =kx +b 的上方,即 kx +b ≤ mx ; 当0<x <10时, y =mx 的图象在 y =kx +b 的下方,即 kx +b > mx ; 当 x ≥10时, y =mx 的图象在 y =kx +b 的上方,即 kx +b ≤ mx ; 综上可得,不等式 kx +b ≤ mx 的解集为 −4 ≤ x <0 或 x ≥10. 14.【答案】(1)2;4;2;23;43;2;2 数学思考: (2)BCAB =k 2−k 1k 1证明:∵AB ·OA =k 1 , AC ·OA =k 2 , ∴AC ·OA −AB ·OA =BC ·OA =k 2−k 1 ,∴BCAB =BC·OAAB·OA=k2−k1k1.推广应用:(3)解:若四边形ADFB是正方形,设点B的坐标为(a,b)(a>0,b>0),则有DF=DA=AB=a,OA=b,OD=a+b,∴点F的坐标为(a,a+b) .∵k2=12,BCAB =k2−k1k1=12,∴12−k1k1=12,解得:k1=8 .∵点B在y=8x 图象上,点F在y=12x图象上,∴ab=8,a (a+b)=12,∴a2=12−8=4,∴a=2,∴b=4,∴OA=4,点B的坐标为(2,4) .15.【答案】(1)解:由y=2x+2可知A(0,2),即OA=2,∵tan∠AHO=2,∴OH=1,∴H(1,0),∵MH⊥x轴,∴点M的横坐标为1,∵点M在直线y=2x+2上,∴点M的纵坐标为4,即M(1,4),∵点M在y=kx上,∴k=1×4=4;(2)解:①当AM=AP时,∵A(0,2),M(1,4),∴AM=√5,则AP=AM=√5,∴此时点P的坐标为(0,2﹣√5)或(0,2+ √5);②若AM=PM时,设P(0,y),则PM=√(1−0)2+(4−y)2,∴√(1−0)2+(4−y)2=√5,解得y=2(舍)或y=6,此时点P的坐标为(0,6),综上所述,点P的坐标为(0,6)或(0,2+ √5),或(0,2﹣√5);(3)解:∵点N(a,1)在反比例函数y=4x(x>0)图象上,∴a=4,∴点N(4,1),延长MN交x轴于点C,设直线MN的解析式为y=mx+n,则有{m+n=44m+n=1,,解得{m=−1n=5,∴直线MN的解析式为y=﹣x+5.∵点C是直线y=﹣x+5与x轴的交点,∴点C的坐标为(5,0),OC=5,∵S△MNQ=3,∴S△MNQ =S△MQC﹣S△NQC=12×QC×4﹣12×QC×1=32QC=3,∴QC=2,∵C(5,0),Q(m,0),∴|m﹣5|=2,∴m=7或3,故答案为7或3.16.【答案】(1)解:把点A(4,1)代入双曲线y1=k1x得k1=4,∴双曲线的解析式为y1=4x;把点A(4,1)代入直线y2=x k2得k2=4,∴直线的解析式为y2=14x(2)解:∵点P(a,b)在y1=4x的图象上,∴ab=4,∵4a=b,∴4a2=4,则a=±1,∵0<a<4,∴a=1,∴点P的坐标为(1,4),又∵双曲线y1=4x 与直线y2=14x的图象交于A、B两点,且点A的坐标为(4,1),∴点B的坐标为(−4,−1),过点P作PG∥y轴交AB于点G,如图所示,把x=1代入y2=14x,得到y=14,∴点G的坐标为(1,14),∴PG =4−14=154 , ∴S △ABP =12 PG ( x A −x B )=12×154×8=15 (3)解:PE=PF .理由如下:∵点P ( a , b )在 y 1=4x 的图象上,∴b =4a ,∵点B 的坐标为( −4 , −1 ), 设直线PB 的表达式为 y =mx +n , ∴{am +n =4a −4m +n =−1, ∴{m =1a n =4a −1, ∴直线PB 的表达式为 y =1a x +4a −1 , 当 y =0 时, x =a −4 ,∴E 点的坐标为( a −4 ,0), 同理:直线PA 的表达式为 y =−1a x +4a +1 , 当 y =0 时, x =a +4 ,∴F 点的坐标为( a +4 ,0),过点P 作PH ⊥x 轴于H ,如图所示,∵P 点坐标为(,∴H 点的坐标为( a ,0),∴EH =x H −x E =a −(a −4)=4 , FH =x F −x H =a +4−a =4 , ∴EH=FH ,∴PE=PF .。

全国中考数学反比例函数的综合中考模拟和真题分类汇总含详细答案

全国中考数学反比例函数的综合中考模拟和真题分类汇总含详细答案

一、反比例函数真题与模拟题分类汇编(难题易错题)1.已知点A,B分别是x轴、y轴上的动点,点C,D是某个函数图象上的点,当四边形ABCD(A,B,C,D各点依次排列)为正方形时,称这个正方形为此函数图象的伴侣正方形.例如:如图,正方形ABCD是一次函数y=x+1图象的其中一个伴侣正方形.(1)若某函数是一次函数y=x+1,求它的图象的所有伴侣正方形的边长;(2)若某函数是反比例函数y= (k>0),他的图象的伴侣正方形为ABCD,点D(2,m)(m<2)在反比例函数图象上,求m的值及反比例函数解析式;(3)若某函数是二次函数y=ax2+c(a≠0),它的图象的伴侣正方形为ABCD,C、D中的一个点坐标为(3,4).写出伴侣正方形在抛物线上的另一个顶点坐标________,写出符合题意的其中一条抛物线解析式________,并判断你写出的抛物线的伴侣正方形的个数是奇数还是偶数________.【答案】(1)解:如图1,当点A在x轴正半轴,点B在y轴负半轴上时,∵OC=0D=1,∴正方形ABCD的边长CD= ;∠OCD=∠ODC=45°,当点A在x轴负半轴、点B在y轴正半轴上时,设小正方形的边长为a,易得CL=小正方形的边长=DK=LK,故3a=CD= .解得a= ,所以小正方形边长为,∴一次函数y=x+1图象的伴侣正方形的边长为或(2)解:如图2,作DE,CF分别垂直于x、y轴,易知△ADE≌△BAO≌△CBF此时,m<2,DE=OA=BF=m,OB=CF=AE=2﹣m,∴OF=BF+OB=2,∴C点坐标为(2﹣m,2),∴2m=2(2﹣m),解得m=1.反比例函数的解析式为y= .(3)(3,4);y=﹣ x2+ ;偶数【解析】【解答】解:(3)实际情况是抛物线开口向上的两种情况中,另一个点都在(3,4)的左侧,而开口向下时,另一点都在(3,4)的右侧,与上述解析明显不符合①当点A在x轴正半轴上,点B在y轴正半轴上,点C坐标为(3,4)时:另外一个顶点为(4,1),对应的函数解析式是y=﹣ x2+ ;②当点A在x 轴正半轴上,点 B在 y轴正半轴上,点D 坐标为(3,4)时:不存在,③当点A 在 x 轴正半轴上,点 B在 y轴负半轴上,点C 坐标为(3,4)时:不存在④当点A在x 轴正半轴上,点B在y轴负半轴上,点D坐标为(3,4)时:另外一个顶点C为(﹣1,3),对应的函数的解析式是y= x2+ ;⑤当点A在x轴负半轴上,点B在y轴负半轴上,点D坐标为(3,4)时,另一个顶点C的坐标是(7,﹣3)时,对应的函数解析式是y=﹣;⑥当点A在x轴负半轴上,点B在y轴负半轴上,点C坐标为(3,4)时,另一个顶点D的坐标是(﹣4,7)时,对应的抛物线为y= x2+ ;∵由抛物线的伴侣正方形的定义知,一条抛物线有两个伴侣正方形,是成对出现的,∴所求出的任何抛物线的伴侣正方形个数为偶数.【分析】解答此题时,要特别注意认真读题,分析题意,注意已知条件点A,B分别是x 轴、y轴上的动点,点C,D是某个函数图象上的点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2011年全国各地中考数学试卷试题分类汇编第12章反比例函数一、选择题1. (2011广东汕头,6,4分)已知反比例函数kyx=的图象经过(1,-2).则k=.【答案】-22.(2011湖南邵阳,5,3分)已知点(1,1)在反比例函数kyx=(k为常数,k≠0)的图像上,则这个反比例函数的大致图像是()【答案】C提示:反比例函数过第一象限(也可由点(1,1)求得k=1),故选C。

3.(2011江苏连云港,4,3分)关于反比例函数4yx=的图象,下列说法正确的是()A.必经过点(1,1)B.两个分支分布在第二、四象限C.两个分支关于x轴成轴对称D.两个分支关于原点成中心对称【答案】D4. (2011甘肃兰州,15,4分)如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数221k kyx++=的图象上。

若点A的坐标为(-2,-2),则k的值为A.1 B.-3 C.4 D.1或-3【答案】D5. (2011湖南怀化,5,3分)函数2y x=与函数1 yx-=在同一坐标系中的大致图像是【答案】D6. (2011江苏淮安,8,3分)如图,反比例函数kyx=的图象经过点A(-1,-2).则当x>1时,函数值y的取值范围是()A.y>1B.0<y<1C. y>2D.0< y<2【答案】D7. (2011四川乐山10,3分)如图(6),直线6y x=-交x轴、y轴于A、B两点,PxyOABCD是反比例函数4(0)y x x=>图象上位于直线下方的一点,过点P 作x 轴的垂线,垂足为点M ,交AB 于点E ,过点P 作y 轴的垂线,垂足为点N ,交AB 于点F 。

则AF BE ⋅= A .8 B .6 C .4 D .62 【答案】A8. (2011湖北黄石,3,3分)若双曲线y=x k 12-的图象经过第二、四象限,则k 的取值范围是 A.k >21 B. k <21 C. k =21D. 不存在 【答案】B9. (2011湖南邵阳,5,3分)已知点(1,1)在反比例函数ky x=(k 为常数,k ≠0)的图像上,则这个反比例函数的大致图像是( )【答案】C10. (2011贵州贵阳,10,3分)如图,反比例函数y 1=k 1x和正比例函数y 2=k 2x 的图象交于A (-1,-3)、B (1,3)两点,若k 1x>k 2x ,则x 的取值范围是(第10题图)(A )-1<x <0 (B )-1<x <1(C )x <-1或0<x <1 (D )-1<x <0或x >111. (2011广东茂名,6,3分)若函数xmy 2+=的图象在其象限内y 的值随x 值的增大而增大,则m 的取值范围是 A .2->m B .2-<mC .2>mD .2<m【答案】B12.(2011江苏盐城,6,3分)对于反比例函数y = 1x,下列说法正确的是A .图象经过点(1,-1)B .图象位于第二、四象限C .图象是中心对称图形D .当x <0时,y 随x 的增大而增大 【答案】C13. (2011山东东营,10,3分)如图,直线l 和双曲线(0)ky k x=>交于A 、B 亮点,P 是线段AB 上的点(不与A 、B 重合),过点A 、B 、P 分别向x 轴作垂线,垂足分别是C 、D 、E,连接OA 、OB 、OP,设△AOC 面积是S 1、△B OD 面积是S 2、△P OE 面积是S 3、则( )A. S 1<S 2<S 3B. S 1>S 2>S 3C. S 1=S 2>S 3D. S 1=S 2<S 3 【答案】D14. (2011福建福州,4,4分)图1是我们学过的反比例函数图象,它的函数解析式可能是 ( ) A .2y x =B .4y x =C .3y x =-D .12y x =O xy图1y xOy x OyxOy xO 15. (2011江苏扬州,6,3分)某反比例函数的图象经过点(-1,6),则下列各点中,此函数图象也经过的点是( )A. (-3,2)B. (3,2)C. (2,3)D. (6,1) 【答案】A16. (2011山东威海,5,3分)下列各点中,在函数6y x=-图象上的是( ) A .(-2,-4) B .(2,3)C .(-1,6)D .1(,3)2-【答案】C17. (2011四川南充市,7,3分) 小明乘车从南充到成都,行车的平均速度y (km/h)和行车时间x (h)之间的函数图像是( )【答案】B.18. (2011浙江杭州,6,3)如图,函数11y x =-和函数22y x=的图象相交于点M (2,m ),N (-1,n ),若12y y >,则x 的取值范围是( )A .102x x <-<<或B .12x x <->或C .1002x x -<<<<或D .102x x -<<>或【答案】D19. (2011浙江台州,9,4分)如图,反比例函数xmy =的图象与一次函数b kx y -=的图象交于点M ,N ,已点M 的坐标为(1,3),点N 的纵坐标为-1,根据图象信息可得关于x 的方程xm=b kx -的解为( )A. -3,1B. -3,3C. -1,1D.3,-1【答案】A20. (2011浙江温州,4,4分)已知点P (-l ,4)在反比例函数(0)ky k x=≠的图象上,则k 的值是( )A .14- B .14C .4D .-4【答案】D21. (2011甘肃兰州,2,4分)如图,某反比例函数的图象过点(-2,1),则此反比例函数表达式为A .2y x=B .2y x=-C .12y x=D .12y x=-【答案】B22. (2011广东湛江12,3分)在同一直角坐标系中,正比例函数y x =与反比例函数2y x=的图像大致是A B C Dxy-21O【答案】B23. (2011河北,12,3分)根据图5—1所示的程序,得到了y 与x 的函数图象,过点M 作PQ ∥x 轴交图象于点P,Q ,连接OP,OQ.则以下结论 ①x <0时,x2y =, ②△OPQ 的面积为定值, ③x >0时,y 随x 的增大而增大 ④MQ=2PM⑤∠POQ 可以等于90°图5—2图5—1PQM其中正确的结论是( )A .①②④B .②④⑤C .③④⑤D .②③⑤【答案】B24. (2011山东枣庄,8,3分)已知反比例函数xy 1=,下列结论中不正确的是( ) A.图象经过点(-1,-1) B.图象在第一、三象限C.当1>x 时,10<<yD.当0<x 时,y 随着x 的增大而增大 【答案】D25. ( 2011重庆江津, 6,4分)已知如图,A 是反比例函数xky =的图像上的一点,AB ⊥x 轴于点B,且△ABO 的面积是3,则k 的值是( ) A.3 B.-3 C.6 D.-6·【答案】C·26.(2011湖北宜昌,15,3分)如图,直线y=x+2与双曲线y=xm3在第二象限有两个交点,那么m的取值范围在数轴上表示为()(第15题图)【答案】B二、填空题1.(2011浙江金华,16,4分)如图,将一块直角三角板OAB放在平面直角坐标系中,B (2,0),∠AOC=60°,点A在第一象限,过点A的双曲线为y=kx,在x轴上取一点P,过点P作直线OA的垂线l,以直线l为对称轴,线段OB经轴对称变换后的像是O′B′. (1)当点O′与点A重合时,点P的坐标是.(2)设P(t,0)当O′B′与双曲线有交点时,t的取值范围是 .【答案】(1)(4,0);(2)4≤t≤25或-25≤t≤-4yoAB x第6题图2. (2011广东东莞,6,4分)已知反比例函数kyx=的图象经过(1,-2).则k=.【答案】-23. (2011山东滨州,18,4分)若点A(m,-2)在反比例函数4yx=的图像上,则当函数值y≥-2时,自变量x的取值范围是___________.【答案】x≤-2或x>04. (2011四川南充市,14,3分)过反比例函数y=xk(k≠0)图象上一点A,分别作x轴,y轴的垂线,垂足分别为B,C,如果⊿ABC的面积为3.则k的值为 .【答案】6或﹣6.5. (2011宁波市,18,3分)如图,正方形A1B1P1P2的顶点P1、P2在反比例函数y=2x(x>0)的图像上,顶点A1、B1分别在x轴和y轴的正半轴上,再在其右侧作正方形P2P3A2B2,顶点P3在反比例函数y=2x(x>0)的图象上,顶点A3在x轴的正半轴上,则点P3的坐标为【答案】(3+1,3-1)6. (2011浙江衢州,5,4分)在直角坐标系中,有如图所示的t,R ABO AB x∆⊥轴于点B,斜边105AO AOB=∠=,sin,反比例函数(0)ky xx=>的图像经过AO的中点C,且与AB交于点D,则点D的坐标为 .【答案】382(,)7. (2011浙江绍兴,13,5分) 若点12(1,),(2,)A yB y是双曲线3yx=上的点,则1y2y(填“>”,“<”“=”).(第15题)xyCDBOI【答案】>8. (2011浙江丽水,16,4分)如图,将一块直角三角板OAB 放在平面直角坐标系中,B (2,0),∠AOC =60°,点A 在第一象限,过点A 的双曲线为y =k x,在x 轴上取一点P ,过点P 作直线OA 的垂线l ,以直线l 为对称轴,线段OB 经轴对称变换后的像是O ′B ′. (1)当点O ′与点A 重合时,点P 的坐标是.(2)设P (t ,0)当O ′B ′与双曲线有交点时,t 的取值范围是 .【答案】(1)(4,0);(2)4≤t ≤25或-25≤t ≤-49. (2011湖南常德,5,3分)如图1所示的曲线是一个反比例函数图象的一支,点A 在此曲线上,则该反比例函数的解析式为_______________. 【答案】3y x10.(2011江苏苏州,18,3分)如图,已知点A 的坐标为(3,3),AB ⊥x 轴,垂足为B ,连接OA ,反比例函数y=xk(k>0)的图象与线段OA 、AB 分别交于点C 、D.若AB=3BD ,以点C 为圆心,CA 的45倍的长为半径作圆,则该圆与x 轴的位置关系是___________(填“相离”、“相切”或“相交”)y1OAx3图1【答案】相交11. (2011山东济宁,11,3分)反比例函数1m y x-=的图象在第一、三象限,则m 的取值范围是 . 【答案】x >112. (2011四川成都,25,4分)在平面直角坐标系xOy 中,已知反比例函数2(0)ky k x=≠满足:当0x <时,y 随x 的增大而减小.若该反比例函数的图象与直线3y x k =-+都经过点P ,且7OP =,则实数k=_________.【答案】37. 13. (2011安徽芜湖,15,5分)如图,在平面直角坐标系中有一正方形AOBC ,反比例函数ky x=经过正方形AOBC 对角线的交点,半径为(422-)的圆内切于△ABC ,则k 的值为 .【答案】414. (2011广东省,6,4分)已知反比例函数ky x=的图象经过(1,-2).则k = . 【答案】-215. (2011江苏南京,15,2分)设函数2y x=与1y x =-的图象的交战坐标为(a ,b ),则11a b-的值为__________. 【答案】12-16. (2011上海,11,4分)如果反比例函数ky x=(k 是常数,k ≠0)的图像经过点(-1,2),那么这个函数的解析式是__________. 【答案】2y x=-17. (2011湖北武汉市,16,3分)如图,□ABCD 的顶点A ,B 的坐标分别是A (-1,0),B (0,-2),顶点C ,D 在双曲线y=x k 上,边AD 交y 轴于点E ,且四边形BCDE 的面积是△ABE面积的5倍,则k =_____.【答案】1218. (2011湖北黄冈,4,3分)如图:点A 在双曲线ky x=上,AB ⊥x 轴于B ,且△AOB 的面积S △AOB =2,则k=______.【答案】-419. (2011湖北黄石,15,3分)若一次函数y=kx +1的图象与反比例函数y =x1的图象没有公共点,则实数k 的取值范围是 。

相关文档
最新文档