第三章沉淀技术

合集下载

无机化学第六版第三章 溶解与沉淀

无机化学第六版第三章 溶解与沉淀
第三章 溶解与沉淀
化学平衡
一、化学反应的可逆性和化学平衡
H2
H2
+I +I
2
2 HI
2
2 HI
可逆反应:在同一条件下,既能向正反应(向右)方向 又能向逆反应(向左)方向进行的反应称为可逆反应。 多数的反应都是可逆的,但是可逆的程度不同。通 常把可逆程度极小的反应称为不可逆反应。
M n O 2 2KClO 3(s) 2KCl(s)+3O 2(g) △
14 Ksp , Fe(OH) 1.64 10 7 2 [OH ] 5 . 73 10 [Fe 2 ] 0.050
pH = 14-pOH = 14 –6.24 = 7.76 结论:利用分级沉淀原理,可使两种以上的离子有 效分离。如果两种沉淀的溶度积相差愈大,分离得 就会越完全。
在一定温度下,可逆反应达到平衡状态,生 成物平衡浓度系数的幂次方的乘积与反应物浓度
系数幂次方的乘积之比,总是一个定值,这一定
值称为“平衡常数”。 如果将其中各物质用相 对平衡浓度或相对平衡分压表示,则称作标准平 衡常数,用
K 表示。
书写标准平衡常数表达式应注意的事项
1、在书写 K表达式时,只写浓度或分压可变的溶液相和气
例题2:分别计算Ag2CrO4
(1) 在0.10mol.L-1AgNO3溶液中的溶解度,
(2) 在0. 10mol.L-1Na2CrO4中的溶解度. 解:(1)Ag2CrO4 =2 Ag+ + CrO4 20.1+2S S S = [CrO4 2-]
Ksp=( 0.1+ 2S )2×S = 0.01S =1.12×-12
平衡向右移动 定义:在难溶电解质溶液中,加入易溶强电解质而使难溶 电解质的溶解度增大的作用。

第三章沉淀溶解平衡

第三章沉淀溶解平衡

第二节 沉淀的生成 第三节 分步沉淀和沉淀的转化 第四节 沉淀的溶解 沉淀溶解平衡的移动 例: AgCI(s) 溶度积规则 溶解 是平衡移动 Ag+ + CI- 规律的总结
沉淀
(production of precipitation)
第二节 沉淀的生成
沉淀的生成
●沉淀生成的必要条件: 增大离子浓度,使 IP>KSP ●采用方法: ①加入沉淀剂 ②控制溶液 pH(对难溶弱酸盐和难溶 氢氧化物).
积、同浓度的NH3· H2O相混合,①有无Mg(OH)2沉 淀析出?②如果要阻止沉淀析出,至少应加多少克 NH4CI(s)?已知 Ksp(Mg(OH)2)=5.61×10-12, Kb(NH3)=1.79×10-5
=1.79×10-5×0.05/1.06×10-5 =8.44×10-2(mol· L-1) ∴需加NH4CI(s): 8.44×10-2×0.020×53.5 =9.03×10-2(g)
√ 5.61×10-12/0.05 = =1.06×10-5(mol· L-1) 采用方法:利用同离子效应,加NH4CI(s)来 抑制NH · H O离解.
【例3-7】试分析10ml 0.10mol· L-1MgCI2与等体
解:②NH3· H2O NH4+ + OH0.05 x 1.06×10-5 [NH4+]=Kb [NH3· H2O]/ [OH-]
[H+ ]=

Ka1Ka2 [M2+][H2S] KSP(MS)
1 KSP
式中 [H2S]饱和= 0.1(mol· L-1)
结论: 使MS(s)溶解所需
[H+ ]∝
沉淀的溶解
小结 多种离子平衡共存时的处理方法

第三章 沉淀溶解平衡

第三章  沉淀溶解平衡

第三章 沉淀溶解平衡 当CAg+=KspAgCl/CCl-=1.8×10-9mol/L C =1.8× mol/L时 AgCl开始沉淀。此时溶液中 AgCl =1.5× /1.8× CI-=KspAgI/CAg+=1.5×10-16/1.8×10-9 =8.33× mol/L(此时, I-已沉淀完全) =8.33×10-8mol/L
第三章 沉淀溶解平衡
第二节 沉淀的生成和溶解 一、沉淀的生成
1.沉淀的生成 (1)沉淀生成的唯一条件是Qi>Ksp Qi>Ksp (2)在分析化学中当被沉淀离子浓度小于 mol/L时认为被“沉淀完全”。 10-5mol/L (3)沉淀剂一般过量20--50%。过多将使溶 20--50%。 20--50% 液中离子牵制作用增强,反而使沉淀溶解。
第三章 沉淀溶解平衡
(2)发生氧化还原反应 指利用氧化还原反应降低难溶电解质离 子浓度的方法。 3CuS+8H++2NO3- =3S↓+2NO↑+3Cu2++4H2O (3)生成难电离的配离子 指利用氧化还原反应降低难溶电解质 离子浓度的方法。 3CuS+8H++2NO3- =3S↓+2NO↑+3Cu2++4H2O
第三章 沉淀溶解平衡
(4)沉淀的转化 在含有沉淀的溶液中加入另一种沉淀 剂,使其与溶液中某一离子结合成更难溶 的物质,引起一种沉淀转变成另一种沉淀 的现象,叫沉淀的转化。 CaSO4(s)+ Na2CO3 = CaCO3(s)+ Na2SO4
回本节
回本章目录
第三章 沉淀溶解平衡
三、溶度积规则
某难溶电解质的溶液中任一情况下有 关离子浓度的乘积Qi Qi。 Qi 当Qi<Ksp时 不饱和溶液 ; Q 当Qi=Ksp时 饱和溶液 ; Q 当Qi>Ksp时 过饱和溶液 。 Q 应用(1)判断沉淀的生成和溶解 (2)控制离子浓度,使反应向需 要的方向移动。

第三章_沉淀技术

第三章_沉淀技术
•温度的影响:高离子强度溶液中,温度升高一般使β 下降(温度升高利于盐的溶解,夺取更多的水分子,使 蛋白质溶解性更差) lgS =β-ksI
17
3)、盐析分类
lgS =β-ksI
1. ks盐析:固定蛋白质的pH 、T( β ),变动离子 强度I达到沉淀的目的。
2. β盐析:在一定的离子强度下( I ) ,改变溶液 的pH、T ,达到沉淀的目。
15
讨论 1)、KsI项
Ks与溶液的pH、温度无关,仅取决于蛋白质的性 质和盐的种类。 盐浓度↑→离子强度I↑→S↓→析出。 lgS =β-ksI
16
2)、β值的特性及对盐析的影响 •表示不外加盐时的理想溶解度S,与盐的种类无关, 但与温度、pH有关; •pH的影响:pI时蛋白质溶解度最低,β在pI时最小( 调节pH可以导致蛋白质净电荷数变化)
相互作用,此时生物分子很容易相互聚集,在溶
液中的溶解度降得很低,从而形成沉淀从溶液中
析出。
13
• 盐析机理归纳
1).盐离子与蛋白质分子争夺水分子,破坏了蛋 白质表面的水化膜; 2).盐离子电荷的中和作用; 3).盐离子引起了原本在蛋白质分子周围有序排 列的水分子的极化,使水活度降低。 注: 水活度:水分含量的活性部分或自由水。
43
(2)脱水作用
由于使用的有机溶剂与水互溶,它们在溶解于水的同
11
盐析
(1)、继续增大中性盐离子强度时→大量的盐夺取了 自由水,使水分子在盐离子表面聚集→蛋白质胶体 外层的水化膜因盐的夺取而遭到破坏→蛋白质胶体 表面的疏水区域暴露出来,彼此相互聚集,沉淀;
12
(2)、加入高浓度中性盐后,盐离子与生物分子表
面的带相反电荷的离子基团结合,中和了生物分

第三章 溶解与沉淀

第三章  溶解与沉淀
1. 加入沉淀剂后体系中哪种离子先发生沉淀? 对同一类型的沉淀,Ksp越小越先沉淀,且 Ksp相差越大分步沉淀越完全; 对不同类型的沉淀? 2. 当第二种离子开始沉淀时,第一种被沉淀离子的 残留浓度有多大?分离是否完全(离子浓度< 10-5 mol· L-1)?
【例6】设溶液中Cl-、CrO42-离子浓度均为0.0010 mol· L-1。
7.70×10-13 1.50×10-16
1.33×10-5
8.77×10-7 1.22×10-8
(2)组成类型不同时,不一定 “Ksp↑,s↑”,不能 直接用溶度积比较其溶解度的相对大小。
类型
难溶电解质
S(mol· L-1)
Ksp
AB
A2B
AgCl
Ag2CrO4
1.33×10-5 1.77×10-10
不同类型,所需沉淀剂浓度小的先沉淀。
⑵ 第二种离子开始沉淀时,溶液中残留的第一种离子的
浓度是多少?(不考虑加入AgNO3后对溶液体积的影响) Ksp, AgCl=1.77×10-10,Ksp, Ag2CrO4=1.12×10-12 解:(2)Ag2CrO4开始沉淀时, 溶液中的[Ag+] = 3.3×10-5 mol· L-1,
若逐滴加入AgNO3溶液,试计算 ⑴ 哪一种离子先产生沉淀?
Ksp, AgCl=1.77×10-10,Ksp, Ag2CrO4=1.12×10-12
不同类型沉淀,先计算沉淀时各自所需沉淀剂浓度
解:⑴ 当出现AgCl沉淀时, Ag+浓度为:
[Ag+] ≥ Ksp, AgCl/[Cl-] = 1.8×10-7 mol· L-1 当出现Ag2CrO4沉淀时, Ag+浓度为 [Ag+]≥( Ksp, Ag2CrO4/[CrO42-])1/2 = 3.3×10-5 mol· L-1 ∴ AgCl先沉淀。

第三章沉淀法3-2

第三章沉淀法3-2

均匀沉淀的扩散式生长
团聚形成的单分散体系
不定向团聚
均相沉淀法Sm掺杂的氧化铈(SDC)
Sm(NO3)3
Ce(NO3)3
尿 素
85oC恒温
沉淀
粉体
焙烧
干燥
洗涤
过滤
SDC粉体的TEM照片
250nm
250nm
1500C烧结的样品的SEM照片
不同制备方法下CeO2粉体的形貌
b
a共沉淀 法 b均相共 沉淀法 c水热合 成法
I无晶核生成 II成核阶段 III生长阶段
生成沉淀的途径主要有
1)沉淀剂缓慢的化学反应,导致H+(OH-)离子变化,溶
液pH值变化,使产物溶解度逐渐下降而析出沉淀 H2NCONH2 + 3H2O CO2 + 2NH4+ + 2OH- (90C) 2) 沉淀剂缓慢的化学反应,释放出沉淀离子,达到沉淀离 子的沉淀浓度而析出沉淀 NH2HSO3 + H2O SO42- + NH4+ + H+ 3)协同作用 H2NCONH2 + H2O CO2 + 2NH3 (90oC) NH3 + HC2O4C2O42- + NH4+
粉体制备流程
尿 素 Sm(NO3)3 Ce(NO3)3 300~800W微波 加热8~15min 沉淀
粉体
焙烧
干燥
洗涤
过滤
粉体形貌(TEM)
100nm
100nm
200nm
200nm
试剂浓度与粒子尺寸
[M4+] [urea]
晶粒尺寸(nm)
(谢乐公式计算)
粒子尺寸(nm)

第三章 沉淀和澄清

第三章 沉淀和澄清

Bh0v=Q 水的流量; BL=A 沉淀区平面面积; Q/A— 单位面积沉淀区所沉淀的水流量,称沉淀池的表面负 荷(过流率) 理想沉淀池的表面负荷就是它的截流沉速,反应了能全 部去除的颗粒中的最小颗粒沉速。 由上述可知,浑水在理想沉淀池中的沉淀效率只与沉淀 池的表面负荷率有关,而与其他因素(水深、池长、水平流 速、沉淀时间)无关,这一结论抓住了沉淀池的主要矛盾, 阐明了决定沉淀效率的主要因素反应了下列两个问题: (1)当E一定时 i越大,q也越高,亦即产水量越大,或 一定时u 也越高, 当 一定时 越大, 也越高 亦即产水量越大, 不变时u 越高。 当Q、A不变时 i越大、E越高。 ui的大小与混凝效果有关, 、 不变时 越大、 越高 因此,生产上一定要重视絮凝工艺。 (2) ui一定,A增加、E提高。当W(容积)一定时, 一定, 增加 增加、 提高 提高。 池深浅些,则表面积大些,沉淀效率可以高些,此即“浅池 “ 理论” 理论”,斜板、斜管沉淀池的发展即基于此理论。
cd
FD
= C DAρ1
ν s2
πd 3 dv s 4 m = g (ρ s − ρ1) − dt 6 2 颗粒下沉时,起始沉速为零,故以加速度下沉,随着vs增加,阻 力也相应增加,很快颗粒即等速下沉。dvs/dt=0
中国环评网: 收集整理
πd
3
ρ 1v s 2
中国环评网: 收集整理
随时间增长,交 界面继续下降,直至 B C B、C两个区消失,只 剩A、D两个区,D区 高度也逐渐减小,设 压实时间 t→: ,最后 压实到H:为止。 以交界面高度为 纵坐标,沉淀时间为 横坐标,可得交界面 沉降过程曲线。
a-b段为向下的曲线,可解释为颗粒间的絮凝过程,由于颗粒凝聚变 大,使下降速度逐渐变大。 b-c段为直线,表明交界面等速下降。 a-b曲线段一般较短,且有时不是很明显,所以可以认为是b-c直线段 的延伸。 c-d为上凹的曲线, 絮凝过程 交界面等速下沉 下降速度 逐渐变小 B区消失 区消失

无机及分析化学第三章 沉淀-溶解平衡

无机及分析化学第三章   沉淀-溶解平衡
2 2+
2 OH
-
= 1.25 10 K spMg ( OH )
-5
2
所以有沉淀析出
[例4] 向20mL0.002 mol∙L-1Na2SO4的溶液中,加入 20mL0.002 mol∙L-1CaCl2,问(1)是否有沉淀生成? (2)如果用20 mL 0.02 mol∙L-1BaCl2溶液代替CaCl 2, 是否有BaSO4沉淀生成?(3)若有BaSO4沉淀生成, SO42-的沉淀是否完全? )
例题:在含有0.10mol· -1 Fe3+和 0.10mol· -1 L L Ni2+的溶液中,欲除掉Fe3+,使Ni2+仍留在 溶液中,应控制pH值为多少? 解:
Ksp 开始沉淀 pH
-16
沉淀完全 pH
Ni(OH)2 5.010 -39 Fe(OH)3 2.810
6.85
2.82
Ni2+开始沉淀 6.85 pH
[例6] 向 Cl-和I-均为0.01 mol∙L-1的溶液中,逐滴加入 AgNO3溶液,哪一种离子先沉淀?第二种离子开始沉 淀时,溶液中第一种离子的浓度是多少?两者有无分 离的可能?(Ksp(AgI)=9.3×10-17 Ksp(AgCl)=1.8×10-10)
解:当AgI开始沉淀时: -17 Ksp(AgI) 9.3 10 +)= =9.3×10-15(mol ∙ L-1) = C(Ag C(I-) 0.01 当AgCl开始沉淀时: -10 +)= 1.8 10 =1.8×10-8 mol ∙ L-1) C(Ag 0.01 + + c1 (Ag )I c2 (Ag )Cl -
Ksp,CaSO4 = 9.110-6 , Ksp,BaSO4 = 1.110-10

沉淀分离法1

沉淀分离法1

§3-1 概 述
三、沉淀的类型
1. 晶形沉淀
d > 0.1 m
颗粒大, 结构紧密,体积小, 杂质少, 易过滤洗涤。 如BaSO4、草酸钙等。 2.无定形沉淀
d < 0.02 m
3.凝乳状沉淀
d: 0.02 ~ 0.1 m
含水多, 结构疏松,体积大, 杂质多, 难过滤洗涤。 如 Fe2O3•xH2O等
也能生长。将一颗小 的现成的硫酸铜晶体 悬着浸入其饱和溶液 中,晶体会缓慢地 “生长”。如果在烧 杯中继续倒入饱和硫 酸铜溶液,则结晶体 的增长会持续几周甚 至几个月。你将会得 到一颗美丽的大晶体。
§3-1 概 述

无论是晶形沉淀还是非晶形沉淀,当粒子非常细 小时(1~100μm)就变成胶体,胶体溶液很难过 滤。 为使胶体溶液较易过滤,可在溶胶中加入一定的 电解质,夺取胶体粒子周围的水分可促进凝结。
如:亚砷酸水溶液中,通入H2S生成的As2S3 ,很 难过滤,加入HCl或NaCl等电解质,过滤就容易 多了。


§3-1 概 述
六、沉淀分离法的类型:
无机沉淀剂分离法、有机沉淀剂分离分含量极微时,多采用共沉淀分离法
沉淀的纯度
分类
沉 淀 分 离 法

溶解度 S ( mol· L-1 或 g /100g水)
溶度积
BaSO 4 (s)
溶解 沉淀
Ba (aq) SO (aq)
2 2 4
2
2 4
Ksp (BaSO 4 ) c(Ba ) c(SO )
Ksp — 溶度积常数,简称溶度积
An Bm (s) nA (aq) mB (aq)
2 3
S 3
K sp 4
例:K sp (Ag2 CrO4 ) 1.1 10 S 3

第三章 混凝、沉淀和澄清

第三章 混凝、沉淀和澄清
逐渐减小。
水处理工程课件
二、絮凝与混凝作用理论
混凝处理流程及设备 混凝设备
水处理工程课件
二、絮凝与混凝作用理论
混凝处理流程及设备 混凝设备
水处理工程课件
二、絮凝与混凝作用理论
混凝处理流程及设备 混凝设备
水处理工程课件
二、絮凝与混凝作用理论
混凝处理流程及设备 混凝设备
水处理工程课件
二、絮凝与混凝作用理论
工业用水中的悬浮物或固体 颗粒通常呈现胶体状态分布,这 些固体微粒具有巨大的比表面积, 可以吸附液体介质中的正离子或 负离子或极性分子等,使固液两 相界面上的电荷呈不平衡分布, 在界面两边产生电位差,这就是 固体微粒的双电层现象。
水处理工程课件
二、絮凝与混凝作用理论
2.固液分散体系的稳定性 固液分散体系的稳定化理论(DLVO理论):
假设分散的固体微粒间存在一种排斥位能和吸引 位能的平衡,排斥作用是由于带同种电荷的胶体颗粒 的双电层相互作用而引起的,或者由于粒子和溶剂之
间的相互作用而引起的,吸引作用则主要是范德华力
所引起的。
水处理工程课件
第一节 混凝机理
混凝沉淀法:为满足用水水质和环境排放的要求,向水中 投加混凝剂或絮凝剂以破坏溶胶的稳定性,使水中的胶体 和悬浮物颗粒絮凝成较大的絮凝体,以便从水中分离出来, 达到水质净化的目的。
第二节 混凝剂及其配制与投加
水处理工程课件
第三节 混凝设备
1.混合设备: 水泵混合:投药投加在水泵吸水口或管上。 管式混合:管式静态混合器、扩散混合器, 混合时间2-3秒 机械混合:搅拌
水处理工程课件
二、絮凝与混凝作用理论
混凝处理流程及设备 混凝设备之管道式混合器
水处理工程课件

第三章 分级、沉淀浓缩授课重点

第三章  分级、沉淀浓缩授课重点

第三章分级、沉淀浓缩3-1(A)分级、沉淀、浓缩和澄清的定义是什么?答:固体颗粒在水流中按照其沉降速度的差别分成不同粒级的过程叫水力分级,简称分级;借重力或离心力作用提高煤泥水浓度的作业称为浓缩;从煤泥水中排除固体,以获得固体含量很少的水,这种作业成为澄清;沉淀则是要求煤泥水在容器中停留足够长的时间,使其中固体颗粒近可能全部沉下来,并要求得到比较洁净的溢流水。

3-2(A)分级、澄清、浓缩作业有什么异同?答:相同之处:它们都是在不同程度上的固液分离过程。

其结果都是从设备中排出含有粗粒物料的浓缩底流和含有细粒物料浓度低的溢流产物。

不同之处:A、三个作业之间的差别只是所得到的两个产物,其粒度和浓度不同。

分级作业要求按粒度进行分离,浓缩作业实际也是分级过程,它们之间的差别只是粒度要求不同。

洗水澄清过程实质上亦是浓缩过程,只是溢流水中固体量的控制更加严格,含量要求更低。

B、三个作业的工艺要求不同。

分级作业主要控制粒度;而浓缩作业主要控制底流浓度;澄清作业则控制溢流中的固体含量。

C、三个作业在工艺流程中的位置不同。

分级作业一般处于煤泥水系统的开始阶段;浓缩作业处于系统的中间阶段;澄清作业则处于系统的最后阶段。

3-3(A)分级、沉淀浓缩设备分成哪两大类?答:一类是在重力场作用下的自然分级、沉淀浓缩设备,另一类是离心力场作用下的离心分级、沉淀浓缩设备。

3-4(A)常见的分级、沉淀浓缩设备有哪些?答:分级设备:浓缩漏斗、角锥沉淀池、沉淀塔、倾斜板沉淀池、斗子捞坑。

沉淀浓缩:耙式浓缩机、深锥浓缩机。

澄清设备:厂外沉淀池。

离心沉降设备:沉降式离心脱水机、水力旋流器。

3-6(B)分级设备的工作原理是什么?答:W=A.v m3/h 该式为煤泥水流量、设备面积和分级粒度下沉速度之间的关系。

对于既定的设备,不同的处理量,可求出不同的v值,即有不同的分级粒度。

★当要求的分级粒度一定时,所需分级面积A与煤泥水的流量成正比。

当煤泥水的流量一定时,所需要的分级面积A与分级粒度的下沉速度成反比,即与分级粒度成反比。

新教材 高中化学 选择性必修1 第3章 第四节 第2课时 沉淀溶解平衡的应用

新教材  高中化学  选择性必修1  第3章 第四节 第2课时 沉淀溶解平衡的应用
型的沉淀时,越难溶(Ksp越小)的越先沉淀。 ②当离子浓度小于1×10-5 mol·L-1时,认为已完全沉淀。
2.沉淀的溶解 (1)沉淀溶解的原理 根据平衡移动原理,对于在水中难溶的电解质,如果能设法不断地移去 平衡体系中的相应离子,使平衡向沉淀溶解的方向移动,就可以使沉淀溶解。
(2)沉淀溶解的方法
(3)实验探究:Mg(OH)2沉淀溶解
现象: ① 沉淀不溶解
②沉淀溶解
正误判断
(1)洗涤沉淀时,洗涤次数越多越好( × ) (2)为了减少BaSO4的损失,洗涤BaSO4沉淀时可用稀硫酸代替水( √ )
(3)除废水中的某重金属离子如Cu2+、Hg2+时,常用Na2S等,是因为生
成的CuS、HgS极难溶,使废水中Cu2+、Hg2+浓度降的很低( √ )
(4)CaCO3溶解时常用盐酸而不用稀硫酸,是因为稀硫酸不与CaCO3反应
(×) (5)除去MgCl2溶液中的Fe2+,先加入双氧水,再加入MgO即可( √ )
应用体验
1.当氢氧化镁固体在水中达到沉淀溶解平衡 Mg(OH)2(s) 2OH-(aq)时,为使 Mg(OH)2 固体的量减少,需加入少量的
① 酸 溶 解 法 : 用 强 酸 溶 解 的 难 溶 电 解 质 有 CaCO3 、 FeS 、 Al(OH)3 、 Ca(OH)2等。 如CaCO3难溶于水,却易溶于盐酸,原因是:CaCO3在水中存在沉淀溶解 平 衡 为 _C_a_C_O__3(_s_) ___C__a_2+_(_a_q_)_+__C_O_23_-_(_aq_)_ , 当 加 入 盐 酸 后 发 生 反 应 : C__O_23_-_+__2_H_+_=_=_=_H__2_O_+__C_O__2↑__,c(CO23-) 降低,溶液中 CO23-与Ca2+的离子积 Q(CaCO3) < Ksp(CaCO3),沉淀溶解平衡向溶解 方向移动。 ②盐溶液溶解法:Mg(OH)2难溶于水,能溶于盐酸、NH4Cl溶液中。溶于 NH4Cl溶液反应的离子方程式为_M_g_(_O_H__)2_+__2_N__H_+4_=_=_=_M__g_2_+_+__2_N_H__3·_H_2_O_。

第三章第3节沉淀溶解平衡

第三章第3节沉淀溶解平衡
一、沉淀溶解平衡与溶度积
观察•思考 取有PbI2沉淀的饱和溶液中上层清液,即PbI2的饱和溶液滴 加几滴KI溶液,观察现象。你能解释观察到的现象吗?
1、沉淀溶解平衡: 尽管PbI2固体难溶于水,但仍有部分Pb2+和I-离开固体表面进入溶 液,同时进入溶液的Pb2+和I-又会在固体表面沉淀下来,当这两个 过程速率相等时, Pb2+和I-的沉淀与PbI2固体的溶解达到平衡状态 即达到沉淀溶解平衡状态.PbI2固体在水中的沉淀溶解平衡可表示 为:
3、溶度积(Ksp )的性质
溶度积(Ksp )的大小与难溶电解质性质和温度有关,与沉淀的 量无关.离子浓度的改变可使平衡发生移动,而不能改变溶度积. 不同的难溶电解质在相同温度下Ksp不同。 几种难熔电解质在25℃时的溶解平衡和溶度积:
AgCl(s) Ag+ + Cl-
Ksp= [Ag+][Cl-] = 1.8×10-10mol2•L-2
=2.9×10-10mol•L-1 因为剩余的[Ba2+]< 10-5mol/L 所以有效除去了误食的Ba2+。
作业
1.25℃时, Ksp (Mg(OH)2)= 5.6×10-12mol3•L-3求Mg(OH)2 的饱 和溶液中的[Mg2+]和[OH-]和溶解度. 2. 25℃时Ksp (Fe(OH)2)= 4.9×10-17mol3•L-3, Ksp (Al(OH)3)= 1.3×10-33mol4•L-4,比较Fe(OH)2、 Al(OH)3饱和溶液中溶解 度的大小. 3.(1)已知常温下,AgI在水中的溶解度为2.1 ×10-6g/L,求AgI 饱和溶液中的溶度积Ksp。 (2)求AgI在0.001mol/L的KI溶液中的溶解度。 (3)求AgI在0.001mol/L的AgNO3溶液中的溶解度。

第三章 混凝沉淀和澄清之二

第三章  混凝沉淀和澄清之二

第四节沉淀的基本理论一、分类根据悬浮物质的性质、浓度及絮凝性能,范围:1.自由沉淀:悬浮物质浓度不高,在沉淀过程中颗粒之间互不碰撞,呈离散状态,各自独立地完成沉淀过程。

颗粒形状、尺寸、质量不变。

如沉砂池中砂粒、浓度低的污水在初沉池。

2.絮凝沉淀(干扰沉淀):悬浮物浓度在50~500mg/l,颗粒间可能互相碰撞产生絮凝作用,使粒径与质量加大,沉速不断加快。

如活性污泥在二沉池。

3.拥挤沉淀(分层沉淀):浓度>500mg/l,沉淀中相邻颗粒互相妨碍、干扰,沉速大的颗粒无法超越沉速小的颗粒,各自保持相对位置不变,并在聚合力的作用下,颗粒群结合成一个整体向下沉淀,清水与浑水间形成明显的交界面,沉淀显示为界面下沉。

如二沉池下部的沉淀过程及浓缩池开始阶段。

4.压缩沉淀:浓度大。

颗粒间互相支承,上层颗粒在重力作用下,挤出下层颗粒的间隙水,使污泥得到浓缩。

如活性污泥在二沉池的污泥斗中及浓缩池中的浓缩过程。

活性污泥在二沉池中沉淀实际是依次进行,只是各类沉淀出现时间不同。

二、各种沉淀类型分析(一)自由沉淀低浓度离散性颗粒在水中沉淀,开始时加速下沉,水流阻力不断增加,短暂时间后达到与重力平衡,颗粒开始匀速下沉。

1.公式根据牛顿第二定律,得出d y C g u yg D ρρρ-=34 粒径有关阻力系数,与液体密度颗粒密度----d C D y g Re ρρ 下面表示沉速公式及适用条件2.应用(1)已知d ,推求u=?(2)已知u ,反推d=?3.结论4.沉淀规律(去除率)(二)絮凝沉淀(三)拥挤沉淀1.外观现象和沉淀过程分析基本特征:水沉降过程中出现清浑交界面,整个过程就是界面下沉过程2.界面沉降的重要特性-相似性3.肯奇沉淀理论及应用(压缩沉降的计算)(四)压缩沉淀三、理想沉淀池(一)工作过程分析1.什么是理想沉淀池?符合三个假定:(1)颗粒处于自由沉淀状态。

(2)水流沿水平方向作等速流动。

(3)颗粒沉到池底即认为被去除,不再返回水流中。

无机化学第三章 沉淀溶解平衡

无机化学第三章 沉淀溶解平衡

一、难溶电解质的溶解度和溶度积
1. 溶度积常数
BaCO3(s)
BaCO3
溶解 沉淀
Ba2+ + CO322+ 2−
当υ溶 = υ沉时
2+ 2−
[Ba ] ⋅ [CO 3 ] =K [BaCO3 ]
[Ba ] ⋅ [CO 3 ] = K ⋅ [BaCO3 ] = K sp
K sp
2+
溶度积常数,大小与S(溶解度)有关, 是T的函数
c 0.100 Q = = 5.68 × 103>400 K b 1.75 ×10 −5
= 1.32 ×10 −3 [OH ] = K b c = 1.75 ×10 × 0.10

−5
( mol·L-1)
又∵ [Mg2+]·[OH-]2 = 1.0×10-3×(1.32×10-3)2 = 1.75×10-9 1.75×10-9 >K sp {Mg (OH) 2 } ∴有Mg(OH)2↓产生
先↓的离子↓完全,后↓的离子留在溶液中 计算出pH范围
MS
M 2+ + S2-
Ksp(MS) = [M2+]·[S2-] ∴↓时,[S2-] 不同。
K sp (MS) [M ]
2+
∵Ksp(MS)不同, 沉淀开始时:
2−
[S ]min >
······⑴
[S 2 − ] 与 [ H + ] 的关系
H2S
Ba3(PO4)2(s)
K sp = [Ba ] ⋅ [PO 4 ]
2+ 3
2. 溶解度和溶度积的换算
例1: 25℃时,AgCl在水中的溶解度为0.00192g·L-1, 试求该温度下的溶度积?(M(AgCl)=143.4g/mol)

第3章 第3节 沉淀溶液平衡

第3章 第3节 沉淀溶液平衡
对于难溶电解质AmBn(s) mAm+(aq)+nBm-(aq),
其浓度商Q=cm(An+)·n(Bm-),通过比较Q和Ksp的相对大小, c 可以判断沉淀的溶解与生成: (1)Q > Ksp时,溶液过饱和,有沉淀析出,直至 溶液 溶液 ,达到新的沉淀溶解平衡。
(2)Q = Ksp时,溶液饱和,沉淀与溶解 处于平衡状态。
____________。
返回
分析:在AgI饱和溶液中存在平衡AgI(s) Ag+(aq)+I-
(aq)。(1)AgNO3溶于水,使[Ag+]增大,而Ksp(AgI)不变, AgI的沉淀溶解平衡向左移动,[I-]变小;(2)加入AgI固体, 平衡不移动,c(Ag+)不变;(3)加入AgBr固体,由于AgBr的 溶度积比AgI大,[Ag+]变大,[I-]变小。
过程。
答案:不正确
返回
4.难溶电解质AB2的饱和溶液中,[A2+]=x mol· -1,[B-] L
=y mol· -1,则Ksp(AB2)为________。 L
分析:在难溶电解质的饱和溶液中存在平衡:AB2(s)

A2+(aq)+2B-(aq),Ksp(AB2)=[A2+][B-]2=xy2
返回
1.沉淀的生成
(1)调节溶液的pH法:
使杂质离子转化为氢氧化物沉淀。如工业原料氯化铵 中含杂质氯化铁,为除去氯化铁,可使原料溶于水,再加 入氨水调pH>4,即可使Fe3+转化为Fe(OH)3沉淀而除去。 (2)加沉淀剂法:
加入沉淀剂而析出沉淀。如以Na2S、H2S等作沉淀剂,
使某些金属离子如Cu2+、Hg2+等生成极难溶的硫化物CuS、 HgS等沉淀。 返回
+ -
S
S
Ksp=[Mn+][An-]=S2 S=[Mn ]=[An ]= Ksp
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中性盐的亲水性大,使蛋白质脱去水化膜,疏水区暴露, 由于疏水区的相互作用导致沉淀;
常用的盐析剂
硫酸铵:
优点:价廉;溶解度大(767g/L);稳定蛋白 质;
缺点:水解变酸;高pH 释氨,腐蚀;残留产 品有影响。
硫酸钠 硫酸镁 磷酸二氢钠 柠檬酸盐
选用盐析用盐的几点考虑
盐析作用要强 盐析用盐需有较大的溶解度 盐析用盐必须是惰性的 来源丰富、经济
3. 球蛋白的分离: 新离心管称重并记录,量取10mL上清液体积,将其置于另一离
心管中,用移液器滴加饱和硫酸铵溶液,使溶液的饱和度达到50%, 4℃放置15min,3000r/min离心10min,其上清液为清蛋白,沉淀 为球蛋白。弃去上清液(直接倒掉上清液,并倒扣在滤纸上),留下 沉淀部分。 +6mL饱和硫酸铵溶液 4. IgG的分离:
定的胶体溶液。
⑵蛋白质分子间静电排斥作用(存在双电层)
因此,可通过降低??? 降低蛋白质溶液的稳 定性,实现蛋白质的 沉淀。
主要内容
3.1 盐析法 3.2 有机溶剂沉淀法 3.3 其它沉淀技术
3.1 盐析法
概念:在高浓度的中性盐存在下,蛋白质
(酶)等生大分子物质在水溶液中的溶解 度降低,产生沉淀的过程。
IgG相对分子质量为15-16万,沉淀系数约为7S

IgG是血清主要的抗体成分,约占血清Ig的75%
。其中40~50%分布于血清中,其余分布在组 织中。
粗分离 纯化 鉴定
IgG结构图
四、操作步骤与方法
1、计算各步滴加饱和硫酸铵溶液的量 2、清蛋白和球蛋白的分离:
离心管加入5mL血浆和5mL 0.01mol/L,pH7.0的磷酸 盐缓冲液,混匀,边加饱和硫酸铵溶液边搅拌,使溶液最终饱 和度为20%,4℃放置15min,3000r/min离心10min,弃 去沉淀(沉淀为纤维蛋白原),其上清液为清蛋白和球蛋白。 +2.5mL饱和硫酸铵溶液 边滴加搅拌,防止局部过饱和的现象,达不到预期的饱和度。 搅拌时不要过急以免产生过多泡沫,致使蛋白质变性。
第三章 沉淀技术
沉淀法概述
利用沉淀剂使所需提取的生化物质或杂质在
溶液中的溶解度降低而形成无定形固体沉淀 的过程。
特点:操作简单、经济、浓缩倍数高 种类:盐析、有机溶剂沉析、等电点沉析等 缺点:针对复杂体系而言,分离度不高、选
择性不强
蛋白质胶体溶液的稳定性
⑴蛋白质周围的水化层可以使蛋白质形成稳
影响盐析的因素
盐饱和度的影响: 样品浓度的影响:
蛋白质浓度大,盐的用量小,但共沉作用明显,分辨率 低;
蛋白质浓度小,盐的用量大,分辨率高;
pH值:影响蛋白质表面净电荷的数量
通常调整体系pH值,使其在pI附近;
盐析温度:
一般在高盐浓度下,温度升高,其溶解度反而下降
盐析操作
硫酸铵是最常用的蛋白质盐析沉淀剂 采用硫酸铵进行盐析时可按二种方式加入:
一般利用离子交换层析法纯化。在离子交换层析
之前,由于盐析所得的蛋白质中含有大量硫酸铵 ,将影响离子交换层析。
所以,在层析之前需要“脱盐”。“脱盐”有凝
胶过滤法和透析法。
实操:盐析法分离血清IgG
IgG是免疫球蛋白G(Immunoglobulin G,IgG)的
缩写。根据结构的不同将免疫球蛋白分为五种 ,IgG是人的免疫球蛋白之一,其他还有lgA、 lgM、IgD和lgE。
G和A为常数,数值与温度有关。
现在已将达到各种饱和度所需固体硫酸铵的数量列 成表,使用时不需计算可直接从表中查出。
注意事项
市售固体硫酸铵中一般残留有硫酸,所以制备的
饱和硫酸铵溶液的PH常在4.5 ~5.5之间,作用之 前应该用氢氧化铵调节,使其PH为7;
用固体硫酸铵盐析时,蛋白质应溶解于具有一定
缓冲能力的溶液中;
在硫酸铵中还含有一些重金属离子,用量过大时
易使蛋白质变性,在这种情况下可加入一些EDTA 等螯合剂以螯合这些金属离子。
注意事项
硫酸铵盐析法可使蛋白质的纯度提高约5倍,而且
可以除去DNA,RNA等。
但盐析后的蛋白质中仍含有一些杂蛋白,所以盐
析产生的产品为粗分离产品需要进一步纯化。
①直接加入固体(NH4)2SO4粉末,工业上常采用这种方 法,加入速度不能太快,应分批加入,并充分搅拌,使 其完全溶解和防止局部浓度过高;
②是加入硫酸铵饱和溶液,在实验室和小规模生产中, 或(NH4)2SO4浓度不需太高时,可采用这种方式,它可 防止溶液局部过浓,但加量较多时,料液会被稀释。
脱盐
积并不等于混合前两种溶液体积之和,而上 式中是按相等于计算的,所以会产生误差。
但实验证明所造成的误差一般小于20%,
故可忽略不计。
2.固体硫酸铵法
X = G(C 2 − C1 ) 或X = G(C2 − C1 )
100 − AC2
1 − AC2
X是将1L饱和度为C1溶液提高到饱和度为C2时,需
要加入固体硫酸铵的重量(g)。
V
=
V0
C2 100
− −
C1 C2
或V
=
V0
C2 − C1 1− C2
式中: V0——蛋白质溶液的原始体积; C2——所要达到硫酸铵饱和度; C1——原来溶液的硫酸铵饱和度; V——应加入饱和硫酸铵溶液的体积。
将计算所得体积的饱和硫酸铵溶液加入到混
合蛋白质溶液中,即可达到盐析的目的。
严格讲,混合两不同溶液时,混合后的总体
透析和凝胶过滤
举例:硫酸铵分级盐析蛋白质
用硫酸铵分级盐析蛋白质时,盐析出某种蛋
白质成分所需的硫酸铵浓度一般以饱和度来 表示。
实际工作中将饱和硫酸铵溶液的饱和度定为
100%或1。
盐析某种蛋白质成分所需的硫酸铵数量折算
成100%或1饱和度的百分之几,即为该蛋白 盐析的饱和度。
1.饱和硫酸铵溶液法
将所得的沉淀溶于5mL 0.01mol/L,pH7.0的磷酸盐缓冲溶液中, 滴加饱和硫酸铵溶液,使溶液的饱和度达35%,在4℃放置20min, 3000r/min离心15min。其上清液为α、β球蛋白,沉淀为IgG。弃去 上清液,即获得粗制的IgG沉淀。 +2.7mL饱和硫酸铵溶液
盐析法的原理
(1)破坏水化膜 (2)中和电荷
盐析法原理
当中性盐加入蛋白质分散体系时可能出现以下两
种情况:
(1)“盐溶”现象—低盐浓度下,蛋白质溶解度增 大
(2)“盐析”现象—高盐浓度下,蛋白质溶解度随 之下降,原因如下:
无机离子与蛋白质表面电荷中和,形成离子对,部分中 和了蛋白质的电性,使蛋白质分子之间的排斥力减弱, 从而能够相互靠拢;
相关文档
最新文档