实验六组合逻辑电路设计

合集下载

《数字逻辑》实验组合逻辑电路实验

《数字逻辑》实验组合逻辑电路实验

《数字逻辑》实验组合逻辑电路实验组合逻辑电路实验一一、实验目的1、熟悉半加器、全加器的实验原理,学习电路的连接;2、了解基本74LS系列器件(74LS04、00、32)的性能;3、对实验结果进行分析,得到更为优化的实验方案。

二、实验内容1、按照实验原理图连接电路。

2、实验仪器:74LS系列的芯片、导线。

实验箱内的左侧提供了插放芯片的地方,右侧有控制运行方式的开关KC0、KC1及KC2。

其中KC1用来选择实验序号。

序号为0时,手动进行。

自动运行时按加、减选择所做实验的序号。

试验箱内有分别用于手动和自动实验的输入的控制开关Kn和Sn。

3、三、实验原理实验原理图如下:四、实验结果及分析1、将实验结果填入表1-11-1 表2、实验结果分析由实验结果可得半加和:Hi=Ai⊕Bi 进位:Ci=AiBi则直接可以用异或门和与门来实现半加器,减少门的个数和级数,提高实验效率。

实验二全加器一、实验目的1、掌握全加器的实验原理,用简单的与、或非门来实现全加器的功能。

2、分析实验结果,得到全加器的全加和和进位的逻辑表达式,根据表达式用78LS138和与、或、非门来实现全加器。

二、实验内容同半加器的实验,先采用手动方式,再用自动方式。

用自动方式时选实验序号2。

三、实验原理四、实验结果及其分析表1-2 2、实验结果分析从表1-2中的实验结果可以得到:Si=AiBiCi?1+AiBiCi?1+AiBiCi-1=Ai?Bi?Ci-1Ci=AiBi+AiCi-1+BiCi-1故Si=?m(1,2,4,7) Ci=?m(3,5,6,7)因此可用三—八译码器74LS138和与非门实现全加器,逻辑电路图如下:实验三三—八译码器与八—三编码器一、实验目的1、进一步了解译码器与编码器的工作原理,理解译码和编码是相反的过程。

2、在连接电路时,注意译码器74LS138和编码器74LS148使能端的有效级,知道两者的区别。

3、通过实验理解74LS148是优先权编码器。

组合电路分析实验报告

组合电路分析实验报告

一、实验目的1. 掌握组合逻辑电路的基本概念和特点。

2. 学会分析组合逻辑电路的逻辑功能。

3. 熟悉逻辑门电路的原理和应用。

4. 提高实验操作能力和分析问题能力。

二、实验原理组合逻辑电路是由逻辑门电路组成的,其输出仅与当前输入有关,而与电路历史状态无关。

本实验主要涉及以下几种基本逻辑门电路:1. 与门(AND Gate):当所有输入都为1时,输出才为1。

2. 或门(OR Gate):当至少一个输入为1时,输出为1。

3. 非门(NOT Gate):将输入信号取反。

4. 异或门(XOR Gate):当输入信号不同时,输出为1。

三、实验仪器与器材1. 74LS00(四2输入与门)2. 74LS02(四2输入或门)3. 74LS04(六反相器)4. 74LS86(四2输入异或门)5. 数字逻辑实验箱6. 万用表7. 导线若干四、实验内容与步骤1. 实验一:验证与门、或门、非门、异或门的功能(1)按照实验指导书连接电路图,并检查无误。

(2)按照表1要求输入信号,观察并记录输出信号。

(3)根据观察到的输出信号,分析各门电路的逻辑功能。

表1:验证与门、或门、非门、异或门的功能| 输入信号 | 与门输出 | 或门输出 | 非门输出 | 异或门输出 || :-------: | :-------: | :-------: | :-------: | :-------: || A | B | A | A | A || 0 | 0 | 0 | 1 | 0 || 1 | 1 | 1 | 0 | 1 |2. 实验二:设计组合逻辑电路(1)设计一个组合逻辑电路,实现以下功能:当输入A为1,B为0时,输出Y为1,否则Y为0。

(2)根据设计要求,选择合适的逻辑门电路,并画出电路图。

(3)按照电路图连接实验电路,并检查无误。

(4)按照表2要求输入信号,观察并记录输出信号。

表2:设计组合逻辑电路| 输入信号 | 输出信号 || :-------: | :-------: || A | B | Y || 0 | 0 | 0 || 0 | 1 | 0 || 1 | 0 | 1 || 1 | 1 | 0 |3. 实验三:分析组合逻辑电路(1)分析实验二所设计的组合逻辑电路,确定其逻辑功能。

SSI组合逻辑电路设计实验报告

SSI组合逻辑电路设计实验报告

华中科技大学《电子线路设计、测试与实验》实验报告实验名称:SSI组合逻辑电路设计实验(软件)院(系):自动化学院实验成绩:指导教师:汪小燕2014 年 4 月24 日一.实验目的1.掌握用SSI(小规模数字集成电路)实现简单组合逻辑电路的方法。

2.掌握简单数字电路的安装于调试技术。

3.进一步熟悉数字万用表、示波器等仪器的使用办法。

4.熟悉用Verilog HDL描述组合逻辑电路的方法,以及EDA仿真技术。

二.实验元器件芯片74HC00 2片,74LS04 一片;若干导线,计算机;QuartusⅡ9.1集成开发环境;面包板;可编程器件实验板;专用的在系统编程电缆。

三.实验原理及参考电路组合逻辑电路的设计流程组合逻辑电路的设计步骤如下图,先根据实际的逻辑问题进行逻辑抽象,定义逻辑状态的含义,在按照给定事件因果关系列出逻辑关系真值表。

然后用给定的器件实现简化后的逻辑表达式,画出逻辑电路图。

QuartusⅡ9.1在设计好电路之后,就可以根据设计的电路,就可以在QuartusⅡ9.1集成开发环境下,通过Verilog HDL语言编程,然后生成相应的波形文件执行仿真,最后再把程序下载到老师给的DE0板子上去,从而通过板子上LED灯的亮和不亮来确定输出的高低电平。

插板在做完仿真之后,就可以根据设计的逻辑图选择相应的芯片进行插板,通过给不同输入高低电平组合来测输出电平的高低,从而检测是否符合实验要求。

四.实验内容全加器/全减器 根据给定的器件,设计一个全加器/全减器电路,使之既能实现1位加法运算又能实现1位减法运算。

当控制变量M=0时,电路实现加法运算;当M=1时,电路实现减法运算。

其框图如下所示,图中,00A B 、 分别为被加(减)数和加(减数),0S 为相加(减)的结果,0C 为进(借)位。

一、 首先,按照组合逻辑电路的设计流程,写出其真值表如下:M0A0B1C -0S0C0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 1 0 0 0 1 1 0 1 0 1 0 0 1 0 0 1 0 1 0 1 0 1 1 0 0 1 0 1 1 1 1 1 1 0 0 0 0 0 1 0 0 1 1 1 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 0 1 0 1 1 0 1 0 0 1 1 1 0 0 0 111111二、根据真值表,。

组合逻辑电路的设计实验报告

组合逻辑电路的设计实验报告

竭诚为您提供优质文档/双击可除组合逻辑电路的设计实验报告篇一:数电实验报告实验二组合逻辑电路的设计实验二组合逻辑电路的设计一、实验目的1.掌握组合逻辑电路的设计方法及功能测试方法。

2.熟悉组合电路的特点。

二、实验仪器及材料a)TDs-4数电实验箱、双踪示波器、数字万用表。

b)参考元件:74Ls86、74Ls00。

三、预习要求及思考题1.预习要求:1)所用中规模集成组件的功能、外部引线排列及使用方法。

2)组合逻辑电路的功能特点和结构特点.3)中规模集成组件一般分析及设计方法.4)用multisim软件对实验进行仿真并分析实验是否成功。

2.思考题在进行组合逻辑电路设计时,什么是最佳设计方案?四、实验原理1.本实验所用到的集成电路的引脚功能图见附录2.用集成电路进行组合逻辑电路设计的一般步骤是:1)根据设计要求,定义输入逻辑变量和输出逻辑变量,然后列出真值表;2)利用卡络图或公式法得出最简逻辑表达式,并根据设计要求所指定的门电路或选定的门电路,将最简逻辑表达式变换为与所指定门电路相应的形式;3)画出逻辑图;4)用逻辑门或组件构成实际电路,最后测试验证其逻辑功能。

五、实验内容1.用四2输入异或门(74Ls86)和四2输入与非门(74Ls00)设计一个一位全加器。

1)列出真值表,如下表2-1。

其中Ai、bi、ci分别为一个加数、另一个加数、低位向本位的进位;si、ci+1分别为本位和、本位向高位的进位。

2)由表2-1全加器真值表写出函数表达式。

3)将上面两逻辑表达式转换为能用四2输入异或门(74Ls86)和四2输入与非门(74Ls00)实现的表达式。

4)画出逻辑电路图如图2-1,并在图中标明芯片引脚号。

按图选择需要的集成块及门电路连线,将Ai、bi、ci接逻辑开关,输出si、ci+1接发光二极管。

改变输入信号的状态验证真值表。

2.在一个射击游戏中,每人可打三枪,一枪打鸟(A),一枪打鸡(b),一枪打兔子(c)。

用ssi设计组合逻辑电路实验报告

用ssi设计组合逻辑电路实验报告

用SSI设计组合逻辑电路实验报告1. 简介组合逻辑电路是一种基本的数字电路,由多个逻辑门组成,它的输出仅取决于当前输入的电平状态。

本实验将使用SSI(Small Scale Integration)电路芯片设计一个组合逻辑电路,实现特定的功能。

2. 实验设备和材料•741G08集成电路芯片•7404集成电路芯片•排针•面包板•电路连接线3. 实验步骤3.1 准备工作1.将741G08芯片插入面包板的位置1。

2.将7404芯片插入面包板的位置2。

3.将排针插入面包板的位置,作为输入和输出引脚。

3.2 电路设计1.连接电源和接地,确保芯片正常工作。

2.使用电路连接线,将输入信号连接到741G08的输入引脚。

3.使用电路连接线,将输出信号连接到7404的输入引脚。

4.使用电路连接线,将7404的输出引脚连接到外部设备或其他电路。

3.3 编程设计根据实验需求,编写相应的逻辑函数表,确定每个逻辑门的输入和输出关系。

4. 实验结果根据实验设定的逻辑函数表,通过输入不同的信号,观察输出信号的变化。

根据实验结果,验证所设计的组合逻辑电路的功能和正确性。

5. 实验分析5.1 采用的电路芯片•741G08芯片:该芯片是一个4输入与门,可以实现多个输入信号的与运算。

•7404芯片:该芯片是一个非门,可以实现输入信号的取反功能。

5.2 电路设计思路本次实验采用了组合逻辑电路的设计思路,根据实验需求设计了逻辑函数表,并通过逻辑门的组合实现了目标功能。

通过实验,我们可以验证组合逻辑电路的设计与实现方法的有效性。

6. 结论本实验通过使用SSI电路芯片,设计了一个组合逻辑电路,并通过编程验证了其正确性和功能。

通过实验我们可以深入理解组合逻辑电路的设计和工作原理,并将其应用于实际的数字电路中。

参考文献1.张三, 李四. 电子电路设计基础. 机械工业出版社, 2018.2.王五, 赵六. 数字电路设计原理. 清华大学出版社, 2017.。

计算机组成原理 实验报告

计算机组成原理 实验报告

计算机组成原理实验报告计算机组成原理实验报告引言计算机组成原理是计算机科学与技术专业中的一门重要课程,通过实验学习可以更好地理解和掌握计算机的基本原理和结构。

本实验报告将介绍我在学习计算机组成原理课程中进行的实验内容和实验结果。

实验一:二进制与十进制转换在计算机中,数据以二进制形式存储和处理。

通过这个实验,我们学习了如何将二进制数转换为十进制数,以及如何将十进制数转换为二进制数。

通过实际操作,我更深入地了解了二进制与十进制之间的转换原理,并且掌握了转换的方法和技巧。

实验二:逻辑门电路设计逻辑门电路是计算机中的基本组成部分,用于实现不同的逻辑运算。

在这个实验中,我们学习了逻辑门的基本原理和功能,并通过电路设计软件进行了实际的电路设计和模拟。

通过这个实验,我深入理解了逻辑门电路的工作原理,并且掌握了电路设计的基本方法。

实验三:组合逻辑电路设计组合逻辑电路是由多个逻辑门组合而成的电路,用于实现复杂的逻辑功能。

在这个实验中,我们学习了组合逻辑电路的设计原理和方法,并通过实际的电路设计和模拟,实现了多个逻辑门的组合。

通过这个实验,我进一步掌握了逻辑电路设计的技巧,并且了解了组合逻辑电路在计算机中的应用。

实验四:时序逻辑电路设计时序逻辑电路是由组合逻辑电路和触发器组合而成的电路,用于实现存储和控制功能。

在这个实验中,我们学习了时序逻辑电路的设计原理和方法,并通过实际的电路设计和模拟,实现了存储和控制功能。

通过这个实验,我进一步了解了时序逻辑电路的工作原理,并且掌握了时序逻辑电路的设计和调试技巧。

实验五:计算机指令系统设计计算机指令系统是计算机的核心部分,用于控制计算机的操作和运行。

在这个实验中,我们学习了计算机指令系统的设计原理和方法,并通过实际的指令系统设计和模拟,实现了基本的指令功能。

通过这个实验,我深入了解了计算机指令系统的工作原理,并且掌握了指令系统设计的基本技巧。

实验六:计算机硬件系统设计计算机硬件系统是由多个模块组成的,包括中央处理器、存储器、输入输出设备等。

数字逻辑电路实验报告

数字逻辑电路实验报告

数字逻辑电路实验报告指导老师:班级:学号:姓名:时间:第一次试验一、实验名称:组合逻辑电路设计1二、试验目的:掌握组合逻辑电路的功能测试。

1、验证半加器和全加器的逻辑功能。

2、、学会二进制数的运算规律。

3、试验所用的器件和组件:三、74LS00 3片,型号二输入四“与非”门组件74LS20 1片,型号四输入二“与非”门组件74LS86 1片,型号二输入四“异或”门组件实验设计方案及逻辑图:四、/全减法器,如图所示:1、设计一位全加时做减法运时做加法运算,当M=1M决定的,当M=0 电路做加法还是做减法是由SCin分别为加数、被加数和低位来的进位,、B和算。

当作为全加法器时输入信号A分别为被减数,减数Cin、B和为和数,Co为向上的进位;当作为全减法时输入信号A 为向上位的借位。

S为差,Co和低位来的借位,1)输入/(输出观察表如下:(2)求逻辑函数的最简表达式函数S的卡诺图如下:函数Co的卡诺如下:化简后函数S的最简表达式为:Co的最简表达式为:2(3)逻辑电路图如下所示:、舍入与检测电路的设计:2F1码,用所给定的集成电路组件设计一个多输出逻辑电路,该电路的输入为8421为奇偶检测输出信号。

当电路检测到输入的代码大于或F2为“四舍五入”输出信号,的个数为奇数时,电路。

当输入代码中含1F1=1;等于5是,电路的输出其他情况F1=0 F2=0。

该电路的框图如图所示:的输出F2=1,其他情况输出观察表如下:(输入/0 1 0 0 1 01 0 1 0 0 11 1 1 0 0 01 0 1 1 1 11 0 0 1 0 11 0 1 0 0 11 0 0 1 1 01 1 1 0 1 11 0 1 1 0 011111求逻辑函数的最简表达式(2)的卡诺如下:函数F1 F2函数的卡诺图如下:的最简表达式为:化简后函数F2 的最简表达式为:F1)逻辑电路图如下所示;(3课后思考题五、化简包含无关条件的逻辑函数时应注意什么?1、答:当采用最小项之和表达式描述一个包含无关条件的逻辑问题时,函数表达式中,并不影响函数的实际逻辑功能。

实验六 组合逻辑电路的分析与仿真

实验六 组合逻辑电路的分析与仿真

现代电子技术实验报告实验名称:指导老师:学生班级:学生姓名:学生学号:实验六组合逻辑电路的分析与仿真一、实验目的1、熟悉和掌握逻辑转换仪的功能和特性以及在Multsim10软件中所处的位置。

2、熟悉和掌握组合逻辑电路的设计与分析,以及编码器、译码器、数据选择器逻辑功能的测试及仿真。

3、进一步熟悉Multisim软件。

二、实验设备安装有Multsim10软件的个人电脑三、实验内容1、逻辑转换仪的功能和特性的介绍及练习图1、逻辑转换仪图片图2、逻辑转换仪设置窗口用鼠标单击仪器仪表库中的按钮,在工作区放置一个逻辑转换仪,如上图1所示,其下方有九个端口,除最右侧为数字电路的输出端口外,其余八个均为输入端口。

用鼠标双击逻辑转换仪就会出现上图2所示的逻辑转换仪设置窗口。

选择变量A、B、C、D,真值表区自动列出16种组合,将鼠标指针移到真值表区右侧输出栏位置,光标变成一个手形,在相应的“?”处单击一次变为“0”,单击2次变为“1”,单击3次变为“×”(任意值)。

逻辑转换仪设置窗口中的按钮,可以在真值表下方空白栏得到标准与或式(全部有最小项组成);各转换按钮的功能介绍如下:(1):由真值表转换标准与或式。

(2):由真值表转换最简与或式。

(3):由逻辑电路转换真值表。

(4):由逻辑表达式转换真值表。

(5):由逻辑表达式转换逻辑电路。

(6):由逻辑表达式转换由与非门组成的逻辑电路。

2、逻辑转换仪的练习(1)、F(A,B,C,D)=∑m(0,2,3,5,7,8,10,11,13,15)(2)、F(A,B,C,D)=∑m(0,1,4,9,10,13)+∑d(2,5,8,12,15)(a)、(1)式的真值表如下图所示:(b)、将(1)式化为最简与或式如下所示:(c)、(2)式的真值表如下图所示:(d)、将(2)式生成全部由与非门搭建的电路如下所示:3、静态组合逻辑电路的分析、设计与仿真利用multisim中的逻辑转换仪帮我们实现组合逻辑分析与求解。

组合逻辑实验报告

组合逻辑实验报告

篇一:组合逻辑电路实验报告甘肃政法学院本科生实验报告(组合逻辑电路的设计)姓名: 学院: 专业: 班级:实验课程名称:数字电子技术基础实验日期: 指导教师及职称: 实验成绩: 开课时间:甘肃政法学院实验管理中心印制篇二:组合逻辑电路实验报告课程名称:数字电子技术基础实验指导老师:樊伟敏实验名称:组合逻辑电路实验实验类型:设计类同组学生姓名:__________ 一、实验目的和要求(必填)二、实验内容和原理(必填)三、主要仪器设备(必填)五、实验数据记录和处理七、讨论、心得一.实验目的1.加深理解全加器和奇偶位判断电路等典型组合逻辑电路的工作原理。

2.熟悉74ls00、74ls11、74ls55等基本门电路的功能及其引脚。

3.掌握组合集成电路元件的功能检查方法。

4.掌握组合逻辑电路的功能测试方法及组合逻辑电路的设计方法。

二、主要仪器设备74ls00(与非门) 74ls55(与或非门) 74ls11(与门)导线电源数电综合实验箱三、实验内容和原理及结果四、操作方法和实验步骤六、实验结果与分析(必填)实验报告(一)一位全加器1.1 实验原理:全加器实现一位二进制数的加法,输入有被加数、加数和来自相邻低位的进位;输出有全加和与向高位的进位。

i-1异或门可通过ai ?bi?ab?ab,即一个与非门;(74ls00),一个与或非门(74ls55)来实现。

ci = ai bi +(ai?bi)c再取非,即一个非门(i-1?ai bi +(ai?bi)ci-1,通过一个与或非门ai bi +(ai?bi)ci-1,用与非门)实现。

1.4 仿真与实验电路图:仿真与实验电路图如图 1 所示。

图11实验名称:组合逻辑实验姓名:学号:1.5 实验数据记录以及实验结果全加器实验测试结果满足全加器的功能,真值表:(二)奇偶位判断器2.1 实验原理:数码奇偶位判断电路是用来判别一组代码中含 1 的位数是奇数还是偶数的一种组合电路。

组合逻辑电路实验报告

组合逻辑电路实验报告

组合逻辑电路实验报告一实验目的和实验要求:1、了解全加器的工作原理及其典型的应用,并验证4位全加器功能。

2、了解和掌握数字比较器的工作原理及如何比较大小。

3、了解和掌握译码器的工作原理,并测试其逻辑功能。

4、了解和掌握编码器的工作原理,并测试其逻辑单元。

5、了解和掌握数码选择器的工作原理及逻辑功能。

二实验方案:器件:8-3编码器74HC148 3-8译码器74HC138 4选1数据选择器74HC153 4位数字比较器74HC85 4位全加器74HC283在GDUT-J-1 数字电路试验箱中使用以上芯片,按照实验书连接好线路,通过拨码开关和LED开关来模拟逻辑输入和逻辑输出,观察LED灯的亮灭来判断逻辑状态,完成对应芯片的输入输出状态表(及真值表)来得出芯片的逻辑表达式。

三实验结果和数据处理:74HC148输入输出状态控制十进制数字信号输入二进制数码输入状态输出E1 I0 I1 I2 I3 I4 I5 I6 I7 A1 A2 A3 GS EO1 X X X X X X X X 1 1 1 1 10 1 1 1 1 1 1 1 1 1 1 1 1 00 X X X X X X X 0 0 0 0 0 10 X X X X X X 0 1 0 0 1 0 10 X X X X X 0 1 1 0 1 0 0 10 X X X X 0 1 1 1 0 1 1 0 10 X X X 0 1 1 1 1 1 0 0 0 10 X X 0 1 1 1 1 1 1 0 1 0 10 X 0 1 1 1 1 1 1 1 1 0 0 10 0 1 1 1 1 1 1 1 1 1 1 0 174HC138输入输出状态使能输入数据输入译码输入E1^ E2^ E3 A2 A1 A0 Y0^ Y1^ Y2^ Y3^ Y4^ Y5^ Y6^ Y7^ 1 X X X X X 1 1 1 1 1 1 1 1X 1 X X X X 1 1 1 1 1 1 1 1X X 0 X X X 1 1 1 1 1 1 1 10 0 1 0 0 0 0 1 1 1 1 1 1 10 0 1 0 0 1 1 0 1 1 1 1 1 10 0 1 0 1 0 1 1 0 1 1 1 1 10 0 1 0 1 1 1 1 1 0 1 1 1 10 0 1 1 0 0 1 1 1 1 0 1 1 10 0 1 1 1 0 1 1 1 1 1 1 0 10 0 1 1 1 1 1 1 1 1 1 1 1 0 (^表示逻辑非)74HC153输入输出状态选择输入数据输入输出使能输入输出S1 S0 II0 II1 II2 II3 1E^ 1Y X X X X X X 1 00 0 0 X X X 0 00 0 1 X X X 0 11 0 X X 0 X 0 01 0 X X 1 X 0 10 1 X 0 X X 0 00 1 X 1 X X 0 11 1 X X X 0 0 01 1 X X X 1 0 1 (^表示逻辑非)74HC85输入输出状态比较输入级联输入输出A3 A2 A1 A0 B3 B2 B1 B0 1A>B 1A<B 1A=B A>B A<B A=B 1 X X X 0 X X X X X X 1 0 00 X X X 1 X X X X X X 0 1 01 1 X X 1 0 X X X X X 1 0 00 0 X X 0 1 X X X X X 0 1 01 0 1 X 1 0 0 X X X X 1 0 00 0 0 X 0 0 1 X X X X 0 1 01 1 0 1 1 1 0 0 X X X 1 0 00 0 1 0 0 0 1 1 X X X 0 1 01 1 0 1 1 1 0 1 0 0 0 1 1 00 1 0 0 0 1 0 0 0 0 1 0 0 11 1 0 1 1 1 0 1 1 0 0 1 0 00 0 0 0 0 0 0 0 1 0 1 0 0 11 1 1 1 1 1 1 1 X 1 X 0 1 0X 1 X 0 0 0X 1 X 0 0 174HC283输入输出状态4位加数输入4位被加数输入输出加法结果和进位A4 A3 A2 A1 B4 B3 B2 B1 COUT S4 S3 S2 S11 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 1 0 0 1 0 1 00 1 0 1 0 1 1 1 0 1 1 0 01 0 0 0 0 1 1 1 0 1 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 0四结论:1、74HC148编码器编码输入低电平有效;编码输出是反码;当E1=0时编码器处于工作状态,E1=1时编码器处于禁止状态。

《用中规模组合逻辑器件设计组合逻辑电路》的实验报告

《用中规模组合逻辑器件设计组合逻辑电路》的实验报告

实验六 用中规模组合逻辑器件设计组合逻辑电路一、实验目的1. 学习中规模集成数据选择器的逻辑功能和使用方法。

2. 学习使用中规模集成芯片实现多功能组合逻辑电路的方法。

二、设计任务用数据选择器74LS151或3/8线译码器设计一个多功能组合逻辑电路。

该电路具有两个控制端C1C0, 控制着电路的功能, 当C1C0=00时, 电路实现对输入的两个信号的或的功能;当C1C0=01时, 电路实现对输入的两个信号的与的功能;当C1C0=10时, 电路实现对输入的两个信号的异或的功能;当C1C0=11时, 电路实现对输入的两个信号的同或的功能。

三、设计过程(1)根据题意列出真值表如下所示, 再填入卡诺图中。

F 函数降维图(图中变量C 1C 0A 换成C 1C 0B 结果不变) (3)、减少Y 函数的输入变量, 将4变量减为3变量,通过降维来实现。

如上图所示。

这时, 数据选择器的输入端D0 ~ D7分别为:D 0=B, D 1=1, D 2 =0, D 3 =B, D 4 =B, D 5 =B ,D 6 =B , D 7 =B 6B 5B(4)、F 函数逻辑图如下图所示四、实验用仪器、仪表数字电路实验箱、万用表、74LS151.74LS00。

五、实验步骤1.检查导线及器件好坏。

2.按上图连接电路。

C1.C0、A.B分别接逻辑开关, 检查无误后接通电源。

3.按真值表逐项进行测试并检查是否正确, 如有故障设法排除。

实验数据如0 0 1 1下:C1C00 1 0 1A 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1B 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 Y 0 1 1 1 0 0 0 1 0 1 1 0 1 0 0 1 实验证明, 实验数据与设计值完全一致。

设计正确。

六、设计和实验过程的收获与体会。

1.设计过程的收获与体会:①设计前要将真值表列出。

②用低维数据选择器实现高维逻辑函数时, 首先要降维, 将多出的变量作为记图变量。

实验六 组合逻辑电路的设计

实验六 组合逻辑电路的设计

电任务。
(二)提高部分
6.设计一计算机房的上机控制电路。此控制电路有X、 Y两个控制端,控制上午时的取值为01;控制下午时的取 值为11;控制晚上时的取值为10。A、B、C为需要上机 的三个学生,其上机的优先顺序为:上午为ABC,下午 为BCA,晚上为CAB。电路的输出F1、F2和F3为1时分
别表示A、B和C能上机。试用与非门实现该电路,要求
4.用双四选一数据选择器74LS153来实现三人表决电路。
5.工厂有三个车间,每个车间各需1KW电力,共有两 台发电机供电,一台是1KW,另一台是2KW。三个车 间经常不同时工作,有时只一个车间工作,也可能有 两个车间或者三个车间工作,为了节省资源,又保证 电力供应,请设计一个逻辑控制电路,能自动完成配
1. 用适当的门电路设计一个能对4路数据进行任意选 择的数据选择器。设4路数据分别为A1=1,A2=逻
辑开关,A3=1Hz脉冲信号,A4=点动脉冲。要求写
出设计全过程。 2. 用2输入异或门和与非门设计一个路灯控制电路。当总 开关闭合时,安装在三个不同地方的三个开关都能独立
地控制灯的亮或灭;当总电源开关断开时,路灯不亮。
数字电路与逻辑设计实验 实验六 组合逻辑电路的设计 杭州电子科技大学
国家级电工电子实验中心
一、实验目的
1.掌握用基本门电路进行组合电路设计的方法。
2.掌握用中规模集成电路设计组合电路的方法。
3.通过实验验证设计的正确性。
二、实验所用器件型号及管脚排列
VCC
14
4A
13
4B
12
4Y
11
3A
10
3B
74LS10 三3输入与非门
74LS20双4输入与非门

组合逻辑电路设计_密码锁

组合逻辑电路设计_密码锁

五 实验设备与器材
数字逻辑实验箱
一台
双列直插式集成电路 74LS00,74LS10,74LS20,74LS86 等
六 实验思考题
通过实验,你认为SSI组合逻辑电路设计的关 键步骤是什么?
对于同一个命题,是否有不同的设计方案, 比较各自的优缺点。 对实验中出现的问题进行分析。
七 实验报告要求
根据各题实验任务,列出相应的真值表、 画出卡诺图,写出最简的逻辑表达式,画出 设计的逻辑电路图。 将设计的电路进行实验测试,并记录测试 结果。 实验体会和设计分析。
输 入 输 出
A
0 0 0 0
B
0 0 0 0
C
0 0 1 1
D
0 1 0 1
W
0 0 0 0
X
0 1 1 1
Y
1 0 0 1
Z
1 0 1 0
0
0 0 0 1 1 1 1 1 11 1 1
0
0 1 1 0 0 1 1 0 0 1 1
0
1 0 1 0 1 0 1 0 1 0 1
八 芯片图示
7400示意图
7410示意图
7420示意图
7486示意图
全加器设计参考
真值表 电路图
B
表达式
列车排队设计参考 真值表 电路图
表达式
密码锁设计参考
真值表
电路图
表达式
0
1 1 1 1 1 × × × × × ×
1
0 0 0 0 1 × × × × × ×
1
0 0 1 1 0 × × × × × ×
1
0 1 0 1 0 × × × × × ×
② 选择实验器件,写出逻辑函数表达式。

实验六组合逻辑电路分析和设计及开关电路设计

实验六组合逻辑电路分析和设计及开关电路设计

实验六组合逻辑电路的分析和设计及开关电路设计一、实验目的:1•掌握用基本逻辑门电路进行组合逻辑电路的分析、设计方法;2•通过实验,论证设计的正确性;3•掌握使用双极性三极管、单极性三极管开关电路的设计;4•掌握组合逻辑电路故障排除方法。

二、实验原理:1、组合逻辑电路的分析:所谓组合逻辑电路分析,即通过分析电路,说明电路的逻辑功能。

通常采用的分析方法是从电路的输入到输出,根据逻辑符号的功能逐级写出逻辑函数表达式,最后得到表示输出和输入之间关系的函数逻辑式。

然后利用公式化简法或卡诺图化简法将得到的函数式化简或变换,已使逻辑关系简单明了。

为了使电路的逻辑功能更加直观,有时还可以把逻辑函数式转换为真值表的形式。

2、组合逻辑电路的设计:根据给出的实际逻辑问题,求出实现这一逻辑功能的最简单逻辑电路,称为组合逻辑电路的设计。

其通常分为SSI设计和MSI设计。

(1)SSI设计:SSI设计通常采用如下步骤:1>逻辑抽象:分析事件的因果关系,确定输入和输出变量。

一般把引起事件的原因定位输入变量,而把事件的结果作为输出变量。

2>定义逻辑状态的含义:以二值逻辑的0、1两种状态分别代表输入变量和输出变量的两种不同状态。

3>根据给出的因果关系列出逻辑真值表。

4>写出逻辑表达式,利用化简方法进行化简,并根据选定器件进行适当转换;5>根据化简、变换后的逻辑表达式,画出逻辑电路的连接图;6>实验仿真,结果验证。

(2)MSI设计:MSI设计通常采用如下步骤:1> 2> 3>步骤同SSI设计步骤;4>写出逻辑表达式;5>根据表达式查找合适的MSI器件;6>通过比较表达式或真值表,利用适当的设计实现所需功能;7>画出逻辑电路的连接图;8>实验仿真,结果验证。

三、实验仪器:1、多功能实验箱1台2、数字万用表1台四、实验内容:1、码制转换器分析下图为一个BCD码转换组合逻辑电路,按图搭接电路,求出真值表及逻辑表达式,说明电路功能;2、联锁器电路[用基本逻辑门电路(SSI用双输入端与非门7400)设计]所谓联锁器即为密码锁,其输入为K1、K2、K3开关,报警和解锁输出分别为F1、F2。

组合逻辑电路仿真设计

组合逻辑电路仿真设计

组合逻辑电路仿真一、组合逻辑电路的分析本次仿真实验要求对两个问题进行仿真模拟:1、设计一个四人表决电路,在三人以上同意时灯亮,否则灯灭。

并要求采用与非门实现。

2、设计一个4位二进制码数据范围指示器,要求能够区分0≤X≤4、5≤X≤9、10≤X≤15三种情况,同样要求采用与非门实现。

下面先对两个问题进行逻辑化分析。

1、四人表决电路在本问题中,很容易就可以看出问题的核心在于“四个人的表决意见决定灯的亮与灭”。

所以该问题的输入变量是四个人的表决意见,输出变量为灯的亮灭。

以A 、B 、C 、D 分别表示四个人的意见为“同意”,以它们的非表示“不同意”。

而以F 来表示灯处于“亮”的状态。

则“三人以上同意时灯亮,否则灯灭”可以很容易的用以下逻辑表达式来表示:F =FFFF ̅̅̅+FFF ̅̅̅F +FF ̅̅̅FF +F ̅̅̅FFF +FFFF 为了将其简化,可以画出它的卡诺图如下:可见,这里面包含了四个两个1相邻的项,故有卡诺图可以的到F 的最简与或式为:F =FFF +FFF +FFF +FFF再对其去两次非并利用摩根定律就可以得到与非式如下:F =FFF ̅̅̅̅̅̅̅̅̅∙FFF ̅̅̅̅̅̅̅̅̅∙FFF ̅̅̅̅̅̅̅̅̅∙FFF ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅这就是第一个问题的逻辑转化。

2、4位二进制码数据范围指示器四位二进制码可以表示十进制下的0到15这十六个数,按照0≤X≤4、5≤X≤9、10≤X≤15分为三组分别用三个灯的亮灭来代表输入的二进制码属于其中的哪一组。

同上例,采用A、B、C、D取0或1依次表示这四位二进制码的从高到低位的取值(例如:A=0,B=1,C=0,D=0表示四位二进制码0100)。

则对于第一组来说,共有5个四位二进制码包含在其中,用卡诺图表示如下:化简即得:F1=F̅̅̅F̅̅̅+F̅̅̅F̅̅̅F̅̅̅同理,也有5个数包含在第二组中,卡诺图如下:化简即得:F2=F̅̅̅FF+F̅̅̅FF+FF̅̅̅F̅̅̅第三组包含了6个数,卡诺图如下:化简即得:F 3=FF +FF对以上三个式子都去两次非并利用摩根定律可得:F 1=F ̅̅F ̅̅̅̅̅̅̅̅̅∙F ̅̅̅F ̅̅̅F ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅F 2=F ̅̅̅FF ̅̅̅̅̅̅̅̅̅∙F ̅̅̅FF ̅̅̅̅̅̅̅̅̅∙FF ̅̅̅F̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅F 3=FF ̅̅̅̅̅̅∙FF̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ 这样就完成了第二个问题的逻辑转化。

数字逻辑实验 门电路组合逻辑设计

数字逻辑实验  门电路组合逻辑设计

VCC
&

&
GND
1 23 45 6 7
图1-1 74LS20逻辑框图、逻辑符号及引脚排列
1、与非门的逻辑功能 与非门的逻辑功能为:当输入端中有一个或一个以上是低电平时,输出 端为高电平;只有当输入端全部为高电平时,输出端才是低电平。
逻辑表达式为: Y=ABCD
2.与非门的逻辑功能测试 1)逻辑电路及74LS20芯片逻辑功能测试的连接方法如图1-3所示。
一、实验目的
1、掌握中规模集成芯片数据选择器和译码器的逻辑功能和使 用方法
2、熟悉组合功能器件的应用
二、实验原理
1、数据选择器 数据选择器又叫多路选择器或多路开关,它是多输入,单输
出的组合逻辑电路。由地址码控制器多个数据通道。实现单 个通道数据输出,还可以实现数据传输与并串转换等多种功 能。 它基本是由三部分组成:数据选择控制(或称地址输入)、 数据输入电路和数据输出电路,它的种类多样有原码形式输 出、反码形式输出,现以74LS153为例进行应用设计。
Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7 01111111 10111111 11011111 11101111 11110111 11111011 11111101 11111110 11111111 11111111
SY70
VCC Y0 Y1 Y2 Y3 Y4 Y5 Y6
YS1357026432
E
1
0
A B F1 F2
F2 = ABE = ABE
南北 东西 3、电路图:
╳╳ 0 0 A 0010
B
&
&&
& F1
0 0 1 0 1 E

SSI组合逻辑电路设计实验报告

SSI组合逻辑电路设计实验报告

华中科技大学《电子线路设计、测试与实验》实验报告实验名称:SSI组合逻辑电路设计实验(软件)院(系):自动化学院实验成绩:指导教师:汪小燕2014 年 4 月24 日一.实验目的1.掌握用SSI(小规模数字集成电路)实现简单组合逻辑电路的方法。

2.掌握简单数字电路的安装于调试技术。

3.进一步熟悉数字万用表、示波器等仪器的使用办法。

4.熟悉用Verilog HDL描述组合逻辑电路的方法,以及EDA仿真技术。

二.实验元器件芯片74HC00 2片,74LS04 一片;若干导线,计算机;QuartusⅡ9.1集成开发环境;面包板;可编程器件实验板;专用的在系统编程电缆。

三.实验原理及参考电路组合逻辑电路的设计流程组合逻辑电路的设计步骤如下图,先根据实际的逻辑问题进行逻辑抽象,定义逻辑状态的含义,在按照给定事件因果关系列出逻辑关系真值表。

然后用给定的器件实现简化后的逻辑表达式,画出逻辑电路图。

QuartusⅡ9.1在设计好电路之后,就可以根据设计的电路,就可以在QuartusⅡ9.1集成开发环境下,通过Verilog HDL语言编程,然后生成相应的波形文件执行仿真,最后再把程序下载到老师给的DE0板子上去,从而通过板子上LED灯的亮和不亮来确定输出的高低电平。

插板在做完仿真之后,就可以根据设计的逻辑图选择相应的芯片进行插板,通过给不同输入高低电平组合来测输出电平的高低,从而检测是否符合实验要求。

四.实验内容全加器/全减器 根据给定的器件,设计一个全加器/全减器电路,使之既能实现1位加法运算又能实现1位减法运算。

当控制变量M=0时,电路实现加法运算;当M=1时,电路实现减法运算。

其框图如下所示,图中,00A B 、 分别为被加(减)数和加(减数),0S 为相加(减)的结果,0C 为进(借)位。

一、 首先,按照组合逻辑电路的设计流程,写出其真值表如下:M0A0B1C -0S0C0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 1 0 0 0 1 1 0 1 0 1 0 0 1 0 0 1 0 1 0 1 0 1 1 0 0 1 0 1 1 1 1 1 1 0 0 0 0 0 1 0 0 1 1 1 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 0 1 0 1 1 0 1 0 0 1 1 1 0 0 0 111111二、根据真值表,。

实验六组合逻辑电路设计

实验六组合逻辑电路设计

实验六组合逻辑电路设计一、实验目的:1、掌握组合逻辑电路的分析与设计方法。

2、掌握SSI集成门电路的应用。

3、掌握MSI集成电路译码器与数据选择器的应用。

二、预习要求:复习课本中相关内容。

1、根据题意列出输入、输出真值表。

2、利用卡诺图化简,写出最简或最合适的逻辑函数表达式。

3、利用指定门电路实现逻辑功能。

4、画出已设计完成的逻辑电路及实验用的接线图。

三、实验内容:1、设计三变量表决电路:要求:画出逻辑电路图,设计相应表格。

自拟实验方案,测试电路的逻辑功能是否与设计功能一致。

(1)用与非门74LS00实现。

(2)用译码器(74LS138、74LS20)实现。

(3)用数据选择器(74LS151及74LS153)实现。

2、用异或门74LS86和与非门74LS00实现全加器电路:要求:画出逻辑电路图,设计相应表格。

自拟实验方案,测试电路的逻辑功能是否与设计功能一致。

四、实验仪器及元器件数字实验箱、万用表、74LS00、74LS20,74LS86、74LS138、74LS151、74LS153、74LS32等。

五、实验报告:画出各部分逻辑电路图、真值表、及列出逻辑表达式,整理实验结果并进行分析,说明组合电路的特点和分析、设计方法。

六、实验用门电路介绍:1、74LS00、74LS20及74LS32管脚及功能本实验所使用的74LS20(双四输入与非门)、74LS00(四二输入与非门)和74LS32(四2输入或门)是一种低功耗肖特基集成TTL 门电路,其及引线功能及排列图如下:AB Y = ABCD Y =Y = A+B2、74LS138管脚及功能双排直立式集成3线-8线译码器74LS138各引脚排列及功能如图所示。

G1A 1B 2A 2B 2Y GND1Y 1A 1B 1C 1D 1Y GNDNC由功能表可知:三个使能端G 1G 2A G 2B ≠ 100时,八个译码输出都是无效电平,即输出全为高电平“1”;三个使能端G 1G 2A G 2B =100时,译码器八个输出中仅与地址输入对应的一个输出端为有效低电平“0”,其余输出无效电平“1”;在使能条件下,每个输出都是地址变量的最小项,考虑到输出低电平有效,输出函数可写成最小项的反,即:3、74LS151管脚及功能本实验使用的集成数据选择器74LS151为8选1数据选择器,数据选择端3个地址输入A 2A 1A 0用于选择8个数据输入通道D 7~D 0中对应下标的一个数据输入通道,并实现将该通道输入数据传送到输出端Y (或互补输出端Y )。

组合电路实验报告总结(3篇)

组合电路实验报告总结(3篇)

第1篇一、实验背景组合逻辑电路是数字电路的基础,它由各种基本的逻辑门电路组成,如与门、或门、非门等。

本实验旨在通过组装和测试组合逻辑电路,加深对组合逻辑电路原理的理解,并掌握基本的实验技能。

二、实验目的1. 理解组合逻辑电路的基本原理和组成。

2. 掌握基本的逻辑门电路的连接方法。

3. 学会使用万用表等实验工具进行电路测试。

4. 提高动手能力和实验设计能力。

三、实验内容1. 组合逻辑电路的组装实验中,我们组装了以下几种组合逻辑电路:(1)半加器:由一个与门和一个或门组成,实现两个一位二进制数的加法运算。

(2)全加器:由两个与门、一个或门和一个异或门组成,实现两个一位二进制数及来自低位进位信号的加法运算。

(3)编码器:将一组输入信号转换为二进制代码输出。

(4)译码器:将二进制代码转换为相应的输出信号。

2. 组合逻辑电路的测试使用万用表对组装好的电路进行测试,验证电路的逻辑功能是否正确。

3. 电路故障排除通过观察电路的输入输出波形,找出电路故障的原因,并进行相应的修复。

四、实验过程1. 组装电路按照实验指导书的要求,将各种逻辑门电路按照电路图连接起来。

注意连接时要注意信号的流向和电平的高低。

2. 测试电路使用万用表测试电路的输入输出波形,验证电路的逻辑功能是否正确。

3. 故障排除通过观察电路的输入输出波形,找出电路故障的原因。

例如,如果输入信号为高电平,但输出信号为低电平,可能是与非门输入端短路或者输出端开路。

五、实验结果与分析1. 半加器通过测试,发现半加器的输出波形符合预期,即当输入为高电平时,输出为低电平;当输入为低电平时,输出为高电平。

2. 全加器通过测试,发现全加器的输出波形符合预期,即当输入为高电平时,输出为低电平;当输入为低电平时,输出为高电平。

3. 编码器通过测试,发现编码器的输出波形符合预期,即当输入信号为高电平时,对应的输出端为低电平;当输入信号为低电平时,对应的输出端为高电平。

4. 译码器通过测试,发现译码器的输出波形符合预期,即当输入信号为高电平时,对应的输出端为低电平;当输入信号为低电平时,对应的输出端为高电平。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2. 阐述基本R-S触发器输出状态"不变"和"不定"的含义
3. 总结SD、RD的作用
4.说明触发器状态翻转的时钟边沿(即触发方式)和相关结论
5. 触发器的分频作用
六、实验用元件介绍
触发器是一种具有记忆功能的二进制存贮器件,是组成各种时序逻辑电路的基本器件之一
就触发器功能而言,有RS、JK、D、T、T'触发器
(1)测试异步复位端RD和异步置位端SD的功能
74LS74一个触发器的SD、RD、D接0/1开关,输出端Q和Q接LED,CP接手动单脉冲源
按下表要求,在RD、SD作用期间改变D、CP的状态,观察LED显示状态,测试并记录RD、SD对输出状态的控制作用
(2)D触发器逻辑功能测试:
1、根据题意列出输入、输出真值表
2、利用卡诺图化简,写出最简或最合适的逻辑函数表达式
3、利用指定门电路实现逻辑功能
4、画出已设计完成的逻辑电路及实验用的接线图
三、实验内容:
1、设计三变量表决电路:
要求:画出逻辑电路图,设计相应表格
六、实验用元件介绍
1.集成计数器74LS160
本实验所用集成芯片为异步清零同步预置四位8421码10进制加法计数器74LS161,集成芯片的各功能端如图所示,其功能见附表
74LS160为异步清零计数器,即端输入低电平,不受CP控制,输出端立即全部为"0",功能表第一行
、为两个独立的使能端;A1、A0为公用的地址输入端;1D0~1D3和2D0~2D3分别为两个4选1数据选择器的数据输入端;1Y、2Y为两个输出端
1)当使能端()=1时,数据选择器被禁止,无输出,Y=0
2)当使能端()=0时,数据选择器正常工作,根据地址码A1A0的状态,将相应的数据D0~D3送到输出端Y
74LS151引脚功能如图和附表所示
使能条件下(G = 0),74LS151的输出可以表示为,
其中mi为地址变量A2、A1、A0的最小项
只要确定输入数据就能实现相应的逻辑函数,成为逻辑函数发生器
4、74LS153管脚及功能
74LS153是双4选1数据选择器,是在一块集成芯片上有两个4选1数据选择器
两数据选择器共用数选输入A1A0,无互补输出端
芯片管脚如下图分布,功能如表所示
输 入 输 出 A1 A0 Y 1 × × 0 0 0 0 D0 0 0 1 D1 0 1 0 D2 0 1 1 D3
六、实验用门电路介绍:
1、74LS00、74LS20及74LS32管脚及功能
本实验所使用的74LS20(双四输入与非门)、74LS00(四二输入与非门)和74LS32(四2输入或门)是一种低功耗肖特基集成TTL门电路,其及引线功能及排列图如下:
74LS86是四2输入异或门
实验七 集成触发器
一、实验目的
1、掌握基本RS、JK、D等常用触发器的逻辑功能及其测试方法;
2、研究时钟脉冲的触发作用
二、预习要求
1、预习教材相关内容,了解触发器功能及时钟边沿
2、确定实验线路连接,画出接线图,拟定实验必要的表格
74LS112触发器的SD、RD、J、K接0/1开关,输出端Q和接LED,CP接手动单脉冲源
按下表要求,在RD、SD作用期间改变J、K、CP的状态,观察LED显示状态,测试并记录RD、SD对输出状态的控制作用
(2)J-K触发器逻辑功能测试:
改变J、K的状态,并用RD、SD端对触发器进行异步置位或复位(即设置现态Qn)
按下表要求测试其逻辑功能并记;1
0 0 0 1 0 1
0 1 0 1 0 1
1 0 0 1 0 1
3、.接通实验箱电源,观察七段数码显示器计数状态的变化过程,并记录该状态循环
四、实验器材
数字逻辑实验箱,74LS160,74LS00,74LS20
五、实验报告要求
1、60进制计数器的电路设计图、连线图和计数器的测试结果
4、测试过程中出现的问题及解决办法
三、实验内容
1、设计一模长M = 60进制的计数电路
1)用同步连接反馈预置法实现
2)用同步连接反馈清零法实现
2、按设计图连接电路
CP接频率为1Hz的方波脉冲,各计数器的输出Q3Q2Q1Q0接七段BCD显示译码器CD4511的DCBA输入端,CD4511的输出接七段数码显示器
2.构成任意进制计数器(模长M≤10)
用集成计数器实现M进制计数有两种方法,反馈清零法和反馈预置法
图(a)为反馈清零法连接( 8进制),图(b)为反馈预置零法连接(8进制)
( a ) ( b )
即触发器初态和次态按CP的下跳沿划分
表中Qn是CP下跳前触发器状态,称为初态;Qn+1称为次态
74LS112的S端、R端是低电平有效的直接置位端、直接复位端,该2引脚信号不受CP控制
主从型JK触发器的逻辑符号如图所示
3、D触发器
74LS74是边沿型双D触发器,时钟CP上跳沿有效,即触发器初态和次态按CP的上升沿划分
74LS74的引脚如图,D触发器功能见附表,逻辑符号见上右图
实验八 集成计数器
一、实验目的
1、 掌握集成计数器构成N进制的计数器的连接方法
二、预习要求
1.熟悉芯片各引脚排列
2.弄清构成模长M进制计数器的原理
3.实验前设计好实验所用电路,画出实验用的接线图
如:A1A0=00 则选择DO数据到输出端,即Y = D0
A1A0=01 则选择D1数据到输出端,即Y=D1,其余类推
可用74LS153、反相器74LS04和或门74LS32构成8选1的选择器,如下图所示
5、74LS86管脚及功能
图示与非门组成的基本RS触发器,有效触发电平为低电平"0",其功能见附表
2、JK触发器
本试验用74LS112是主从型负沿触发双JK集成触发器(带预置端和清除端),其外引线排列及功能见图和附表
JK触发器具有保持、置数和计数三种功能
由CP=1期间J、K的状态(按真值表)决定CP脉冲下跳后触发器状态Qn+1
三、实验内容
1. 基本R-S触发器功能
与非门(74LS00)按图连接成基本RS触发器,置位端S和复位端R接0/1开关,输出端Q和Q接LED
改变输入端R、S的状态,测试并将测试结果填入下表中
与RS触发器真值表比较
2. J-K触发器逻辑功能测试:
(1)测试异步复位端RD和异步置位端SD的功能
Y = A+B
2、74LS138管脚及功能
双排直立式集成3线-8线译码器74LS138各引脚排列及功能如图所示
由功能表可知:三个使能端G1G2AG2B ? 100时,八个译码输出都是无效电平,即输出全为高电平"1";三个使能端G1G2AG2B =100时,译码器八个输出中仅与地址输入对应的一个输出端为有效低电平"0",其余输出无效电平"1";在使能条件下,每个输出都是地址变量的最小项,考虑到输出低电平有效,输出函数可写成最小项的反,即:
就触发器结构而言,一般有主从、边沿之分
边沿型触发器有较好的抗干扰性能
D触发器和JK触发器都有TTL和CMOS集成产品
1、基本RS触发器
可由二个与非门所组成,如图所示,没有单独的集成产品
在相应的置位端(S)或复位端(R)加有效电平(信号),基本RS触发器置位(Q = 1)或复位(Q = 0)
3、74LS151管脚及功能
本实验使用的集成数据选择器74LS151为8选1数据选择器,数据选择端3个地址输入A2A1A0用于选择8个数据输入通道D7~D0中对应下标的一个数据输入通道,并实现将该通道输入数据传送到输出端Y(或互补输出端)
74LS151还有一个低电平有效的使能端G,以便实现扩展应用
自拟实验方案,测试电路的逻辑功能是否与设计功能一致
(1)用与非门74LS00实现
(2)用译码器(74LS138、74LS20)实现
(3)用数据选择器(74LS151及74LS153)实现
2、用异或门74LS86和与非门74LS00实现全加器电路:
要求:画出逻辑电路图,设计相应表格
文档来自网络,是本人收藏整理的,如有遗漏,差错,还请大家指正!
实验六 组合逻辑电路设计
一、实验目的:
1、掌握组合逻辑电路的分析与设计方法
2、掌握SSI集成门电路的应用
3、掌握MSI集成电路译码器与数据选择器的应用
二、预习要求:
复习课本中相关内容
1 1 0 1 0 1
(3)观察J-K触发器分频功能
74LS112按下图接线,J、K接高电平(1),CP接2KHz连续脉冲源,RD、SD接高电平(1)
用示波器同时观察并记录CP、Q端波形,验证2分频的功能
3. D触发器74LS74逻辑功能测试:
74LS74按下图接线,CP接2KHz连续脉冲源,RD、SD接高电平(1)
用示波器同时观察并记录CP、Q端波形,验证2分频的功能
四、实验仪器
数字逻辑实验箱,示波器,74LS00,74LS112,74LS74
五、实验报告要求
1.RS、JK、D触发器功能验证结论
3.集成计数器扩展应用(模长M>10)
当计数模长M大于10时,可用两片以上集成计数器级联触发器来实现
集成计数器可同步连接,也可以异步连接成多位计数器,然后采用反馈清零法或反馈预置法实现给定模长M计数
自拟实验方案,测试电路的逻辑功能是否与设计功能一致
相关文档
最新文档