七年级下册数学第一单元教案教案资料
七年级下册数学第一章教案
七年级下册数学第一章教案(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、工作报告、文案策划、工作计划、作文大全、教案大全、演讲稿、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, work reports, copywriting planning, work plans, essay summaries, lesson plans, speeches, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!七年级下册数学第一章教案教学目标:1.理解并能正确使用数学符号和术语;2.掌握整数的概念及运算法则;3.能够在实际问题中应用整数的加减法;4.培养学生的逻辑思维能力和解决问题的能力。
2024年人教版初中数学七年级下册教案全册
2024年人教版初中数学七年级下册教案全册一、教学内容1. 第1章:有理数1.1 有理数的概念与分类1.2 有理数的加减法1.3 有理数的乘除法1.4 有理数的乘方2. 第2章:一元一次方程2.1 方程的概念2.2 一元一次方程的解法2.3 实际问题与一元一次方程3. 第3章:几何图形3.1 线段、射线与直线3.2 角的概念与分类3.3 三角形的性质3.4 平行线的性质与判定二、教学目标1. 理解有理数的概念,掌握有理数的分类、加减乘除及乘方运算。
2. 掌握一元一次方程的解法,并能解决实际问题。
3. 掌握几何图形的基本概念与性质,培养空间想象能力。
三、教学难点与重点1. 教学难点:有理数的乘除法及乘方运算一元一次方程的解法几何图形的性质及判定2. 教学重点:有理数的运算规律方程的解法几何图形的基本性质四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔、尺子、圆规等。
2. 学具:练习本、铅笔、直尺、圆规、量角器等。
五、教学过程1. 实践情景引入:通过生活实例引入有理数的概念与运算。
通过实际问题引入方程的概念。
通过观察身边的几何图形,引入几何图形的性质。
2. 例题讲解:讲解有理数的加减乘除、乘方运算的法则与例题。
讲解一元一次方程的解法及实际应用例题。
讲解几何图形的性质与判定方法。
3. 随堂练习:进行有理数运算的练习。
解答一元一次方程的练习题。
识别与判断几何图形的练习。
4. 课堂小结:六、板书设计1. 有理数的概念、分类及运算规律。
2. 一元一次方程的解法及实际应用。
3. 几何图形的性质与判定。
七、作业设计1. 作业题目:有理数运算练习题。
一元一次方程实际应用题。
几何图形的识别与判断题。
答案:见课后练习册。
八、课后反思及拓展延伸1. 反思本次教学过程中的优点与不足,针对学生掌握程度进行查漏补缺。
2. 拓展延伸:引导学生探索有理数的更多运算性质。
介绍更高层次的方程解法,如二元一次方程组。
引导学生观察生活中的几何图形,培养空间想象能力。
部编版七年级数学下册第一单元教学设计教案
部编版七年级数学下册第一单元教学设计教案一、教学目标知识与技能1. 理解有理数的乘方,掌握乘方的定义和性质。
2. 掌握平方根和算术平方根的概念,能够求一个数的平方根和算术平方根。
3. 理解相反数的概念,能够求一个数的相反数。
过程与方法1. 通过实际例子,引导学生探究有理数乘方的规律,培养学生的观察和分析能力。
2. 通过小组讨论,让学生掌握平方根和算术平方根的求法,培养学生的合作和交流能力。
3. 通过练习题,让学生巩固相反数的概念,提高学生的运算能力。
情感态度与价值观1. 培养学生对数学的兴趣和好奇心,让学生感受到数学的实用性。
2. 培养学生的团队合作精神,让学生学会分享和互助。
二、教学重点与难点重点1. 有理数的乘方2. 平方根和算术平方根的求法3. 相反数的概念难点1. 有理数乘方的规律2. 平方根和算术平方根的区别三、教学方法讲解法1. 通过讲解有理数的乘方,让学生理解乘方的定义和性质。
2. 通过讲解平方根和算术平方根的概念,让学生掌握求一个数的平方根和算术平方根的方法。
3. 通过讲解相反数的概念,让学生理解相反数的意义。
互动教学法1. 通过实际例子,引导学生探究有理数乘方的规律,让学生积极参与课堂讨论。
2. 通过小组讨论,让学生掌握平方根和算术平方根的求法,培养学生的合作和交流能力。
3. 通过练习题,让学生巩固相反数的概念,提高学生的运算能力。
案例分析法1. 通过分析实际案例,让学生理解有理数乘方的应用。
2. 通过分析例题,让学生掌握平方根和算术平方根的求法。
四、教学过程导入1. 通过引入实际问题,激发学生的学习兴趣,引导学生思考有理数乘方的意义。
新课导入1. 讲解有理数的乘方,让学生理解乘方的定义和性质。
2. 通过例题,让学生掌握平方根和算术平方根的求法。
3. 讲解相反数的概念,让学生理解相反数的意义。
课堂互动1. 引导学生探究有理数乘方的规律,让学生积极参与课堂讨论。
2. 组织小组讨论,让学生掌握平方根和算术平方根的求法。
浙教版七下数学第一章平行线全章教案
1.1 平行线【教学目标】:1.能在丰富的现实情境中进一步了解两条直线的平行关系,会用符号表示两条直线平行;2.会用三角尺、直尺、量角器、方格纸画平行线,积累操作活动的经验;3.在操作活动中,探索并掌握平行线的有关性质,提高应用数学的能力;【教学重难点】重点:平行线的概念与平行公理;难点:对平行公理的理解.【教学过程】:一、新课导入:1.相交线是如何定义的?如果两条直线只有一个公共点,就说这两条直线相交2.平面内两条直线的位置关系除相交外,还有哪些呢?二、解决新知:1.平行线概念:在同一平面内,不相交的两条直线叫做平行线.直线AB与CD平行,记作AB∥CD(读作“AB 平行CD”).(画出图形)。
如图所示A BC D2.同一平面内两条直线的位置关系有两种:(1);(2).(相交、平行)3.对平行线概念的理解:两个关键:一是“”(举例说明);二是“”.一个前提:对直线而言.(在同一个平面内、不相交、同一平面内)总结:在同一平面内有两条直线,若它们不想交,则一定平行,若它们不平行,则一定相交4.平行线的画法:平行线的画法是几何画图的基本技能之一,在以后的学习中,会经常遇到画平行线的问题.方法一为:一“落”(三角板的一边落在已知直线上),二“靠”(用直尺紧靠三角板的另一边),三“移”(沿直尺移动三角板,直至落在已知直线上的三角板的一边经过已知点),四“画”(沿三角板过已知点的边画直线).方法二为:利用网格纸画略5.平行公理:过点B画直线a的平行线,能画出几条?再过点C画直线a的平行线,能画出几条?.C.Ba回忆垂线性质:在同一平面内,过一点有且只有一条直线垂直于已知直线平行公理:经过直线外一点,有且只有一条直线与这条直线平行 .例如图1-4,点M,N代表两个城市,MA,MB是已建的两条公路,现规划建造两条经N市的公路,这两条公路分别于MA,MB平行,并在MA,MB的交汇处分别建一座立交桥。
问立交桥应建在何处?请画出示意图。
初一下册数学第一单元的教案
初一下册数学第一单元的教案(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、述职报告、策划方案、演讲致辞、合同协议、条据文书、教案资料、好词好句、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work summaries, job reports, planning plans, speeches, contract agreements, doctrinal documents, lesson plans, good words and sentences, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!初一下册数学第一单元的教案在数学课中,七年级数学老师应该从人格平等的基本观念出发,允许堂上有不同的声音出现。
初中数学七年级下册第一单元教案
七5.1.3同位角内错角同旁内角保太中学高勇一、教材及重难点分析:由于角的形成与两条直线的相互位置有关,学生已有的概念是两相交直线所形成的有公共顶点的角(邻补角、对顶角等)即两线四角,在此基础上引出了这节课:两直线被第三条直线所截形成的没有公共顶点的八个角的位置关系——同位角、内错角、同旁内角.研究这些角的关系主要是为了学习平行线做准备,同位角、内错角、同旁内角的判定恰恰是后面顺利地学习平行线的性质与判定的基础和关键.所以这一节的重点是已知两直线和截线,判断同位角、内错角、同旁内角;难点是在复杂图形中对各种关系角的辨认.二、教学目标:知识与技能:1、理解同位角、内错角、同旁内角的概念并能把它们区分出来.2、能准确找出同位角、内错角、同旁内角.过程与方法:经历在简单的图形中辨认同位角、内错角、同旁内角的过程,会在给定某个条件下进行有关同位角、内错角、同旁内角的判定和计算.情感态度与价值观:1、在活动中培养学生乐于探索、合作学习的习惯,培养学生“用数学”的意识和能力.2、通过观察、比较各类角的特点,提高学生的辨别能力和空间想象能力.三、教学重点:已知两直线和截线,判断同位角、内错角、同旁内角.四、教学难点:在复杂图形中对各种关系角的辨认.五、教学过程:思考:1、怎样描述图2中直线位置关系?2、如图2中,直线AB、CD被EF所截得到八个角,这其中有哪些我们已经学过的有特殊位置关系的角?3、观察图2中的∠1和∠5,∠2和∠6它们的位置关系有什么特点?5、图2中的∠3和∠5,的位置关系是怎样的?6、图2中还有哪些角是内错角?引导学生观察得出这两个角分别在直线AB、CD的同一方(上方),并且都在直线EF的同一侧,这是“同位角”的本质属性.然后,可以用“位置相同”来描述这种位置关系,给出“同位角”的描述性定义.尝试角.(3)∠BAD与∠CDA是直线_________和_________被_________所截,构成同旁内角.(4)∠DCE与∠ABC是直线________和_________被_________所截,构成同位角.2、如图4,∠BAC和∠ACD是()A 同位角B 同旁内角EB C图3AD EDBAA图4C提 高3、如图:请指出图中的同旁内角.∠A .并要求找出其余各对关系角.小师生共同小结: B C 87654321ABCDE。
初中数学七年级下册第一章教案
[板书]
注意:单独一个非零数的次数是0
五、展示应用评价自我
练一练:
找出单项式,多项式及相应的次数
课本P3议一议:
(1)射进阳光的面积分别是多少?
指出其中的整式,并说出次数。
设计目的
上册相关知识的简单回顾。
一、参与回顾
[个别回答]:
1、形如a,a2h的式子。
[投影]两个步骤(在提问结束后)
二、创设情境诱发主动
学习了整式的加减,又该如何利用其来解决生活中的实际问题呢?
[投影]课本P9并提出问题
(1)摆第10个这样的“小屋子需要多少枚棋子?
(2)摆第n个这样的“小屋子”需要多少枚棋子?
三、引入课题激发探究
上节课大家在学习的过程中,主要存在问题还是“去括号”,所以大家 应在这方面有所加强。
(1)一个塑料三角尺如图所示,阴影部分所占的面积是多少?
(2)某样学生总数为x,其中男生占总数的五分之三,男生人数为多少?
(3)一个长方体的底面是边长为a的正方形,高是h,体积是多少?
三、引入课题激发探究
观察以上的代数式,你发现了什么?
[板书]
注意:单独的一个数或一个字母也是单项式;
四、诱向深入拓展思维
练一练
[板书]计算(课本P7)
五、展示应用评价自我
随堂练习:
课本P8
六、链接知识归纳小结
[提问]请同学用自己的话说出整式加减的基本步骤
七、知识留恋课后韵味
布置作业:
设计目的
通过复习上节课所学为本节课作准备
在“做数学”的过程体会学习数学的乐趣。学会分析解决问题的方法。
利用所学的知识进行自主探索。
新北师大版七年级数学下册第一章教案
第一章:整式的运算一、知识定位(两个板块)幂的有关运算整式的乘除运算二、设计思路整章的教学目标设计思路本章突出几点三、各节的具体分析 .1.1同底数幂的乘法教学目标知识与技能:使学生在了解同底数幂乘法意义的基础上,掌握幂的运算性质(或称法则),进行基本运算过程与方法:经历探索同底数幂乘法运算性质的过程,并从同底数幂乘法法则的推导过程中,培养学生观察、发现、归纳、概括、猜想等探究创新能力,发展逻辑推理能力和有条理的表达能力情感态度与价值观:通过同底数幂乘法法则的推导和应用,使学生初步理解“特殊——一般——特殊”的认知规律和辨证唯物主义思想,体味科学思想方法,接受数学文化的熏陶,激发学生探索创新精神。
教学重点:幂的运算性质.教学难点:幂的运算性质.教学方法:尝试法,讨论法,归纳法。
教学准备:课堂教学过程设计一、运用实例导入新课引例一个长方形鱼池的长比宽多2米,如果鱼池的长和宽分别增加3米,那么这个鱼池的面积将增加39平方米,问这个鱼池原来的长和宽各是多少米?学生解答,教师巡视,然后提问:这个问题我们可以通过列方程求解,同学们在什么地方有问题?要解方程(x+3)(x+5)=x(x+2)+39必须将(x+3)(x+5)、x(x+2)展开,然后才能通过合并同类项对方程进行整理,这里需要用到整式的乘法.(写出课题:第一章整式的乘除)本章共有三个单元,整式的乘法、乘法公式、整式的除法.这与前面学过的整式的加减法一起,称为整式的四则运算.学习这些知识,可将复杂的式子化简,为解更复杂的方程和解其它问题做好准备.为了学习整式的乘法,首先必须学习幂的运算性质.(板书课题:1.乘方的意义:求n 个相同因数a 的积的运算叫乘方,即n an a a a a =⋅⋅⋅个,其中a 叫底数,n 叫指数,n a (乘方的结果)叫幂。
(同底数幂的乘法)在此我们先复习乘方、幂的意义.二、复习提问2.指出下列各式的底数与指数:(1)43;(2)3a ;(3)2()b a +;(4)32-)(;(5)32-其中,32-)(与32-的含义是否相同?结果是否相等?42-)(与42-呢?三、讲授新课1.利用乘方的意义,提问学生,引出法则计算231010⨯解:231010⨯=(10×10×10)×(10×10)(幂的意义)=10×10×10×10×10 (乘法的结合律)=5102.引导学生建立幂的运算法则将上题中的底数改为a ,则有23a a ⋅=(aaa)·(aa)=aaaaa=5a即23a a ⋅235a +==a用字母m ,n 表示正整数,则有即n m n m a a a +=⋅3.引导学生剖析法则(1)等号左边是什么运算?(2)等号两边的底数有什么关系?(3)等号两边的指数有什么关系?(4)公式中的底数a 可以表示什么?(5)当三个以上同底数幂相乘时,上述法则是否成立?要求学生叙述这个法则,并强调幂的底数必须相同,相乘时指数才能相加.四、应用举例 变式练习例1 计算:(1)471010⨯; (2)52x x ⋅解:(1)11474710101010==⨯+; (2) 75252x x x x ==⋅+提问学生是否是同底数幂的乘法,要求学生计算时重复法则的语言叙述.例2 计算:(1)62a a ⋅- (2)3)()(x x -⋅- (3)1+⋅m m y y解:(1) 8626262)(a a a a a a -=-=⋅-=⋅-+;(2) 3)()(x x -⋅-=4431)()x -x x =-=+( (3) 1211++++==⋅m m m m m y y y y师生共同解答,教师板演,并提醒学生注意:(1)中22)a a --与(的差别;(3)中的指数有字母,计算方法与数字相同,计算后指数要合并同类项.(2)中44)(x x =-学生如不理解,可先引导学生回忆学过的有理数的乘方.课堂练习计算:(1)651010⋅;(2)37a a ⋅; (3)23y y ⋅;(4)b b ⋅5; (5)66a a ⋅;(6)55x x ⋅.对于第(2)小题,要指出y 的指数是1,不能忽略.五、小结1.同底数幂相乘,底数不变,指数相加,对这个法则要注重理解“同底、相乘、不变、相加”这八个字.2.解题时要注意a 的指数是1.3.解题时,是什么运算就应用什么法则.同底数幂相乘,就应用同底数幂的乘法法则;整式加减就要合并同类项,不能混淆.4.2a -的底数a ,不是-a .计算22a a ⋅-的结果422)(a a a -=⋅-,而不是422)(a a =-+.5.若底数是多项式时,要把底数看成一个整体进行计算板书设计:1.1同底数幂的乘法底数不变 指数相加n m n m a a a +=⋅教学反思:1.2幂的乘方与积的乘方(1)教学目标:1.经历探索幂的乘方与积的乘方的运算性质的过程,进一步体会幂的意义,发展推理能力和有条理的表达能力。
北师七年级数学下册第一章《1.5平方差公式》教案
在今天的课堂中,我们探讨了平方差公式这一章节。回顾整个教学过程,我觉得有几个地方值得反思。
首先,我发现学生在理解平方差公式的推导过程中存在一定难度。尽管我通过具体的数值例子和图像化展示来进行解释,但部分学生仍然难以理解两个数的和与差为何能直接相乘得到平方差。在今后的教学中,我需要更加关注学生的理解程度,尽量用更直观、生动的方式来进行讲解。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“平方差公式在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
4.培养学生的空间观念和抽象思维能力,通过平方差公式的学习,使学生体会数学的抽象美,激发对数学学科的兴趣。
三、教学难点与重点
1.教学重点
-核心内容:平方差公式的推导、理解及其应用。
-重点讲解:
a.通过具体的数值例子,引导学生观察和发现两个数的平方差与这两个数的和与差的乘积之间的关系。
b.系统地推导平方差公式,强调公式中每个元素的含义和相互关系。
c.应用难点:学生在应用平方差公式解决实际问题时,可能不知道如何建立数学模型。教师应提供多个实际情境的例子,指导学生如何识别问题中的平方差结构。
举例解释:在解决一个长方形面积变化的问题时,如果长增加了a,宽减少了a,原来的面积为b²,那么新的面积可以通过平方差公式计算得出:(b+a)(b-a)=b²-a²,这里b²是原始面积,a²是面积变化的部分。难点在于让学生理解如何将问题抽象为平方差的形式,并进行正确的计算。
部编人教版七年级数学下册单元教学设计-第一单元(单元教案)
部编人教版七年级数学下册单元教学设计-第一单元(单元教案)目标该单元的教学目标是帮助学生掌握以下内容:- 了解数的读法和数的大小关系;- 掌握自然数的概念和自然数之间的大小关系;- 能够进行简单的数的分类和排序。
教学内容单元导入- 引导学生观察周围的事物,认识到数字的普遍存在;- 通过实物和图片,介绍数字的概念和读法;- 激发学生的研究兴趣,并预告将研究的内容。
研究内容一:数的读法- 调动学生的注意力,引导学生认识0-9的数字;- 通过游戏和练,巩固学生对数字读法的掌握;- 引导学生思考和积累,研究更大数的读法。
研究内容二:数的大小关系- 通过比较实物、数字和图形大小,帮助学生理解数的大小关系;- 使用比较符号(<, >, =),进行数的比较练;- 引导学生分析数的大小规律,加深对数的大小关系的理解。
研究内容三:数字的分类和排序- 通过分类游戏,让学生了解数字的分类;- 引导学生思考,根据给定条件进行数字排序;- 练数字的分类和排序,提高学生的综合能力。
教学方法- 情境教学法:通过创设情境,激发学生的研究兴趣;- 合作研究法:引导学生互相合作,共同解决问题;- 游戏教学法:通过游戏提高学生的积极性和参与度;- 归纳法:引导学生通过观察总结规律,形成知识体系。
教学步骤1. 导入:通过提问和展示实物,引起学生对数字的兴趣。
2. 研究内容一:数的读法- 展示数字卡片,让学生猜测读法;- 配合图片进行练,巩固数字的读法;- 让学生自主探索更大数的读法,进行小组分享。
3. 研究内容二:数的大小关系- 展示不同大小的实物,引导学生比较大小;- 引入比较符号,进行数的比较练;- 综合练,巩固对数的大小关系的理解。
4. 研究内容三:数字的分类和排序- 进行数字分类游戏,让学生体验数字的分类过程;- 引导学生发现分类规律,进行小组分享;- 练数字排序,提高学生的综合能力。
5. 总结:帮助学生梳理研究内容,复重点知识。
北师大版数学七年级下册1.1《同底数幂的乘法》教案
北师大版数学七年级下册1.1《同底数幂的乘法》教案一. 教材分析《同底数幂的乘法》是北师大版数学七年级下册第一章《整式的运算》中的第一节内容。
本节内容主要介绍同底数幂的乘法法则,为学生以后学习幂的运算打下基础。
同底数幂的乘法是初中学员比较容易混淆的知识点,因此,在教学过程中,需要通过大量的例子让学生理解和掌握同底数幂的乘法法则。
二. 学情分析七年级的学生已经学习了有理数的乘法、幂的定义等知识,对于幂的运算有一定的基础。
但是,学生对于同底数幂的乘法法则的理解和运用还需要加强。
因此,在教学过程中,需要通过引导、讲解、练习等方式,帮助学生理解和掌握同底数幂的乘法法则。
三. 教学目标1.让学生理解同底数幂的乘法法则,并能熟练运用。
2.培养学生的数学思维能力,提高学生的数学素养。
3.通过对同底数幂的乘法的学习,培养学生解决问题的能力。
四. 教学重难点1.同底数幂的乘法法则的推导和理解。
2.同底数幂的乘法在实际问题中的应用。
五. 教学方法采用讲授法、引导法、练习法、小组合作法等教学方法。
通过讲解、引导、练习等形式,让学生理解和掌握同底数幂的乘法法则。
六. 教学准备1.教案、PPT等教学资料。
2.练习题。
3.黑板、粉笔等教学工具。
七. 教学过程1.导入(5分钟)通过复习幂的定义和有理数的乘法,引导学生思考同底数幂的乘法应该如何计算。
2.呈现(10分钟)利用PPT展示同底数幂的乘法法则,并通过具体的例子进行讲解,让学生理解和掌握同底数幂的乘法法则。
3.操练(10分钟)让学生独立完成一些同底数幂的乘法运算,教师进行个别辅导。
4.巩固(10分钟)通过一些综合性的题目,让学生运用同底数幂的乘法法则进行计算,巩固所学知识。
5.拓展(10分钟)引导学生思考同底数幂的乘法在实际问题中的应用,让学生尝试解决一些实际问题。
6.小结(5分钟)对本节课的主要内容进行小结,让学生巩固所学知识。
7.家庭作业(5分钟)布置一些同底数幂的乘法运算题目,让学生巩固所学知识。
初一下册数学教案5篇
初一下册数学教案5篇作为一位优秀的人民教师,常常需要准备教案,教案有利于教学水平的提高,有助于教研活动的开展。
我们应该怎么写教案呢?下面是小编整理的初一下册数学教案,欢迎大家分享。
初一下册数学教案1第一章一元一次不等式组1.1 一元一次不等式组第1教案教学目标1. 能结合实例,了解一元一次不等式组的相关概念。
2. 让学生在探索活动中体会化陌生为熟悉,化复杂为简单的“转化”思想方法。
3. 提高分析问题的能力,增强数学应用意识,体会数学应用价值。
教学重、难点1..不等式组的解集的概念。
2.根据实际问题列不等式组。
教学方法探索方法,合作交流。
教学过程一、引入课题:1. 估计自己的体重不低于多少千克?不超过多少千克?若没体重为x 千克,列出两个不等式。
2. 由许多问题受到多种条件的限制引入本章。
二、探索新知:自主探索、解决第2页“动脑筋”中的问题,完成书中填空。
分别解出两个不等式。
把两个不等式解集在同一数轴上表示出来。
找出本题的答案。
三、抽象:教师举例说出什么是一元一次不等式组。
什么是一元一次不等式组的解集。
(渗透交集思想)初一下册数学教案2平行线的判定(1)课型:新课:备课人:韩贺敏审核人:霍红超学习目标1.经历观察、操作、想像、推理、交流等活动,进一步发展推理能力和有条理表达能力.2.掌握直线平行的条件,领悟归纳和转化的数学思想学习重难点:探索并掌握直线平行的条件是本课的重点也是难点.一、探索直线平行的条件平行线的判定方法1:二、练一练1、判断题1.两条直线被第三条直线所截,如果同位角相等,那么内错角也相等.( )2.两条直线被第三条直线所截,如果内错角互补,那么同旁内角相等.( )2、填空1.如图1,如果∠3=∠7,或______,那么______,理由是__________;如果∠5=∠3,或笔________,那么________, 理由是______________; 如果∠2+ ∠5= ______ 或者_______,那么a∥b,理由是__________.(2)(3)2.如图2,若∠2=∠6,则______∥_______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么AD∥BC;如果∠9=_____,那么AB∥CD.三、选择题1.如图3所示,下列条件中,不能判定AB∥CD的是( )A.AB∥EF,CD∥EFB.∠5=∠A;C.∠ABC+∠BCD=180°D.∠2=∠32.右图,由图和已知条件,下列判断中正确的是( )A.由∠1=∠6,得AB∥FG;B.由∠1+∠2=∠6+∠7,得CE∥EIC.由∠1+∠2+∠3+∠5=180°,得CE∥FI;D.由∠5=∠4,得AB∥FG四、已知直线a、b被直线c所截,且∠1+∠2=180°,试判断直线a、b的位置关系,并说明理由.五、作业课本15页-16页练习的1、2、3、5.2.2平行线的判定(2)课型:新课:备课人:韩贺敏审核人:霍红超学习目标1.经历观察、操作、想像、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力.毛2.分析题意说理过程,能灵活地选用直线平行的方法进行说理.学习重点:直线平行的条件的应用.学习难点:选取适当判定直线平行的方法进行说理是重点也是难点.一、学习过程平行线的判定方法有几种?分别是什么?二.巩固练习:1.如图2,若∠2=∠6,则______∥_______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么AD∥BC;如果∠9=_____,那么AB∥CD.(第1题) (第2题)2.如图,一个合格的变形管道ABCD需要AB边与CD边平行,若一个拐角∠ABC=72°,则另一个拐角∠BCD=_______时,这个管道符合要求.二、选择题.1.如图,下列判断不正确的是( )A.因为∠1=∠4,所以DE∥ABB.因为∠2=∠3,所以AB∥ECC.因为∠5=∠A,所以AB∥DED.因为∠ADE+∠BED=180°,所以AD∥BE2.如图,直线AB、CD被直线EF所截,使∠1=∠2≠90°,则( )A.∠2=∠4B.∠1=∠4C.∠2=∠3D.∠3=∠4三、解答题.1.你能用一张不规则的纸(比如,如图1所示的四边形的纸)折出两条平行的直线吗?与同伴说说你的折法.2.已知,如图2,点B在AC上,BD⊥BE,∠1+∠C=90°,问射线CF与BD平行吗?试用两种方法说明理由.初一下册数学教案3一、教学内容分析1.2有理数1.2.2数轴。
初一数学第一章教案5篇
初一数学第一章教案5篇初一数学第一章教案1教学目的通过分析储蓄中的数量关系、商品利润等有关学问,经受运用方程解决实际问题的过程,进一步体会方程是刻画现实世界的有效数学模型。
重点、难点1.重点:探究这些实际问题中的等量关系,由此等量关系列出方程。
2.难点:找出能表示整个题意的等量关系。
教学过程一、复习1.储蓄中的利息、本金、利率、本利和等含义,关系:利息=本金×年利率×年数本利和=本金×利息×年数+本金2.商品利润等有关学问。
利润=售价-本钱; =商品利润率二、新授问题4.小明爸爸前年存了年利率为2.43%的二年期定期储蓄,今年到期后,扣除利息税,所得利息正好为小明买了一只价值48.6元的计算器,问小明爸爸前年存了多少元利息-利息税=48.6可设小明爸爸前年存了x元,那么二年后共得利息为2.43%×X×2,利息税为2.43%X×2×20%依据等量关系,得2.43%x·2-2.43%x×2×20%=48.6问,扣除利息的20%,那么实际得到的利息是多少扣除利息的20%,实际得到利息的80%,因此可得2.43%x·2·80%=48.6解方程,得x=1250例1.一家商店将某种服装按本钱价提高40%后标价,又以8折(即按标价的80%)优待卖出,结果每件仍获利15元,那么这种服装每件的本钱是多少元大家想一想这15元的利润是怎么来的标价的80%(即售价)-本钱=15假设设这种服装每件的本钱是x元,那么每件服装的标价为:(1+40%)x每件服装的实际售价为:(1+40%)x·80%每件服装的利润为:(1+40%)x·80%-x由等量关系,列出方程:(1+40%)x·80%-x=15解方程,得x=125答:每件服装的本钱是125元。
三、稳固练习教科书第15页,练习1、2。
北师大版七年级数学下册第一章同底数幂的乘法优秀教学案例与反思
(三)小组合作
1.小组讨论:将学生分成小组,让他们在小组内进行讨论交流,共同探究同底数幂的乘法法则。教师可适时参与小组讨论,给予引导和帮助。
2.小组合作解决问题:设计具有挑战性的问题,让学生以小组合作的形式进行解决,如“根据同底数幂的乘法法则,设计一个计算器程序,实现幂的乘方与积的乘方的计算。”
(三)学生小组讨论
1.设计具有挑战性的问题:提出一个问题,让学生以小组的形式进行讨论和解决,如“根据同底数幂的乘法法则,设计一个计算器程序,实现幂的乘方与积的乘方的计算。”
2.小组合作解决问题:让学生以小组合作的方式解决实际问题,如“计算一个建筑物的高度的平方”。
3.小组竞赛:组织小组竞赛活动,激发学生的学习兴趣和竞争意识,如“看哪个小组能够最快地解决同底数幂的乘法运算问题。”
3.创设问题情境导入:设计一个具有挑战性和思考性的问题,如“如何计算\( (-2)^3 \times (-2)^2 \)?”让学生在解决问题的过程中自然而然地引入同底数幂的乘法法则。
(二)讲授新知
1.引导探究同底数幂的乘法法则:通过提问和引导,让学生思考和发现同底数幂的乘法法则,如“当两个同底数幂相乘时,指数会发生什么变化?”
3.通过数学教学,培养学生的逻辑思维能力、创新思维能力,提高学生的综合素质。
在教学过程中,我注重知识的传授与技能的培养,更注重过程与方法的应用,以及情感态度与价值观的塑造。通过本章节的教学,我希望学生能够不仅掌握幂的运算性质,更能够培养出良好的学习习惯和综合素质,为今后的学习和生活打下坚实的基础。
三、教学策略
2.利用小组合作、讨论交流的方式,培养学生自主学习、合作学习的能力。
初中数学七年级下册一单元精品教案
第一章有理数1.1正数和负数★目标预设一、知识与能力借助生活中的实例会判断一个数是正数还是负数,能用正负数表示具有相反意义的量二、过程与方法1、过程:通过实例引入负数,从而指导学生会识别正负数及其表示法,能应用正负数表示具有相反意义的量。
2、方法:讨论法、探究法、讲授法、观察法。
三、情感、态度、价值观乐于接触社会环境中的数学信息,愿意谈论数学话题,在数学活动中发挥积极作用★教学重难点一、重点:理解正数和负数的概念,判断一个数是正数还是负数,应用正负数表示具有相反意义的量二、难点:负数的意义,理解具有相反意义的量。
★教学准备带有负数的实例若干★预习导学在生活、生产、科研中,经常遇到数的表示与数的运算的问题。
例如,⑴天气预报2003年11月某天北京的温度为-3~3℃,它的确切含义是什么?这一天北京的温差是多少?⑵有三个队参加的足球比赛中,红队胜黄队(4∶1),黄队胜蓝队(1∶0),蓝队胜红队(1∶0),如何确定三个队的净胜球数与排名顺序?⑶某机器零件的长度设计为100mm,加工图纸标注的尺寸为100±0.5(mm),这里的±0.5代表什么意思?合格产品的长度范围是多少?(问题1-3友情提示、全班交流、教师点评)★教学过程一、创设情景,谈话引入在小学里我们已经学过哪些类型的数(自然数和分数),它们都是由实际需要而产生的,由记数、排序产生数1,2,3……,由表示“没有”“空位”,产生数0,由分物、测量产生分数12,13,……,但在预习导学中表示温度、净胜球数、加工允许误差时用到数-3,3,2,-2,0,+0.5,-0.5。
二、精讲点拨,质疑问难这里出现了一种新数:-3,-2,-0.5。
在前面的实际问题中它们分别表示:零下3摄氏度,净输2球,小于设计尺寸0.5mm,像-3,-2,-0.5这样的数(即在以前学过的0以外的数前面加上负号“-”的数)叫做负数。
而3,2,+0.5在问题中分别表示零上3摄氏度,净胜2球,大于设计尺寸0.5mm,它们与负数具有相反的意义。
湘教版七年级下册数学教案(全册)
(此文档为word格式,下载后您可任意编辑修改!)七年级(下册)数学教案第一章一元一次不等式组1.1 一元一次不等式组第1教案教学目标1.能结合实例,了解一元一次不等式组的相关概念。
2.让学生在探索活动中体会化陌生为熟悉,化复杂为简单的“转化”思想方法。
3.提高分析问题的能力,增强数学应用意识,体会数学应用价值。
教学重、难点1..不等式组的解集的概念。
2.根据实际问题列不等式组。
教学方法探索方法,合作交流。
教学过程一、引入课题:1.估计自己的体重不低于多少千克?不超过多少千克?若没体重为x 千克,列出两个不等式。
2.由许多问题受到多种条件的限制引入本章。
二、探索新知:自主探索、解决第2页“动脑筋”中的问题,完成书中填空。
分别解出两个不等式。
把两个不等式解集在同一数轴上表示出来。
找出本题的答案。
三、抽象:教师举例说出什么是一元一次不等式组。
什么是一元一次不等式组的解集。
(渗透交集思想)四、拓展:合作解决第4页“动脑筋”1.分组合作:每人先自己读题填空,然后与同组内同学交流。
2.讨论交流,求出这个不等式的解集。
五、练习:P5练习题。
六、小结:通过体课学习,你有什么收获?七、作业:第5页习题1.1A组。
选作B组题。
后记:1.2 一元一次不等式组的解法第2教案教学目标1.会解由两个一元一次不等式组成的不等式组,会用数轴确定解决。
2.让学生进一步感受数形结合的作用,逐步熟悉和掌握这一重要思想方法。
3.培养勇于开拓创新的精神。
教学重点解决由两个不等式组成的不等式组。
教学难点学生归纳解一元一次不等式组的步骤。
教学方法合作交流,自己探究。
教学过程一、做一做。
1.分别解不等式x+4>3。
2.将1中各不等式解集在同一数轴上表示出来。
3.说一说不等式组的解集是什么?4.讨论交流,怎样解一元一次不等式组?二、新课1.解不等式组的概念。
2.例1:解不等式组:教师讲解,提醒学生注意防止出现符号错误和运算错误。
注意“<”和“”在数轴表示时的差别。
精选北师大版七年级下册数学第一单元教案全集
1.1同底数幂的乘法1.理解并掌握同底数幂的乘法法则;(重点)2.运用同底数幂的乘法法则进行相关运算.(难点)一、情境导入问题:2015年9月24日,美国国家航空航天局(下简称:NASA)对外宣称将有重大发现宣布,可能发现除地球外适合人类居住的星球,一时间引起了人们的广泛关注.早在2014年,NASA就发现一颗行星,这颗行星是第一颗在太阳系外恒星旁发现的适居带内、半径与地球相若的系外行星,这颗行星环绕红矮星开普勒186,距离地球492光年.1光年是光经过一年所行的距离,光的速度大约是3×105km/s.问:这颗行星距离地球多远(1年=3.1536×107s)?3×105×3.1536×107×492=3×3.1536×4.92×105×107×102=4.6547136×10×105×107×102.问题:“10×105×107×102”等于多少呢?二、合作探究探究点:同底数幂的乘法【类型一】底数为单项式的同底数幂的乘法计算:(1)23×24×2;(2)-a3·(-a)2·(-a)3;(3)m n+1·m n·m2·m.解析:(1)根据同底数幂的乘法法则进行计算即可;(2)先算乘方,再根据同底数幂的乘法法则进行计算即可;(3)根据同底数幂的乘法法则进行计算即可.解:(1)原式=23+4+1=28;(2)原式=-a3·a2·(-a3)=a3·a2·a3=a8;(3)原式=m n+1+n+2+1=a2n+4.方法总结:同底数幂的乘法法则只有在底数相同时才能使用;单个字母或数可以看成指数为1的幂,进行运算时,不能忽略了幂指数1.【类型二】 底数为多项式的同底数幂的乘法计算:(1)(2a +b )2n +1·(2a +b )3·(2a +b )n -4;(2)(x -y )2·(y -x )5.解析:将底数看成一个整体进行计算. 解:(1)原式=(2a +b )(2n+1)+3+(n -4)=(2a +b )3n ;(2)原式=-(x -y )2·(x -y )5=-(x -y )7.方法总结:底数互为相反数的幂相乘时,先把底数统一,再进行计算.(a -b )n =⎩⎪⎨⎪⎧(b -a )n(n 为偶数),-(b -a )n(n 为奇数). 【类型三】 运用同底数幂的乘法求代数式的值若82a +3·8b -2=810,求2a +b 的值.解析:根据同底数幂的乘法法则,底数不变指数相加,可得a 、b 的关系,根据a 、b 的关系求解.解:∵82a +3·8b -2=82a+3+b -2=810,∴2a +3+b -2=10,解得2a +b =9.方法总结:将等式两边化为同底数幂的形式,底数相同,那么指数也相同. 【类型四】 同底数幂的乘法法则的逆用已知a m =3,a n =21,求a m +n的值.解析:把a m+n变成a m ·a n ,代入求值即可.解:∵a m =3,a n =21,∴a m +n =a m ·a n =3×21=63. 方法总结:逆用同底数幂的乘法法则把a m +n变成a m ·a n .三、板书设计1.同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加. 即a m ·a n =a m +n (m ,n 都是正整数).2.同底数幂的乘法法则的运用在同底数幂乘法公式的探究过程中,学生表现出观察角度的差异:有的学生只是侧重观察某个单独的式子,把它孤立地看,而不知道将几个式子联系起来;有的学生则既观察入微,又统揽全局,表现出了较强的观察力.教师要善于抓住这个契机,适当对学生进行指导,培养他们“既见树木,又见森林”的优良观察品质.对于公式使用的条件既要把握好“度”,又要把握好“方向”1.2幂的乘方与积的乘方第1课时幂的乘方1.理解幂的乘方的运算性质,进一步体会和巩固幂的意义;(重点)2.掌握幂的乘方法则的推导过程并能灵活应用.(难点)一、情境导入1.填空:(1)同底数幂相乘,________不变,指数________;(2)a2×a3=________;10m×10n=________;(3)(-3)7×(-3)6=________;(4)a·a2·a3=________;(5)(23)2=23·23=________;(x4)5=x4·x4·x4·x4·x4=________.2.计算(22)3;(24)3;(102)3.问题:(1)上述几道题目有什么共同特点?(2)观察计算结果,你能发现什么规律?(3)你能推导一下(a m)n的结果吗?请试一试.二、合作探究探究点一:幂的乘方计算:(1)(a3)4; (2)(x m-1)2;(3)[(24)3]3; (4)[(m-n)3]4.解析:直接运用(a m)n=a mn计算即可.解:(1)(a3)4=a3×4=a12;(2)(x m-1)2=x2(m-1)=x2m-2;(3)[(24)3]3=24×3×3=236;(4)[(m-n)3]4=(m-n)12.方法总结:运用幂的乘方法则进行计算时,一定不要将幂的乘方与同底数幂的乘法混淆,在幂的乘方中,底数可以是单项式,也可以是多项式.探究点二:幂的乘方的逆用【类型一】 逆用幂的乘方比较数的大小请看下面的解题过程:比较2100与375的大小.解:∵2100=(24)25,375=(33)25,又∵24=16,33=27,16<27,∴2100<375. 请你根据上面的解题过程,比较3100与560的大小,并总结本题的解题方法. 解析:首先理解题意,然后可得3100=(35)20,560=(53)20,再比较35与53的大小,即可求得答案.解:∵3100=(35)20,560=(53)20,又∵35=243,53=125,243>125,即35>53,∴3100>560.方法总结:此题考查了幂的乘方的性质的应用.注意理解题意,根据题意得到3100=(35)20,560=(53)20是解此题的关键.【类型二】 逆用幂的乘方求代数式的值已知2x +5y -3=0,求4x ·32y 的值.解析:由2x +5y -3=0得2x +5y =3,再把4x ·32y 统一为底数为2的乘方的形式,最后根据同底数幂的乘法法则即可得到结果.解:∵2x +5y -3=0,∴2x +5y =3,∴4x ·32y =22x ·25y =22x+5y=23=8.方法总结:本题考查了幂的乘方的逆用及同底数幂的乘法,整体代入求解也比较关键. 【类型三】 逆用幂的乘方结合方程思想求值已知221=8y +1,9y =3x -9,则代数式13x +12y 的值为________.解析:由221=8y +1,9y =3x-9得221=23(y+1),32y =3x -9,则21=3(y +1),2y =x -9,解得x =21,y =6,故代数式13x +12y =7+3=10.故答案为10.方法总结:根据幂的乘方的逆运算进行转化得到x 和y 的方程组,求出x 、y ,再计算代数式.三、板书设计 1.幂的乘方法则:幂的乘方,底数不变,指数相乘. 即(a m )n =a mn (m ,n 都是正整数). 2.幂的乘方的运用幂的乘方公式的探究方式和前节类似,因此在教学中可以利用该优势展开教学,在探究过程中可以进一步发挥学生的主动性,尽可能地让学生在已有知识的基础上,通过自主探究,获得幂的乘方运算的感性认识,进而理解运算法则第2课时 积的乘方1.掌握积的乘方的运算法则;(重点)2.掌握积的乘方的推导过程,并能灵活运用.(难点)一、情境导入1.教师提问:同底数幂的乘法公式和幂的乘方公式是什么? 学生积极举手回答:同底数幂的乘法公式:同底数幂相乘,底数不变,指数相加. 幂的乘方公式:幂的乘方,底数不变,指数相乘.2.肯定学生的发言,引入新课:今天学习幂的运算的第三种形式——积的乘方. 二、合作探究 探究点一:积的乘方【类型一】 直接运用积的乘方法则进行计算计算:(1)(-5ab )3; (2)-(3x 2y )2;(3)(-43ab 2c 3)3; (4)(-x m y 3m )2.解析:直接运用积的乘方法则计算即可. 解:(1)(-5ab )3=(-5)3a 3b 3=-125a 3b 3; (2)-(3x 2y )2=-32x 4y 2=-9x 4y 2; (3)(-43ab 2c 3)3=(-43)3a 3b 6c 9=-6427a 3b 6c 9;(4)(-x m y 3m )2=(-1)2x 2m y 6m =x 2m y 6m .方法总结:运用积的乘方法则进行计算时,注意每个因式都要乘方,尤其是字母的系数不要漏乘方.【类型二】 含积的乘方的混合运算计算:(1)(-2a 2)3·a 3+(-4a )2·a 7-(5a 3)3; (2)(-a 3b 6)2+(-a 2b 4)3.解析:(1)先进行积的乘方,然后根据同底数幂的乘法法则求解;(2)先进行积的乘方和幂的乘方,然后合并.解:(1)原式=-8a 6·a 3+16a 2·a 7-125a 9=-8a 9+16a 9-125a 9=-117a 9; (2)原式=a 6b 12-a 6b 12=0.方法总结:先算积的乘方,再算乘法,然后算加减,最后合并同类项.【类型三】 积的乘方的实际应用太阳可以近似地看作是球体,如果用V 、R 分别代表球的体积和半径,那么V =43πR 3,太阳的半径约为6×105千米,它的体积大约是多少立方千米(π取3)?解析:将R =6×105千米代入V =43πR 3,即可求得答案.解:∵R =6×105千米,∴V =43πR 3≈43×3×(6×105)3≈8.64×1017(立方千米).答:它的体积大约是8.64×1017立方千米.方法总结:读懂题目信息,理解球的体积公式并熟记积的乘方的性质是解题的关键. 探究点二:积的乘方的逆用【类型一】 逆用积的乘方进行简便运算计算:(23)2014×(32)2015.解析:将(32)2015转化为(32)2014×32,再逆用积的乘方公式进行计算.解:原式=(23)2014×(32)2014×32=(23×32)2014×32=32.方法总结:对公式a n ·b n =(ab )n 要灵活运用,对于不符合公式的形式,要通过恒等变形转化为公式的形式,运用此公式可进行简便运算.【类型二】 逆用积的乘方比较数的大小试比较大小:213×310与210×312.解:∵213×310=23×(2×3)10,210×312=32×(2×3)10,又∵23<32,∴213×310<210×312.方法总结:利用积的乘方,转化成同底数的同指数幂是解答此类问题的关键. 三、板书设计 1.积的乘方法则:积的乘方等于各因式乘方的积. 即(ab )n =a n b n (n 是正整数). 2.积的乘方的运用在本节的教学过程中教师可以采用与前面相同的方式展开教学.教师在讲解积的乘方公式的应用时,再补充讲解积的乘方公式的逆运算:a n ·b n =(ab )n ,同时教师为了提高学生的运算速度和应用能力,也可以补充讲解:当n 为奇数时,(-a )n =-a n (n 为正整数);当n 为偶数时,(-a )n =a n (n 为正整数)1.3 同底数幂的除法第1课时 同底数幂的除法1.理解并掌握同底数幂的除法运算并能运用其解决实际问题;(重点)2.理解并掌握零次幂和负指数幂的运算性质.(难点)一、情境导入一种液体每升含有1012个有害细菌,为了试验某种杀菌剂的效果,科学家们进行了实验,发现1滴杀菌剂可以杀死109个此种细菌.要将1升液体中的有害细菌全部杀死,需要这种杀菌剂多少滴?二、合作探究探究点一:同底数幂的除法【类型一】 直接运用同底数幂的除法进行运算计算:(1)(-xy )13÷(-xy )8; (2)(x -2y )3÷(2y -x )2; (3)(a 2+1)7÷(a 2+1)4÷(a 2+1)2.解析:利用同底数幂的除法法则即可进行计算,其中(1)应把(-xy )看作一个整体;(2)把(x -2y )看作一个整体,2y -x =-(x -2y );(3)把(a 2+1)看作一个整体.解:(1)(-xy )13÷(-xy )8=(-xy )13-8=(-xy )5=-x 5y 5;(2)(x -2y )3÷(2y -x )2=(x -2y )3÷(x -2y )2=x -2y ; (3)(a 2+1)7÷(a 2+1)4÷(a 2+1)2=(a 2+1)7-4-2=(a 2+1)1=a 2+1.方法总结:计算同底数幂的除法时,先判断底数是否相同或可变形为相同,再根据法则计算.【类型二】 逆用同底数幂的除法进行计算已知a m =4,a n =2,a =3,求a m -n -1的值.解析:先逆用同底数幂的除法,对a m -n -1进行变形,再代入数值进行计算.解:∵a m =4,a n =2,a =3,∴a m-n -1=a m ÷a n ÷a =4÷2÷3=23.方法总结:解此题的关键是逆用同底数幂的除法得出a m -n -1=a m ÷a n ÷a .声音的强弱用分贝表示,通常人们讲话时的声音是50分贝,它表示声音的强度是105,汽车的声音是100分贝,表示声音的强度是1010,喷气式飞机的声音是150分贝,求:(1)汽车声音的强度是人声音的强度的多少倍? (2)喷气式飞机声音的强度是汽车声音的强度的多少倍?解析:(1)用汽车声音的强度除以人声音的强度,再利用“同底数幂相除,底数不变,指数相减”计算;(2)将喷气式飞机声音的分贝数转化为声音的强度,再除以汽车声音的强度即可得到答案.解:(1)因为1010÷105=1010-5=105,所以汽车声音的强度是人声音的强度的105倍;(2)因为人的声音是50分贝,其声音的强度是105,汽车的声音是100分贝,其声音的强度为1010,所以喷气式飞机的声音是150分贝,其声音的强度为1015,所以1015÷1010=1015-10=105,所以喷气式飞机声音的强度是汽车声音的强度的105倍.方法总结:本题主要考查同底数幂除法的实际应用,熟练掌握其运算性质是解题的关键. 探究点二:零指数幂和负整数指数幂 【类型一】 零指数幂若(x -6)0=1成立,则x 的取值范围是( )A .x ≥6B .x ≤6C .x ≠6D .x =6解析:∵(x -6)0=1成立,∴x -6≠0,解得x ≠6.故选C.方法总结:本题考查的是0指数幂成立的条件,非0的数的0次幂等于1,注意0指数幂的底数不能为0.【类型二】 比较数的大小若a =(-23)-2,b =(-1)-1,c =(-32)0,则a 、b 、c 的大小关系是( )A .a >b =cB .a >c >bC .c >a >bD .b >c >a解析:∵a =(-23)-2=(-32)2=94,b =(-1)-1=-1,c =(-32)0=1,∴a >c >b .故选B.方法总结:本题的关键是熟悉运算法则,利用计算结果比较大小.当底数是分数,指数为负整数时,只要把底数的分子、分母颠倒,负指数就可变为正指数.【类型三】 零指数幂与负整数指数幂中底数的取值范围若(x -3)0-2(3x -6)-2有意义,则x 的取值范围是( )A .x >3B .x ≠3且x ≠2C .x ≠3或x ≠2D .x <2解析:根据题意,若(x -3)0有意义,则x -3≠0,即x ≠3.(3x -6)-2有意义,则3x -6≠0,即x ≠2,所以x ≠3且x ≠2.故选B.方法总结:任意非0的数的0次幂为1,底数不能为0,负整数指数幂的底数不能为0.【类型四】 含整数指数幂、零指数幂与绝对值的混合运算计算:-22+(-12)-2+(2015-π)0-|2-π2|.解析:分别根据有理数的乘方、零指数幂、负整数指数幂及绝对值的性质计算出各数,再根据实数的运算法则进行计算.解:-22+(-12)-2+(2015-π)0-|2-π2|=-4+4+1-2+π2=π2-1.方法总结:熟练掌握有理数的乘方、零指数幂、负整数指数幂及绝对值的性质是解答此题的关键.三、板书设计1.同底数幂的除法法则:同底数幂相除,底数不变,指数相减. 2.零次幂:任何一个不等于零的数的零次幂都等于1.即a 0=1(a ≠0). 3.负整数次幂:任何一个不等于零的数的-p (p 是正整数)次幂,等于这个数p 次幂的倒数.即a -p =1a p(a ≠0,p 是正整数).从计算具体问题中的同底数幂的除法,逐步归纳出同底数幂除法的一般性质.教学时要多举几个例子,让学生从中总结出规律,体验自主探究的乐趣和数学学习的魅力,为以后的学习奠定基础第2课时用科学记数法表示较小的数1.理解并掌握科学记数法表示小于1的数的方法;(重点)2.能将用科学记数法表示的数还原为原数.一、情境导入同底数幂的除法公式为a m÷a n=a m-n,有一个附加条件:m>n,即被除数的指数大于除数的指数.当被除数的指数不大于除数的指数,即m=n或m<n时,情况怎样呢?二、合作探究探究点:用科学记数法表示较小的数【类型一】用科学记数法表示绝对值小于1的数2014年6月18日中商网报道,一种重量为0.000106千克,机身由碳纤维制成,且只有昆虫大小的机器人是全球最小的机器人,0.000106用科学记数法可表示为() A.1.06×10-4B.1.06×10-5C.10.6×10-5D.106×10-6解析:0.000106=1.06×10-4.故选A.方法总结:绝对值小于1的数也可以用科学记数法表示,一般形式为a×10-n,其中1≤a<10,n为正整数.与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数前面的0的个数所决定.【类型二】将用科学记数法表示的数还原为原数用小数表示下列各数:(1)2×10-7; (2)3.14×10-5;(3)7.08×10-3; (4)2.17×10-1.解析:小数点向左移动相应的位数即可.解:(1)2×10-7=0.0000002;(2)3.14×10-5=0.0000314;(3)7.08×10-3=0.00708;(4)2.17×10-1=0.217.方法总结:将科学记数法表示的数a×10-n还原成通常表示的数,就是把a的小数点向左移动n位所得到的数.三、板书设计用科学记数法表示绝对值小于1的数:一般地,一个小于1的正数可以表示为a×10n,其中1≤a<10,n是负整数.从本节课的教学过程来看,结合了多种教学方法,既有教师主导课堂的例题讲解,又有学生主导课堂的自主探究.课堂上学习气氛活跃,学生的学习积极性被充分调动,在拓展学生学习空间的同时,又有效地保证了课堂学习质量1.4 整式的乘法第1课时 单项式与单项式相乘1.复习幂的运算性质,探究并掌握单项式乘以单项式的运算法则;(重点)2.能够熟练运用单项式乘以单项式的运算法则进行计算并解决实际问题.(难点)一、情境导入根据乘法的运算律计算:(1)2x ·3y ;(2)5a 2b ·(-2ab 2).解:(1)2x ·3y =(2×3)·(x ·y )=6xy ;(2)5a 2b ·(-2ab 2)=5×(-2)·(a 2·a )·(b ·b 2)=-10a 3b 3.观察上述运算,你能归纳出单项式乘法的运算法则吗?二、合作探究探究点:单项式与单项式相乘【类型一】 直接利用单项式乘以单项式法则进行计算计算:(1)(-23a 2b )·56ac 2; (2)(-12x 2y )3·3xy 2·(2xy 2)2; (3)-6m 2n ·(x -y )3·13mn 2(y -x )2. 解析:运用幂的运算法则和单项式乘以单项式的法则计算即可.解:(1)(-23a 2b )·56ac 2=-23×56a 3bc 2=-59a 3bc 2; (2)(-12x 2y )3·3xy 2·(2xy 2)2=-18x 6y 3×3xy 2×4x 2y 4=-32x 9y 9; (3)-6m 2n ·(x -y )3·13mn 2(y -x )2=-6×13m 3n 3(x -y )5=-2m 3n 3(x -y )5. 方法总结:(1)在计算时,应先进行符号运算,积的系数等于各因式系数的积;(2)注意按顺序运算;(3)不要丢掉只在一个单项式里含有的字母因式;(4)此性质对于多个单项式相乘仍然成立.【类型二】 单项式乘以单项式与同类项的综合已知-2x 3m +1y 2n 与7x 5m -3y 5n -4的积与x 4y 是同类项,求m 2+n 的值.解析:根据-2x 3m +1y 2n 与7x 5m -3y 5n -4的积与x 4y 是同类项可得出关于m ,n 的方程组,进而求出m ,n 的值,即可得出答案.解:∵-2x 3m +1y 2n 与7x 5m -3y 5n -4的积与x 4y 是同类项,∴⎩⎪⎨⎪⎧3m +1+5m -3=4,2n +5n -4=1,解得⎩⎨⎧m =34,n =57,∴m 2+n =143112. 方法总结:掌握单项式乘以单项式的运算法则,再结合同类项,列出二元一次方程组是解题关键.【类型三】 单项式乘以单项式的实际应用有一块长为x m ,宽为y m 的长方形空地,现在要在这块地中规划一块长35x m ,宽34y m 的长方形空地用于绿化,求绿化的面积和剩下的面积.解析:先求出长方形的面积,再求出绿化的面积,两者相减即可求出剩下的面积.解:长方形的面积是xy m 2,绿化的面积是35x ×34y =920xy (m 2),则剩下的面积是xy -920xy =1120xy (m 2). 方法总结:掌握长方形的面积公式和单项式乘单项式法则是解题的关键.三、板书设计1.单项式乘以单项式的运算法则:单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里面含有的字母,则连同它的指数作为积的一个因式.2.单项式乘以单项式的应用本课时的重点是让学生理解单项式的乘法法则并能熟练应用.要求学生在乘法的运算律以及幂的运算律的基础上进行探究.教师在课堂上应该处于引导位置,鼓励学生“试一试”,学生通过动手操作,能够更为直接的理解和应用该知识点第2课时 单项式与多项式相乘1.能根据乘法分配律和单项式与单项式相乘的法则探究单项式与多项式相乘的法则;2.掌握单项式与多项式相乘的法则并会运用.(重点,难点)一、情境导入计算:(-12)×(12-13-14).我们可以根据有理数乘法的分配律进行计算,那么怎样计算2x ·(3x 2-2x +1)呢?二、合作探究探究点:单项式乘以多项式【类型一】 直接利用单项式乘以多项式法则进行计算计算:(1)(23ab 2-2ab )·12ab ; (2)-2x ·(12x 2y +3y -1). 解析:利用单项式乘以多项式法则计算即可.解:(1)(23ab 2-2ab )·12ab =23ab 2·12ab -2ab ·12ab =13a 2b 3-a 2b 2; (2)-2x ·(12x 2y +3y -1)=-2x ·12x 2y +(-2x )·3y +(-2x )·(-1)=-x 3y +(-6xy )+2x =-x 3y -6xy +2x .方法总结:单项式与多项式相乘的运算法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.【类型二】 单项式与多项式乘法的实际应用一条防洪堤坝,其横断面是梯形,上底宽a 米,下底宽(a +2b )米,坝高12a 米. (1)求防洪堤坝的横断面面积;(2)如果防洪堤坝长100米,那么这段防洪堤坝的体积是多少立方米?解析:(1)根据梯形的面积公式,然后利用单项式乘以多项式的运算法则计算;(2)防洪堤坝的体积=梯形面积×坝长.解:(1)防洪堤坝的横断面面积S =12[a +(a +2b )]×12a =14a (2a +2b )=12a 2+12ab (平方米).故防洪堤坝的横断面面积为(12a 2+12ab )平方米;(2)堤坝的体积V =Sl =(12a 2+12ab )×100=50a 2+50ab (立方米).故这段防洪堤坝的体积是(50a 2+50ab )立方米.方法总结:本题要知道梯形的面积公式及堤坝的体积(堤坝体积=梯形面积×长度)的计算方法,同时掌握单项式乘以多项式的运算法则是解题的关键.【类型三】 利用单项式乘以多项式化简求值先化简,再求值:5a (2a 2-5a +3)-2a 2(5a +5)+7a 2,其中a =2.解析:首先根据单项式与多项式相乘的法则去掉括号,然后合并同类项,最后代入已知的数值计算即可.解:5a (2a 2-5a +3)-2a 2(5a +5)+7a 2=10a 3-25a 2+15a -10a 3-10a 2+7a 2=-28a 2+15a ,当a =2时,原式=-82.方法总结:本题考查了整式的化简求值.在计算时要注意先化简然后再代值计算.整式的加减运算实际上就是去括号与合并同类项.三、板书设计1.单项式与多项式的乘法法则:单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加.2.单项式与多项式乘法的应用本节课在已学过的单项式乘以单项式的基础上,学习单项式乘以多项式.教学中注意发挥学生的主体作用,让学生积极参与课堂活动,并通过不断纠错而提高解题水平第3课时多项式与多项式相乘1.理解多项式乘以多项式的运算法则,能够按多项式乘法步骤进行简单的乘法运算;(重点)2.掌握多项式与多项式的乘法法则的应用.(难点)一、情境导入某地区在退耕还林期间,将一块长m米、宽a米的长方形林区的长、宽分别增加n米和b米.用两种方法表示这块林区现在的面积.学生积极思考,教师引导学生分析,学生发现:这块林区现在长为(m+n)米,宽为(a+b)米,因而面积为(m+n)(a+b)平方米.另外,如图,这块地由四小块组成,它们的面积分别为ma平方米,mb平方米、na平方米,nb平方米,故这块地的面积为(ma+mb+na+nb)平方米.由此可得(m+n)(a+b)=ma+mb+na+nb.今天我们就学习多项式乘以多项式.二、合作探究探究点一:多项式与多项式相乘【类型一】直接利用多项式乘多项式法则进行计算计算:(1)(3x+2)(x+2);(2)(4y-1)(5-y).解析:利用多项式乘以多项式法则计算,即可得到结果.解:(1)原式=3x2+6x+2x+4=3x2+8x+4;(2)原式=20y-4y2-5+y=-4y2+21y-5.方法总结:多项式乘以多项式,按一定的顺序进行,必须做到不重不漏;多项式与多项式相乘,仍得多项式,在合并同类项之前,积的项数应等于原多项式的项数之积.【类型二】多项式乘以多项式的混合运算计算:(3a+1)(2a-3)-(6a-5)(a-4).解析:根据整式混合运算的顺序和法则分别进行计算,再把所得结果合并即可.解:(3a+1)(2a-3)-(6a-5)(a-4)=6a2-9a+2a-3-6a2+24a+5a-20=22a-23.方法总结:在计算时要注意混合运算的顺序和法则以及运算结果的符号.探究点二:多项式与多项式相乘的化简求值及应用【类型一】多项式乘以多项式的化简求值先化简,再求值:(a-2b)(a2+2ab+4b2)-a(a-5b)(a+3b),其中a=-1,b=1.解析:先将式子利用整式乘法展开,合并同类项化简,再代入计算.解:(a-2b)(a2+2ab+4b2)-a(a-5b)(a+3b)=a3-8b3-(a2-5ab)(a+3b)=a3-8b3-a3-3a2b+5a2b+15ab2=-8b3+2a2b+15ab2.当a=-1,b=1时,原式=-8+2-15=-21.方法总结:化简求值是整式运算中常见的题型,一定要注意先化简,再求值,不能先代值,再计算.【类型二】多项式乘以多项式与方程的综合解方程:(x-3)(x-2)=(x+9)(x+1)+4.解析:方程两边利用多项式乘以多项式法则计算,移项、合并同类项,将x系数化为1,即可求出解.解:去括号后得x2-5x+6=x2+10x+9+4,移项、合并同类项得-15x=7,解得x=-715.方法总结:解答本题就是利用多项式的乘法,将原方程转化为已学过的方程解答.【类型三】多项式乘以多项式的实际应用千年古镇杨家滩的某小区的内坝是一块长为(3a+b)米,宽为(2a+b)米的长方形地块,物业部门计划将内坝进行绿化(如图阴影部分),中间部分将修建一仿古小景点(如图中间的正方形),则绿化的面积是多少平方米?并求出当a=3,b=2时的绿化面积.解析:根据长方形的面积公式,可得内坝、景点的面积,根据面积的差,可得答案.解:由题意,得(3a+b)(2a+b)-(a+b)2=6a2+5ab+b2-a2-2ab-b2=5a2+3ab(平方米).当a=3,b=2时,5a2+3ab=5×32+3×3×2=63(平方米),故绿化的面积是63平方米.方法总结:掌握长方形的面积公式和多项式乘多项式法则是解题的关键.【类型四】根据多项式乘以多项式求待定系数的值已知ax 2+bx +1(a ≠0)与3x -2的积不含x 2项,也不含x 项,求系数a 、b 的值.解析:首先利用多项式乘法法则计算出(ax 2+bx +1)(3x -2),再根据积不含x 2项,也不含x 项,可得含x 2项和含x 项的系数等于零,即可求出a 与b 的值.解:(ax 2+bx +1)(3x -2)=3ax 3-2ax 2+3bx 2-2bx +3x -2.∵积不含x 2项,也不含x 项,∴-2a +3b =0,-2b +3=0,解得b =32,a =94,∴系数a 、b 的值分别是94,32. 方法总结:解决此类问题首先要利用多项式乘法法则计算出展开式,合并同类项后,再根据不含某一项,可得这一项系数等于零,再列出方程解答.三、板书设计1.多项式与多项式的乘法法则:多项式和多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加.2.多项式与多项式乘法的应用本节知识的综合性较强,要求学生熟练掌握前面所学的单项式与单项式相乘及单项式与多项式相乘的知识,同时为了让学生理解并掌握多项式与多项式相乘的法则,教学中一定要精讲精练,让学生从练习中再次体会法则的内容,为以后的学习奠定基础1.5 平方差公式1.掌握平方差公式的推导和运用,以及对平方差公式的几何背景的理解;(重点)2.掌握平方差公式的应用.(重点)一、情境导入1.教师引导学生回忆多项式与多项式相乘的法则.学生积极举手回答.多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加.2.教师肯定学生的表现,并讲解一种特殊形式的多项式与多项式相乘——平方差公式.二、合作探究探究点:平方差公式【类型一】 直接运用平方差公式进行计算利用平方差公式计算:(1)(3x -5)(3x +5);(2)(-2a -b )(b -2a );(3)(-7m +8n )(-8n -7m );(4)(x -2)(x +2)(x 2+4).解析:直接利用平方差公式进行计算即可.解:(1)(3x -5)(3x +5)=(3x )2-52=9x 2-25;(2)(-2a -b )(b -2a )=(-2a )2-b 2=4a 2-b 2;(3)(-7m +8n )(-8n -7m )=(-7m )2-(8n )2=49m 2-64n 2;(4)(x -2)(x +2)(x 2+4)=(x 2-4)(x 2+4)=x 4-16.方法总结:应用平方差公式计算时,应注意以下几个问题:(1)左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数;(2)右边是相同项的平方减去相反项的平方;(3)公式中的a 和b 可以是具体的数,也可以是单项式或多项式.【类型二】 利用平方差公式进行简便运算利用平方差公式计算:(1)2013×1923; (2)13.2×12.8. 解析:(1)把2013×1923写成(20+13)×(20-13),然后利用平方差公式进行计算;(2)把13.2×12.8写成(13+0.2)×(13-0.2),然后利用平方差公式进行计算.解:(1)2013×1923=(20+13)×(20-13)=202-(13)2=400-19=39989; (2)13.2×12.8=(13+0.2)×(13-0.2)=132-0.22=169-0.04=168.96.方法总结:熟记平方差公式的结构是解题的关键.【类型三】 化简求值先化简,再求值:(2x -y )(y +2x )-(2y +x )(2y -x ),其中x =1,y =2.解析:利用平方差公式展开并合并同类项,然后把x 、y 的值代入进行计算即可得解.解:(2x -y )(y +2x )-(2y +x )(2y -x )=4x 2-y 2-(4y 2-x 2)=4x 2-y 2-4y 2+x 2=5x 2-5y 2.当x =1,y =2时,原式=5×12-5×22=-15.方法总结:利用平方差公式先化简再求值,切忌代入数值直接计算.【类型四】 平方差公式的几何背景如图①,在边长为a 的正方形中剪去一个边长为b 的小正方形(a >b ),把剩下部分拼成一个梯形(如图②),利用这两幅图形的面积,可以验证的乘法公式是______________.解析:∵图①中阴影部分的面积是a 2-b 2,图②中梯形的面积是12(2a +2b )(a -b )=(a +b )(a -b ),∴a 2-b 2=(a +b )(a -b ),即可验证的乘法公式为(a +b )(a -b )=a 2-b 2.方法总结:通过几何图形面积之间的数量关系可对平方差公式做出几何解释.【类型五】 平方差公式的实际应用王大伯家把一块边长为a 米的正方形土地租给了邻居李大妈.今年王大伯对李大妈说:“我把这块地一边减少4米,另外一边增加4米,继续原价租给你,你看如何?”李大妈一听,就答应了.你认为李大妈吃亏了吗?为什么?解析:根据题意先求出原正方形的面积,再求出改变边长后的面积,然后比较二者的大小即可.解:李大妈吃亏了.理由如下:原正方形的面积为a 2,改变边长后面积为(a +4)(a -4)=a 2-16.∵a 2>a 2-16,∴李大妈吃亏了.方法总结:解决实际问题的关键是根据题意列出算式,然后根据公式化简解决问题.三、板书设计1.平方差公式:两数和与这两数差的积等于它们的平方差.即(a +b )(a -b )=a 2-b 2.2.平方差公式的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 整式的运算同底数幂的乘法教学目标1.经历探索同底数幂的乘法运算性质的过程,进一步体会幂的意义.2.了解同底数幂乘法的运算性质,并能解决一些实际问题.教学重点同底数幂的乘法运算法则及其应用.教学难点同底数幂的乘法运算法则的灵活运用.教学方法引导启发法教师引导学生在回忆幂的意义的基础上,通过特例的推理,再到一般结论的推出,启发学生应用旧知识解决新问题,得出新结论,并能灵活运用.教学过程光在真空中的速度大约是3×105千米/秒,太阳系以外距离地球最近的恒星是比邻星,它发出的光到达地球大约需要4.22年,一年以3×107秒计算,比邻星与地球队距离约为多少千米?做一做1、计算下列各式:(1)102×103(2)105×108(3)10m ×10n (m 、n 都是正整数)讨论:你发现了什么?2、2m ×2n 等于什么?(71)m ×(71)n 呢?(m 、n 都是正整数) 议一议:a m ·a n 等于什么(m 、n 都是正整数)?为什么?a m ·a n =(aa=a ·=aa m ·a n =a m +n (m 、n 都是正整数)同底数幂相乘,底数不变,指数相加。
例1计算:(1)(-3)7×(-3)6 (2)(101)3×(101)(3)-x3·x5(4)b2m·b2n+1解:略想一想:a m·a n·a p等于什么?例2光的速度约为3×105千米/秒,太阳照射到地球上大约需要5×102秒,地球距离太阳大约有多远?解:3×105×5×102=15×107=1.5×108(千米)地球距离太阳约有1.5×108千米。
随堂练习P15 1作业P15 知识技能1、(1)~(4) 2、幂的乘方与积的乘方(一)教学目标1.经历探索幂的乘方的运算性质的过程,进一步体会幂的意义.2.了解幂的乘方的运算性质,并能解决一些实际问题.教学重点幂的乘方的运算性质及其应用.教学难点幂的运算性质的灵活运用.教学方法引导——探究相结合教师由实际情景引导学生探究幂的乘方的运算性质,并能灵活运用.教学过程如果甲球的半径是乙球队n倍,那么甲球的体积是乙球的n3倍地球、木星、太阳可以近似地看做球体,木星、太阳的半径分别约是地球的10倍和102倍,它们的体积分别约为地球的多少倍?做一做计算下列各式,并说明理由。
(1)(62)4(2) (a2)3(3) (a m)2(4) (a m)n(a m)n=(a m·a m·……·a m)n个a mn个m=a m+m+……+m即(a m)n=a mn(m、n都是正整数)幂的乘方,底数不变,指数相加例1计算(1)(102)3(2)(b5)5(3)(a n)3(4)-(x2)m(5)(y2)3·y (6)2(a2)6-(a3)4解:略随堂练习P18 1作业P18 知识技能1、(1)~(4) 2、幂的乘方与积的乘方(二)教学目标1.经历探索积的乘方的运算性质的过程,进一步体会幂的意义.2.了解积的乘方的运算性质,并能解决一些实际问题.教学重点积的乘方运算性质及其应用.教学难点幂的运算性质的灵活应用.教学方法探索——交流法教师引导学生通过特例探索积的乘方的运算,在学生各自说明理由的过程中充分交流做法,从而掌握积的乘方的运算性质.教学过程分组讨论:(1)23×53等于多少?与同伴交流你的做法。
(2)28×58,212×512分别等于多少?(3)从上面的计算中,你发现了什么规律?再换一个例子试一试。
做一做(1)(3×5)7=3( )×5( )(2)(3×5)m =3( )×5( )(3)(ab)n =a ( )·b ( )(ab)n =(ab)·(ab)·……·(ab)=(a ·a ·……·a)(b ·b ·……·b)=a n b n即(ab)n =a n b n (n 是正整数)积的乘方等于例2计算:(1)(3x 2) (2)(-2b)5(3)(-2xy)4 (4)(3a 2)n解:略例3地球可以近似地看做是球体,如果用V ,r 分别代表球队体积和半径,那么V =34πr 3 =34π×(6×103) =9.05×1011(千米3)地球的体积大约是9.05×1011千米3随堂练习P21 1作业P21 知识技能 1、n 个ab n 个an 个b同底数幂的除法 教学目标1.经历探索同底数幂除法的运算性质的过程,进一步体会幂的意义.2.了解同底数幂除法的运算性质,并能解决一些实际问题.3.理解零指数幂和负整数指数幂的意义.教学重点同底数幂除法的运算性质及其应用.教学难点零指数幂和负整数指数幂的意义.教学方法探索——引导相结合在教师的引导下,组织学生探索同底数幂除法的运算性质及零指数幂和负整数指数幂的意义.一种液体含有1012个有害细菌,为了试验某种杀菌剂的效果,科学家们进行了试验,发现1滴杀菌剂可以杀死109个此种细菌,要将1升液体中的有害细菌全部杀死,需要这种杀菌剂多少滴?你是怎样计算的?做一做计算下列各式,并说明理由(m>n ) (1)108÷105 (2)10m ÷10n (3)(-3)m ÷(-3)na m ÷a n = (a ≠0,m 、n 都是正整数,且m>n )同底数幂相乘,底数不变,指数相减。
例1计算:(1)a 7÷a 4(2)(-x)6÷(-x)3(3)(xy)4÷(xy) (4)b 2m +2÷b 2解:略想一想、猜一猜P20我们规定例2(1)10-3; (2)70×8-2; (3)1.6×10-4解:略作业P21 知识技能 1、(5)~(8) 2、教学目标1.经历探索单项式与单项式相乘的运算法则的过程,会进行单项式与单项式相乘的运算.2.理解单项式与单项式相乘的算理,体会乘法交换律和结合律的作用和转化的思想.教学重点单项式与单项式相乘的运算法则及其应用.教学难点灵活地进行单项式与单项式相乘的运算.教学方法引导——发现法教学过程引导学生阅读课本P22提出问题。
想一想(1)对于上面的问题小明得到如下的结果:第一幅画的画面面积是x ·(mx)米2第二幅画的画面面积是(mx )·(43x )米2 提出问题:他的结果对吗?可以表达得更简单吗?说说你的理由。
(2)类似地,3a 2b ·2ab 3和(xyz )·y 2z 可以表达得更简单些吗?为什么? (3)如何进行单项式与单项式相乘的运算?单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式 例1计算(1)(2xy 2)·(31xy) (2)(-2a 2b 3)·(-3a) (3)(4×105)·(5×104)解:略随堂练习P27 1、2作业P28 知识技能1、教学目标1.经历探索单项式与多项式乘法的运算法则的过程,会进行简单的单项式与多项式的乘法运算.2.理解单项式与多项式相乘的算理,体会乘法分配律及转化思想的作用.教学重点单项式与多项式相乘的乘法法则及应用.教学难点灵活运用单项式与多项式相乘的乘法法则.教学过程引导学生讨论P34页议一议:(1)宁宁也作了一幅画,所用纸的大小与京京相同,她在纸的左右各留了81x 米的空白,这幅画的画面面积是多少? (2)如何进行单项式与多项式相乘的运算?单项式与多项式相乘,就是根据分配率用单项式去乘以多项式的每一项,再把所得的积相加。
例2计算:(1)2ab(5ab 2+3a 2b) (2)(32a 2b -2ab )·21ab 解:(1)2ab(5ab 2+3a 2b)=2ab ·(5ab 2)+2ab ·(3a 2b)=10a 2b 3+6a 3b 2(2)(32a 2b -2ab )·21ab =(32a 2b)·21ab -2ab ·21ab =31 a 2b 3-a 2b2 作业P30 1、2小结这节课我们学习了单项式与多项式的乘法,大家一定有不少体会.你能告诉大家吗?这节课我最大的收获是进一步体验到了转化的思想:单项式与多项式相乘,根据乘方分配律可以转化成单项式与单项式相乘;而上节课我们学习的单项式与单项式相乘,根据乘法交换律和结合律又可转化成同底数幂乘法的运算,……教学目标1.经历探索多项式与多项式相乘的运算法则的过程,会进行简单的多项式与多项式相乘运算(其中多项式相乘仅限于一次式相乘).2.理解多项式与多项式相乘运算的算理,体会乘法分配律的作用和转化的思想. 教学重点多项式与多项式相乘的法则及应用.教学难点灵活地进行整式乘法的运算.教学方法活动探究法.教学过程利用如下的长方形卡片拼接成更大的长方形(每种卡片有若干张)下面分别是小明、小颖拼出的图形:(1)用不同的形式表示小明所拼长方形的面积,并进行比较。
(2)用不同的形式表示小颖所拼长方形的面积,并进行比较。
(m +b )(n +a )=m (n +a )+b (n +a )=mn +ma +bn +ba实际上,多项式与单项式相乘,可以先把其中的一个多项式看成一个整体,再运用单项式与多项式相乘的方法进行运算。
多项式与多项式相乘,先用一个多项式的每一项乘以另一个多项式的每一项,在把所得到积相加。
例3计算(1)(1-x)(0.6-x) (2)(2x +y)(x -y)解:略随堂练习 P33作业 p33 知识技能1、平方差公式(一) 教学目标1.经历探索平方差公式的过程.2.会推导平方差公式,并能运用公式进行简单的运算.教学重点平方差公式的推导和应用.教学难点用平方差公式的结构特征判断题目能否使用公式.教学过程计算下列各题:(1)(x +2)(x -2)(2)(1+3a )(1-3a )(3)(x +5y )(x -5y )(4)(y +3z )(y -3z )观察以上算式及其运算结果,你发现什么规律?再列举两例验证你的发现。
平方差公式(a +b )(a -b )=a 2-b 2两数和与这两数差的积,等于它们的平方差。