几何五大模型之五(燕尾定理)
小学奥数-几何五大模型(燕尾模型)
燕尾定理:在三角形ABC 中,AD ,BE ,CF 相交于同一点O , 那么,::ABO ACO S S BD DC ∆∆=OFE DCBA上述定理给出了一个新的转化面积比与线段比的手段,因为ABO ∆和ACO ∆的形状很象燕子的尾巴,所以这个定理被称为燕尾定理.该定理在许多几何题目中都有着广泛的运用,它的特殊性在于,它可以存在于任何一个三角形之中,为三角形中的三角形面积对应底边之间提供互相联系的途径.通过一道例题 证明燕尾定理:如右图,D 是BC 上任意一点,请你说明:1423:::S S S S BD DC ==S 3S 1S 4S 2EDCBA【解析】 三角形BED 与三角形CED 同高,分别以BD 、DC 为底,所以有14::S S BD DC =;三角形ABE 与三角形EBD 同高,12::S S ED EA =;三角形ACE 与三角形CED 同高,43::S S ED EA =,所以1423::S S S S =;综上可得, 1423:::S S S S BD DC ==.例题精讲燕尾定理【例 1】 (2009年第七届希望杯五年级一试试题)如图,三角形ABC 的面积是1,E 是AC 的中点,点D 在BC 上,且:1:2BD DC =,AD 与BE 交于点F .则四边形DFEC 的面积等于 .FED CBA33321F E DC BAABCDEF【解析】 方法一:连接CF ,根据燕尾定理,12ABF ACF S BD S DC ==△△,1ABF CBF S AES EC==△△,设1BDF S =△份,则2DCF S =△份,3ABF S =△份,3AEF EFC S S ==△△份,如图所标所以551212DCEF ABC S S ==△方法二:连接DE ,由题目条件可得到1133ABD ABC S S ==△△,11212233ADE ADC ABC S S S ==⨯=△△△,所以11ABD ADE S BF FE S ==△△, 111111122323212DEF DEB BEC ABC S S S S =⨯=⨯⨯=⨯⨯⨯=△△△△,而211323CDE ABC S S =⨯⨯=△△.所以则四边形DFEC 的面积等于512.【巩固】如图,已知BD DC =,2EC AE =,三角形ABC 的面积是30,求阴影部分面积.【解析】 题中条件只有三角形面积给出具体数值,其他条件给出的实际上是比例的关系,由此我们可以初步判断这道题不应该通过面积公式求面积。
小学奥数几何五大模型(燕尾模型)
燕尾定理:在三角形ABC 中,AD ,BE ,CF 相交于同一点O , 那么,::ABO ACO S S BD DC ∆∆=OFE DCBA上述定理给出了一个新的转化面积比与线段比的手段,因为ABO ∆和ACO ∆的形状很象燕子的尾巴,所以这个定理被称为燕尾定理.该定理在许多几何题目中都有着广泛的运用,它的特殊性在于,它可以存在于任何一个三角形之中,为三角形中的三角形面积对应底边之间提供互相联系的途径.通过一道例题 证明燕尾定理:如右图,D 是BC 上任意一点,请你说明:1423:::S S S S BD DC ==S 3S 1S 4S 2EDCBA【解析】 三角形BED 与三角形CED 同高,分别以BD 、DC 为底,所以有14::S S BD DC =;三角形ABE 与三角形EBD 同高,12::S S ED EA =;三角形ACE 与三角形CED 同高,43::S S ED EA =,所以1423::S S S S =;综上可得, 1423:::S S S S BD DC ==.例题精讲燕尾定理【例 1】 (2009年第七届希望杯五年级一试试题)如图,三角形ABC 的面积是1,E 是AC 的中点,点D 在BC 上,且:1:2BD DC =,AD 与BE 交于点F .则四边形DFEC 的面积等于 .FED CBA33321F E DC BAABCDEF【解析】 方法一:连接CF ,根据燕尾定理,12ABF ACF S BD S DC ==△△,1ABF CBF S AES EC==△△,设1BDF S =△份,则2DCF S =△份,3ABF S =△份,3AEF EFC S S ==△△份,如图所标所以551212DCEF ABC S S ==△方法二:连接DE ,由题目条件可得到1133ABD ABC S S ==△△,11212233ADE ADC ABC S S S ==⨯=△△△,所以11ABD ADE S BF FE S ==△△, 111111122323212DEF DEB BEC ABC S S S S =⨯=⨯⨯=⨯⨯⨯=△△△△,而211323CDE ABC S S =⨯⨯=△△.所以则四边形DFEC 的面积等于512.【巩固】如图,已知BD DC =,2EC AE =,三角形ABC 的面积是30,求阴影部分面积.【解析】 题中条件只有三角形面积给出具体数值,其他条件给出的实际上是比例的关系,由此我们可以初步判断这道题不应该通过面积公式求面积. 又因为阴影部分是一个不规则四边形,所以我们需要对它进行改造,那么我们需要连一条辅助线,(法一)连接CF ,因为BD DC =,2EC AE =,三角形ABC 的面积是30,所以1103ABE ABC S S ==△△,1152ABD ABC S S ==△△.根据燕尾定理,12ABF CBF S AE S EC ==△△,1ABF ACF S BDS CD==△△,所以17.54ABF ABC S S ==△△,157.57.5BFD S =-=△,所以阴影部分面积是30107.512.5--=.(法二)连接DE ,由题目条件可得到1103ABE ABC S S ==△△,11210223BDE BEC ABC S S S ==⨯=△△△,所以11ABE BDE S AF FD S ==△△, 1111112.5223232DEF DEA ADC ABC S S S S =⨯=⨯⨯=⨯⨯⨯=△△△△,而211032CDE ABC S S =⨯⨯=△△.所以阴影部分的面积为12.5.【巩固】如图,三角形ABC 的面积是2200cm ,E 在AC 上,点D 在BC 上,且:3:5AE EC =,:2:3BD DC =,AD 与BE 交于点F .则四边形DFEC 的面积等于 .FED CBAABC DEF FEDCBA【解析】 连接CF ,根据燕尾定理,2639ABF ACF S BD S DC ===△△,36510ABF CBF S AE S EC ===△△, 设6ABF S =△份,则9ACF S =△份,10BCF S =△份,5459358EFC S =⨯=+△份,310623CDF S =⨯=+△份,所以24545200(6910)(6)8(6)93(cm )88DCFE S =÷++⨯+=⨯+=【巩固】如图,已知3BD DC =,2EC AE =,BE 与CD 相交于点O ,则ABC △被分成的4部分面积各占ABC △面积的几分之几?OE DCBA13.54.59211213O E D CBA【解析】 连接CO ,设1AEO S =△份,则其他部分的面积如图所示,所以1291830ABC S =+++=△份,所以四部分按从小到大各占ABC △面积的12 4.5139313.59,,,30306030103020+===【巩固】(2007年香港圣公会数学竞赛)如图所示,在ABC △中,12CP CB =,13CQ CA =,BQ 与AP 相交于点X ,若ABC △的面积为6,则ABX △的面积等于 .XQPABC XQPAB C4411XQPCBA【解析】 方法一:连接PQ .由于12CP CB =,13CQ CA =,所以23ABQABC SS =,1126BPQ BCQ ABCS S S ==.由蝴蝶定理知,21:::4:136ABQ BPQ ABC ABC AX XP S S S S ===,所以441226 2.455255ABX ABP ABC ABC S S S S ==⨯==⨯=.方法二:连接CX 设1CPX S =△份,根据燕尾定理标出其他部分面积,所以6(1144)4 2.4ABX S =÷+++⨯=△【巩固】如图,三角形ABC 的面积是1,2BD DC =,2CE AE =,AD 与BE 相交于点F ,请写出这4部分的面积各是多少?ABCDE F48621ABCDEF【解析】 连接CF ,设1AEF S =△份,则其他几部分面积可以有燕尾定理标出如图所示,所以121AEF S =△,62217ABF S ==△,821BDF S =△,242217FDCE S +==【巩固】如图,E 在AC 上,D 在BC 上,且:2:3AE EC =,:1:2BD DC =,AD 与BE 交于点F .四边形DFEC的面积等于222cm ,则三角形ABC 的面积 .A BCDE FA BCDEF 2.41.62A BC DE F 12【解析】 连接CF ,根据燕尾定理,12ABF ACF S BD S DC ==△△,23ABF CBF S AE S EC ==△△, 设1BDF S =△份,则2DCF S =△份,2ABF S =△份,4AFC S =△份,24 1.623AEF S =⨯=+△ 份,34 2.423EFC S =⨯=+△份,如图所标,所以2 2.4 4.4EFDC S =+=份,2349ABC S =++=△份 所以222 4.4945(cm )ABCS =÷⨯=△【巩固】三角形ABC 中,C 是直角,已知2AC =,2CD =,3CB =,AM BM =,那么三角形AMN (阴影部分)的面积为多少?【解析】 连接BN .ABC △的面积为3223⨯÷=根据燕尾定理,::2:1ACN ABN CD BD ==△△; 同理::1:1CBN CAN BM AM ==△△设AMN △面积为1份,则MNB △的面积也是1份,所以ANB △的面积是112+=份,而ACN △的面积就是224⨯=份,CBN △也是4份,这样ABC △的面积为441110+++=份,所以AMN △的面积为31010.3÷⨯=.【巩固】如图,长方形ABCD 的面积是2平方厘米,2EC DE =,F 是DG 的中点.阴影部分的面积是多少平方厘米?yB CDEGEDCBAEDBA【解析】设1DEFS=△份,则根据燕尾定理其他面积如图所示551212BCDS S==△阴影平方厘米.【例 2】如图所示,在四边形ABCD中,3AB BE=,3AD AF=,四边形AEOF的面积是12,那么平行四边形BODC的面积为________.OFE DCBA684621OFE DCBA【解析】连接,AO BD,根据燕尾定理::1:2ABO BDOS S AF FD==△△,::2:1AOD BODS S AE BE==△△,设1BEOS=△,则其他图形面积,如图所标,所以221224BODC AEOFS S==⨯=.【例 3】ABCD是边长为12厘米的正方形,E、F分别是AB、BC边的中点,AF与CE交于G,则四边形AGCD的面积是_________平方厘米.GFED CBAGFED CBA【解析】连接AC、GB,设1AGCS=△份,根据燕尾定理得1AGBS=△份,1BGCS=△份,则11126S=++⨯=正方形()份,314ADCGS=+=份,所以22126496(cm)ADCGS=÷⨯=【例 4】如图,正方形ABCD的面积是120平方厘米,E是AB的中点,F是BC的中点,四边形BGHF的面积是_____平方厘米.EDCBEDCB【解析】连接BH,根据沙漏模型得:1:2BG GD=,设1BHCS=△份,根据燕尾定理2CHDS=△份,2BHDS=△份,因此122)210S=++⨯=正方形(份,127236BFHGS=+=,所以712010146BFHGS=÷⨯=(平方厘米). 【例 5】如图所示,在ABC△中,:3:1BE EC=,D是AE的中点,那么:AF FC=.FE D C B AFE DCB A【解析】 连接CD .由于:1:1ABD BED S S =△△,:3:4BED BCD S S =△△,所以:3:4ABD BCD S S =△△,根据燕尾定理,::3:4ABD BCD AF FC S S ==△△.【巩固】在ABC ∆中,:3:2BD DC =, :3:1AE EC =,求:OB OE =?A BCDE OABCDE O【解析】 连接OC .因为:3:2BD DC =,根据燕尾定理,::3:2AOB AOC S S BD BC ∆∆==,即32AOB AOC S S ∆∆=; 又:3:1AE EC =,所以43AOC AOE S S ∆∆=.则3342223AOB AOC AOE AOE S S S S ∆∆∆∆==⨯=, 所以::2:1AOB AOEOB OE S S ∆∆==.【巩固】在ABC ∆中,:2:1BD DC =, :1:3AE EC =,求:OB OE =?A B CDE O【解析】 题目求的是边的比值,一般来说可以通过分别求出每条边的值再作比值,也可以通过三角形的面积比来做桥梁,但题目没告诉我们边的长度,所以应该通过面积比而得到边长的比.本题的图形一看就联想到燕尾定理,但两个燕尾似乎少了一个,因此应该补全,所以第一步要连接OC . 连接OC .A B CDE O因为:2:1BD DC =,根据燕尾定理,::2:1AOB AOC S S BD BC ∆∆==,即2AOB AOC S S ∆∆=; 又:1:3AE EC =,所以4AOC AOE S S ∆∆=.则2248AOB AOC AOE AOE S S S S ∆∆∆∆==⨯=, 所以::8:1AOB AOE OB OE S S ∆∆==.【例 6】 (2009年清华附中入学测试题)如图,四边形ABCD 是矩形,E 、F 分别是AB 、BC 上的点,且13AE AB =,14CF BC =,AF 与CE 相交于G ,若矩形ABCD 的面积为120,则AEG ∆与CGF ∆的面积之和为 .BEH BEBE【解析】 (法1)如图,过F 做CE 的平行线交AB 于H ,则::1:3EH HB CF FB ==,所以122AE EB EH ==,::2AG GF AE EH ==,即2AG GF =,所以122311033942AEG ABF ABCD S S S ∆∆=⨯⨯=⨯⨯=.且22313342EG HF EC EC ==⨯=,故CG GE =,则1152CGF AEG S S ∆∆=⨯⨯=.所以两三角形面积之和为10515+=. (法2)如上右图,连接AC 、BG .根据燕尾定理,::3:1ABG ACG S S BF CF ∆∆==,::2:1BCG ACG S S BE AE ∆∆==,而1602ABC ABCD S S ∆==,所以3321ABG S ∆=++,160302ABC S ∆=⨯=,2321BCG S ∆=++,160203ABC S ∆=⨯=,则1103AEG ABG S S ∆∆==,154CFG BCG S S ∆∆==,所以两个三角形的面积之和为15.【例 7】 如右图,三角形ABC 中,:4:9BD DC =,:4:3CE EA =,求:AF FB .O F EDCBA【解析】 根据燕尾定理得::4:912:27AOB AOC S S BD CD ===△△::3:412:16AOB BOC S S AE CE ===△△(都有AOB △的面积要统一,所以找最小公倍数) 所以:27:16:AOC BOC S S AF FB ==△△【点评】本题关键是把AOB △的面积统一,这种找最小公倍数的方法,在我们用比例解题中屡见不鲜,如果能掌握它的转化本质,我们就能达到解奥数题四两拨千斤的巨大力量!【巩固】如右图,三角形ABC 中,:3:4BD DC =,:5:6AE CE =,求:AF FB .O F EDCBA【解析】 根据燕尾定理得::3:415:20AOB AOC S S BD CD ===△△ ::5:615:18AOB BOC S S AE CE ===△△(都有AOB △的面积要统一,所以找最小公倍数)所以:20:1810:9:AOC BOC S S AF FB ===△△【巩固】如图,:2:3BD DC =,:5:3AE CE =,则:AF BF =GF EDCBA【解析】 根据燕尾定理有:2:310:15ABG ACG S S ==△△,:5:310:6ABG BCGS S ==△△,所以:15:65:2:ACG BCG S S AF BF ===△△【巩固】如右图,三角形ABC 中,:2:3BD DC =,:5:4EA CE =,求:AF FB .O F EDCBA【解析】 根据燕尾定理得::2:310:15AOB AOC S S BD CD ===△△::5:410:8AOB BOC S S AE CE ===△△(都有AOB △的面积要统一,所以找最小公倍数) 所以:15:8:AOC BOC S S AF FB ==△△【点评】本题关键是把AOB △的面积统一,这种找最小公倍数的方法,在我们用比例解题中屡见不鲜,如果能掌握它的转化本质,我们就能达到解奥数题四两拨千斤的巨大力量!【例 8】 (2008年“学而思杯”六年级数学试题)如右图,三角形ABC 中,:::3:2AF FB BD DC CE AE ===,且三角形ABC 的面积是1,则三角形ABE 的面积为______,三角形AGE 的面积为________,三角形GHI 的面积为______.I HGFEDC BAI HG FEDCBA【分析】 连接AH 、BI 、CG .由于:3:2CE AE =,所以25AE AC =,故2255ABE ABC S S ∆∆==; 根据燕尾定理,::2:3ACG ABG S S CD BD ∆∆==,::3:2BCG ABG S S CE EA ∆∆==,所以::4:6:9ACG ABG BCG S S S ∆∆∆=,则419ACG S ∆=,919BCG S ∆=;那么2248551995AGE AGC S S ∆∆==⨯=;同样分析可得919ACH S ∆=,则::4:9ACG ACH EG EH S S ∆∆==,::4:19ACG ACB EG EB S S ∆∆==,所以::4:5:10EG GH HB =,同样分析可得::10:5:4AG GI ID =,所以5521101055BIE BAE S S ∆∆==⨯=,55111919519GHI BIE S S ∆∆==⨯=.【巩固】 如右图,三角形ABC 中,:::3:2AF FB BD DC CE AE ===,且三角形GHI 的面积是1,求三角形ABC 的面积.IH G FEDCBAIH G FEDCBA【解析】 连接BG ,AGC S △=6份根据燕尾定理,::3:26:4AGC BGC S S AF FB ===△△,::3:29:6ABG AGC S S BD DC ===△△得4BGC S =△(份),9ABG S =△(份),则19ABC S =△(份),因此619AGC ABC S S =△△,同理连接AI 、CH 得619ABH ABC S S =△△,619BIC ABC S S =△△, 所以1966611919GHI ABC S S ---==△△ 三角形GHI 的面积是1,所以三角形ABC 的面积是19【巩固】(2009年第七届“走进美妙的数学花园”初赛六年级)如图,ABC ∆中2BD DA =,2CE EB =,2AF FC =,那么ABC ∆的面积是阴影三角形面积的 倍.BCB【分析】 如图,连接AI .根据燕尾定理,::2:1BCI ACI S S BD AD ∆∆==,::1:2BCI ABI S S CF AF ∆∆==,所以,::1:2:4ACI BCI ABI S S S ∆∆∆=,那么,221247BCI ABC ABC S S S ∆∆∆==++.同理可知ACG ∆和ABH ∆的面积也都等于ABC ∆面积的27,所以阴影三角形的面积等于ABC ∆面积的211377-⨯=,所以ABC ∆的面积是阴影三角形面积的7倍.【巩固】如图在ABC △中,12DC EA FB DB EC FA ===,求GHI ABC △的面积△的面积的值. IHG FEDCBAIHG FEDCB A【解析】 连接BG ,设BGC S △=1份,根据燕尾定理::2:1AGC BGCS S AF FB ==△△,::2:1ABG AGC S S BD DC ==△△,得2AGC S =△(份),4ABG S =△(份),则7ABC S =△(份),因此27AGC ABC S S =△△,同理连接AI 、CH 得27ABH ABC S S =△△,27BIC ABC S S =△△, 所以7222177GHI ABC S S ---==△△ 【点评】如果任意一个三角形各边被分成的比是相同的,那么在同样的位置上的图形,虽然形状千变万化,但面积是相等的,这在这讲里面很多题目都是用“同理得到”的,即再重复一次解题思路,因此我们有对称法作辅助线.【巩固】如图在ABC △中,13DC EA FB DB EC FA ===,求GHI ABC △的面积△的面积的值. IHG FEDCBAIH G FEDCB A【解析】 连接BG ,设BGC S △=1份,根据燕尾定理::3:1AGC BGC S S AF FB ==△△,::3:1ABG AGC S S BD DC ==△△,得3AGC S =△(份),9ABG S =△(份),则13ABC S =△(份),因此313AGC ABC S S =△△,同理连接AI 、CH 得13ABH ABC S S =△△,313BIC ABC S S =△△, 所以1333341313GHI ABC S S ---==△△【巩固】如右图,三角形ABC 中,:::4:3AF FB BD DC CE AE ===,且三角形ABC 的面积是74,求角形GHI的面积.IH G FEDCBAIH G FEDCBA【解析】 连接BG ,AGC S △=12份根据燕尾定理,::4:312:9AGC BGC S S AF FB ===△△,::4:316:12ABG AGC S S BD DC ===△△得9BGC S =△(份),16ABG S =△(份),则9121637ABC S =++=△(份),因此1237AGC ABC S S =△△,同理连接AI 、CH 得1237ABH ABC S S =△△,1237BIC ABC S S =△△, 所以3712121213737GHI ABC S S ---==△△ 三角形ABC 的面积是74,所以三角形GHI 的面积是174237⨯=【例 9】 两条线段把三角形分为三个三角形和一个四边形,如图所示, 三个三角形的面积 分别是3,7,7,则阴影四边形的面积是多少?【解析】方法一:遇到没有标注字母的图形,我们第一步要做的就是给图形各点标注字母,方便后面的计算.再看这道题,出现两个面积相等且共底的三角形.设三角形为ABC,BE和CD交于F,则BF FE=,再连结DE.所以三角形DEF的面积为3.设三角形ADE的面积为x,则()():33:10:10x AD DB x+==+,所以15x=,四边形的面积为18.方法二:设ADFS x=△,根据燕尾定理::ABF BFC AFE EFCS S S S=△△△△,得到3AEFS x=+△,再根据向右下飞的燕子,有(37):7:3x x++=,解得7.5x=四边形的面积为7.57.5318++=【巩固】右图的大三角形被分成5个小三角形,其中4个的面积已经标在图中,那么,阴影三角形的面积是.【解析】方法一:整个题目读完,我们没有发现任何与边长相关的条件,也没有任何与高或者垂直有关系的字眼,由此,我们可以推断,这道题不能依靠三角形面积公式求解.我们发现右图三角形中存在一个比例关系:()2:13:4S=+阴影,解得2S=阴影.方法二:回顾下燕尾定理,有2:41:3S+=阴影(),解得2S=阴影.【例 10】如图,三角形ABC被分成6个三角形,已知其中4个三角形的面积,问三角形ABC的面积是多少?35304084OFED CBA【解析】设BOFS x=△,由题意知:4:3BD DC=根据燕尾定理,得::4:3ABO ACO BDO CDOS S S S==△△△△,所以33(84)6344ACOS x x=⨯+=+△,再根据::ABO BCO AOE COES S S S=△△△△,列方程3(84):(4030)(6335):354x x++=+-解得56x=:35(5684):(4030)AOES=++△,所以70AOES=△所以三角形ABC的面积是844030355670315+++++=【例 11】三角形ABC的面积为15平方厘米,D为AB中点,E为AC中点,F为BC中点,求阴影部分的面积.F CBAF CBA【解析】 令BE 与CD 的交点为M ,CD 与EF 的交点为N ,连接AM ,BN .在ABC △中,根据燕尾定理,::1:1ABM BCM S S AE CE ==△△,::1:1ACM BCM S S AD BD ==△△,所以13ABM ACM BCN ABC S S S S ===△△△△由于1122AEM AMC ABM S S S ==△△△S ,所以:2:1BM ME =在EBC △中,根据燕尾定理,::1:1BEN CEN S S BF CF ==△△::1:2CEN CBN S S ME MB ==△△设1CEN S =△(份),则1BEN S =△(份),2BCN S =△(份),4BCE S =△(份),所以1124BCN BCE ABC S S S ==△△△,1148BNE BCE ABC S S S ==△△△,因为:2:1BM ME =,F 为BC 中点,所以221133812BMN BNE ABC ABC S S S S ==⨯=△△△△,11112248BFN BNC ABC S S S ==⨯=△△△,所以115515 3.1251282424ABC ABC S S S ⎛⎫=+==⨯= ⎪⎝⎭△△阴影(平方厘米)【例 12】 如右图,ABC △中,G 是AC 的中点,D 、E 、F 是BC 边上的四等分点,AD 与BG 交于M ,AF 与BG 交于N ,已知ABM △的面积比四边形FCGN 的面积大7.2平方厘米,则ABC △的面积是多少平方厘米?N M GA BCD EFNMGA BCD EF【解析】 连接CM 、CN .根据燕尾定理,::1:1ABM CBM S S AG GC ==△△,::1:3ABM ACM S S BD CD ==△△,所以15ABM ABC S S =△△;再根据燕尾定理,::1:1ABN CBN S S AG GC ==△△,所以::4:3ABN FBN CBN FBN S S S S ==△△△△,所以:4:3AN NF =,那么1422437ANG AFC S S =⨯=+△△,所以2515177428FCGN AFC ABC ABC S S S S ⎛⎫=-=⨯= ⎪⎝⎭△△△.根据题意,有157.2528ABCABC S S -=△△,可得336ABC S =△(平方厘米)【巩固】(2007年四中分班考试题)如图,ABC ∆中,点D 是边AC 的中点,点E 、F 是边BC 的三等分点,若ABC ∆的面积为1,那么四边形CDMF 的面积是_________.F ABCDEM NFABCDE MN【解析】 由于点D 是边AC 的中点,点E 、F 是边BC 的三等分点,如果能求出BN 、NM 、MD 三段的比,那么所分成的六小块的面积都可以求出来,其中当然也包括四边形CDMF 的面积. 连接CM 、CN .根据燕尾定理,::2:1ABM ACM S S BF CF ∆∆==,而2ACM ADM S S ∆∆=,所以24ABM ACM ADM S S S ∆∆∆==,那么4BM DM =,即45BM BD =.那么421453215BMF BCD BM BF S S BD BC ∆∆=⨯⨯=⨯⨯=,14721530CDMF S =-=四边形. 另解:得出24ABM ACM ADM S S S ∆∆∆==后,可得111155210ADM ABD S S ∆∆==⨯=,则11731030ACF ADM CDMF S S S ∆∆=-=-=四边形.【例 13】 如图,三角形ABC 的面积是1,BD DE EC ==,CF FG GA ==,三角形ABC 被分成9部分,请写出这9部分的面积各是多少?GFE D CBAN MQPGF EDCBA【解析】 设BG 与AD 交于点P ,BG 与AE 交于点Q ,BF 与AD 交于点M ,BF 与AE 交于点N .连接CP ,CQ ,CM ,CN .根据燕尾定理,::1:2ABP CBP S S AG GC ==△△,::1:2ABP ACP S S BD CD ==△△,设1ABP S =△(份),则1225ABC S =++=△(份),所以15ABP S =△同理可得,27ABQ S =△,12ABN S =△,而13ABG S =△,所以2137535APQ S =-=△,1213721AQG S =-=△.同理,335BPM S =△121BDM S =△,所以1239273570PQMN S =--=四边形,139********MNED S =--=四边形,1151321426NFCE S =--=四边形,1115321642GFNQ S =--=四边形【巩固】如图,ABC ∆的面积为1,点D 、E 是BC 边的三等分点,点F 、G 是AC 边的三等分点,那么四边形JKIH 的面积是多少?K JI HABC D EF GKJI HA BCD EFG【解析】 连接CK 、CI 、CJ .根据燕尾定理,::1:2ACK ABK S S CD BD ∆∆==,::1:2ABK CBK S S AG CG ∆∆==,所以::1:2:4ACK ABK CBK S S S ∆∆∆=,那么111247ACK S ∆==++,11321AGK ACK S S ∆∆==.类似分析可得215AGI S ∆=.又::2:1ABJ CBJ S S AF CF ∆∆==,::2:1ABJ ACJ S S BD CD ∆∆==,可得14ACJ S ∆=. 那么,111742184CGKJ S =-=. 根据对称性,可知四边形CEHJ 的面积也为1784,那么四边形JKIH 周围的图形的面积之和为172161228415370CGKJ AGI ABES S S ∆∆⨯++=⨯++=,所以四边形JKIH 的面积为61917070-=.【例 14】 如右图,面积为1的ABC △中,::1:2:1BD DE EC =,::1:2:1CF FG GA =,::1:2:1AH HI IB =,求阴影部分面积.CBB【解析】 设IG 交HF 于M ,IG 交HD 于N ,DF 交EI 于P .连接AM , IF .∵:3:4AI AB =,:3:4AF AC =,916AIF ABC S S ∴=△△∵::2FIM AMF S S IH HA ==△△,::2FIM AIM S S FG GA ==△△,∴19464AIM AIF ABC S S S ==△△△ ∵:1:3AH AI = ∴364AHM ABC S S =△△,∵:1:4AH AB = :3:4AF AC = ∴316AHF ABC S S =△△ .同理 316CFD BDH ABC S S S ==△△△ ∴716FDH ABC S S =△△ 33::1:46416HM HF ==,∵ :3:4,:3:4AI AB AF AC ==, ∴IF BC ∥ ,又∵:3:4,:1:2IF BC DE BC ==,∴:2:3,:2:3DE IF DP PF ==,同理 :2:3HN ND =,∵:1:4HM HF =,∴:2:5HN HD =,∴17710160160HMN HDF ABC S S S ===△△△. 同理 6个小阴影三角形的面积均为7160.阴影部分面积721616080=⨯=.【例 15】 如图,面积为l 的三角形ABC 中,D 、E 、F 、G 、H 、I 分别是AB 、BC 、CA 的三等分点,求阴影部分面积.GCBAGCBA【解析】 三角形在开会,那么就好好利用三角形中最好用的比例和燕尾定理吧!令BI 与CD 的交点为M ,AF 与CD 的交点为N ,BI 与AF 的交点为P ,BI 与CE 的交点为Q ,连接AM 、BN 、CP⑴求ADMI S 四边形:在ABC △中,根据燕尾定理,::1:2ABM CBM S S AI CI ==△△::1:2ACM CBM S S AD BD ==△△设1ABM S =△(份),则2CBM S =△(份),1ACM S =△(份),4ABC S =△(份),所以14ABM ACM ABC S S S ==△△△,所以11312ADM ABM ABC S S S ==△△△,112AIM ABC S S =△△,所以111()12126ABC ABC ADMI S S S =+=△△四边形,同理可得另外两个顶点的四边形面积也分别是ABC △面积的16⑵求DNPQE S 五边形:在ABC △中,根据燕尾定理::1:2ABN ACN S S BF CF ==△△::1:2ACN BCN S S AD BD ==△△,所以111133721ADN ABN ABC ABC S S S S ==⨯=△△△△,同理121BEQ ABC S S =△△在ABC △中,根据燕尾定理::1:2ABP ACP S S BF CF ==△△,::1:2ABP CBP S S AI CI ==△△所以15ABP ABC S S =△△所以1111152121105ABP ADN BEP ABC ABC DNPQE S S S S S S ⎛⎫=--=--=⎪⎝⎭△△△△△五边形 同理另外两个五边形面积是ABC △面积的11105所以11113133610570S =-⨯-⨯=阴影【例 16】 如图,面积为l 的三角形ABC 中,D 、E 、F 、G 、H 、I 分别是AB 、BC 、CA 的三等分点,求中心六边形面积.GCBAGCBA【解析】 设深黑色六个三角形的顶点分别为N 、R 、P 、S 、M 、Q ,连接CR在ABC △中根据燕尾定理,::.2:1ABR ACR S S BG CG ==△△,::1:2ABR CBR S S AI CI ==△△所以27ABR ABC S S =△△,同理27ACS ABC S S =△△,27CQB ABC S S =△△所以222117777RQS S =---=△同理17MNP S =△根据容斥原理,和上题结果11131777010S =+-=六边形【例 17】(2009年数学解题能力大赛六年级初试试题)正六边形1A ,2A ,3A ,4A ,5A ,6A 的面积是2009平方厘米,1B ,2B ,3B ,4B ,5B ,6B 分别是正六边形各边的中点;那么图中阴影六边形的面积是 平方厘米.A 4B 5A 3A 45A 3【解析】 (方法一)因为空白的面积等于23A A G △面积的6倍,所以关键求23A A G △的面积,根据燕尾定理可得2312333117732A A G A A A S S S ==⨯⨯△△正六边形,但在123A A A △用燕尾定理时,需要知道13,A D A D 的长度比,连接1363,A A A A ,1A G ,过6B 作12A A 的平行线,交13A A 于E ,根据沙漏模型得1A D DE =,再根据金字塔模型得13A E A E =,因此13:1:3A D A D =,在123A A A △中,设121A A G S =△份,则233A A G S =△份,313A A G S =△份,所以2312333111773214A A G A A A S S S S ==⨯⨯=△△正六边形正六边形,因此141620091148147S S =-⨯=⨯=阴影正六边形()(平方厘米)(方法二)既然给的图形是特殊的正六边形,且阴影也是正六边形我们可以用下图的割补思路,把正六边形分割成14个大小形状相同的梯形,其中阴影有8个梯形,所以阴影面积为82009114814⨯=(平方厘米)FA 3A【例 18】已知四边形ABCD ,CHFG 为正方形,:1:8S S =乙甲,a 与b 是两个正方形的边长,求:?a b =baEDA baNMHFED【解析】 观察图形,感觉阴影部分像蝴蝶定理,但是细细分析发现用蝴蝶定理无法继续往下走,注意到题目条件中给出了两个正方形的边长,有边长就可以利用比例,再发现在连接辅助线后可以利用燕尾,那么我们就用燕尾定理来求解 连接EO 、AF ,根据燕尾定理:::AOE AOF S S a b =△△,::AOF EOF S S a b =△△所以 22::AOE EOF S S a b =△△,作OM ⊥AE 、ON ⊥EF , ∵AE =EF∴22::OM ON a b =∴33::1:8S S a b ==乙甲 ∴:1:2a b =精品文档考试教学资料施工组织设计方案精品文档考试教学资料施工组织设计方案。
小学奥数-几何五大模型(燕尾模型)
燕尾定理:在三角形ABC 中,AD ,BE ,CF 相交于同一点O , 那么,::ABO ACO S S BD DC ∆∆=OFE DCBA上述定理给出了一个新的转化面积比与线段比的手段,因为ABO ∆和ACO ∆的形状很象燕子的尾巴,所以这个定理被称为燕尾定理.该定理在许多几何题目中都有着广泛的运用,它的特殊性在于,它可以存在于任何一个三角形之中,为三角形中的三角形面积对应底边之间提供互相联系的途径.通过一道例题 证明燕尾定理:如右图,D 是BC 上任意一点,请你说明:1423:::S S S S BD DC ==S 3S 1S 4S 2EDCBA【解析】 三角形BED 与三角形CED 同高,分别以BD 、DC 为底,所以有14::S S BD DC =;三角形ABE 与三角形EBD 同高,12::S S ED EA =;三角形ACE 与三角形CED 同高,43::S S ED EA =,所以1423::S S S S =;综上可得, 1423:::S S S S BD DC ==.例题精讲燕尾定理【例 1】 (2009年第七届希望杯五年级一试试题)如图,三角形ABC 的面积是1,E 是AC 的中点,点D 在BC 上,且:1:2BD DC =,AD 与BE 交于点F .则四边形DFEC 的面积等于 .FED CBA33321F E DC BAABCDEF【解析】 方法一:连接CF ,根据燕尾定理,12ABF ACF S BD S DC ==△△,1ABF CBF S AES EC==△△,设1BDF S =△份,则2DCF S =△份,3ABF S =△份,3AEF EFC S S ==△△份,如图所标所以551212DCEF ABC S S ==△方法二:连接DE ,由题目条件可得到1133ABD ABC S S ==△△,11212233ADE ADC ABC S S S ==⨯=△△△,所以11ABD ADE S BF FE S ==△△, 111111122323212DEF DEB BEC ABC S S S S =⨯=⨯⨯=⨯⨯⨯=△△△△,而211323CDE ABC S S =⨯⨯=△△.所以则四边形DFEC 的面积等于512.【巩固】如图,已知BD DC =,2EC AE =,三角形ABC 的面积是30,求阴影部分面积.【解析】 题中条件只有三角形面积给出具体数值,其他条件给出的实际上是比例的关系,由此我们可以初步判断这道题不应该通过面积公式求面积. 又因为阴影部分是一个不规则四边形,所以我们需要对它进行改造,那么我们需要连一条辅助线,(法一)连接CF ,因为BD DC =,2EC AE =,三角形ABC 的面积是30,所以1103ABE ABC S S ==△△,1152ABD ABC S S ==△△.根据燕尾定理,12ABF CBF S AE S EC ==△△,1ABF ACF S BDS CD==△△,所以17.54ABF ABC S S ==△△,157.57.5BFD S =-=△,所以阴影部分面积是30107.512.5--=.(法二)连接DE ,由题目条件可得到1103ABE ABC S S ==△△,11210223BDE BEC ABC S S S ==⨯=△△△,所以11ABE BDE S AF FD S ==△△, 1111112.5223232DEF DEA ADC ABC S S S S =⨯=⨯⨯=⨯⨯⨯=△△△△,而211032CDE ABC S S =⨯⨯=△△.所以阴影部分的面积为12.5.【巩固】如图,三角形ABC 的面积是2200cm ,E 在AC 上,点D 在BC 上,且:3:5AE EC =,:2:3BD DC =,AD 与BE 交于点F .则四边形DFEC 的面积等于 .FED CBAABC DEF FEDCBA【解析】 连接CF ,根据燕尾定理,2639ABF ACF S BD S DC ===△△,36510ABF CBF S AE S EC ===△△, 设6ABF S =△份,则9ACF S =△份,10BCF S =△份,5459358EFC S =⨯=+△份,310623CDF S =⨯=+△份,所以24545200(6910)(6)8(6)93(cm )88DCFE S =÷++⨯+=⨯+=【巩固】如图,已知3BD DC =,2EC AE =,BE 与CD 相交于点O ,则ABC △被分成的4部分面积各占ABC △面积的几分之几?OE DCBA13.54.59211213O E D CBA【解析】 连接CO ,设1AEO S =△份,则其他部分的面积如图所示,所以1291830ABC S =+++=△份,所以四部分按从小到大各占ABC △面积的12 4.5139313.59,,,30306030103020+===【巩固】(2007年圣公会数学竞赛)如图所示,在ABC △中,12CP CB =,13CQ CA =,BQ 与AP 相交于点X ,若ABC △的面积为6,则ABX △的面积等于 .XQPABC XQPABC4411XQPCBA【解析】 方法一:连接PQ .由于12CP CB =,13CQ CA =,所以23ABQ ABC S S =V V ,1126BPQ BCQ ABC S S S ==V V V .由蝴蝶定理知,21:::4:136ABQ BPQ ABC ABC AX XP S S S S ===V V V V ,所以441226 2.455255ABX ABP ABC ABC S S S S ==⨯==⨯=V V V V .方法二:连接CX 设1CPX S =△份,根据燕尾定理标出其他部分面积,所以6(1144)4 2.4ABX S =÷+++⨯=△【巩固】如图,三角形ABC 的面积是1,2BD DC =,2CE AE =,AD 与BE 相交于点F ,请写出这4部分的面积各是多少?ABCDE F48621ABCDEF【解析】 连接CF ,设1AEF S =△份,则其他几部分面积可以有燕尾定理标出如图所示,所以121AEF S =△,62217ABF S ==△,821BDF S =△,242217FDCE S +==【巩固】如图,E 在AC 上,D 在BC 上,且:2:3AE EC =,:1:2BD DC =,AD 与BE 交于点F .四边形DFEC的面积等于222cm ,则三角形ABC 的面积 .A BCDE FA BCDEF 2.41.62A BC DE F 12【解析】 连接CF ,根据燕尾定理,12ABF ACF S BD S DC ==△△,23ABF CBF S AE S EC ==△△, 设1BDF S =△份,则2DCF S =△份,2ABF S =△份,4AFC S =△份,24 1.623AEF S =⨯=+△ 份,34 2.423EFC S =⨯=+△份,如图所标,所以2 2.4 4.4EFDC S =+=份,2349ABC S =++=△份 所以222 4.4945(cm )ABCS =÷⨯=△【巩固】三角形ABC 中,C 是直角,已知2AC =,2CD =,3CB =,AM BM =,那么三角形AMN (阴影部分)的面积为多少?【解析】 连接BN .ABC △的面积为3223⨯÷=根据燕尾定理,::2:1ACN ABN CD BD ==△△; 同理::1:1CBN CAN BM AM ==△△设AMN △面积为1份,则MNB △的面积也是1份,所以ANB △的面积是112+=份,而ACN △的面积就是224⨯=份,CBN △也是4份,这样ABC △的面积为441110+++=份,所以AMN △的面积为31010.3÷⨯=.【巩固】如图,长方形ABCD 的面积是2平方厘米,2EC DE =,F 是DG 的中点.阴影部分的面积是多少平方厘米?yB CDEGEDCBAEDBA【解析】设1DEFS=△份,则根据燕尾定理其他面积如图所示551212BCDS S==△阴影平方厘米.【例 2】如图所示,在四边形ABCD中,3AB BE=,3AD AF=,四边形AEOF的面积是12,那么平行四边形BODC的面积为________.OFE DBA684621OFE DBA【解析】连接,AO BD,根据燕尾定理::1:2ABO BDOS S AF FD==△△,::2:1AOD BODS S AE BE==△△,设1BEOS=△,则其他图形面积,如图所标,所以221224BODC AEOFS S==⨯=.【例 3】ABCD是边长为12厘米的正方形,E、F分别是AB、BC边的中点,AF与CE交于G,则四边形AGCD的面积是_________平方厘米.GFED CBAGFED CBA【解析】连接AC、GB,设1AGCS=△份,根据燕尾定理得1AGBS=△份,1BGCS=△份,则11126S=++⨯=正方形()份,314ADCGS=+=份,所以22126496(cm)ADCGS=÷⨯=【例 4】如图,正方形ABCD的面积是120平方厘米,E是AB的中点,F是BC的中点,四边形BGHF的面积是_____平方厘米.EDCBEDCB【解析】连接BH,根据沙漏模型得:1:2BG GD=,设1BHCS=△份,根据燕尾定理2CHDS=△份,2BHDS=△份,因此122)210S=++⨯=正方形(份,127236BFHGS=+=,所以712010146BFHGS=÷⨯=(平方厘米). 【例 5】如图所示,在ABC△中,:3:1BE EC=,D是AE的中点,那么:AF FC=.FE D C B AFE DCB A【解析】 连接CD .由于:1:1ABD BED S S =△△,:3:4BED BCD S S =△△,所以:3:4ABD BCD S S =△△,根据燕尾定理,::3:4ABD BCD AF FC S S ==△△.【巩固】在ABC ∆中,:3:2BD DC =, :3:1AE EC =,求:OB OE =?A BCDE OABCDE O【解析】 连接OC .因为:3:2BD DC =,根据燕尾定理,::3:2AOB AOC S S BD BC ∆∆==,即32AOB AOC S S ∆∆=; 又:3:1AE EC =,所以43AOC AOE S S ∆∆=.则3342223AOB AOC AOE AOE S S S S ∆∆∆∆==⨯=, 所以::2:1AOB AOEOB OE S S ∆∆==.【巩固】在ABC ∆中,:2:1BD DC =, :1:3AE EC =,求:OB OE =?A B CDE O【解析】 题目求的是边的比值,一般来说可以通过分别求出每条边的值再作比值,也可以通过三角形的面积比来做桥梁,但题目没告诉我们边的长度,所以应该通过面积比而得到边长的比.本题的图形一看就联想到燕尾定理,但两个燕尾似乎少了一个,因此应该补全,所以第一步要连接OC . 连接OC .A B CDE O因为:2:1BD DC =,根据燕尾定理,::2:1AOB AOC S S BD BC ∆∆==,即2AOB AOC S S ∆∆=; 又:1:3AE EC =,所以4AOC AOE S S ∆∆=.则2248AOB AOC AOE AOE S S S S ∆∆∆∆==⨯=, 所以::8:1AOB AOE OB OE S S ∆∆==.【例 6】 (2009年清华附中入学测试题)如图,四边形ABCD 是矩形,E 、F 分别是AB 、BC 上的点,且13AE AB =,14CF BC =,AF 与CE 相交于G ,若矩形ABCD 的面积为120,则AEG ∆与CGF ∆的面积之和为 .BEH BEBE【解析】 (法1)如图,过F 做CE 的平行线交AB 于H ,则::1:3EH HB CF FB ==,所以122AE EB EH ==,::2AG GF AE EH ==,即2AG GF =,所以122311033942AEG ABF ABCD S S S ∆∆=⨯⨯=⨯⨯=X .且22313342EG HF EC EC ==⨯=,故CG GE =,则1152CGF AEG S S ∆∆=⨯⨯=.所以两三角形面积之和为10515+=. (法2)如上右图,连接AC 、BG .根据燕尾定理,::3:1ABG ACG S S BF CF ∆∆==,::2:1BCG ACG S S BE AE ∆∆==,而1602ABC ABCD S S ∆==X ,所以3321ABG S ∆=++,160302ABC S ∆=⨯=,2321BCG S ∆=++,160203ABC S ∆=⨯=,则1103AEG ABG S S ∆∆==,154CFG BCG S S ∆∆==,所以两个三角形的面积之和为15.【例 7】 如右图,三角形ABC 中,:4:9BD DC =,:4:3CE EA =,求:AF FB .O F EDCBA【解析】 根据燕尾定理得::4:912:27AOB AOC S S BD CD ===△△::3:412:16AOB BOC S S AE CE ===△△(都有AOB △的面积要统一,所以找最小公倍数) 所以:27:16:AOC BOC S S AF FB ==△△【点评】本题关键是把AOB △的面积统一,这种找最小公倍数的方法,在我们用比例解题中屡见不鲜,如果能掌握它的转化本质,我们就能达到解奥数题四两拨千斤的巨大力量!【巩固】如右图,三角形ABC 中,:3:4BD DC =,:5:6AE CE =,求:AF FB .O F EDCBA【解析】 根据燕尾定理得::3:415:20AOB AOC S S BD CD ===△△ ::5:615:18AOB BOC S S AE CE ===△△(都有AOB △的面积要统一,所以找最小公倍数) 所以:20:1810:9:AOC BOC S S AF FB ===△△【巩固】如图,:2:3BD DC =,:5:3AE CE =,则:AF BF =GF EDCBA【解析】 根据燕尾定理有:2:310:15ABG ACG S S ==△△,:5:310:6ABG BCGS S ==△△,所以:15:65:2:ACG BCG S S AF BF ===△△【巩固】如右图,三角形ABC 中,:2:3BD DC =,:5:4EA CE =,求:AF FB .O F EDCBA【解析】 根据燕尾定理得::2:310:15AOB AOC S S BD CD ===△△::5:410:8AOB BOC S S AE CE ===△△(都有AOB △的面积要统一,所以找最小公倍数) 所以:15:8:AOC BOC S S AF FB ==△△【点评】本题关键是把AOB △的面积统一,这种找最小公倍数的方法,在我们用比例解题中屡见不鲜,如果能掌握它的转化本质,我们就能达到解奥数题四两拨千斤的巨大力量!【例 8】 (2008年“学而思杯”六年级数学试题)如右图,三角形ABC 中,:::3:2AF FB BD DC CE AE ===,且三角形ABC 的面积是1,则三角形ABE 的面积为______,三角形AGE 的面积为________,三角形GHI 的面积为______.I HGFEDC BAI HG FEDCBA【分析】 连接AH 、BI 、CG .由于:3:2CE AE =,所以25AE AC =,故2255ABE ABC S S ∆∆==; 根据燕尾定理,::2:3ACG ABG S S CD BD ∆∆==,::3:2BCG ABG S S CE EA ∆∆==,所以::4:6:9ACG ABG BCG S S S ∆∆∆=,则419ACG S ∆=,919BCG S ∆=;那么2248551995AGE AGC S S ∆∆==⨯=;同样分析可得919ACH S ∆=,则::4:9ACG ACH EG EH S S ∆∆==,::4:19ACG ACB EG EB S S ∆∆==,所以::4:5:10EG GH HB =,同样分析可得::10:5:4AG GI ID =,所以5521101055BIE BAE S S ∆∆==⨯=,55111919519GHI BIE S S ∆∆==⨯=.【巩固】 如右图,三角形ABC 中,:::3:2AF FB BD DC CE AE ===,且三角形GHI 的面积是1,求三角形ABC 的面积.IH G FEDCBAIH G FEDCBA【解析】 连接BG ,AGC S △=6份根据燕尾定理,::3:26:4AGC BGC S S AF FB ===△△,::3:29:6ABG AGC S S BD DC ===△△得4BGC S =△(份),9ABG S =△(份),则19ABC S =△(份),因此619AGC ABC S S =△△,同理连接AI 、CH 得619ABH ABC S S =△△,619BIC ABC S S =△△, 所以1966611919GHI ABC S S ---==△△ 三角形GHI 的面积是1,所以三角形ABC 的面积是19【巩固】(2009年第七届“走进美妙的数学花园”初赛六年级)如图,ABC ∆中2BD DA =,2CE EB =,2AF FC =,那么ABC ∆的面积是阴影三角形面积的 倍.BCB【分析】 如图,连接AI .根据燕尾定理,::2:1BCI ACI S S BD AD ∆∆==,::1:2BCI ABI S S CF AF ∆∆==,所以,::1:2:4ACI BCI ABI S S S ∆∆∆=,那么,221247BCI ABC ABC S S S ∆∆∆==++.同理可知ACG ∆和ABH ∆的面积也都等于ABC ∆面积的27,所以阴影三角形的面积等于ABC ∆面积的211377-⨯=,所以ABC ∆的面积是阴影三角形面积的7倍.【巩固】如图在ABC △中,12DC EA FB DB EC FA ===,求GHI ABC △的面积△的面积的值. IHG FEDCBAIHG FEDCB A【解析】 连接BG ,设BGC S △=1份,根据燕尾定理::2:1AGC BGCS S AF FB ==△△,::2:1ABG AGC S S BD DC ==△△,得2AGC S =△(份),4ABG S =△(份),则7ABC S =△(份),因此27AGC ABC S S =△△,同理连接AI 、CH 得27ABH ABC S S =△△,27BIC ABC S S =△△, 所以7222177GHI ABC S S ---==△△ 【点评】如果任意一个三角形各边被分成的比是相同的,那么在同样的位置上的图形,虽然形状千变万化,但面积是相等的,这在这讲里面很多题目都是用“同理得到”的,即再重复一次解题思路,因此我们有对称法作辅助线.【巩固】如图在ABC △中,13DC EA FB DB EC FA ===,求GHI ABC △的面积△的面积的值. IHG FEDCBAIH G FEDCB A【解析】 连接BG ,设BGC S △=1份,根据燕尾定理::3:1AGC BGC S S AF FB ==△△,::3:1ABG AGC S S BD DC ==△△,得3AGC S =△(份),9ABG S =△(份),则13ABC S =△(份),因此313AGC ABC S S =△△,同理连接AI 、CH 得13ABH ABC S S =△△,313BIC ABC S S =△△, 所以1333341313GHI ABC S S ---==△△【巩固】如右图,三角形ABC 中,:::4:3AF FB BD DC CE AE ===,且三角形ABC 的面积是74,求角形GHI的面积.IH G FEDCBAIH G FEDCBA【解析】 连接BG ,AGC S △=12份根据燕尾定理,::4:312:9AGC BGC S S AF FB ===△△,::4:316:12ABG AGC S S BD DC ===△△得9BGC S =△(份),16ABG S =△(份),则9121637ABC S =++=△(份),因此1237AGC ABC S S =△△,同理连接AI 、CH 得1237ABH ABC S S =△△,1237BIC ABC S S =△△, 所以3712121213737GHI ABC S S ---==△△ 三角形ABC 的面积是74,所以三角形GHI 的面积是174237⨯=【例 9】 两条线段把三角形分为三个三角形和一个四边形,如图所示, 三个三角形的面积 分别是3,7,7,则阴影四边形的面积是多少?【解析】方法一:遇到没有标注字母的图形,我们第一步要做的就是给图形各点标注字母,方便后面的计算.再看这道题,出现两个面积相等且共底的三角形.设三角形为ABC,BE和CD交于F,则BF FE=,再连结DE.所以三角形DEF的面积为3.设三角形ADE的面积为x,则()():33:10:10x AD DB x+==+,所以15x=,四边形的面积为18.方法二:设ADFS x=△,根据燕尾定理::ABF BFC AFE EFCS S S S=△△△△,得到3AEFS x=+△,再根据向右下飞的燕子,有(37):7:3x x++=,解得7.5x=四边形的面积为7.57.5318++=【巩固】右图的大三角形被分成5个小三角形,其中4个的面积已经标在图中,那么,阴影三角形的面积是.【解析】方法一:整个题目读完,我们没有发现任何与边长相关的条件,也没有任何与高或者垂直有关系的字眼,由此,我们可以推断,这道题不能依靠三角形面积公式求解.我们发现右图三角形中存在一个比例关系:()2:13:4S=+阴影,解得2S=阴影.方法二:回顾下燕尾定理,有2:41:3S+=阴影(),解得2S=阴影.【例 10】如图,三角形ABC被分成6个三角形,已知其中4个三角形的面积,问三角形ABC的面积是多少?35304084OFED CBA【解析】设BOFS x=△,由题意知:4:3BD DC=根据燕尾定理,得::4:3ABO ACO BDO CDOS S S S==△△△△,所以33(84)6344ACOS x x=⨯+=+△,再根据::ABO BCO AOE COES S S S=△△△△,列方程3(84):(4030)(6335):354x x++=+-解得56x=:35(5684):(4030)AOES=++△,所以70AOES=△所以三角形ABC的面积是844030355670315+++++=【例 11】三角形ABC的面积为15平方厘米,D为AB中点,E为AC中点,F为BC中点,求阴影部分的面积.F CBAF CBA【解析】 令BE 与CD 的交点为M ,CD 与EF 的交点为N ,连接AM ,BN .在ABC △中,根据燕尾定理,::1:1ABM BCM S S AE CE ==△△,::1:1ACM BCM S S AD BD ==△△,所以13ABM ACM BCN ABC S S S S ===△△△△由于1122AEM AMC ABM S S S ==△△△S ,所以:2:1BM ME =在EBC △中,根据燕尾定理,::1:1BEN CEN S S BF CF ==△△::1:2CEN CBN S S ME MB ==△△设1CEN S =△(份),则1BEN S =△(份),2BCN S =△(份),4BCE S =△(份),所以1124BCN BCE ABC S S S ==△△△,1148BNE BCE ABC S S S ==△△△,因为:2:1BM ME =,F 为BC 中点,所以221133812BMN BNE ABC ABC S S S S ==⨯=△△△△,11112248BFN BNC ABC S S S ==⨯=△△△,所以115515 3.1251282424ABC ABC S S S ⎛⎫=+==⨯= ⎪⎝⎭△△阴影(平方厘米)【例 12】 如右图,ABC △中,G 是AC 的中点,D 、E 、F 是BC 边上的四等分点,AD 与BG 交于M ,AF 与BG 交于N ,已知ABM △的面积比四边形FCGN 的面积大7.2平方厘米,则ABC △的面积是多少平方厘米?N M GA BCD EFNMGA BCD EF【解析】 连接CM 、CN .根据燕尾定理,::1:1ABM CBM S S AG GC ==△△,::1:3ABM ACM S S BD CD ==△△,所以15ABM ABC S S =△△;再根据燕尾定理,::1:1ABN CBN S S AG GC ==△△,所以::4:3ABN FBN CBN FBN S S S S ==△△△△,所以:4:3AN NF =,那么1422437ANG AFC S S =⨯=+△△,所以2515177428FCGN AFC ABC ABC S S S S ⎛⎫=-=⨯= ⎪⎝⎭△△△.根据题意,有157.2528ABCABC S S -=△△,可得336ABC S =△(平方厘米)【巩固】(2007年四中分班考试题)如图,ABC ∆中,点D 是边AC 的中点,点E 、F 是边BC 的三等分点,若ABC ∆的面积为1,那么四边形CDMF 的面积是_________.F ABCDE M NFABCDE MN【解析】 由于点D 是边AC 的中点,点E 、F 是边BC 的三等分点,如果能求出BN 、NM 、MD 三段的比,那么所分成的六小块的面积都可以求出来,其中当然也包括四边形CDMF 的面积. 连接CM 、CN .根据燕尾定理,::2:1ABM ACM S S BF CF ∆∆==,而2ACM ADM S S ∆∆=,所以24ABM ACM ADM S S S ∆∆∆==,那么4BM DM =,即45BM BD =.那么421453215BMF BCD BM BF S S BD BC ∆∆=⨯⨯=⨯⨯=,14721530CDMF S =-=四边形. 另解:得出24ABM ACM ADM S S S ∆∆∆==后,可得111155210ADM ABD S S ∆∆==⨯=,则11731030ACF ADM CDMF S S S ∆∆=-=-=四边形.【例 13】 如图,三角形ABC 的面积是1,BD DE EC ==,CF FG GA ==,三角形ABC 被分成9部分,请写出这9部分的面积各是多少?GFE D CBAN MQPGF EDCBA【解析】 设BG 与AD 交于点P ,BG 与AE 交于点Q ,BF 与AD 交于点M ,BF 与AE 交于点N .连接CP ,CQ ,CM ,CN .根据燕尾定理,::1:2ABP CBP S S AG GC ==△△,::1:2ABP ACP S S BD CD ==△△,设1ABP S =△(份),则1225ABC S =++=△(份),所以15ABP S =△同理可得,27ABQ S =△,12ABN S =△,而13ABG S =△,所以2137535APQ S =-=△,1213721AQG S =-=△.同理,335BPM S =△121BDM S =△,所以1239273570PQMN S =--=四边形,139********MNED S =--=四边形,1151321426NFCE S =--=四边形,1115321642GFNQ S =--=四边形【巩固】如图,ABC ∆的面积为1,点D 、E 是BC 边的三等分点,点F 、G 是AC 边的三等分点,那么四边形JKIH 的面积是多少?K JI HABC D EF GKJI HA BCD EFG【解析】 连接CK 、CI 、CJ .根据燕尾定理,::1:2ACK ABK S S CD BD ∆∆==,::1:2ABK CBK S S AG CG ∆∆==,所以::1:2:4ACK ABK CBK S S S ∆∆∆=,那么111247ACK S ∆==++,11321AGK ACK S S ∆∆==.类似分析可得215AGI S ∆=.又::2:1ABJ CBJ S S AF CF ∆∆==,::2:1ABJ ACJ S S BD CD ∆∆==,可得14ACJ S ∆=. 那么,111742184CGKJ S =-=. 根据对称性,可知四边形CEHJ 的面积也为1784,那么四边形JKIH 周围的图形的面积之和为172161228415370CGKJ AGI ABES S S ∆∆⨯++=⨯++=,所以四边形JKIH 的面积为61917070-=.【例 14】 如右图,面积为1的ABC △中,::1:2:1BD DE EC =,::1:2:1CF FG GA =,::1:2:1AH HI IB =,求阴影部分面积.CBB【解析】 设IG 交HF 于M ,IG 交HD 于N ,DF 交EI 于P .连接AM , IF .∵:3:4AI AB =,:3:4AF AC =,916AIF ABC S S ∴=△△∵::2FIM AMF S S IH HA ==△△,::2FIM AIM S S FG GA ==△△,∴19464AIM AIF ABC S S S ==△△△ ∵:1:3AH AI = ∴364AHM ABC S S =△△,∵:1:4AH AB = :3:4AF AC = ∴316AHF ABC S S =△△ .同理 316CFD BDH ABC S S S ==△△△ ∴716FDH ABC S S =△△ 33::1:46416HM HF ==,∵ :3:4,:3:4AI AB AF AC ==, ∴IF BC ∥ ,又∵:3:4,:1:2IF BC DE BC ==,∴:2:3,:2:3DE IF DP PF ==,同理 :2:3HN ND =,∵:1:4HM HF =,∴:2:5HN HD =,∴17710160160HMN HDF ABC S S S ===△△△. 同理 6个小阴影三角形的面积均为7160.阴影部分面积721616080=⨯=.【例 15】 如图,面积为l 的三角形ABC 中,D 、E 、F 、G 、H 、I 分别是AB 、BC 、CA 的三等分点,求阴影部分面积.GCBAGCBA【解析】 三角形在开会,那么就好好利用三角形中最好用的比例和燕尾定理吧!令BI 与CD 的交点为M ,AF 与CD 的交点为N ,BI 与AF 的交点为P ,BI 与CE 的交点为Q ,连接AM 、BN 、CP⑴求ADMI S 四边形:在ABC △中,根据燕尾定理,::1:2ABM CBM S S AI CI ==△△::1:2ACM CBM S S AD BD ==△△设1ABM S =△(份),则2CBM S =△(份),1ACM S =△(份),4ABC S =△(份),所以14ABM ACM ABC S S S ==△△△,所以11312ADM ABM ABC S S S ==△△△,112AIM ABC S S =△△,所以111()12126ABC ABC ADMI S S S =+=△△四边形,同理可得另外两个顶点的四边形面积也分别是ABC △面积的16⑵求DNPQE S 五边形:在ABC △中,根据燕尾定理::1:2ABN ACN S S BF CF ==△△::1:2ACN BCN S S AD BD ==△△,所以111133721ADN ABN ABC ABC S S S S ==⨯=△△△△,同理121BEQ ABC S S =△△在ABC △中,根据燕尾定理::1:2ABP ACP S S BF CF ==△△,::1:2ABP CBP S S AI CI ==△△所以15ABP ABC S S =△△所以1111152121105ABP ADN BEP ABC ABC DNPQE S S S S S S ⎛⎫=--=--=⎪⎝⎭△△△△△五边形 同理另外两个五边形面积是ABC △面积的11105所以11113133610570S =-⨯-⨯=阴影【例 16】 如图,面积为l 的三角形ABC 中,D 、E 、F 、G 、H 、I 分别是AB 、BC 、CA 的三等分点,求中心六边形面积.GCBAGCBA【解析】 设深黑色六个三角形的顶点分别为N 、R 、P 、S 、M 、Q ,连接CR在ABC △中根据燕尾定理,::.2:1ABR ACR S S BG CG ==△△,::1:2ABR CBR S S AI CI ==△△所以27ABR ABC S S =△△,同理27ACS ABC S S =△△,27CQB ABC S S =△△所以222117777RQS S =---=△同理17MNP S =△根据容斥原理,和上题结果11131777010S =+-=六边形【例 17】(2009年数学解题能力大赛六年级初试试题)正六边形1A ,2A ,3A ,4A ,5A ,6A 的面积是2009平方厘米,1B ,2B ,3B ,4B ,5B ,6B 分别是正六边形各边的中点;那么图中阴影六边形的面积是 平方厘米.A 4B 5A 3A 45A 3【解析】 (方法一)因为空白的面积等于23A A G △面积的6倍,所以关键求23A A G △的面积,根据燕尾定理可得2312333117732A A G A A A S S S ==⨯⨯△△正六边形,但在123A A A △用燕尾定理时,需要知道13,A D A D 的长度比,连接1363,A A A A ,1A G ,过6B 作12A A 的平行线,交13A A 于E ,根据沙漏模型得1A D DE =,再根据金字塔模型得13A E A E =,因此13:1:3A D A D =,在123A A A △中,设121A A G S =△份,则233A A G S =△份,313A A G S =△份,所以2312333111773214A A G A A A S S S S ==⨯⨯=△△正六边形正六边形,因此141620091148147S S =-⨯=⨯=阴影正六边形()(平方厘米)(方法二)既然给的图形是特殊的正六边形,且阴影也是正六边形我们可以用下图的割补思路,把正六边形分割成14个大小形状相同的梯形,其中阴影有8个梯形,所以阴影面积为82009114814⨯=(平方厘米)FA 3A【例 18】已知四边形ABCD ,CHFG 为正方形,:1:8S S =乙甲,a 与b 是两个正方形的边长,求:?a b =baEDA baNMHFED【解析】 观察图形,感觉阴影部分像蝴蝶定理,但是细细分析发现用蝴蝶定理无法继续往下走,注意到题目条件中给出了两个正方形的边长,有边长就可以利用比例,再发现在连接辅助线后可以利用燕尾,那么我们就用燕尾定理来求解 连接EO 、AF ,根据燕尾定理:::AOE AOF S S a b =△△,::AOF EOF S S a b =△△所以 22::AOE EOF S S a b =△△,作OM ⊥AE 、ON ⊥EF , ∵AE =EF∴22::OM ON a b =∴33::1:8S S a b ==乙甲 ∴:1:2a b =。
小学奥数几何五大模型燕尾模型
燕尾定理:在三角形ABC 中,AD ,BE ,CF 相交于同一点O ,那么,上述定理给出了一个新的转化面积比与线段比的手段,因为ABO ∆和ACO ∆的形状很象燕子的尾巴,所以这个定理被称为燕尾定理.该定理在许多几何题目中都有着广泛的运用,它的特殊性在于,它可以存在于任何一个三角形之中,为三角形中的三角形面积对应底边之间提供互相联系的途径.通过一道例题 证明燕尾定理:如右图,D 是BC 上任意一点,请你说明:1423:::S S S S BD DC ==【解析】 三角形BED 与三角形CED 同高,分别以BD 、DC 为底,所以有14::S S BD DC =;三角形ABE 与三角形EBD 同高,12::S S ED EA =;三角形ACE 与三角形CED 同高,43::S S ED EA =,所以1423::S S S S =;例题精讲燕尾定理综上可得, 1423:::S S S S BD DC ==.【例 1】 (2009年第七届希望杯五年级一试试题)如图,三角形ABC 的面积是1,E 是AC的中点,点D 在BC 上,且:1:2BD DC =,AD 与BE 交于点F .则四边形DFEC 的面积等于 .【解析】 方法一:连接CF ,根据燕尾定理,12ABF ACF S BD S DC ==△△,1ABF CBF S AES EC==△△, 设1BDF S =△份,则2DCF S =△份,3ABF S =△份,3AEF EFC S S ==△△份,如图所标所以551212DCEF ABC S S ==△ 方法二:连接DE ,由题目条件可得到1133ABD ABC S S ==△△,11212233ADE ADC ABC S S S ==⨯=△△△,所以11ABD ADE S BF FE S ==△△, 111111122323212DEF DEB BEC ABC S S S S =⨯=⨯⨯=⨯⨯⨯=△△△△,而211323CDE ABC S S =⨯⨯=△△.所以则四边形DFEC 的面积等于512. 【巩固】如图,已知BD DC =,2EC AE =,三角形ABC 的面积是30,求阴影部分面积.【解析】 题中条件只有三角形面积给出具体数值,其他条件给出的实际上是比例的关系,由此我们可以初步判断这道题不应该通过面积公式求面积. 又因为阴影部分是一个不规则四边形,所以我们需要对它进行改造,那么我们需要连一条辅助线,(法一)连接CF ,因为BD DC =,2EC AE =,三角形ABC 的面积是30,所以1103ABE ABC S S ==△△,1152ABD ABC S S ==△△.根据燕尾定理,12ABF CBF S AE S EC ==△△,1ABF ACF S BDS CD==△△, 所以17.54ABF ABC S S ==△△,157.57.5BFD S =-=△,所以阴影部分面积是30107.512.5--=.(法二)连接DE ,由题目条件可得到1103ABE ABC S S ==△△,11210223BDE BEC ABC S S S ==⨯=△△△,所以11ABE BDE S AF FD S ==△△, 111111 2.5223232DEF DEA ADC ABC S S S S =⨯=⨯⨯=⨯⨯⨯=△△△△,而211032CDE ABC S S =⨯⨯=△△.所以阴影部分的面积为12.5.【巩固】如图,三角形ABC 的面积是2200cm ,E 在AC 上,点D 在BC 上,且:3:5AE EC =,:2:3BD DC =,AD 与BE 交于点F .则四边形DFEC 的面积等于 .【解析】 连接CF ,根据燕尾定理,2639ABF ACF S BD S DC ===△△,36510ABF CBF S AE S EC ===△△, 设6ABF S =△份,则9ACF S =△份,10BCF S =△份,5459358EFC S =⨯=+△份,310623CDF S =⨯=+△份,所以24545200(6910)(6)8(6)93(cm )88DCFE S =÷++⨯+=⨯+= 【巩固】如图,已知3BD DC =,2EC AE =,BE 与CD 相交于点O ,则ABC △被分成的4部分面积各占ABC △ 面积的几分之几【解析】 连接CO ,设1AEO S =△份,则其他部分的面积如图所示,所以1291830ABC S =+++=△份,所以四部分按从小到大各占ABC △面积的12 4.5139313.59,,,30306030103020+===【巩固】(2007年香港圣公会数学竞赛)如图所示,在ABC △中,12CP CB =,13CQ CA =,BQ与AP 相交于点X ,若ABC △的面积为6,则ABX △的面积等于 .【解析】 方法一:连接PQ .由于12CP CB =,13CQ CA =,所以23ABQ ABC S S =V V ,1126BPQ BCQ ABC S S S ==V V V .由蝴蝶定理知,21:::4:136ABQ BPQ ABC ABC AX XP S S S S ===V V V V ,所以441226 2.455255ABX ABP ABC ABC S S S S ==⨯==⨯=V V V V .方法二:连接CX 设1CPX S =△份,根据燕尾定理标出其他部分面积,所以6(1144)4 2.4ABX S =÷+++⨯=△【巩固】如图,三角形ABC 的面积是1,2BD DC =,2CE AE =,AD 与BE 相交于点F ,请写出这4部分的面积各是多少?【解析】 连接CF ,设1AEF S =△份,则其他几部分面积可以有燕尾定理标出如图所示,所以121AEF S =△,62217ABF S ==△,821BDF S =△,242217FDCE S +== 【巩固】如图,E 在AC 上,D 在BC 上,且:2:3AE EC =,:1:2BD DC =,AD 与BE 交于点F .四边形DFEC 的面积等于222cm ,则三角形ABC 的面积 .【解析】 连接CF ,根据燕尾定理,12ABF ACF S BD S DC ==△△,23ABF CBF S AE S EC ==△△, 设1BDF S =△份,则2DCF S =△份,2ABF S =△份,4AFC S =△份,24 1.623AEF S =⨯=+△ 份,34 2.423EFC S =⨯=+△份,如图所标,所以2 2.4 4.4EFDC S =+=份,2349ABC S =++=△份 所以222 4.4945(cm )ABC S =÷⨯=△【巩固】三角形ABC 中,C 是直角,已知2AC =,2CD =,3CB =,AM BM =,那么三角形AMN (阴影部分)的面积为多少【解析】 连接BN .ABC △的面积为3223⨯÷=根据燕尾定理,::2:1ACN ABN CD BD ==△△;同理::1:1CBN CAN BM AM ==△△设AMN △面积为1份,则MNB △的面积也是1份,所以ANB △的面积是112+=份,而ACN △的面积就是224⨯=份,CBN △也是4份,这样ABC △的面积为441110+++=份,所以AMN △的面积为31010.3÷⨯=.【巩固】如图,长方形ABCD 的面积是2平方厘米,2EC DE =,F 是DG 的中点.阴影部分的面积是多少平方厘米?【解析】 设1DEF S =△份,则根据燕尾定理其他面积如图所示551212BCD S S ==△阴影平方厘米. 【例 2】 如图所示,在四边形ABCD 中,3AB BE =,3AD AF =,四边形AEOF 的面积是12,那么平行四边形BODC 的面积为________.【解析】 连接,AO BD ,根据燕尾定理::1:2ABO BDO S S AF FD ==△△,::2:1AOD BOD S S AE BE ==△△,设1BEO S =△,则其他图形面积,如图所标,所以221224BODC AEOF S S ==⨯=.【例 3】 ABCD 是边长为12厘米的正方形,E 、F 分别是AB 、BC 边的中点,AF 与CE 交于G ,则四边形AGCD 的面积是_________平方厘米.【解析】 连接AC 、GB ,设1AGC S =△份,根据燕尾定理得1AGB S =△份,1BGC S =△份,则11126S =++⨯=正方形()份,314ADCG S =+=份,所以22126496(cm )ADCG S =÷⨯=【例 4】 如图,正方形ABCD 的面积是120平方厘米,E 是AB 的中点,F 是BC 的中点,四边形BGHF 的面积是_____平方厘米.【解析】 连接BH ,根据沙漏模型得:1:2BG GD =,设1BHC S =△份,根据燕尾定理2CHD S =△份,2BHD S =△份,因此122)210S =++⨯=正方形(份,127236BFHG S =+=,所以712010146BFHG S =÷⨯=(平方厘米). 【例 5】 如图所示,在ABC △中,:3:1BE EC =,D 是AE 的中点,那么:AF FC = .【解析】 连接CD .由于:1:1ABD BED S S =△△,:3:4BED BCD S S =△△,所以:3:4ABD BCD S S =△△,根据燕尾定理,::3:4ABD BCD AF FC S S ==△△.【巩固】在ABC ∆中,:3:2BD DC =, :3:1AE EC =,求:OB OE =【解析】 连接OC .因为:3:2BD DC =,根据燕尾定理,::3:2AOB AOC S S BD BC ∆∆==,即32AOB AOC S S ∆∆=;又:3:1AE EC =,所以43AOC AOE S S ∆∆=.则3342223AOB AOC AOE AOE S S S S ∆∆∆∆==⨯=,所以::2:1AOB AOE OB OE S S ∆∆==.【巩固】在ABC ∆中,:2:1BD DC =, :1:3AE EC =,求:OB OE =【解析】 题目求的是边的比值,一般来说可以通过分别求出每条边的值再作比值,也可以通过三角形的面积比来做桥梁,但题目没告诉我们边的长度,所以应该通过面积比而得到边长的比.本题的图形一看就联想到燕尾定理,但两个燕尾似乎少了一个,因此应该补全,所以第一步要连接OC .连接OC .因为:2:1BD DC =,根据燕尾定理,::2:1AOB AOC S S BD BC ∆∆==,即2AOB AOC S S ∆∆=;又:1:3AE EC =,所以4AOC AOE S S ∆∆=.则2248AOB AOC AOE AOE S S S S ∆∆∆∆==⨯=,所以::8:1AOB AOE OB OE S S ∆∆==.【例 6】 (2009年清华附中入学测试题)如图,四边形ABCD 是矩形,E 、F 分别是AB 、BC 上的点,且13AE AB =,14CF BC =,AF 与CE 相交于G ,若矩形ABCD 的面积为120,则AEG ∆与CGF ∆的面积之和为 .【解析】 (法1)如图,过F 做CE 的平行线交AB 于H ,则::1:3EH HB CF FB ==,所以122AE EB EH ==,::2AG GF AE EH ==,即2AG GF =,所以122311033942AEG ABF ABCD S S S ∆∆=⨯⨯=⨯⨯=X .且22313342EG HF EC EC ==⨯=,故CG GE =,则1152CGF AEG S S ∆∆=⨯⨯=.所以两三角形面积之和为10515+=.(法2)如上右图,连接AC 、BG .根据燕尾定理,::3:1ABG ACG S S BF CF ∆∆==,::2:1BCG ACG S S BE AE ∆∆==,而1602ABC ABCD S S ∆==X ,所以3321ABG S ∆=++,160302ABC S ∆=⨯=,2321BCG S ∆=++,160203ABC S ∆=⨯=,则1103AEG ABG S S ∆∆==,154CFG BCG S S ∆∆==,所以两个三角形的面积之和为15.【例 7】 如右图,三角形ABC 中,:4:9BD DC =,:4:3CE EA =,求:AF FB .【解析】 根据燕尾定理得::4:912:27AOB AOC S S BD CD ===△△(都有AOB △的面积要统一,所以找最小公倍数)所以:27:16:AOC BOC S S AF FB ==△△【点评】本题关键是把AOB △的面积统一,这种找最小公倍数的方法,在我们用比例解题中屡见不鲜,如果能掌握它的转化本质,我们就能达到解奥数题四两拨千斤的巨大力量!【巩固】如右图,三角形ABC 中,:3:4BD DC =,:5:6AE CE =,求:AF FB .【解析】 根据燕尾定理得::3:415:20AOB AOC S S BD CD ===△△(都有AOB △的面积要统一,所以找最小公倍数)所以:20:1810:9:AOC BOC S S AF FB ===△△【巩固】如图,:2:3BD DC =,:5:3AE CE =,则:AF BF =【解析】 根据燕尾定理有:2:310:15ABG ACG S S ==△△,:5:310:6ABG BCG S S ==△△,所以:15:65:2:ACG BCG S S AF BF ===△△【巩固】如右图,三角形ABC 中,:2:3BD DC =,:5:4EA CE =,求:AF FB .【解析】 根据燕尾定理得::2:310:15AOB AOC S S BD CD ===△△(都有AOB △的面积要统一,所以找最小公倍数)所以:15:8:AOC BOC S S AF FB ==△△【点评】本题关键是把AOB △的面积统一,这种找最小公倍数的方法,在我们用比例解题中屡见不鲜,如果能掌握它的转化本质,我们就能达到解奥数题四两拨千斤的巨大力量!【例 8】 (2008年“学而思杯”六年级数学试题)如右图,三角形ABC 中,:::3:2AF FB BD DC CE AE ===,且三角形ABC 的面积是1,则三角形ABE 的面积为______,三角形AGE 的面积为________,三角形GHI 的面积为______.【分析】 连接AH 、BI 、CG .由于:3:2CE AE =,所以25AE AC =,故2255ABE ABC S S ∆∆==;根据燕尾定理,::2:3ACG ABG S S CD BD ∆∆==,::3:2BCG ABG S S CE EA ∆∆==,所以::4:6:9ACG ABG BCG S S S ∆∆∆=,则419ACG S ∆=,919BCG S ∆=;那么2248551995AGE AGC S S ∆∆==⨯=; 同样分析可得919ACH S ∆=,则::4:9ACG ACH EG EH S S ∆∆==,::4:19ACG ACB EG EB S S ∆∆==,所以::4:5:10EG GH HB =,同样分析可得::10:5:4AG GI ID =,所以5521101055BIE BAE S S ∆∆==⨯=,55111919519GHI BIE S S ∆∆==⨯=. 【巩固】 如右图,三角形ABC 中,:::3:2AF FB BD DC CE AE ===,且三角形GHI 的面积是1,求三角形ABC 的面积.【解析】 连接BG ,AGC S △=6份根据燕尾定理,::3:26:4AGC BGC S S AF FB ===△△,::3:29:6ABG AGC S S BD DC ===△△得4BGC S =△(份),9ABG S =△(份),则19ABC S =△(份),因此619AGC ABC S S =△△, 同理连接AI 、CH 得619ABH ABC S S =△△,619BIC ABC S S =△△, 所以1966611919GHI ABC S S ---==△△ 三角形GHI 的面积是1,所以三角形ABC 的面积是19【巩固】(2009年第七届“走进美妙的数学花园”初赛六年级)如图,ABC ∆中2BD DA =,2CE EB =,2AF FC =,那么ABC ∆的面积是阴影三角形面积的 倍.【分析】 如图,连接AI .根据燕尾定理,::2:1BCI ACI S S BD AD ∆∆==,::1:2BCI ABI S S CF AF ∆∆==,所以,::1:2:4ACI BCI ABI S S S ∆∆∆=,那么,221247BCI ABC ABC S S S ∆∆∆==++.同理可知ACG ∆和ABH ∆的面积也都等于ABC ∆面积的27,所以阴影三角形的面积等于ABC ∆面积的211377-⨯=,所以ABC ∆的面积是阴影三角形面积的7倍.【巩固】如图在ABC △中,12DC EA FB DB EC FA ===,求GHI ABC △的面积△的面积的值. 【解析】 连接BG ,设BGC S △=1份,根据燕尾定理::2:1AGC BGC S S AF FB ==△△,::2:1ABG AGC S S BD DC ==△△,得2AGC S =△(份),4ABG S =△(份),则7ABC S =△(份),因此27AGC ABC S S =△△,同理连接AI 、CH 得27ABH ABC S S =△△,27BIC ABC S S =△△, 所以7222177GHI ABC S S ---==△△ 【点评】如果任意一个三角形各边被分成的比是相同的,那么在同样的位置上的图形,虽然形状千变万化,但面积是相等的,这在这讲里面很多题目都是用“同理得到”的,即再重复一次解题思路,因此我们有对称法作辅助线.【巩固】如图在ABC △中,13DC EA FB DB EC FA ===,求GHI ABC △的面积△的面积的值.【解析】 连接BG ,设BGC S △=1份,根据燕尾定理::3:1AGC BGC S S AF FB ==△△,::3:1ABG AGC S S BD DC ==△△,得3AGC S =△(份),9ABG S =△(份),则13ABC S =△(份),因此313AGC ABC S S =△△,同理连接AI 、CH 得13ABH ABC S S =△△,313BIC ABC S S =△△, 所以1333341313GHI ABC S S ---==△△【巩固】如右图,三角形ABC 中,:::4:3AF FB BD DC CE AE ===,且三角形ABC 的面积是74,求角形GHI 的面积.【解析】 连接BG ,AGC S △=12份根据燕尾定理,::4:312:9AGC BGC S S AF FB ===△△,::4:316:12ABG AGC S S BD DC ===△△得9BGC S =△(份),16ABG S =△(份),则9121637ABC S =++=△(份),因此1237AGC ABC S S =△△, 同理连接AI 、CH 得1237ABH ABC S S =△△,1237BIC ABC S S =△△, 所以3712121213737GHI ABC S S ---==△△ 三角形ABC 的面积是74,所以三角形GHI 的面积是174237⨯= 【例 9】 两条线段把三角形分为三个三角形和一个四边形,如图所示, 三个三角形的面积 分别是3,7,7,则阴影四边形的面积是多少【解析】 方法一:遇到没有标注字母的图形,我们第一步要做的就是给图形各点标注字母,方便后面的计算.再看这道题,出现两个面积相等且共底的三角形.设三角形为ABC ,BE 和CD 交于F ,则BF FE =,再连结DE .所以三角形DEF 的面积为3.设三角形ADE 的面积为x ,则()():33:10:10x AD DB x +==+,所以15x =,四边形的面积为18.方法二:设ADF S x =△,根据燕尾定理::ABF BFC AFE EFC S S S S =△△△△,得到3AEF S x =+△,再根据向右下飞的燕子,有(37):7:3x x ++=,解得7.5x =四边形的面积为7.57.5318++=【巩固】右图的大三角形被分成5个小三角形,其中4个的面积已经标在图中,那么,阴影三角形的面积是 .【解析】 方法一:整个题目读完,我们没有发现任何与边长相关的条件,也没有任何与高或者垂直有关系的字眼,由此,我们可以推断,这道题不能依靠三角形面积公式求解.我们发现右图三角形中存在一个比例关系:()2:13:4S =+阴影,解得2S =阴影.方法二:回顾下燕尾定理,有2:41:3S +=阴影(),解得2S =阴影. 【例 10】 如图,三角形ABC 被分成6个三角形,已知其中4个三角形的面积,问三角形ABC 的面积是多少?【解析】 设BOF S x =△,由题意知:4:3BD DC =根据燕尾定理,得::4:3ABO ACO BDO CDO S S S S ==△△△△,所以33(84)6344ACO S x x =⨯+=+△,再根据::ABO BCO AOE COE S S S S =△△△△,列方程3(84):(4030)(6335):354x x ++=+-解得56x =:35(5684):(4030)AOE S =++△,所以70AOE S =△所以三角形ABC 的面积是844030355670315+++++=【例 11】 三角形ABC 的面积为15平方厘米,D 为AB 中点,E 为AC 中点,F 为BC 中点,求阴影部分的面积.【解析】 令BE 与CD 的交点为M ,CD 与EF 的交点为N ,连接AM ,BN .在ABC △中,根据燕尾定理,::1:1ABM BCM S S AE CE ==△△,::1:1ACM BCM S S AD BD ==△△,所以13ABM ACM BCN ABC S S S S ===△△△△由于1122AEM AMC ABM S S S ==△△△S ,所以:2:1BM ME =在EBC △中,根据燕尾定理,::1:1BEN CEN S S BF CF ==△△::1:2CEN CBN S S ME MB ==△△设1CEN S =△(份),则1BEN S =△(份),2BCN S =△(份),4BCE S =△(份),所以1124BCN BCE ABC S S S ==△△△,1148BNE BCE ABC S S S ==△△△,因为:2:1BM ME =,F 为BC 中点,所以221133812BMN BNE ABC ABC S S S S ==⨯=△△△△,11112248BFN BNC ABC S S S ==⨯=△△△, 所以115515 3.1251282424ABC ABC S S S ⎛⎫=+==⨯=⎪⎝⎭△△阴影(平方厘米) 【例 12】 如右图,ABC △中,G 是AC 的中点,D 、E 、F 是BC 边上的四等分点,AD 与BG 交于M ,AF 与BG 交于N ,已知ABM △的面积比四边形FCGN 的面积大7.2平方厘米,则ABC △的面积是多少平方厘米【解析】 连接CM 、CN .根据燕尾定理,::1:1ABM CBM S S AG GC ==△△,::1:3ABM ACM S S BD CD ==△△,所以15ABM ABC S S =△△;再根据燕尾定理,::1:1ABN CBN S S AG GC ==△△,所以::4:3ABN FBN CBN FBN S S S S ==△△△△,所以:4:3AN NF =,那么1422437ANG AFC S S =⨯=+△△,所以2515177428FCGN AFC ABC ABC S S S S ⎛⎫=-=⨯= ⎪⎝⎭△△△.根据题意,有157.2528ABC ABC S S -=△△,可得336ABC S =△(平方厘米) 【巩固】(2007年四中分班考试题)如图,ABC ∆中,点D 是边AC 的中点,点E 、F 是边BC的三等分点,若ABC ∆的面积为1,那么四边形CDMF 的面积是_________.【解析】 由于点D 是边AC 的中点,点E 、F 是边BC 的三等分点,如果能求出BN 、NM 、MD 三段的比,那么所分成的六小块的面积都可以求出来,其中当然也包括四边形CDMF 的面积.连接CM 、CN .根据燕尾定理,::2:1ABM ACM S S BF CF ∆∆==,而2ACM ADM S S ∆∆=,所以24ABM ACM ADM S S S ∆∆∆==,那么4BM DM =,即45BM BD =. 那么421453215BMF BCD BM BF S S BD BC ∆∆=⨯⨯=⨯⨯=,14721530CDMF S =-=四边形. 另解:得出24ABM ACM ADM S S S ∆∆∆==后,可得111155210ADM ABD S S ∆∆==⨯=, 则11731030ACF ADM CDMF S S S ∆∆=-=-=四边形. 【例 13】 如图,三角形ABC 的面积是1,BD DE EC ==,CF FG GA ==,三角形ABC 被分成9部分,请写出这9部分的面积各是多少?【解析】 设BG 与AD 交于点P ,BG 与AE 交于点Q ,BF 与AD 交于点M ,BF 与AE 交于点N .连接CP ,CQ ,CM ,CN .根据燕尾定理,::1:2ABP CBP S S AG GC ==△△,::1:2ABP ACP S S BD CD ==△△,设1ABP S =△(份),则1225ABC S =++=△(份),所以15ABP S =△ 同理可得,27ABQ S =△,12ABN S =△,而13ABG S =△,所以2137535APQ S =-=△,1213721AQG S =-=△.同理,335BPM S =△121BDM S =△,所以1239273570PQMN S =--=四边形,139********MNED S =--=四边形,1151321426NFCE S =--=四边形,1115321642GFNQ S =--=四边形 【巩固】如图,ABC ∆的面积为1,点D 、E 是BC 边的三等分点,点F 、G 是AC 边的三等分点,那么四边形JKIH 的面积是多少【解析】 连接CK 、CI 、CJ .根据燕尾定理,::1:2ACK ABK S S CD BD ∆∆==,::1:2ABK CBK S S AG CG ∆∆==,所以::1:2:4ACK ABK CBK S S S ∆∆∆=,那么111247ACK S ∆==++,11321AGK ACK S S ∆∆==.类似分析可得215AGI S ∆=. 又::2:1ABJ CBJ S S AF CF ∆∆==,::2:1ABJ ACJ S S BD CD ∆∆==,可得14ACJ S ∆=.那么,111742184CGKJ S =-=. 根据对称性,可知四边形CEHJ 的面积也为1784,那么四边形JKIH 周围的图形的面积之和为172161228415370CGKJ AGI ABE S S S ∆∆⨯++=⨯++=,所以四边形JKIH 的面积为61917070-=. 【例 14】 如右图,面积为1的ABC △中,::1:2:1BD DE EC =,::1:2:1CF FG GA =,::1:2:1AH HI IB =,求阴影部分面积.【解析】 设IG 交HF 于M ,IG 交HD 于N ,DF 交EI 于P .连接AM ,IF .∵:3:4AI AB =,:3:4AF AC =,916AIF ABC S S ∴=△△ ∵::2FIM AMF S S IH HA ==△△,::2FIM AIM S S FG GA ==△△,∴19464AIM AIF ABC S S S ==△△△ ∵:1:3AH AI = ∴364AHM ABC S S =△△, ∵:1:4AH AB = :3:4AF AC = ∴316AHF ABC S S =△△ . 同理 316CFD BDH ABC S S S ==△△△ ∴716FDH ABC S S =△△ 33::1:46416HM HF ==, ∵ :3:4,:3:4AI AB AF AC ==,∴IF BC ∥ ,又∵:3:4,:1:2IF BC DE BC ==,∴:2:3,:2:3DE IF DP PF ==,同理 :2:3HN ND =,∵:1:4HM HF =,∴:2:5HN HD =,∴17710160160HMN HDF ABC S S S ===△△△. 同理 6个小阴影三角形的面积均为7160.阴影部分面积721616080=⨯=. 【例 15】 如图,面积为l 的三角形ABC 中,D 、E 、F 、G 、H 、I 分别是AB 、BC 、CA 的三等分点,求阴影部分面积.【解析】 三角形在开会,那么就好好利用三角形中最好用的比例和燕尾定理吧!令BI 与CD 的交点为M ,AF 与CD 的交点为N ,BI 与AF 的交点为P ,BI 与CE 的交点为Q ,连接AM 、BN 、CP⑴求ADMI S 四边形:在ABC △中,根据燕尾定理,::1:2ABM CBM S S AI CI ==△△::1:2ACM CBM S S AD BD ==△△设1ABM S =△(份),则2CBM S =△(份),1ACM S =△(份),4ABC S =△(份),所以14ABM ACM ABC S S S ==△△△,所以11312ADM ABM ABC S S S ==△△△,112AIM ABC S S =△△, 所以111()12126ABC ABC ADMI S S S =+=△△四边形, 同理可得另外两个顶点的四边形面积也分别是ABC △面积的16⑵求DNPQE S 五边形:在ABC △中,根据燕尾定理::1:2ABN ACN S S BF CF ==△△::1:2ACN BCN S S AD BD ==△△,所以111133721ADN ABN ABC ABC S S S S ==⨯=△△△△,同理121BEQ ABC S S =△△在ABC △中,根据燕尾定理::1:2ABP ACP S S BF CF ==△△,::1:2ABP CBP S S AI CI ==△△所以15ABP ABC S S =△△所以1111152121105ABP ADN BEP ABCABC DNPQE S S S S S S ⎛⎫=--=--= ⎪⎝⎭△△△△△五边形 同理另外两个五边形面积是ABC △面积的11105所以11113133610570S =-⨯-⨯=阴影 【例 16】 如图,面积为l 的三角形ABC 中,D 、E 、F 、G 、H 、I 分别是AB 、BC 、CA 的三等分点,求中心六边形面积.【解析】 设深黑色六个三角形的顶点分别为N 、R 、P 、S 、M 、Q ,连接CR在ABC △中根据燕尾定理,::.2:1ABR ACR S S BG CG ==△△,所以27ABR ABC S S =△△,同理27ACS ABC S S =△△,27CQB ABC S S =△△所以222117777RQS S =---=△同理17MNP S =△根据容斥原理,和上题结果11131777010S =+-=六边形 【例 17】 (2009年数学解题能力大赛六年级初试试题)正六边形1A ,2A ,3A ,4A ,5A ,6A 的面积是2009平方厘米,1B ,2B ,3B ,4B ,5B ,6B 分别是正六边形各边的中点;那么图中阴影六边形的面积是 平方厘米.【解析】 (方法一)因为空白的面积等于23A A G △面积的6倍,所以关键求23A A G △的面积,根据燕尾定理可得2312333117732A A G A A A S S S ==⨯⨯△△正六边形,但在123A A A △用燕尾定理时,需要知道13,A D A D 的长度比,连接1363,A A A A ,1A G ,过6B 作12A A 的平行线,交13A A 于E ,根据沙漏模型得1A D DE =,再根据金字塔模型得13A E A E =,因此13:1:3A D A D =,在123A A A △中,设121A A G S =△份,则233A A G S =△份,313A A G S =△份,所以2312333111773214A A G A A A S S S S ==⨯⨯=△△正六边形正六边形,因此141620091148147S S =-⨯=⨯=阴影正六边形()(平方厘米) (方法二)既然给的图形是特殊的正六边形,且阴影也是正六边形我们可以用下图的割补思路,把正六边形分割成14个大小形状相同的梯形,其中阴影有8个梯形,所以阴影面积为82009114814⨯=(平方厘米) 【例 18】 已知四边形ABCD ,CHFG 为正方形,:1:8S S =乙甲,a 与b 是两个正方形的边长,求:?a b =【解析】 观察图形,感觉阴影部分像蝴蝶定理,但是细细分析发现用蝴蝶定理无法继续往下走,注意到题目条件中给出了两个正方形的边长,有边长就可以利用比例,再发现在连接辅助线后可以利用燕尾,那么我们就用燕尾定理来求解连接EO 、AF ,根据燕尾定理:::AOE AOF S S a b =△△,::AOF EOF S S a b =△△所以 22::AOE EOF S S a b =△△,作OM ⊥AE 、ON ⊥EF ,∵AE =EF∴22::OM ON a b =∴33::1:8S S a b ==乙甲∴:1:2a b =。
小学奥数-几何五大模型(燕尾模型)知识讲解
小学奥数-几何五大模型(燕尾模型)燕尾定理:在三角形ABC 中,AD ,BE ,CF 相交于同一点O , 那么,::ABO ACO S S BD DC ∆∆=OFE DCBA上述定理给出了一个新的转化面积比与线段比的手段,因为ABO ∆和ACO ∆的形状很象燕子的尾巴,所以这个定理被称为燕尾定理.该定理在许多几何题目中都有着广泛的运用,它的特殊性在于,它可以存在于任何一个三角形之中,为三角形中的三角形面积对应底边之间提供互相联系的途径.通过一道例题 证明燕尾定理:如右图,D 是BC 上任意一点,请你说明:1423:::S S S S BD DC ==S 3S 1S 4S 2EDCBA【解析】 三角形BED 与三角形CED 同高,分别以BD 、DC 为底,所以有14::S S BD DC =;三角形ABE 与三角形EBD 同高,12::S S ED EA =;三角形ACE 与三角形CED 同高,43::S S ED EA =,所以1423::S S S S =;例题精讲燕尾定理综上可得, 1423:::S S S S BD DC ==.【例 1】 (2009年第七届希望杯五年级一试试题)如图,三角形ABC 的面积是1,E 是AC 的中点,点D 在BC 上,且:1:2BD DC =,AD 与BE 交于点F .则四边形DFEC 的面积等于 .FED CBA33321F E DC BAABCDEF【解析】 方法一:连接CF ,根据燕尾定理,12ABFACFS BD S DC ==△△,1ABF CBF S AES EC==△△, 设1BDF S =△份,则2DCF S =△份,3ABF S =△份,3AEF EFC S S ==△△份,如图所标所以551212DCEF ABC S S ==△方法二:连接DE ,由题目条件可得到1133ABD ABC S S ==△△,11212233ADE ADC ABC S S S ==⨯=△△△,所以11ABD ADE S BF FE S ==△△, 111111122323212DEF DEB BEC ABC S S S S =⨯=⨯⨯=⨯⨯⨯=△△△△,而211323CDE ABC S S =⨯⨯=△△.所以则四边形DFEC 的面积等于512.【巩固】如图,已知BD DC =,2EC AE =,三角形ABC 的面积是30,求阴影部分面积.【解析】 题中条件只有三角形面积给出具体数值,其他条件给出的实际上是比例的关系,由此我们可以初步判断这道题不应该通过面积公式求面积.又因为阴影部分是一个不规则四边形,所以我们需要对它进行改造,那么我们需要连一条辅助线,(法一)连接CF ,因为BD DC =,2EC AE =,三角形ABC 的面积是30, 所以1103ABE ABC S S ==△△,1152ABD ABC S S ==△△.根据燕尾定理,12ABFCBFS AE S EC ==△△,1ABF ACF S BDS CD==△△, 所以17.54ABF ABC S S ==△△,157.57.5BFD S =-=△,所以阴影部分面积是30107.512.5--=.(法二)连接DE ,由题目条件可得到1103ABE ABC S S ==△△,11210223BDE BEC ABC S S S ==⨯=△△△,所以11ABE BDE S AF FD S ==△△, 111111 2.5223232DEF DEA ADC ABC S S S S =⨯=⨯⨯=⨯⨯⨯=△△△△,而211032CDE ABC S S =⨯⨯=△△.所以阴影部分的面积为12.5.【巩固】如图,三角形ABC 的面积是2200cm ,E 在AC 上,点D 在BC 上,且:3:5AE EC =,:2:3BD DC =,AD 与BE 交于点F .则四边形DFEC 的面积等于 .FED CBAABC DEF FEDCBA【解析】 连接CF ,根据燕尾定理,2639ABF ACFS BD S DC ===△△,36510ABFCBFS AE S EC ===△△, 设6ABF S =△份,则9ACF S =△份,10BCF S =△份,5459358EFC S =⨯=+△份,310623CDF S =⨯=+△份,所以24545200(6910)(6)8(6)93(cm )88DCFES =÷++⨯+=⨯+=【巩固】如图,已知3BD DC =,2EC AE =,BE 与CD 相交于点O ,则ABC △被分成的4部分面积各占ABC △ 面积的几分之几?OE DCBA13.54.59211213O E D CBA【解析】 连接CO ,设1AEO S =△份,则其他部分的面积如图所示,所以1291830ABC S =+++=△份,所以四部分按从小到大各占ABC △面积的12 4.5139313.59,,,30306030103020+===【巩固】(2007年香港圣公会数学竞赛)如图所示,在ABC △中,12CP CB =,13CQ CA =,BQ 与AP 相交于点X,若ABC △的面积为6,则ABX △的面积等于 .XQPABC XQPABC4411XQPCBA【解析】 方法一:连接PQ .由于12CP CB =,13CQ CA =,所以23ABQ ABC S S =V V ,1126BPQ BCQ ABC S S S ==V V V .由蝴蝶定理知,21:::4:136ABQ BPQ ABC ABC AX XP S S S S ===V V V V ,所以441226 2.455255ABXABP ABC ABC S S S S ==⨯==⨯=V V V V . 方法二:连接CX 设1CPX S =△份,根据燕尾定理标出其他部分面积,所以6(1144)4 2.4ABX S =÷+++⨯=△【巩固】如图,三角形ABC 的面积是1,2BD DC =,2CE AE =,AD 与BE 相交于点F ,请写出这4部分的面积各是多少?ABCDE F48621ABCDEF【解析】 连接CF ,设1AEF S =△份,则其他几部分面积可以有燕尾定理标出如图所示,所以121AEF S =△,62217ABF S ==△,821BDF S =△,242217FDCE S +==【巩固】如图,E 在AC 上,D 在BC 上,且:2:3AE EC =,:1:2BD DC =,AD 与BE 交于点F .四边形DFEC 的面积等于222cm ,则三角形ABC 的面积 .ABCDE FABCDEF 2.41.62A BC DE F 12【解析】 连接CF ,根据燕尾定理,12ABF ACF S BD S DC ==△△,23ABF CBF S AE S EC ==△△,设1BDF S =△份,则2DCF S =△份,2ABF S =△份,4AFC S =△份,24 1.623AEF S =⨯=+△ 份,34 2.423EFC S =⨯=+△份,如图所标,所以2 2.4 4.4EFDC S =+=份,2349ABC S =++=△份所以222 4.4945(cm )ABC S =÷⨯=△【巩固】三角形ABC 中,C 是直角,已知2AC =,2CD =,3CB =,AM BM =,那么三角形AMN (阴影部分)的面积为多少?【解析】 连接BN .ABC △的面积为3223⨯÷=根据燕尾定理,::2:1ACN ABN CD BD ==△△;同理::1:1CBN CAN BM AM ==△△设AMN △面积为1份,则MNB △的面积也是1份,所以ANB △的面积是112+=份,而ACN △的面积就是224⨯=份,CBN △也是4份,这样ABC △的面积为441110+++=份,所以AMN △的面积为31010.3÷⨯=.【巩固】如图,长方形ABCD 的面积是2平方厘米,2EC DE =,F 是DG 的中点.阴影部分的面积是多少平方厘米?y B CD EGE D CBAEDB A【解析】 设1DEF S =△份,则根据燕尾定理其他面积如图所示551212BCD S S ==△阴影平方厘米.【例 2】 如图所示,在四边形ABCD 中,3AB BE =,3AD AF =,四边形AEOF 的面积是12,那么平行四边形BODC 的面积为.OFE DCBA684621O F E DCB A【解析】 连接,AO BD ,根据燕尾定理::1:2ABO BDO S S AF FD ==△△,::2:1AOD BOD S S AE BE ==△△,设1BEO S =△,则其他图形面积,如图所标,所以221224BODC AEOF S S ==⨯=.【例 3】 ABCD 是边长为12厘米的正方形,E 、F 分别是AB 、BC 边的中点,AF与CE 交于G ,则四边形AGCD 的面积是平方厘米.GFE DCBAGFE D CBA【解析】 连接AC 、GB ,设1AGC S =△份,根据燕尾定理得1AGB S =△份,1BGC S =△份,则11126S =++⨯=正方形()份,314ADCG S =+=份,所以22126496(cm )ADCG S =÷⨯=【例 4】 如图,正方形ABCD 的面积是120平方厘米,E 是AB 的中点,F是BC 的中点,四边形BGHF 的面积是平方厘米.EDED【解析】 连接BH ,根据沙漏模型得:1:2BG GD =,设1BHC S =△份,根据燕尾定理2CHD S =△份,2BHD S =△份,因此122)210S =++⨯=正方形(份,127236BFHG S =+=,所以712010146BFHG S =÷⨯=(平方厘米).【例 5】 如图所示,在ABC △中,:3:1BE EC =,D 是AE 的中点,那么:AF FC = .FE D C BAFE DCB A【解析】 连接CD .由于:1:1ABD BED S S =△△,:3:4BED BCD S S =△△,所以:3:4ABD BCD S S =△△,根据燕尾定理,::3:4ABD BCD AF FC S S ==△△.【巩固】在ABC ∆中,:3:2BD DC =, :3:1AE EC =,求:OB OE =?ABCDE OABCDE O【解析】 连接OC .因为:3:2BD DC =,根据燕尾定理,::3:2AOB AOC S S BD BC ∆∆==,即32AOB AOC S S ∆∆=;又:3:1AE EC =,所以43AOC AOE S S ∆∆=.则3342223AOB AOC AOE AOE S S S S ∆∆∆∆==⨯=,所以::2:1AOB AOE OB OE S S ∆∆==.【巩固】在ABC ∆中,:2:1BD DC =, :1:3AE EC =,求:OB OE =?A B CDE O【解析】 题目求的是边的比值,一般来说可以通过分别求出每条边的值再作比值,也可以通过三角形的面积比来做桥梁,但题目没告诉我们边的长度,所以应该通过面积比而得到边长的比.本题的图形一看就联想到燕尾定理,但两个燕尾似乎少了一个,因此应该补全,所以第一步要连接OC . 连接OC .A B CDE O因为:2:1BD DC =,根据燕尾定理,::2:1AOB AOC S S BD BC ∆∆==,即2AOB AOC S S ∆∆=;又:1:3AE EC =,所以4AOC AOE S S ∆∆=.则2248AOB AOC AOE AOE S S S S ∆∆∆∆==⨯=, 所以::8:1AOB AOE OB OE S S ∆∆==.【例 6】 (2009年清华附中入学测试题)如图,四边形ABCD 是矩形,E 、F 分别是AB 、BC 上的点,且13AE AB =,14CF BC =,AF 与CE 相交于G ,若矩形ABCD 的面积为120,则AEG ∆与CGF ∆的面积之和为 .BEH BEBE【解析】 (法1)如图,过F 做CE 的平行线交AB 于H ,则::1:3EH HB CF FB ==,所以122AE EB EH ==,::2AG GF AE EH ==,即2AG GF =,所以122311033942AEG ABF ABCD S S S ∆∆=⨯⨯=⨯⨯=X .且22313342EG HF EC EC ==⨯=,故CG GE =,则1152CGF AEG S S ∆∆=⨯⨯=.所以两三角形面积之和为10515+=.(法2)如上右图,连接AC 、BG .根据燕尾定理,::3:1ABG ACG S S BF CF ∆∆==,::2:1BCG ACG S S BE AE ∆∆==, 而1602ABC ABCD S S ∆==X ,所以3321ABG S ∆=++,160302ABC S ∆=⨯=,2321BCG S ∆=++,160203ABC S ∆=⨯=,则1103AEGABG S S ∆∆==,154CFG BCG S S ∆∆==, 所以两个三角形的面积之和为15.【例 7】 如右图,三角形ABC 中,:4:9BD DC =,:4:3CE EA =,求:AF FB .O F EDCBA【解析】 根据燕尾定理得::4:912:27AOB AOC S S BD CD ===△△::3:412:16AOB BOC S S AE CE ===△△(都有AOB △的面积要统一,所以找最小公倍数) 所以:27:16:AOC BOC S S AF FB ==△△【点评】本题关键是把AOB △的面积统一,这种找最小公倍数的方法,在我们用比例解题中屡见不鲜,如果能掌握它的转化本质,我们就能达到解奥数题四两拨千斤的巨大力量!【巩固】如右图,三角形ABC 中,:3:4BD DC =,:5:6AE CE =,求:AF FB .O F EDCBA【解析】 根据燕尾定理得::3:415:20AOB AOC S S BD CD ===△△::5:615:18AOB BOC S S AE CE ===△△(都有AOB △的面积要统一,所以找最小公倍数) 所以:20:1810:9:AOC BOC S S AF FB ===△△【巩固】如图,:2:3BD DC =,:5:3AE CE =,则:AF BF =GF EDCBA【解析】 根据燕尾定理有:2:310:15ABG ACG S S ==△△,:5:310:6ABG BCG S S ==△△,所以:15:65:2:ACG BCG S S AF BF ===△△【巩固】如右图,三角形ABC 中,:2:3BD DC =,:5:4EA CE =,求:AF FB .O F EDCBA【解析】 根据燕尾定理得::2:310:15AOB AOC S S BD CD ===△△::5:410:8AOB BOC S S AE CE ===△△(都有AOB △的面积要统一,所以找最小公倍数) 所以:15:8:AOC BOC S S AF FB ==△△【点评】本题关键是把AOB △的面积统一,这种找最小公倍数的方法,在我们用比例解题中屡见不鲜,如果能掌握它的转化本质,我们就能达到解奥数题四两拨千斤的巨大力量!【例 8】 (2008年“学而思杯”六年级数学试题)如右图,三角形ABC 中,:::3:2AF FB BD DC CE AE ===,且三角形ABC 的面积是1,则三角形ABE 的面积为,三角形AGE 的面积为,三角形GHI 的面积为.I HGFEDCBAI HG FEDCBA【分析】 连接AH 、BI 、CG .由于:3:2CE AE =,所以25AE AC =,故2255ABE ABC S S ∆∆==;根据燕尾定理,::2:3ACG ABG S S CD BD ∆∆==,::3:2BCG ABG S S CE EA ∆∆==,所以::4:6:9ACG ABG BCG S S S ∆∆∆=,则419ACG S ∆=,919BCG S ∆=;那么2248551995AGE AGC S S ∆∆==⨯=; 同样分析可得919ACH S ∆=,则::4:9ACG ACH EG EH S S ∆∆==,::4:19ACG ACB EG EB S S ∆∆==,所以::4:5:10EG GH HB =,同样分析可得::10:5:4AG GI ID =,所以5521101055BIE BAE S S ∆∆==⨯=,55111919519GHI BIE S S ∆∆==⨯=.【巩固】 如右图,三角形ABC 中,:::3:2AF FB BD DC CE AE ===,且三角形GHI的面积是1,求三角形ABC 的面积.IH G FEDCBAIH G FEDCBA【解析】 连接,AGC S △=6份根据燕尾定理,::3:26:4AGC BGC S S AF FB ===△△,::3:29:6ABG AGC S S BD DC ===△△得4BGC S =△(份),9ABG S =△(份),则19ABC S =△(份),因此619AGCABCS S =△△, 同理连接、得619ABH ABCS S =△△,619BIC ABC S S =△△, 所以1966611919GHIABCS S ---==△△ 三角形的面积是1,所以三角形的面积是19【巩固】(2009年第七届“走进美妙的数学花园”初赛六年级)如图,ABC∆中2BD DA =,2CE EB =,2AF FC =,那么ABC ∆的面积是阴影三角形面积的 倍.BCB【分析】 如图,连接AI .根据燕尾定理,::2:1BCI ACI S S BD AD ∆∆==,::1:2BCI ABI S S CF AF ∆∆==,所以,::1:2:4ACI BCI ABI S S S ∆∆∆=, 那么,221247BCI ABC ABC S S S ∆∆∆==++.同理可知ACG ∆和ABH ∆的面积也都等于ABC ∆面积的27,所以阴影三角形的面积等于ABC ∆面积的211377-⨯=,所以ABC ∆的面积是阴影三角形面积的7倍.【巩固】如图在ABC △中,12DC EA FB DBECFA===,求GHI ABC △的面积△的面积的值.IHG FEDCBAIH G FEDCB A【解析】 连接,设BGC S △=1份,根据燕尾定理::2:1AGC BGC S S AF FB ==△△,::2:1ABG AGC S S BD DC ==△△,得2AGC S =△(份),4ABG S =△(份),则7ABC S =△(份),因此27AGC ABCS S =△△,同理连接、得27ABH ABC S S =△△,27BIC ABC S S =△△, 所以7222177GHIABCS S ---==△△ 【点评】如果任意一个三角形各边被分成的比是相同的,那么在同样的位置上的图形,虽然形状千变万化,但面积是相等的,这在这讲里面很多题目都是用“同理得到”的,即再重复一次解题思路,因此我们有对称法作辅助线.【巩固】如图在ABC △中,13DC EA FB DBECFA===,求GHI ABC △的面积△的面积的值.IHG FEDCBAIH G FEDCB A【解析】 连接,设BGC S △=1份,根据燕尾定理::3:1AGC BGC S S AF FB ==△△,::3:1ABG AGC S S BD DC ==△△,得3AGC S =△(份),9ABG S =△(份),则13ABC S =△(份),因此313AGC ABCS S =△△,同理连接、得13ABH ABC S S =△△,313BIC ABC S S =△△, 所以1333341313GHIABCS S ---==△△【巩固】如右图,三角形ABC 中,:::4:3AF FB BD DC CE AE ===,且三角形ABC 的面积是74,求角形GHI 的面积.IH G FEDCBAIH G FEDCBA【解析】 连接,AGC S △=12份根据燕尾定理,::4:312:9AGC BGC S S AF FB ===△△,::4:316:12ABG AGC S S BD DC ===△△得9BGC S =△(份),16ABG S =△(份),则9121637ABC S =++=△(份),因此1237AGCABCS S =△△, 同理连接、得1237ABH ABCS S =△△,1237BIC ABC S S =△△, 所以3712121213737GHIABCS S ---==△△ 三角形的面积是74,所以三角形的面积是174237⨯=【例 9】 两条线段把三角形分为三个三角形和一个四边形,如图所示, 三个三角形的面积 分别是3,7,7,则阴影四边形的面积是多少?【解析】方法一:遇到没有标注字母的图形,我们第一步要做的就是给图形各点标注字母,方便后面的计算.再看这道题,出现两个面积相等且共底的三角形.设三角形为ABC,BE和CD交于F,则BF FE=,再连结DE.所以三角形DEF的面积为3.设三角形ADE的面积为x,则()():33:10:10x AD DB x+==+,所以15x=,四边形的面积为18.方法二:设ADFS x=△,根据燕尾定理::ABF BFC AFE EFCS S S S=△△△△,得到3AEFS x=+△,再根据向右下飞的燕子,有(37):7:3x x++=,解得7.5x=四边形的面积为7.57.5318++=【巩固】右图的大三角形被分成5个小三角形,其中4个的面积已经标在图中,那么,阴影三角形的面积是.【解析】方法一:整个题目读完,我们没有发现任何与边长相关的条件,也没有任何与高或者垂直有关系的字眼,由此,我们可以推断,这道题不能依靠三角形面积公式求解.我们发现右图三角形中存在一个比例关系:()2:13:4S=+阴影,解得2S=阴影.方法二:回顾下燕尾定理,有2:41:3S+=阴影(),解得2S=阴影.【例 10】如图,三角形ABC被分成6个三角形,已知其中4个三角形的面积,问三角形ABC的面积是多少?35304084OFED CBA【解析】设BOFS x=△,由题意知:4:3BD DC=根据燕尾定理,得::4:3ABO ACO BDO CDOS S S S==△△△△,所以33(84)6344ACOS x x=⨯+=+△,再根据::ABO BCO AOE COE S S S S =△△△△,列方程3(84):(4030)(6335):354x x ++=+-解得56x =:35(5684):(4030)AOE S =++△,所以70AOE S =△所以三角形的面积是844030355670315+++++=【例 11】三角形的面积为15平方厘米,D 为中点,E 为中点,F 为中点,求阴影部分的面积.F CBAF CBA【解析】 令与的交点为M ,与的交点为N ,连接,.在ABC △中,根据燕尾定理,::1:1ABM BCM S S AE CE ==△△,::1:1ACM BCM S S AD BD ==△△, 所以13ABM ACM BCN ABC S S S S ===△△△△由于1122AEM AMC ABM S S S ==△△△S ,所以:2:1BM ME =在EBC △中,根据燕尾定理,::1:1BEN CEN S S BF CF ==△△::1:2CEN CBN S S ME MB ==△△设1CEN S =△(份),则1BEN S =△(份),2BCN S =△(份),4BCE S =△(份),所以1124BCN BCE ABC S S S ==△△△,1148BNE BCE ABC S S S ==△△△,因为:2:1BM ME =为中点,所以221133812BMN BNE ABC ABC S S S S ==⨯=△△△△,11112248BFN BNC ABC S S S ==⨯=△△△,所以115515 3.1251282424ABC ABC S S S ⎛⎫=+==⨯= ⎪⎝⎭△△阴影(平方厘米)【例 12】如右图,ABC △中,G 是AC 的中点,D 、E 、F 是BC 边上的四等分点,AD 与BG 交于M ,AF 与BG 交于N ,已知ABM △的面积比四边形FCGN 的面积大7.2平方厘米,则ABC △的面积是多少平方厘米?N M GA BCD EFNMGA BC D EF【解析】 连接CM 、CN .根据燕尾定理,::1:1ABM CBM S S AG GC ==△△,::1:3ABM ACM S S BD CD ==△△,所以15ABM ABC S S =△△;再根据燕尾定理,::1:1ABN CBN S S AG GC ==△△,所以::4:3ABN FBN CBN FBN S S S S ==△△△△,所以:4:3AN NF =,那么1422437ANGAFCSS =⨯=+△△,所以2515177428FCGN AFC ABC ABC S S S S ⎛⎫=-=⨯= ⎪⎝⎭△△△. 根据题意,有157.2528ABC ABC S S -=△△,可得336ABC S =△(平方厘米)【巩固】(2007年四中分班考试题)如图,ABC ∆中,点D 是边AC 的中点,点E 、F 是边BC 的三等分点,若ABC ∆的面积为1,那么四边形CDMF 的面积是.F ABCDEM NFABCDEMN【解析】 由于点D 是边AC 的中点,点E 、F 是边BC 的三等分点,如果能求出BN 、NM 、MD 三段的比,那么所分成的六小块的面积都可以求出来,其中当然也包括四边形CDMF 的面积. 连接CM 、CN .根据燕尾定理,::2:1ABM ACM S S BF CF ∆∆==,而2ACM ADM S S ∆∆=,所以24ABM ACM ADM S S S ∆∆∆==,那么4BM DM =,即45BM BD =.那么421453215BMF BCD BM BF S S BDBC∆∆=⨯⨯=⨯⨯=,14721530CDMF S =-=四边形. 另解:得出24ABMACM ADM S S S ∆∆∆==后,可得111155210ADMABD S S ∆∆==⨯=, 则11731030ACF ADM CDMF S S S ∆∆=-=-=四边形.【例 13】如图,三角形ABC 的面积是1,BD DE EC ==,CF FG GA ==,三角形ABC 被分成9部分,请写出这9部分的面积各是多少?GFE D CBAN MQPGF EDCBA【解析】 设与交于点P ,与交于点Q ,与交于点M ,与交于点N .连接,,,.根据燕尾定理,::1:2ABP CBP S S AG GC ==△△,::1:2ABP ACP S S BD CD ==△△,设1ABP S =△(份),则1225ABC S =++=△(份),所以15ABP S =△同理可得,27ABQ S =△,12ABN S =△,而13ABG S =△,所以2137535APQ S =-=△,1213721AQG S =-=△.同理,335BPMS =△121BDM S =△,所以1239273570PQMN S =--=四边形,13953357042MNEDS =--=四边形,1151321426NFCE S =--=四边形,1115321642GFNQ S =--=四边形【巩固】如图,ABC ∆的面积为1,点D 、E 是BC 边的三等分点,点F 、G 是AC 边的三等分点,那么四边形JKIH 的面积是多少?K JI HABC D EF GKJI HABC D EFG【解析】 连接CK 、CI 、CJ .根据燕尾定理,::1:2ACK ABK S S CD BD ∆∆==,::1:2ABK CBK S S AG CG ∆∆==, 所以::1:2:4ACK ABK CBK S S S ∆∆∆=,那么111247ACK S ∆==++,11321AGK ACK S S ∆∆==.类似分析可得215AGI S ∆=. 又::2:1ABJ CBJ S S AF CF ∆∆==,::2:1ABJ ACJ S S BD CD ∆∆==,可得14ACJ S ∆=.那么,111742184CGKJ S =-=. 根据对称性,可知四边形CEHJ 的面积也为1784,那么四边形JKIH 周围的图形的面积之和为172161228415370CGKJ AGI ABE S S S ∆∆⨯++=⨯++=,所以四边形JKIH 的面积为61917070-=.【例 14】如右图,面积为1的ABC △中,::1:2:1BD DE EC =,::1:2:1CF FG GA =,::1:2:1AH HI IB =,求阴影部分面积.CBB【解析】 设IG 交HF 于M ,IG 交HD 于N ,DF 交EI 于P .连接AM ,IF .∵:3:4AI AB =,:3:4AF AC =,916AIF ABC S S ∴=△△ ∵::2FIM AMF S S IH HA ==△△,::2FIM AIM S S FG GA ==△△, ∴19464AIM AIF ABC S S S ==△△△ ∵:1:3AH AI = ∴364AHM ABC S S =△△, ∵:1:4AH AB = :3:4AF AC = ∴316AHF ABC S S =△△ . 同理 316CFD BDH ABC S S S ==△△△ ∴716FDH ABC S S =△△ 33::1:46416HM HF ==, ∵ :3:4,:3:4AI AB AF AC ==,∴IF BC ∥ ,又∵:3:4,:1:2IF BC DE BC ==,∴:2:3,:2:3DE IF DP PF ==,同理 :2:3HN ND =,∵:1:4HM HF =,∴:2:5HN HD =, ∴17710160160HMN HDF ABC S S S ===△△△.同理 6个小阴影三角形的面积均为7160. 阴影部分面积721616080=⨯=.【例 15】如图,面积为l 的三角形中,D 、E 、F 、G 、H 、I 分别是、、 的三等分点,求阴影部分面积.GC BAGCBA【解析】 三角形在开会,那么就好好利用三角形中最好用的比例和燕尾定理吧!令与的交点为M ,与的交点为N ,与的交点为与的交点为Q ,连接、、 ⑴求ADMI S 四边形:在ABC △中,根据燕尾定理,::1:2ABM CBM S S AI CI ==△△::1:2ACM CBM S S AD BD ==△△设1ABM S =△(份),则2CBM S =△(份),1ACM S =△(份),4ABC S =△(份),所以14ABM ACM ABC S S S ==△△△,所以11312ADM ABM ABC S S S ==△△△,112AIM ABC S S =△△, 所以111()12126ABC ABC ADMIS S S =+=△△四边形, 同理可得另外两个顶点的四边形面积也分别是ABC △面积的16⑵求DNPQES五边形:在ABC △中,根据燕尾定理::1:2ABN ACN S S BF CF ==△△::1:2ACN BCN S S AD BD ==△△,所以111133721ADN ABN ABC ABC S S S S ==⨯=△△△△,同理121BEQ ABC S S =△△ 在ABC △中,根据燕尾定理::1:2ABP ACP S S BF CF ==△△,::1:2ABP CBP S S AI CI ==△△ 所以15ABP ABC S S =△△所以1111152121105ABP ADN BEP ABC ABC DNPQE S S S S S S ⎛⎫=--=--= ⎪⎝⎭△△△△△五边形同理另外两个五边形面积是ABC △面积的11105所以11113133610570S =-⨯-⨯=阴影【例 16】如图,面积为l 的三角形中,D 、E 、F 、G 、H 、I 分别是、、 的三等分点,求中心六边形面积.GCBAGCBA【解析】 设深黑色六个三角形的顶点分别为N 、R 、P 、S 、M 、Q ,连接在ABC △中根据燕尾定理,::.2:1ABR ACR S S BG CG ==△△,::1:2ABR CBR S S AI CI ==△△所以27ABR ABC S S =△△,同理27ACS ABC S S =△△,27CQB ABC S S =△△所以222117777RQS S =---=△同理17MNP S =△根据容斥原理,和上题结果11131777010S =+-=六边形【例 17】(2009年数学解题能力大赛六年级初试试题)正六边形1A ,2A ,3A ,4A ,5A ,6A 的面积是2009平方厘米,1B ,2B ,3B ,4B ,5B ,6B 分别是正六边形各边的中点;那么图中阴影六边形的面积是 平方厘米.A 4B 5A 3A 45A 3【解析】 (方法一)因为空白的面积等于23A A G △面积的6倍,所以关键求23A A G△的面积,根据燕尾定理可得2312333117732A A G A A A S S S ==⨯⨯△△正六边形,但在123A A A △用燕尾定理时,需要知道13,A D A D 的长度比,连接1363,A A A A ,1A G ,过6B 作12A A 的平行线,交13A A 于E ,根据沙漏模型得1A D DE =,再根据金字塔模型得13A E A E =,因此13:1:3A D A D =,在123A A A △中,设121A A GS=△份,则233A A GS =△份,313A A GS=△份,所以2312333111773214A A G A A A S S S S ==⨯⨯=△△正六边形正六边形, 因此141620091148147S S =-⨯=⨯=阴影正六边形()(平方厘米) (方法二)既然给的图形是特殊的正六边形,且阴影也是正六边形我们可以用下图的割补思路,把正六边形分割成14个大小形状相同的梯形,其中阴影有8个梯形,所以阴影面积为82009114814⨯=(平方厘米)A 3A【例 18】已知四边形ABCD ,CHFG 为正方形,:1:8S S =乙甲,a 与b 是两个正方形的边长,求:?a b =baEDbaNMHFED【解析】 观察图形,感觉阴影部分像蝴蝶定理,但是细细分析发现用蝴蝶定理无法继续往下走,注意到题目条件中给出了两个正方形的边长,有边长就可以利用比例,再发现在连接辅助线后可以利用燕尾,那么我们就用燕尾定理来求解 连接、,根据燕尾定理:::AOE AOF S S a b =△△,::AOF EOF S S a b =△△ 所以 22::AOE EOF S S a b =△△,作⊥、⊥, ∵=∴22::OM ON a b = ∴33::1:8S S a b ==乙甲∴:1:2a b =。
小学奥数-几何五大模型(燕尾模型)
¥燕尾定理:在三角形ABC 中,AD ,BE ,CF 相交于同一点O , 那么,::ABO ACO S S BD DC ∆∆=/OFE DCBA上述定理给出了一个新的转化面积比与线段比的手段,因为ABO ∆和ACO ∆的形状很象燕子的尾巴,所以这个定理被称为燕尾定理.该定理在许多几何题目中都有着广泛的运用,它的特殊性在于,它可以存在于任何一个三角形之中,为三角形中的三角形面积对应底边之间提供互相联系的途径.通过一道例题 证明燕尾定理:如右图,D 是BC 上任意一点,请你说明:1423:::S S S S BD DC ==S 3S 1S 4S 2EDCBA【解析】 三角形BED 与三角形CED 同高,分别以BD 、DC 为底,所以有14::S S BD DC =;三角形ABE 与三角形EBD 同高,12::S S ED EA =;—三角形ACE 与三角形CED 同高,43::S S ED EA =,所以1423::S S S S =;综上可得, 1423:::S S S S BD DC ==.例题精讲燕尾定理【例 1】 (2009年第七届希望杯五年级一试试题)如图,三角形ABC 的面积是1,E 是AC 的中点,点D 在BC 上,且:1:2BD DC =,AD 与BE 交于点F .则四边形DFEC 的面积等于 .FED CBA33321F E DC BAABCDEF【解析】 方法一:连接CF ,根据燕尾定理,12ABF ACF S BD S DC ==△△,1ABF CBF S AES EC==△△,设1BDF S =△份,则2DCF S =△份,3ABF S =△份,3AEF EFC S S ==△△份,如图所标 、所以551212DCEF ABC S S ==△方法二:连接DE ,由题目条件可得到1133ABD ABC S S ==△△,11212233ADE ADC ABC S S S ==⨯=△△△,所以11ABD ADE S BF FE S ==△△, 111111122323212DEF DEB BEC ABC S S S S =⨯=⨯⨯=⨯⨯⨯=△△△△,而211323CDE ABC S S =⨯⨯=△△.所以则四边形DFEC 的面积等于512.【巩固】如图,已知BD DC =,2EC AE =,三角形ABC 的面积是30,求阴影部分面积.【解析】 题中条件只有三角形面积给出具体数值,其他条件给出的实际上是比例的关系,由此我们可以初步判断这道题不应该通过面积公式求面积. 又因为阴影部分是一个不规则四边形,所以我们需要对它进行改造,那么我们需要连一条辅助线,(法一)连接CF ,因为BD DC =,2EC AE =,三角形ABC 的面积是30,|所以1103ABE ABC S S ==△△,1152ABD ABC S S ==△△.根据燕尾定理,12ABF CBF S AE S EC ==△△,1ABF ACF S BDS CD==△△,所以17.54ABF ABC S S ==△△,157.57.5BFD S =-=△,所以阴影部分面积是30107.512.5--=.(法二)连接DE ,由题目条件可得到1103ABE ABC S S ==△△,11210223BDE BEC ABC S S S ==⨯=△△△,所以11ABE BDE S AF FD S ==△△, 1111112.5223232DEF DEA ADC ABC S S S S =⨯=⨯⨯=⨯⨯⨯=△△△△,而211032CDE ABC S S =⨯⨯=△△.所以阴影部分的面积为12.5.【巩固】如图,三角形ABC 的面积是2200cm ,E 在AC 上,点D 在BC 上,且:3:5AE EC =,:2:3BD DC =,AD 与BE 交于点F .则四边形DFEC 的面积等于 . ;FED CBAABCDEFFEDCBA【解析】 连接CF ,根据燕尾定理,2639ABF ACF S BD S DC ===△△,36510ABF CBF S AE S EC ===△△, 设6ABF S =△份,则9ACF S =△份,10BCF S =△份,5459358EFC S =⨯=+△份,310623CDF S =⨯=+△份,所以24545200(6910)(6)8(6)93(cm )88DCFE S =÷++⨯+=⨯+=【巩固】如图,已知3BD DC =,2EC AE =,BE 与CD 相交于点O ,则ABC △被分成的4部分面积各占ABC △面积的几分之几OE DCBA13.54.59211213O E D CBA【解析】 连接CO ,设1AEO S =△份,则其他部分的面积如图所示,所以1291830ABC S =+++=△份,所以四部分按从小到大各占ABC △面积的12 4.5139313.59,,,30306030103020+===【巩固】(2007年香港圣公会数学竞赛)如图所示,在ABC △中,12CP CB =,13CQ CA =,BQ 与AP 相交于点X ,若ABC △的面积为6,则ABX △的面积等于 .]XQPABC XQPAB C4411XQPCBA【解析】 方法一:连接PQ .由于12CP CB =,13CQ CA =,所以23ABQ ABC SS =,1126BPQ BCQABCS S S ==.由蝴蝶定理知,21:::4:136ABQ BPQ ABC ABC AX XP S S S S ===,所以441226 2.455255ABX ABP ABC ABC S S S S ==⨯==⨯=.方法二:连接CX 设1CPX S =△份,根据燕尾定理标出其他部分面积, 所以6(1144)4 2.4ABX S =÷+++⨯=△【巩固】如图,三角形ABC 的面积是1,2BD DC =,2CE AE =,AD 与BE 相交于点F ,请写出这4部分的面积各是多少ABCDE F48621ABCDEF【解析】 》 【解析】 连接CF ,设1AEF S =△份,则其他几部分面积可以有燕尾定理标出如图所示,所以121AEF S =△,62217ABF S ==△,821BDF S =△,242217FDCE S +==【巩固】如图,E 在AC 上,D 在BC 上,且:2:3AE EC =,:1:2BD DC =,AD 与BE 交于点F .四边形DFEC的面积等于222cm ,则三角形ABC 的面积 .A BCDE FA BCDEF 2.41.62A BC DE F 12【解析】 连接CF ,根据燕尾定理,12ABF ACF S BD S DC ==△△,23ABF CBF S AE S EC ==△△, 设1BDF S =△份,则2DCF S =△份,2ABF S =△份,4AFC S =△份,24 1.623AEF S =⨯=+△ 份,34 2.423EFC S =⨯=+△份,如图所标,所以2 2.4 4.4EFDC S =+=份,2349ABC S =++=△份 所以222 4.4945(cm )ABCS =÷⨯=△【巩固】三角形ABC 中,C 是直角,已知2AC =,2CD =,3CB =,AM BM =,那么三角形AMN (阴影部分)的面积为多少 、【解析】 连接BN .ABC △的面积为3223⨯÷=根据燕尾定理,::2:1ACN ABN CD BD ==△△; 同理::1:1CBN CAN BM AM ==△△设AMN △面积为1份,则MNB △的面积也是1份,所以ANB △的面积是112+=份,而ACN △的面积就是224⨯=份,CBN △也是4份,这样ABC △的面积为441110+++=份,所以AMN △的面积为31010.3÷⨯=.【巩固】如图,长方形ABCD的面积是2平方厘米,2EC DE=,F是DG的中点.阴影部分的面积是多少平方厘米yB CDEGEDCBAEDBA【解析】设1DEFS=△份,则根据燕尾定理其他面积如图所示551212BCDS S==△阴影平方厘米.]【例 2】如图所示,在四边形ABCD中,3AB BE=,3AD AF=,四边形AEOF的面积是12,那么平行四边形BODC的面积为________.OFE DBA684621OFE DBA【解析】连接,AO BD,根据燕尾定理::1:2ABO BDOS S AF FD==△△,::2:1AOD BODS S AE BE==△△,设1BEOS=△,则其他图形面积,如图所标,所以221224BODC AEOFS S==⨯=.【例 3】ABCD是边长为12厘米的正方形,E、F分别是AB、BC边的中点,AF与CE交于G,则四边形AGCD的面积是_________平方厘米.GFED CBAGFED CBA【解析】连接AC、GB,设1AGCS=△份,根据燕尾定理得1AGBS=△份,1BGCS=△份,则11126S=++⨯=正方形()份,314ADCGS=+=份,所以22126496(cm)ADCGS=÷⨯=【例 4】如图,正方形ABCD的面积是120平方厘米,E是AB的中点,F是BC的中点,四边形BGHF的面积是_____平方厘米.>EDCBEDCB【解析】连接BH,根据沙漏模型得:1:2BG GD=,设1BHCS=△份,根据燕尾定理2CHDS=△份,2BHDS=△份,因此122)210S =++⨯=正方形(份,127236BFHG S =+=,所以712010146BFHG S =÷⨯=(平方厘米).【例 5】 如图所示,在ABC △中,:3:1BE EC =,D 是AE 的中点,那么:AF FC = .FE D C B AFE DCB A【解析】 连接CD .由于:1:1ABD BED S S =△△,:3:4BED BCD S S =△△,所以:3:4ABD BCD S S =△△,根据燕尾定理,::3:4ABD BCD AF FC S S ==△△.【巩固】在ABC ∆中,:3:2BD DC =, :3:1AE EC =,求:OB OE =@A BCDE OABCDE O【解析】 连接OC .因为:3:2BD DC =,根据燕尾定理,::3:2AOB AOC S S BD BC ∆∆==,即32AOB AOC S S ∆∆=; 又:3:1AE EC =,所以43AOC AOE S S ∆∆=.则3342223AOB AOC AOE AOE S S S S ∆∆∆∆==⨯=, 所以::2:1AOB AOEOB OE S S ∆∆==.【巩固】在ABC ∆中,:2:1BD DC =, :1:3AE EC =,求:OB OE =A B CDE O【解析】 题目求的是边的比值,一般来说可以通过分别求出每条边的值再作比值,也可以通过三角形的面积比来做桥梁,但题目没告诉我们边的长度,所以应该通过面积比而得到边长的比.本题的图形一看就联想到燕尾定理,但两个燕尾似乎少了一个,因此应该补全,所以第一步要连接OC . 连接OC . `A B CDE O因为:2:1BD DC =,根据燕尾定理,::2:1AOB AOC S S BD BC ∆∆==,即2AOB AOC S S ∆∆=;又:1:3AE EC =,所以4AOC AOE S S ∆∆=.则2248AOB AOC AOE AOE S S S S ∆∆∆∆==⨯=, 所以::8:1AOB AOE OB OE S S ∆∆==.【例 6】 (2009年清华附中入学测试题)如图,四边形ABCD 是矩形,E 、F 分别是AB 、BC 上的点,且13AE AB =,14CF BC =,AF 与CE 相交于G ,若矩形ABCD 的面积为120,则AEG ∆与CGF ∆的面积之和为 .BEH BEBE【解析】 (法1)如图,过F 做CE 的平行线交AB 于H ,则::1:3EH HB CF FB ==,所以122AE EB EH ==,::2AG GF AE EH ==,即2AG GF =,所以122311033942AEG ABF ABCD S S S ∆∆=⨯⨯=⨯⨯=.$且22313342EG HF EC EC ==⨯=,故CG GE =,则1152CGF AEG S S ∆∆=⨯⨯=.所以两三角形面积之和为10515+=. (法2)如上右图,连接AC 、BG .根据燕尾定理,::3:1ABG ACG S S BF CF ∆∆==,::2:1BCG ACG S S BE AE ∆∆==,而1602ABC ABCD S S ∆==,所以3321ABG S ∆=++,160302ABC S ∆=⨯=,2321BCG S ∆=++,160203ABC S ∆=⨯=,则1103AEG ABG S S ∆∆==,154CFG BCG S S ∆∆==,所以两个三角形的面积之和为15.【例 7】 如右图,三角形ABC 中,:4:9BD DC =,:4:3CE EA =,求:AF FB .O F EDCBA【解析】 根据燕尾定理得::4:912:27AOB AOC S S BD CD ===△△::3:412:16AOB BOC S S AE CE ===△△(都有AOB △的面积要统一,所以找最小公倍数) 所以:27:16:AOC BOC S S AF FB ==△△【点评】本题关键是把AOB △的面积统一,这种找最小公倍数的方法,在我们用比例解题中屡见不鲜,如果能掌握它的转化本质,我们就能达到解奥数题四两拨千斤的巨大力量!【巩固】如右图,三角形ABC 中,:3:4BD DC =,:5:6AE CE =,求:AF FB .O F EDCBA【解析】 根据燕尾定理得::3:415:20AOB AOC S S BD CD ===△△ `::5:615:18AOB BOC S S AE CE ===△△(都有AOB △的面积要统一,所以找最小公倍数) 所以:20:1810:9:AOC BOC S S AF FB ===△△【巩固】如图,:2:3BD DC =,:5:3AE CE =,则:AF BF =GF EDCBA【解析】 根据燕尾定理有:2:310:15ABG ACG S S ==△△,:5:310:6ABG BCGS S ==△△,所以:15:65:2:ACG BCG S S AF BF ===△△【巩固】如右图,三角形ABC 中,:2:3BD DC =,:5:4EA CE =,求:AF FB .O F EDCBA【解析】 { 【解析】 根据燕尾定理得::2:310:15AOB AOC S S BD CD ===△△::5:410:8AOB BOC S S AE CE ===△△(都有AOB △的面积要统一,所以找最小公倍数) 所以:15:8:AOC BOC S S AF FB ==△△【点评】本题关键是把AOB △的面积统一,这种找最小公倍数的方法,在我们用比例解题中屡见不鲜,如果能掌握它的转化本质,我们就能达到解奥数题四两拨千斤的巨大力量!【例 8】 (2008年“学而思杯”六年级数学试题)如右图,三角形ABC 中,:::3:2AF FB BD DC CE AE ===,且三角形ABC 的面积是1,则三角形ABE 的面积为______,三角形AGE 的面积为________,三角形GHI 的面积为______.I HGFEDC BAI HG FEDCBA【分析】 连接AH 、BI 、CG .由于:3:2CE AE =,所以25AE AC =,故2255ABE ABC S S ∆∆==;/根据燕尾定理,::2:3ACG ABG S S CD BD ∆∆==,::3:2BCG ABG S S CE EA ∆∆==,所以::4:6:9ACG ABG BCG S S S ∆∆∆=,则419ACG S ∆=,919BCG S ∆=;那么2248551995AGE AGC S S ∆∆==⨯=;同样分析可得919ACH S ∆=,则::4:9ACG ACH EG EH S S ∆∆==,::4:19ACG ACB EG EB S S ∆∆==,所以::4:5:10EG GH HB =,同样分析可得::10:5:4AG GI ID =,所以5521101055BIE BAE S S ∆∆==⨯=,55111919519GHI BIE S S ∆∆==⨯=.【巩固】 如右图,三角形ABC 中,:::3:2AF FB BD DC CE AE ===,且三角形GHI 的面积是1,求三角形ABC 的面积.IH G FEDCBAIH G FEDCBA【解析】 连接BG ,AGC S △=6份根据燕尾定理,::3:26:4AGC BGC S S AF FB ===△△,::3:29:6ABG AGC S S BD DC ===△△ \得4BGC S =△(份),9ABG S =△(份),则19ABC S =△(份),因此619AGC ABC S S =△△,同理连接AI 、CH 得619ABH ABC S S =△△,619BIC ABC S S =△△,所以1966611919GHI ABC S S ---==△△ 三角形GHI 的面积是1,所以三角形ABC 的面积是19【巩固】(2009年第七届“走进美妙的数学花园”初赛六年级)如图,ABC ∆中2BD DA =,2CE EB =,2AF FC =,那么ABC ∆的面积是阴影三角形面积的 倍.BCB【分析】 如图,连接AI .根据燕尾定理,::2:1BCI ACI S S BD AD ∆∆==,::1:2BCI ABI S S CF AF ∆∆==,所以,::1:2:4ACI BCI ABI S S S ∆∆∆=, —那么,221247BCI ABC ABC S S S ∆∆∆==++.同理可知ACG ∆和ABH ∆的面积也都等于ABC ∆面积的27,所以阴影三角形的面积等于ABC ∆面积的211377-⨯=,所以ABC ∆的面积是阴影三角形面积的7倍.【巩固】如图在ABC △中,12DC EA FB DB EC FA ===,求GHI ABC △的面积△的面积的值. IHG FEDCBAIHG FEDCB A【解析】 连接BG ,设BGC S △=1份,根据燕尾定理::2:1AGC BGC S S AF FB ==△△,::2:1ABG AGC S S BD DC ==△△,得2AGC S =△(份),4ABG S =△(份),则7ABC S =△(份),因此27AGC ABC S S =△△,同理连接AI 、CH 得27ABH ABC S S =△△,27BIC ABC S S =△△, 所以7222177GHI ABC S S ---==△△ 【点评】如果任意一个三角形各边被分成的比是相同的,那么在同样的位置上的图形,虽然形状千变万化,但面积是相等的,这在这讲里面很多题目都是用“同理得到”的,即再重复一次解题思路,因此我们有对称法作辅助线.【巩固】如图在ABC △中,13DC EA FB DB EC FA ===,求GHI ABC △的面积△的面积的值. `IHG FEDCBAIHG FEDCBA【解析】 连接BG ,设BGC S △=1份,根据燕尾定理::3:1AGC BGC S S AF FB ==△△,::3:1ABG AGC S S BD DC ==△△,得3AGC S =△(份),9ABG S =△(份),则13ABC S =△(份),因此313AGC ABC S S =△△,同理连接AI 、CH 得13ABH ABC S S =△△,313BIC ABC S S =△△, 所以1333341313GHI ABC S S ---==△△【巩固】如右图,三角形ABC 中,:::4:3AF FB BD DC CE AE ===,且三角形ABC 的面积是74,求角形GHI的面积.IH G FEDCBA IH G FEDCBA【解析】 连接BG ,AGC S △=12份根据燕尾定理,::4:312:9AGC BGC S S AF FB ===△△,::4:316:12ABG AGC S S BD DC ===△△得9BGC S =△(份),16ABG S =△(份),则9121637ABC S =++=△(份),因此1237AGC ABC S S =△△,同理连接AI 、CH 得1237ABH ABC S S =△△,1237BIC ABC S S =△△, ;所以3712121213737GHI ABC S S ---==△△ 三角形ABC 的面积是74,所以三角形GHI 的面积是174237⨯=【例 9】 两条线段把三角形分为三个三角形和一个四边形,如图所示, 三个三角形的面积 分别是3,7,7,则阴影四边形的面积是多少【解析】 方法一:遇到没有标注字母的图形,我们第一步要做的就是给图形各点标注字母,方便后面的计算.再看这道题,出现两个面积相等且共底的三角形.设三角形为ABC ,BE 和CD 交于F ,则BF FE =,再连结DE . 所以三角形DEF 的面积为3.设三角形ADE 的面积为x ,则()():33:10:10x AD DB x +==+,所以15x =,四边形的面积为18. |方法二:设ADF S x =△,根据燕尾定理::ABF BFC AFE EFC S S S S =△△△△,得到3AEF S x =+△,再根据向右下飞的燕子,有(37):7:3x x ++=,解得7.5x =四边形的面积为7.57.5318++=【巩固】右图的大三角形被分成5个小三角形,其中4个的面积已经标在图中,那么,阴影三角形的面积是 .【解析】 方法一:整个题目读完,我们没有发现任何与边长相关的条件,也没有任何与高或者垂直有关系的字眼,由此,我们可以推断,这道题不能依靠三角形面积公式求解.我们发现右图三角形中存在一个比例关系:()2:13:4S =+阴影,解得2S =阴影.方法二:回顾下燕尾定理,有2:41:3S +=阴影(),解得2S =阴影.【例 10】 如图,三角形ABC 被分成6个三角形,已知其中4个三角形的面积,问三角形ABC 的面积是多少35304084O FED CBA【解析】 > 【解析】 设BOF S x =△,由题意知:4:3BD DC =根据燕尾定理,得::4:3ABO ACO BDO CDO S S S S ==△△△△,所以33(84)6344ACO S x x =⨯+=+△,再根据::ABO BCO AOE COE S S S S =△△△△,列方程3(84):(4030)(6335):354x x ++=+-解得56x =:35(5684):(4030)AOE S =++△,所以70AOE S =△所以三角形ABC 的面积是844030355670315+++++=【例 11】 三角形ABC 的面积为15平方厘米,D 为AB 中点,E 为AC 中点,F 为BC 中点,求阴影部分的面积.F CBAF CBA【解析】 令BE 与CD 的交点为M ,CD 与EF 的交点为N ,连接AM ,BN .在ABC △中,根据燕尾定理,::1:1ABM BCM S S AE CE ==△△,::1:1ACM BCM S S AD BD ==△△, &所以13ABM ACM BCN ABC S S S S ===△△△△由于1122AEM AMC ABM S S S ==△△△S ,所以:2:1BM ME =在EBC △中,根据燕尾定理,::1:1BEN CEN S S BF CF ==△△::1:2CEN CBN S S ME MB ==△△设1CEN S =△(份),则1BEN S =△(份),2BCN S =△(份),4BCE S =△(份),所以1124BCN BCE ABC S S S ==△△△,1148BNE BCE ABC S S S ==△△△,因为:2:1BM ME =,F 为BC 中点,所以221133812BMN BNE ABC ABC S S S S ==⨯=△△△△,11112248BFN BNC ABC S S S ==⨯=△△△,所以115515 3.1251282424ABC ABC S S S ⎛⎫=+==⨯= ⎪⎝⎭△△阴影(平方厘米)【例 12】 如右图,ABC △中,G 是AC 的中点,D 、E 、F 是BC 边上的四等分点,AD 与BG 交于M ,AF 与BG 交于N ,已知ABM △的面积比四边形FCGN 的面积大7.2平方厘米,则ABC △的面积是多少平方厘米N M GA BCD EFNMGA BCD EF【解析】 > 【解析】 连接CM 、CN .根据燕尾定理,::1:1ABM CBM S S AG GC ==△△,::1:3ABM ACM S S BD CD ==△△,所以15ABM ABC S S =△△;再根据燕尾定理,::1:1ABN CBN S S AG GC ==△△,所以::4:3ABN FBN CBN FBN S S S S ==△△△△,所以:4:3AN NF =,那么1422437ANG AFC S S =⨯=+△△,所以2515177428FCGN AFC ABC ABC S S S S ⎛⎫=-=⨯= ⎪⎝⎭△△△.根据题意,有157.2528ABCABC S S -=△△,可得336ABC S =△(平方厘米)【巩固】(2007年四中分班考试题)如图,ABC ∆中,点D 是边AC 的中点,点E 、F 是边BC 的三等分点,若ABC ∆的面积为1,那么四边形CDMF 的面积是_________.F ABCDEM NFABCDEMN【解析】 由于点D 是边AC 的中点,点E 、F 是边BC 的三等分点,如果能求出BN 、NM 、MD 三段的比,那么所分成的六小块的面积都可以求出来,其中当然也包括四边形CDMF 的面积. 连接CM 、CN .根据燕尾定理,::2:1ABM ACM S S BF CF ∆∆==,而2ACM ADM S S ∆∆=,所以24ABM ACM ADM S S S ∆∆∆==,那么4BM DM =,即45BM BD =.【那么421453215BMF BCD BM BF S S BD BC ∆∆=⨯⨯=⨯⨯=,14721530CDMF S =-=四边形. 另解:得出24ABM ACM ADM S S S ∆∆∆==后,可得111155210ADM ABD S S ∆∆==⨯=,则11731030ACF ADM CDMF S S S ∆∆=-=-=四边形.【例 13】 如图,三角形ABC 的面积是1,BD DE EC ==,CF FG GA ==,三角形ABC 被分成9部分,请写出这9部分的面积各是多少GFE D CBAN MQPGF EDCBA【解析】 设BG 与AD 交于点P ,BG 与AE 交于点Q ,BF 与AD 交于点M ,BF 与AE 交于点N .连接CP ,CQ ,CM ,CN .根据燕尾定理,::1:2ABP CBP S S AG GC ==△△,::1:2ABP ACP S S BD CD ==△△,设1ABP S =△(份),则1225ABC S =++=△(份),所以15ABP S =△同理可得,27ABQ S =△,12ABN S =△,而13ABG S =△,所以2137535APQ S =-=△,1213721AQG S =-=△.同理,335BPM S =△121BDM S =△,所以1239273570PQMN S =--=四边形,139********MNED S =--=四边形,1151321426NFCE S =--=四边形,1115321642GFNQ S =--=四边形【【巩固】如图,ABC ∆的面积为1,点D 、E 是BC 边的三等分点,点F 、G 是AC 边的三等分点,那么四边形JKIH 的面积是多少K JI HABC D EF GKJI HA BCD EFG【解析】 连接CK 、CI 、CJ .根据燕尾定理,::1:2ACK ABK S S CD BD ∆∆==,::1:2ABK CBK S S AG CG ∆∆==,所以::1:2:4ACK ABK CBK S S S ∆∆∆=,那么111247ACK S ∆==++,11321AGK ACK S S ∆∆==.类似分析可得215AGI S ∆=.又::2:1ABJ CBJ S S AF CF ∆∆==,::2:1ABJ ACJ S S BD CD ∆∆==,可得14ACJ S ∆=.那么,111742184CGKJ S =-=.根据对称性,可知四边形CEHJ 的面积也为1784,那么四边形JKIH 周围的图形的面积之和为172161228415370CGKJ AGI ABE S S S ∆∆⨯++=⨯++=,所以四边形JKIH 的面积为61917070-=.@【例 14】 如右图,面积为1的ABC △中,::1:2:1BD DE EC =,::1:2:1CF FG GA =,::1:2:1AH HI IB =,求阴影部分面积.CBB【解析】 设IG 交HF 于M ,IG 交HD 于N ,DF 交EI 于P .连接AM , IF .∵:3:4AI AB =,:3:4AF AC =,916AIF ABC S S ∴=△△∵::2FIM AMF S S IH HA ==△△,::2FIM AIM S S FG GA ==△△,∴19464AIM AIF ABC S S S ==△△△ ∵:1:3AH AI = ∴364AHM ABC S S =△△,∵:1:4AH AB = :3:4AF AC = ∴316AHF ABC S S =△△ . 同理 316CFD BDH ABC S S S ==△△△ ∴716FDH ABC S S =△△ 33::1:46416HM HF ==, ~∵ :3:4,:3:4AI AB AF AC ==, ∴IF BC ∥ ,又∵:3:4,:1:2IF BC DE BC ==,∴:2:3,:2:3DE IF DP PF ==,同理 :2:3HN ND =,∵:1:4HM HF =,∴:2:5HN HD =,∴17710160160HMN HDF ABC S S S ===△△△. 同理 6个小阴影三角形的面积均为7160.阴影部分面积721616080=⨯=.【例 15】 如图,面积为l 的三角形ABC 中,D 、E 、F 、G 、H 、I 分别是AB 、BC 、CA 的三等分点,求阴影部分面积. >GCBAGCBA【解析】 三角形在开会,那么就好好利用三角形中最好用的比例和燕尾定理吧!令BI 与CD 的交点为M ,AF 与CD 的交点为N ,BI 与AF 的交点为P ,BI 与CE 的交点为Q ,连接AM 、BN 、CP⑴求ADMI S 四边形:在ABC △中,根据燕尾定理,::1:2ABM CBM S S AI CI ==△△::1:2ACM CBM S S AD BD ==△△设1ABM S =△(份),则2CBM S =△(份),1ACM S =△(份),4ABC S =△(份),所以14ABM ACM ABC S S S ==△△△,所以11312ADM ABM ABC S S S ==△△△,112AIM ABC S S =△△,所以111()12126ABC ABC ADMI S S S =+=△△四边形,同理可得另外两个顶点的四边形面积也分别是ABC △面积的16⑵求DNPQE S 五边形:在ABC △中,根据燕尾定理::1:2ABN ACN S S BF CF ==△△::1:2ACN BCN S S AD BD ==△△,所以111133721ADN ABN ABC ABC S S S S ==⨯=△△△△,同理121BEQ ABC S S =△△*在ABC △中,根据燕尾定理::1:2ABP ACP S S BF CF ==△△,::1:2ABP CBP S S AI CI ==△△ 所以15ABP ABC S S =△△所以1111152121105ABP ADN BEP ABC ABC DNPQE S S S S S S ⎛⎫=--=--=⎪⎝⎭△△△△△五边形 同理另外两个五边形面积是ABC △面积的11105所以11113133610570S =-⨯-⨯=阴影【例 16】 如图,面积为l 的三角形ABC 中,D 、E 、F 、G 、H 、I 分别是AB 、BC 、CA 的三等分点,求中心六边形面积.GFCBAGFCBA【解析】 设深黑色六个三角形的顶点分别为N 、R 、P 、S 、M 、Q ,连接CR在ABC △中根据燕尾定理,::.2:1ABR ACR S S BG CG ==△△,::1:2ABR CBR S S AI CI ==△△所以27ABR ABC S S =△△,同理27ACS ABC S S =△△,27CQB ABC S S =△△所以222117777RQS S =---=△同理17MNP S =△根据容斥原理,和上题结果11131777010S =+-=六边形【例 17】(2009年数学解题能力大赛六年级初试试题)正六边形1A ,2A ,3A ,4A ,5A ,6A 的面积是2009平方厘米,1B ,2B ,3B ,4B ,5B ,6B 分别是正六边形各边的中点;那么图中阴影六边形的面积是 平方厘米.A 45A 3A 45A 3【解析】 (方法一)因为空白的面积等于23A A G △面积的6倍,所以关键求23A A G △的面积,根据燕尾定理可得2312333117732A A G A A A S S S ==⨯⨯△△正六边形,但在123A A A △用燕尾定理时,需要知道13,A D A D 的长度比,连接1363,A A A A ,1A G ,过6B 作12A A 的平行线,交13A A 于E ,根据沙漏模型得1A D DE =,再根据金字塔模型得13A E A E =,因此13:1:3A D A D =,在123A A A △中,设121A A G S =△份,则233A A G S =△份,313A A G S =△份,所以2312333111773214A A G A A A S S S S ==⨯⨯=△△正六边形正六边形,因此141620091148147S S =-⨯=⨯=阴影正六边形()(平方厘米)(方法二)既然给的图形是特殊的正六边形,且阴影也是正六边形我们可以用下图的割补思路,把正六边形分割成14个大小形状相同的梯形,其中阴影有8个梯形,所以阴影面积为82009114814⨯=(平方厘米)FA 3A【例 18】已知四边形ABCD ,CHFG 为正方形,:1:8S S =乙甲,a 与b 是两个正方形的边长,求:?a b =baHFEDbaMED【解析】 观察图形,感觉阴影部分像蝴蝶定理,但是细细分析发现用蝴蝶定理无法继续往下走,注意到题目条件中给出了两个正方形的边长,有边长就可以利用比例,再发现在连接辅助线后可以利用燕尾,那么我们就用燕尾定理来求解 连接EO 、AF ,根据燕尾定理:::AOE AOF S S a b =△△,::AOF EOF S S a b =△△所以 22::AOE EOF S S a b =△△,作OM ⊥AE 、ON ⊥EF , ∵AE =EF∴22::OM ON a b = ∴33::1:8S S a b ==乙甲 ∴:1:2a b =。
小学数学几何五大模型讲解——燕尾模型
前两次课分别为大家讲解了小学几何五大模型中的等积模型和蝴蝶模型,今天为大家讲解一下五大模型中的燕尾模型。
燕尾模型也是小学几何中的难点,希望对大家学习小学几何有所帮助。
燕尾模型又称燕尾定理,是指在一个三角形中分别从三个角点向所对的边做三条直线并相交于一点。
如图:S△ABO:S△ACO=BD:DC证明:在△ ABC中△ ABD与△ ACD的高相等,故S△ ABD:S△ACD=BD:DC;又因为△ OBD与△ OCD的高也相等,故S△ OBD:S△OCD=BD:DC,那么(S△ ABD-S△ OBD):(S△ ACD- S△ OCD )= S△ABO:S△ACO=BD:DC同理可得:S△ABO:S△BCO=AE:EC;S△BCO:S△ACO=BF:FA【例题1】如图,三角形ABC的面积是1,E是AC的中点,点D在BC上,且BD:DC=1:2,AD与BE交于点F,求四边形DFEC的面积?【解题思路】连接FC做辅助线【例题2】如图,三角形ABC的面积是8平方厘米,AF=FD,BD=2/3BC,AD与BE交于点F,求阴影面积?【解题思路】连接FC做辅助线;【例题3】如图,长方形ABCD的面积为120平方厘米,AB=3AE,BD=4FD,求阴影部分面积?【解题思路】连接BG,连接AD做辅助线;【例题4】如图,在四边形ABCD中,AB=3BE,AD=3AF,四边形AEOF的面积是12平方厘米,求平行四边形BODC的面积?【解题思路】连接AO,连接BD做辅助线;设S△BEO的面积为1份;S△BEO:S△AEO=BE:EA=1:2,故S△AEO的面积为2份;根据燕尾定理,S△ABO:S△BDO=AF:FD=1:2,故S△BDO的面积为6份;S△ADO:S△BDO=AE:EB=2:1,故S△ADO的面积为12份;S△AFO:S△DFO= AF:FD=1:2,故S△AFO的面积为12÷3=4份,S△AFO的面积为12÷3×2=8份;四边形AEOF面积为6份与三角形BDO面积相等,故平行四边行BODC的面积=12×2=24平方厘米。
小学奥数几何五大模型燕尾模型
燕尾定理:在三角形ABC 中,AD ,BE ,CF 相交于同一点O ,那么,上述定理给出了一个新的转化面积比与线段比的手段,因为ABO ∆和ACO ∆的形状很象燕子的尾巴,所以这个定理被称为燕尾定理.该定理在许多几何题目中都有着广泛的运用,它的特殊性在于,它可以存在于任何一个三角形之中,为三角形中的三角形面积对应底边之间提供互相联系的途径.通过一道例题 证明燕尾定理:如右图,D 是BC 上任意一点,请你说明:1423:::S S S S BD DC ==【解析】 三角形BED 与三角形CED 同高,分别以BD 、DC 为底,所以有14::S S BD DC =;三角形ABE 与三角形EBD 同高,12::S S ED EA =;三角形ACE 与三角形CED 同高,43::S S ED EA =,所以1423::S S S S =;例题精讲燕尾定理综上可得, 1423:::S S S S BD DC ==.【例 1】 (2009年第七届希望杯五年级一试试题)如图,三角形ABC 的面积是1,E 是AC的中点,点D 在BC 上,且:1:2BD DC =,AD 与BE 交于点F .则四边形DFEC 的面积等于 .【解析】 方法一:连接CF ,根据燕尾定理,12ABF ACF S BD S DC ==△△,1ABF CBF S AES EC==△△, 设1BDF S =△份,则2DCF S =△份,3ABF S =△份,3AEF EFC S S ==△△份,如图所标所以551212DCEF ABC S S ==△ 方法二:连接DE ,由题目条件可得到1133ABD ABC S S ==△△,11212233ADE ADC ABC S S S ==⨯=△△△,所以11ABD ADE S BF FE S ==△△, 111111122323212DEF DEB BEC ABC S S S S =⨯=⨯⨯=⨯⨯⨯=△△△△,而211323CDE ABC S S =⨯⨯=△△.所以则四边形DFEC 的面积等于512. 【巩固】如图,已知BD DC =,2EC AE =,三角形ABC 的面积是30,求阴影部分面积.【解析】 题中条件只有三角形面积给出具体数值,其他条件给出的实际上是比例的关系,由此我们可以初步判断这道题不应该通过面积公式求面积. 又因为阴影部分是一个不规则四边形,所以我们需要对它进行改造,那么我们需要连一条辅助线,(法一)连接CF ,因为BD DC =,2EC AE =,三角形ABC 的面积是30,所以1103ABE ABC S S ==△△,1152ABD ABC S S ==△△.根据燕尾定理,12ABF CBF S AE S EC ==△△,1ABF ACF S BDS CD==△△, 所以17.54ABF ABC S S ==△△,157.57.5BFD S =-=△,所以阴影部分面积是30107.512.5--=.(法二)连接DE ,由题目条件可得到1103ABE ABC S S ==△△,11210223BDE BEC ABC S S S ==⨯=△△△,所以11ABE BDE S AF FD S ==△△, 111111 2.5223232DEF DEA ADC ABC S S S S =⨯=⨯⨯=⨯⨯⨯=△△△△,而211032CDE ABC S S =⨯⨯=△△.所以阴影部分的面积为12.5.【巩固】如图,三角形ABC 的面积是2200cm ,E 在AC 上,点D 在BC 上,且:3:5AE EC =,:2:3BD DC =,AD 与BE 交于点F .则四边形DFEC 的面积等于 .【解析】 连接CF ,根据燕尾定理,2639ABF ACF S BD S DC ===△△,36510ABF CBF S AE S EC ===△△, 设6ABF S =△份,则9ACF S =△份,10BCF S =△份,5459358EFC S =⨯=+△份,310623CDF S =⨯=+△份,所以24545200(6910)(6)8(6)93(cm )88DCFE S =÷++⨯+=⨯+= 【巩固】如图,已知3BD DC =,2EC AE =,BE 与CD 相交于点O ,则ABC △被分成的4部分面积各占ABC △ 面积的几分之几【解析】 连接CO ,设1AEO S =△份,则其他部分的面积如图所示,所以1291830ABC S =+++=△份,所以四部分按从小到大各占ABC △面积的12 4.5139313.59,,,30306030103020+===【巩固】(2007年香港圣公会数学竞赛)如图所示,在ABC △中,12CP CB =,13CQ CA =,BQ与AP 相交于点X ,若ABC △的面积为6,则ABX △的面积等于 .【解析】 方法一:连接PQ .由于12CP CB =,13CQ CA =,所以23ABQ ABC S S =V V ,1126BPQ BCQ ABC S S S ==V V V .由蝴蝶定理知,21:::4:136ABQ BPQ ABC ABC AX XP S S S S ===V V V V ,所以441226 2.455255ABX ABP ABC ABC S S S S ==⨯==⨯=V V V V .方法二:连接CX 设1CPX S =△份,根据燕尾定理标出其他部分面积,所以6(1144)4 2.4ABX S =÷+++⨯=△【巩固】如图,三角形ABC 的面积是1,2BD DC =,2CE AE =,AD 与BE 相交于点F ,请写出这4部分的面积各是多少?【解析】 连接CF ,设1AEF S =△份,则其他几部分面积可以有燕尾定理标出如图所示,所以121AEF S =△,62217ABF S ==△,821BDF S =△,242217FDCE S +== 【巩固】如图,E 在AC 上,D 在BC 上,且:2:3AE EC =,:1:2BD DC =,AD 与BE 交于点F .四边形DFEC 的面积等于222cm ,则三角形ABC 的面积 .【解析】 连接CF ,根据燕尾定理,12ABF ACF S BD S DC ==△△,23ABF CBF S AE S EC ==△△, 设1BDF S =△份,则2DCF S =△份,2ABF S =△份,4AFC S =△份,24 1.623AEF S =⨯=+△ 份,34 2.423EFC S =⨯=+△份,如图所标,所以2 2.4 4.4EFDC S =+=份,2349ABC S =++=△份 所以222 4.4945(cm )ABC S =÷⨯=△【巩固】三角形ABC 中,C 是直角,已知2AC =,2CD =,3CB =,AM BM =,那么三角形AMN (阴影部分)的面积为多少【解析】 连接BN .ABC △的面积为3223⨯÷=根据燕尾定理,::2:1ACN ABN CD BD ==△△;同理::1:1CBN CAN BM AM ==△△设AMN △面积为1份,则MNB △的面积也是1份,所以ANB △的面积是112+=份,而ACN △的面积就是224⨯=份,CBN △也是4份,这样ABC △的面积为441110+++=份,所以AMN △的面积为31010.3÷⨯=.【巩固】如图,长方形ABCD 的面积是2平方厘米,2EC DE =,F 是DG 的中点.阴影部分的面积是多少平方厘米?【解析】 设1DEF S =△份,则根据燕尾定理其他面积如图所示551212BCD S S ==△阴影平方厘米. 【例 2】 如图所示,在四边形ABCD 中,3AB BE =,3AD AF =,四边形AEOF 的面积是12,那么平行四边形BODC 的面积为________.【解析】 连接,AO BD ,根据燕尾定理::1:2ABO BDO S S AF FD ==△△,::2:1AOD BOD S S AE BE ==△△,设1BEO S =△,则其他图形面积,如图所标,所以221224BODC AEOF S S ==⨯=.【例 3】 ABCD 是边长为12厘米的正方形,E 、F 分别是AB 、BC 边的中点,AF 与CE 交于G ,则四边形AGCD 的面积是_________平方厘米.【解析】 连接AC 、GB ,设1AGC S =△份,根据燕尾定理得1AGB S =△份,1BGC S =△份,则11126S =++⨯=正方形()份,314ADCG S =+=份,所以22126496(cm )ADCG S =÷⨯=【例 4】 如图,正方形ABCD 的面积是120平方厘米,E 是AB 的中点,F 是BC 的中点,四边形BGHF 的面积是_____平方厘米.【解析】 连接BH ,根据沙漏模型得:1:2BG GD =,设1BHC S =△份,根据燕尾定理2CHD S =△份,2BHD S =△份,因此122)210S =++⨯=正方形(份,127236BFHG S =+=,所以712010146BFHG S =÷⨯=(平方厘米). 【例 5】 如图所示,在ABC △中,:3:1BE EC =,D 是AE 的中点,那么:AF FC = .【解析】 连接CD .由于:1:1ABD BED S S =△△,:3:4BED BCD S S =△△,所以:3:4ABD BCD S S =△△,根据燕尾定理,::3:4ABD BCD AF FC S S ==△△.【巩固】在ABC ∆中,:3:2BD DC =, :3:1AE EC =,求:OB OE =【解析】 连接OC .因为:3:2BD DC =,根据燕尾定理,::3:2AOB AOC S S BD BC ∆∆==,即32AOB AOC S S ∆∆=;又:3:1AE EC =,所以43AOC AOE S S ∆∆=.则3342223AOB AOC AOE AOE S S S S ∆∆∆∆==⨯=,所以::2:1AOB AOE OB OE S S ∆∆==.【巩固】在ABC ∆中,:2:1BD DC =, :1:3AE EC =,求:OB OE =【解析】 题目求的是边的比值,一般来说可以通过分别求出每条边的值再作比值,也可以通过三角形的面积比来做桥梁,但题目没告诉我们边的长度,所以应该通过面积比而得到边长的比.本题的图形一看就联想到燕尾定理,但两个燕尾似乎少了一个,因此应该补全,所以第一步要连接OC .连接OC .因为:2:1BD DC =,根据燕尾定理,::2:1AOB AOC S S BD BC ∆∆==,即2AOB AOC S S ∆∆=;又:1:3AE EC =,所以4AOC AOE S S ∆∆=.则2248AOB AOC AOE AOE S S S S ∆∆∆∆==⨯=,所以::8:1AOB AOE OB OE S S ∆∆==.【例 6】 (2009年清华附中入学测试题)如图,四边形ABCD 是矩形,E 、F 分别是AB 、BC 上的点,且13AE AB =,14CF BC =,AF 与CE 相交于G ,若矩形ABCD 的面积为120,则AEG ∆与CGF ∆的面积之和为 .【解析】 (法1)如图,过F 做CE 的平行线交AB 于H ,则::1:3EH HB CF FB ==,所以122AE EB EH ==,::2AG GF AE EH ==,即2AG GF =,所以122311033942AEG ABF ABCD S S S ∆∆=⨯⨯=⨯⨯=X .且22313342EG HF EC EC ==⨯=,故CG GE =,则1152CGF AEG S S ∆∆=⨯⨯=.所以两三角形面积之和为10515+=.(法2)如上右图,连接AC 、BG .根据燕尾定理,::3:1ABG ACG S S BF CF ∆∆==,::2:1BCG ACG S S BE AE ∆∆==,而1602ABC ABCD S S ∆==X ,所以3321ABG S ∆=++,160302ABC S ∆=⨯=,2321BCG S ∆=++,160203ABC S ∆=⨯=,则1103AEG ABG S S ∆∆==,154CFG BCG S S ∆∆==,所以两个三角形的面积之和为15.【例 7】 如右图,三角形ABC 中,:4:9BD DC =,:4:3CE EA =,求:AF FB .【解析】 根据燕尾定理得::4:912:27AOB AOC S S BD CD ===△△(都有AOB △的面积要统一,所以找最小公倍数)所以:27:16:AOC BOC S S AF FB ==△△【点评】本题关键是把AOB △的面积统一,这种找最小公倍数的方法,在我们用比例解题中屡见不鲜,如果能掌握它的转化本质,我们就能达到解奥数题四两拨千斤的巨大力量!【巩固】如右图,三角形ABC 中,:3:4BD DC =,:5:6AE CE =,求:AF FB .【解析】 根据燕尾定理得::3:415:20AOB AOC S S BD CD ===△△(都有AOB △的面积要统一,所以找最小公倍数)所以:20:1810:9:AOC BOC S S AF FB ===△△【巩固】如图,:2:3BD DC =,:5:3AE CE =,则:AF BF =【解析】 根据燕尾定理有:2:310:15ABG ACG S S ==△△,:5:310:6ABG BCG S S ==△△,所以:15:65:2:ACG BCG S S AF BF ===△△【巩固】如右图,三角形ABC 中,:2:3BD DC =,:5:4EA CE =,求:AF FB .【解析】 根据燕尾定理得::2:310:15AOB AOC S S BD CD ===△△(都有AOB △的面积要统一,所以找最小公倍数)所以:15:8:AOC BOC S S AF FB ==△△【点评】本题关键是把AOB △的面积统一,这种找最小公倍数的方法,在我们用比例解题中屡见不鲜,如果能掌握它的转化本质,我们就能达到解奥数题四两拨千斤的巨大力量!【例 8】 (2008年“学而思杯”六年级数学试题)如右图,三角形ABC 中,:::3:2AF FB BD DC CE AE ===,且三角形ABC 的面积是1,则三角形ABE 的面积为______,三角形AGE 的面积为________,三角形GHI 的面积为______.【分析】 连接AH 、BI 、CG .由于:3:2CE AE =,所以25AE AC =,故2255ABE ABC S S ∆∆==;根据燕尾定理,::2:3ACG ABG S S CD BD ∆∆==,::3:2BCG ABG S S CE EA ∆∆==,所以::4:6:9ACG ABG BCG S S S ∆∆∆=,则419ACG S ∆=,919BCG S ∆=;那么2248551995AGE AGC S S ∆∆==⨯=; 同样分析可得919ACH S ∆=,则::4:9ACG ACH EG EH S S ∆∆==,::4:19ACG ACB EG EB S S ∆∆==,所以::4:5:10EG GH HB =,同样分析可得::10:5:4AG GI ID =,所以5521101055BIE BAE S S ∆∆==⨯=,55111919519GHI BIE S S ∆∆==⨯=. 【巩固】 如右图,三角形ABC 中,:::3:2AF FB BD DC CE AE ===,且三角形GHI 的面积是1,求三角形ABC 的面积.【解析】 连接BG ,AGC S △=6份根据燕尾定理,::3:26:4AGC BGC S S AF FB ===△△,::3:29:6ABG AGC S S BD DC ===△△得4BGC S =△(份),9ABG S =△(份),则19ABC S =△(份),因此619AGC ABC S S =△△, 同理连接AI 、CH 得619ABH ABC S S =△△,619BIC ABC S S =△△, 所以1966611919GHI ABC S S ---==△△ 三角形GHI 的面积是1,所以三角形ABC 的面积是19【巩固】(2009年第七届“走进美妙的数学花园”初赛六年级)如图,ABC ∆中2BD DA =,2CE EB =,2AF FC =,那么ABC ∆的面积是阴影三角形面积的 倍.【分析】 如图,连接AI .根据燕尾定理,::2:1BCI ACI S S BD AD ∆∆==,::1:2BCI ABI S S CF AF ∆∆==,所以,::1:2:4ACI BCI ABI S S S ∆∆∆=,那么,221247BCI ABC ABC S S S ∆∆∆==++.同理可知ACG ∆和ABH ∆的面积也都等于ABC ∆面积的27,所以阴影三角形的面积等于ABC ∆面积的211377-⨯=,所以ABC ∆的面积是阴影三角形面积的7倍.【巩固】如图在ABC △中,12DC EA FB DB EC FA ===,求GHI ABC △的面积△的面积的值. 【解析】 连接BG ,设BGC S △=1份,根据燕尾定理::2:1AGC BGC S S AF FB ==△△,::2:1ABG AGC S S BD DC ==△△,得2AGC S =△(份),4ABG S =△(份),则7ABC S =△(份),因此27AGC ABC S S =△△,同理连接AI 、CH 得27ABH ABC S S =△△,27BIC ABC S S =△△, 所以7222177GHI ABC S S ---==△△ 【点评】如果任意一个三角形各边被分成的比是相同的,那么在同样的位置上的图形,虽然形状千变万化,但面积是相等的,这在这讲里面很多题目都是用“同理得到”的,即再重复一次解题思路,因此我们有对称法作辅助线.【巩固】如图在ABC △中,13DC EA FB DB EC FA ===,求GHI ABC △的面积△的面积的值.【解析】 连接BG ,设BGC S △=1份,根据燕尾定理::3:1AGC BGC S S AF FB ==△△,::3:1ABG AGC S S BD DC ==△△,得3AGC S =△(份),9ABG S =△(份),则13ABC S =△(份),因此313AGC ABC S S =△△,同理连接AI 、CH 得13ABH ABC S S =△△,313BIC ABC S S =△△, 所以1333341313GHI ABC S S ---==△△【巩固】如右图,三角形ABC 中,:::4:3AF FB BD DC CE AE ===,且三角形ABC 的面积是74,求角形GHI 的面积.【解析】 连接BG ,AGC S △=12份根据燕尾定理,::4:312:9AGC BGC S S AF FB ===△△,::4:316:12ABG AGC S S BD DC ===△△得9BGC S =△(份),16ABG S =△(份),则9121637ABC S =++=△(份),因此1237AGC ABC S S =△△, 同理连接AI 、CH 得1237ABH ABC S S =△△,1237BIC ABC S S =△△, 所以3712121213737GHI ABC S S ---==△△ 三角形ABC 的面积是74,所以三角形GHI 的面积是174237⨯= 【例 9】 两条线段把三角形分为三个三角形和一个四边形,如图所示, 三个三角形的面积 分别是3,7,7,则阴影四边形的面积是多少【解析】 方法一:遇到没有标注字母的图形,我们第一步要做的就是给图形各点标注字母,方便后面的计算.再看这道题,出现两个面积相等且共底的三角形.设三角形为ABC ,BE 和CD 交于F ,则BF FE =,再连结DE .所以三角形DEF 的面积为3.设三角形ADE 的面积为x ,则()():33:10:10x AD DB x +==+,所以15x =,四边形的面积为18.方法二:设ADF S x =△,根据燕尾定理::ABF BFC AFE EFC S S S S =△△△△,得到3AEF S x =+△,再根据向右下飞的燕子,有(37):7:3x x ++=,解得7.5x =四边形的面积为7.57.5318++=【巩固】右图的大三角形被分成5个小三角形,其中4个的面积已经标在图中,那么,阴影三角形的面积是 .【解析】 方法一:整个题目读完,我们没有发现任何与边长相关的条件,也没有任何与高或者垂直有关系的字眼,由此,我们可以推断,这道题不能依靠三角形面积公式求解.我们发现右图三角形中存在一个比例关系:()2:13:4S =+阴影,解得2S =阴影.方法二:回顾下燕尾定理,有2:41:3S +=阴影(),解得2S =阴影. 【例 10】 如图,三角形ABC 被分成6个三角形,已知其中4个三角形的面积,问三角形ABC 的面积是多少?【解析】 设BOF S x =△,由题意知:4:3BD DC =根据燕尾定理,得::4:3ABO ACO BDO CDO S S S S ==△△△△,所以33(84)6344ACO S x x =⨯+=+△,再根据::ABO BCO AOE COE S S S S =△△△△,列方程3(84):(4030)(6335):354x x ++=+-解得56x =:35(5684):(4030)AOE S =++△,所以70AOE S =△所以三角形ABC 的面积是844030355670315+++++=【例 11】 三角形ABC 的面积为15平方厘米,D 为AB 中点,E 为AC 中点,F 为BC 中点,求阴影部分的面积.【解析】 令BE 与CD 的交点为M ,CD 与EF 的交点为N ,连接AM ,BN .在ABC △中,根据燕尾定理,::1:1ABM BCM S S AE CE ==△△,::1:1ACM BCM S S AD BD ==△△,所以13ABM ACM BCN ABC S S S S ===△△△△由于1122AEM AMC ABM S S S ==△△△S ,所以:2:1BM ME =在EBC △中,根据燕尾定理,::1:1BEN CEN S S BF CF ==△△::1:2CEN CBN S S ME MB ==△△设1CEN S =△(份),则1BEN S =△(份),2BCN S =△(份),4BCE S =△(份),所以1124BCN BCE ABC S S S ==△△△,1148BNE BCE ABC S S S ==△△△,因为:2:1BM ME =,F 为BC 中点,所以221133812BMN BNE ABC ABC S S S S ==⨯=△△△△,11112248BFN BNC ABC S S S ==⨯=△△△, 所以115515 3.1251282424ABC ABC S S S ⎛⎫=+==⨯=⎪⎝⎭△△阴影(平方厘米) 【例 12】 如右图,ABC △中,G 是AC 的中点,D 、E 、F 是BC 边上的四等分点,AD 与BG 交于M ,AF 与BG 交于N ,已知ABM △的面积比四边形FCGN 的面积大7.2平方厘米,则ABC △的面积是多少平方厘米【解析】 连接CM 、CN .根据燕尾定理,::1:1ABM CBM S S AG GC ==△△,::1:3ABM ACM S S BD CD ==△△,所以15ABM ABC S S =△△;再根据燕尾定理,::1:1ABN CBN S S AG GC ==△△,所以::4:3ABN FBN CBN FBN S S S S ==△△△△,所以:4:3AN NF =,那么1422437ANG AFC S S =⨯=+△△,所以2515177428FCGN AFC ABC ABC S S S S ⎛⎫=-=⨯= ⎪⎝⎭△△△.根据题意,有157.2528ABC ABC S S -=△△,可得336ABC S =△(平方厘米) 【巩固】(2007年四中分班考试题)如图,ABC ∆中,点D 是边AC 的中点,点E 、F 是边BC的三等分点,若ABC ∆的面积为1,那么四边形CDMF 的面积是_________.【解析】 由于点D 是边AC 的中点,点E 、F 是边BC 的三等分点,如果能求出BN 、NM 、MD 三段的比,那么所分成的六小块的面积都可以求出来,其中当然也包括四边形CDMF 的面积.连接CM 、CN .根据燕尾定理,::2:1ABM ACM S S BF CF ∆∆==,而2ACM ADM S S ∆∆=,所以24ABM ACM ADM S S S ∆∆∆==,那么4BM DM =,即45BM BD =. 那么421453215BMF BCD BM BF S S BD BC ∆∆=⨯⨯=⨯⨯=,14721530CDMF S =-=四边形. 另解:得出24ABM ACM ADM S S S ∆∆∆==后,可得111155210ADM ABD S S ∆∆==⨯=, 则11731030ACF ADM CDMF S S S ∆∆=-=-=四边形. 【例 13】 如图,三角形ABC 的面积是1,BD DE EC ==,CF FG GA ==,三角形ABC 被分成9部分,请写出这9部分的面积各是多少?【解析】 设BG 与AD 交于点P ,BG 与AE 交于点Q ,BF 与AD 交于点M ,BF 与AE 交于点N .连接CP ,CQ ,CM ,CN .根据燕尾定理,::1:2ABP CBP S S AG GC ==△△,::1:2ABP ACP S S BD CD ==△△,设1ABP S =△(份),则1225ABC S =++=△(份),所以15ABP S =△ 同理可得,27ABQ S =△,12ABN S =△,而13ABG S =△,所以2137535APQ S =-=△,1213721AQG S =-=△.同理,335BPM S =△121BDM S =△,所以1239273570PQMN S =--=四边形,139********MNED S =--=四边形,1151321426NFCE S =--=四边形,1115321642GFNQ S =--=四边形 【巩固】如图,ABC ∆的面积为1,点D 、E 是BC 边的三等分点,点F 、G 是AC 边的三等分点,那么四边形JKIH 的面积是多少【解析】 连接CK 、CI 、CJ .根据燕尾定理,::1:2ACK ABK S S CD BD ∆∆==,::1:2ABK CBK S S AG CG ∆∆==,所以::1:2:4ACK ABK CBK S S S ∆∆∆=,那么111247ACK S ∆==++,11321AGK ACK S S ∆∆==.类似分析可得215AGI S ∆=. 又::2:1ABJ CBJ S S AF CF ∆∆==,::2:1ABJ ACJ S S BD CD ∆∆==,可得14ACJ S ∆=.那么,111742184CGKJ S =-=. 根据对称性,可知四边形CEHJ 的面积也为1784,那么四边形JKIH 周围的图形的面积之和为172161228415370CGKJ AGI ABE S S S ∆∆⨯++=⨯++=,所以四边形JKIH 的面积为61917070-=. 【例 14】 如右图,面积为1的ABC △中,::1:2:1BD DE EC =,::1:2:1CF FG GA =,::1:2:1AH HI IB =,求阴影部分面积.【解析】 设IG 交HF 于M ,IG 交HD 于N ,DF 交EI 于P .连接AM ,IF .∵:3:4AI AB =,:3:4AF AC =,916AIF ABC S S ∴=△△ ∵::2FIM AMF S S IH HA ==△△,::2FIM AIM S S FG GA ==△△,∴19464AIM AIF ABC S S S ==△△△ ∵:1:3AH AI = ∴364AHM ABC S S =△△, ∵:1:4AH AB = :3:4AF AC = ∴316AHF ABC S S =△△ . 同理 316CFD BDH ABC S S S ==△△△ ∴716FDH ABC S S =△△ 33::1:46416HM HF ==, ∵ :3:4,:3:4AI AB AF AC ==,∴IF BC ∥ ,又∵:3:4,:1:2IF BC DE BC ==,∴:2:3,:2:3DE IF DP PF ==,同理 :2:3HN ND =,∵:1:4HM HF =,∴:2:5HN HD =,∴17710160160HMN HDF ABC S S S ===△△△. 同理 6个小阴影三角形的面积均为7160.阴影部分面积721616080=⨯=. 【例 15】 如图,面积为l 的三角形ABC 中,D 、E 、F 、G 、H 、I 分别是AB 、BC 、CA 的三等分点,求阴影部分面积.【解析】 三角形在开会,那么就好好利用三角形中最好用的比例和燕尾定理吧!令BI 与CD 的交点为M ,AF 与CD 的交点为N ,BI 与AF 的交点为P ,BI 与CE 的交点为Q ,连接AM 、BN 、CP⑴求ADMI S 四边形:在ABC △中,根据燕尾定理,::1:2ABM CBM S S AI CI ==△△::1:2ACM CBM S S AD BD ==△△设1ABM S =△(份),则2CBM S =△(份),1ACM S =△(份),4ABC S =△(份),所以14ABM ACM ABC S S S ==△△△,所以11312ADM ABM ABC S S S ==△△△,112AIM ABC S S =△△, 所以111()12126ABC ABC ADMI S S S =+=△△四边形, 同理可得另外两个顶点的四边形面积也分别是ABC △面积的16⑵求DNPQE S 五边形:在ABC △中,根据燕尾定理::1:2ABN ACN S S BF CF ==△△::1:2ACN BCN S S AD BD ==△△,所以111133721ADN ABN ABC ABC S S S S ==⨯=△△△△,同理121BEQ ABC S S =△△在ABC △中,根据燕尾定理::1:2ABP ACP S S BF CF ==△△,::1:2ABP CBP S S AI CI ==△△所以15ABP ABC S S =△△所以1111152121105ABP ADN BEP ABCABC DNPQE S S S S S S ⎛⎫=--=--= ⎪⎝⎭△△△△△五边形 同理另外两个五边形面积是ABC △面积的11105所以11113133610570S =-⨯-⨯=阴影 【例 16】 如图,面积为l 的三角形ABC 中,D 、E 、F 、G 、H 、I 分别是AB 、BC 、CA 的三等分点,求中心六边形面积.【解析】 设深黑色六个三角形的顶点分别为N 、R 、P 、S 、M 、Q ,连接CR在ABC △中根据燕尾定理,::.2:1ABR ACR S S BG CG ==△△,所以27ABR ABC S S =△△,同理27ACS ABC S S =△△,27CQB ABC S S =△△所以222117777RQS S =---=△同理17MNP S =△根据容斥原理,和上题结果11131777010S =+-=六边形 【例 17】 (2009年数学解题能力大赛六年级初试试题)正六边形1A ,2A ,3A ,4A ,5A ,6A 的面积是2009平方厘米,1B ,2B ,3B ,4B ,5B ,6B 分别是正六边形各边的中点;那么图中阴影六边形的面积是 平方厘米.【解析】 (方法一)因为空白的面积等于23A A G △面积的6倍,所以关键求23A A G △的面积,根据燕尾定理可得2312333117732A A G A A A S S S ==⨯⨯△△正六边形,但在123A A A △用燕尾定理时,需要知道13,A D A D 的长度比,连接1363,A A A A ,1A G ,过6B 作12A A 的平行线,交13A A 于E ,根据沙漏模型得1A D DE =,再根据金字塔模型得13A E A E =,因此13:1:3A D A D =,在123A A A △中,设121A A G S =△份,则233A A G S =△份,313A A G S =△份,所以2312333111773214A A G A A A S S S S ==⨯⨯=△△正六边形正六边形,因此141620091148147S S =-⨯=⨯=阴影正六边形()(平方厘米) (方法二)既然给的图形是特殊的正六边形,且阴影也是正六边形我们可以用下图的割补思路,把正六边形分割成14个大小形状相同的梯形,其中阴影有8个梯形,所以阴影面积为82009114814⨯=(平方厘米) 【例 18】 已知四边形ABCD ,CHFG 为正方形,:1:8S S =乙甲,a 与b 是两个正方形的边长,求:?a b =【解析】 观察图形,感觉阴影部分像蝴蝶定理,但是细细分析发现用蝴蝶定理无法继续往下走,注意到题目条件中给出了两个正方形的边长,有边长就可以利用比例,再发现在连接辅助线后可以利用燕尾,那么我们就用燕尾定理来求解连接EO 、AF ,根据燕尾定理:::AOE AOF S S a b =△△,::AOF EOF S S a b =△△所以 22::AOE EOF S S a b =△△,作OM ⊥AE 、ON ⊥EF ,∵AE =EF∴22::OM ON a b =∴33::1:8S S a b ==乙甲∴:1:2a b =。
几何五大模型之五(燕尾定理)
燕尾定理燕尾定理:在三角形ABC 中,AD ,BE ,CF 相交于同一点O , 那么,::ABO ACO S S BD DC ∆∆=OFE DCBA上述定理给出了一个新的转化面积比与线段比的手段,因为ABO ∆和ACO ∆的形状很象燕子的尾巴,所以这个定理被称为燕尾定理.该定理在许多几何题目中都有着广泛的运用,它的特殊性在于,它可以存在于任何一个三角形之中,为三角形中的三角形面积对应底边之间提供互相联系的途径.通过一道例题 证明燕尾定理:如右图,D 是BC 上任意一点,请你说明:1423:::S S S S BD DC ==S 3S 1S 4S 2EDCBA【解析】 三角形BED 与三角形CED 同高,分别以BD 、DC 为底,所以有14::S S BD DC =;三角形ABE 与三角形EBD 同高,12::S S ED EA =;三角形ACE 与三角形CED 同高,43::S S ED EA =,所以1423::S S S S =;综上可得, 1423:::S S S S BD DC ==.例题精讲【例 1】 (2009年第七届希望杯五年级一试试题)如图,三角形ABC 的面积是1,E 是AC 的中点,点D 在BC 上,且:1:2BD DC =,AD 与BE 交于点F .则四边形DFEC 的面积等于 .FED CBA【巩固】如图,已知BD DC =,2EC AE =,三角形ABC 的面积是30,求阴影部分面积.【巩固】如图,三角形ABC 的面积是2200cm ,E 在AC 上,点D 在BC 上,且:3:5AE EC =,:2:3BD DC =,AD 与BE 交于点F .则四边形DFEC 的面积等于 .FED CBA【巩固】如图,已知3BD DC =,2EC AE =,BE 与CD 相交于点O ,则ABC △被分成的4部分面积各占ABC △面积的几分之几?OE DCBA【巩固】(2007年香港圣公会数学竞赛)如图所示,在ABC △中,12CP CB =,13CQ CA =,BQ 与AP 相交于点X ,若ABC △的面积为6,则ABX △的面积等于 .XQPA BC【巩固】如图,三角形ABC 的面积是1,2BD DC =,2CE AE =,AD 与BE 相交于点F ,请写出这4部分的面积各是多少?ABCDE F【巩固】如图,E 在AC 上,D 在BC 上,且:2:3AE EC =,:1:2BD DC =,AD 与BE 交于点F .四边形DFEC的面积等于222cm ,则三角形ABC 的面积 .ABCDE F【巩固】三角形ABC 中,C 是直角,已知2AC =,2CD =,3CB =,AM BM =,那么三角形AMN (阴影部分)的面积为多少?【巩固】如图,长方形ABCD 的面积是2平方厘米,2EC DE =,F 是DG 的中点.阴影部分的面积是多少平方厘米?x y y x ABCD E FGE D CBA【例 2】 如图所示,在四边形ABCD 中,3AB BE =,3AD AF =,四边形AEOF 的面积是12,那么平行四边形BODC 的面积为________.OFE DCBA【例 3】 ABCD 是边长为12厘米的正方形,E 、F 分别是AB 、BC 边的中点,AF 与CE 交于G ,则四边形AGCD 的面积是_________平方厘米.GFE DCBA【例 4】 如图,正方形ABCD 的面积是120平方厘米,E 是AB 的中点,F 是BC 的中点,四边形BGHF 的面积是_____平方厘米.EDCB【例 5】 如图所示,在ABC △中,:3:1BE EC =,D 是AE 的中点,那么:AF FC = .FE DCB A【巩固】在ABC ∆中,:3:2BD DC =, :3:1AE EC =,求:OB OE =?ABCDE O【巩固】在ABC ∆中,:2:1BD DC =, :1:3AE EC =,求:OB OE =?A B CDE O【例 6】 (2009年清华附中入学测试题)如图,四边形ABCD 是矩形,E 、F 分别是AB 、BC 上的点,且13AE AB =,14CF BC =,AF 与CE 相交于G ,若矩形ABCD 的面积为120,则AEG ∆与CGF ∆的面积之和为 .BE【例 7】 如右图,三角形ABC 中,:4:9BD DC =,:4:3CE EA =,求:AF FB .O F EDCBA【巩固】如右图,三角形ABC 中,:3:4BD DC =,:5:6AE CE =,求:AF FB .O F EDCBA【巩固】如图,:2:3BD DC =,:5:3AE CE =,则:AF BF =GF EDCBA【巩固】如右图,三角形ABC 中,:2:3BD DC =,:5:4EA CE =,求:AF FB .O F EDCBA【例 8】 (2008年“学而思杯”六年级数学试题)如右图,三角形ABC 中,:::3:2AF FB BD DC CE AE ===,且三角形ABC 的面积是1,则三角形ABE 的面积为______,三角形AGE 的面积为________,三角形GHI 的面积为______.I HGFEDC BA【巩固】 如右图,三角形ABC 中,:::3:2AF FB BD DC CE AE ===,且三角形GHI 的面积是1,求三角形ABC 的面积.IH G FEDCBA【巩固】(2009年第七届“走进美妙的数学花园”初赛六年级)如图,ABC ∆中2BD DA =,2CE EB =,2AF FC =,那么ABC ∆的面积是阴影三角形面积的 倍.B【巩固】如图在ABC △中,12DC EA FB DB EC FA ===,求GHI ABC △的面积△的面积的值. IHG FEDCBA课后作业1、如图,已知3BD DC =,2EC AE =,BE 与CD 相交于点O ,则ABC △被分成的4部分面积各占ABC △ 面积的几分之几?OE DCBA2、两条线段把三角形分为三个三角形和一个四边形,如图所示, 三个三角形的面积 分别是3,7,7,则阴影四边形的面积是多少?3、右图的大三角形被分成5个小三角形,其中4个的面积已经标在图中,那么,阴影三角形的面积是 .4、如图,三角形ABC 的面积是1,2BD DC =,2CE AE =,AD 与BE 相交于点F ,请写出这4部分的面积各是多少?ABCDE F5、如右图,三角形ABC 中,:4:9BD DC =,:4:3CE EA =,求:AF FB .O F EDCBA。
小学奥数几何五大模型燕尾模型
燕尾定理:在三角形ABC 中,AD ,BE ,CF 相交于同一点O , 那么,::ABO ACO S S BD DC ∆∆=OFE DCBA上述定理给出了一个新的转化面积比与线段比的手段,因为ABO ∆和ACO ∆的形状很象燕子的尾巴,所以这个定理被称为燕尾定理.该定理在许多几何题目中都有着广泛的运用,它的特殊性在于,它可以存在于任何一个三角形之中,为三角形中的三角形面积对应底边之间提供互相联系的途径.通过一道例题证明燕尾定理:如右图,D 是BC 上任意一点,请你说明:1423:::S S S S BD DC ==S 3S 1S 4S 2EDCBA【解析】 三角形BED 与三角形CED 同高,分别以BD 、DC 为底,所以有14::S S BD DC =;三角形ABE 与三角形EBD 同高,12::S S ED EA =;例题精讲燕尾定理三角形ACE 与三角形CED 同高,43::S S ED EA =,所以1423::S S S S =;综上可得, 1423:::S S S S BD DC ==.【例 1】 (2009年第七届希望杯五年级一试试题)如图,三角形ABC 的面积是1,E 是AC 的中点,点D 在BC 上,且:1:2BD DC =,AD 与BE 交于点F .则四边形DFEC 的面积等于 .FED CBA33321F EDC BAABCDEF【解析】 方法一:连接CF ,根据燕尾定理,12ABF ACF S BD S DC ==△△,1ABF CBF S AES EC==△△,设1BDF S =△份,则2DCF S =△份,3ABF S =△份,3AEF EFC S S ==△△份,如图所标所以551212DCEF ABC S S ==△方法二:连接DE ,由题目条件可得到1133ABD ABC S S ==△△,11212233ADE ADC ABC S S S ==⨯=△△△,所以11ABD ADE S BF FE S ==△△, 111111122323212DEF DEB BEC ABC S S S S =⨯=⨯⨯=⨯⨯⨯=△△△△,而211323CDE ABC S S =⨯⨯=△△.所以则四边形DFEC 的面积等于512.【巩固】如图,已知BD DC =,2EC AE =,三角形ABC 的面积是30,求阴影部分面积.【解析】 题中条件只有三角形面积给出具体数值,其他条件给出的实际上是比例的关系,由此我们可以初步判断这道题不应该通过面积公式求面积. 又因为阴影部分是一个不规则四边形,所以我们需要对它进行改造,那么我们需要连一条辅助线,(法一)连接CF ,因为BD DC =,2EC AE =,三角形ABC 的面积是30,所以1103ABE ABC S S ==△△,1152ABD ABC S S ==△△.根据燕尾定理,12ABF CBF S AE S EC ==△△,1ABF ACF S BDS CD==△△,所以17.54ABF ABC S S ==△△,157.57.5BFD S =-=△,所以阴影部分面积是30107.512.5--=.(法二)连接DE ,由题目条件可得到1103ABE ABC S S ==△△,11210223BDE BEC ABC S S S ==⨯=△△△,所以11ABE BDE S AF FD S ==△△,1111112.5223232DEF DEA ADC ABC S S S S =⨯=⨯⨯=⨯⨯⨯=△△△△,而211032CDE ABC S S =⨯⨯=△△.所以阴影部分的面积为12.5.【巩固】如图,三角形ABC 的面积是2200cm ,E 在AC 上,点D 在BC 上,且:3:5AE EC =,:2:3BD DC =,AD 与BE 交于点F .则四边形DFEC 的面积等于 .FED CBAABC DEF FEDCBA【解析】 连接CF ,根据燕尾定理,2639ABF ACF S BD S DC ===△△,36510ABF CBF S AE S EC ===△△, 设6ABF S =△份,则9ACF S =△份,10BCF S =△份,5459358EFC S =⨯=+△份,310623CDF S =⨯=+△份,所以24545200(6910)(6)8(6)93(cm )88DCFE S =÷++⨯+=⨯+=【巩固】如图,已知3BD DC =,2EC AE =,BE 与CD 相交于点O ,则ABC △被分成的4部分面积各占ABC △面积的几分之几?OE DCBA13.54.59211213O E D CBA【解析】 连接CO ,设1AEO S =△份,则其他部分的面积如图所示,所以1291830ABC S =+++=△份,所以四部分按从小到大各占ABC △面积的12 4.5139313.59,,,30306030103020+===【巩固】(2007年香港圣公会数学竞赛)如图所示,在ABC △中,12CP CB =,13CQ CA =,BQ 与AP 相交于点X ,若ABC △的面积为6,则ABX △的面积等于 .XQPABC XQPABC4411XQPCBA【解析】 方法一:连接PQ .由于12CP CB =,13CQ CA =,所以23ABQ ABCSS =,1126BPQBCQABCSS S ==.由蝴蝶定理知,21:::4:136ABQ BPQ ABCABC AX XP SSS S ===, 所以441226 2.455255ABX ABP ABC ABC S S S S ==⨯==⨯=.方法二:连接CX 设1CPX S =△份,根据燕尾定理标出其他部分面积, 所以6(1144)4 2.4ABX S =÷+++⨯=△【巩固】如图,三角形ABC 的面积是1,2BD DC =,2CE AE =,AD 与BE 相交于点F ,请写出这4部分的面积各是多少?ABCDE F48621ABCDEF【解析】 连接CF ,设1AEF S =△份,则其他几部分面积可以有燕尾定理标出如图所示,所以121AEF S =△,62217ABF S ==△,821BDF S =△,242217FDCE S +==【巩固】如图,E 在AC 上,D 在BC 上,且:2:3AE EC =,:1:2BD DC =,AD 与BE 交于点F .四边形DFEC的面积等于222cm ,则三角形ABC 的面积 .A BCDE FA BCDEF 2.41.62A BC DEF 12【解析】 连接CF ,根据燕尾定理,12ABF ACF S BD S DC ==△△,23ABF CBF S AE S EC ==△△, 设1BDF S =△份,则2D C FS =△份,2ABF S =△份,4AFC S =△份,241.623AEF S =⨯=+△ 份,34 2.423EFC S =⨯=+△份,如图所标,所以2 2.4 4.4EFDC S =+=份,2349ABC S =++=△份 所以222 4.4945(cm )ABCS =÷⨯=△【巩固】三角形ABC 中,C 是直角,已知2AC =,2CD =,3CB =,AM BM =,那么三角形AMN (阴影部分)的面积为多少?【解析】 连接BN .ABC △的面积为3223⨯÷=根据燕尾定理,::2:1ACN ABN CD BD ==△△; 同理::1:1CBN CAN BM AM ==△△设AMN △面积为1份,则MNB △的面积也是1份,所以ANB △的面积是112+=份,而ACN △的面积就是224⨯=份,CBN △也是4份,这样ABC △的面积为441110+++=份,所以AMN △的面积为31010.3÷⨯=.【巩固】如图,长方形ABCD 的面积是2平方厘米,2EC DE =,F 是DG 的中点.阴影部分的面积是多少平方厘米?y B CD EGE D CBAEDB A【解析】 设1DEF S =△份,则根据燕尾定理其他面积如图所示551212BCD S S ==△阴影平方厘米.【例 2】 如图所示,在四边形ABCD 中,3AB BE =,3AD AF =,四边形AEOF 的面积是12,那么平行四边形BODC 的面积为________.OFE DBA684621O F E DB A【解析】 连接,AO BD ,根据燕尾定理::1:2ABO BDO S S AF FD ==△△,::2:1AOD BOD S S AE BE ==△△,设1BEO S =△,则其他图形面积,如图所标,所以221224BODC AEOF S S ==⨯=.【例 3】 ABCD 是边长为12厘米的正方形,E 、F 分别是AB 、BC 边的中点,AF 与CE 交于G ,则四边形AGCD 的面积是_________平方厘米.GFE DCBAGFE D CBA【解析】 连接AC 、GB ,设1A G C S =△份,根据燕尾定理得1AGB S =△份,1BGC S =△份,则11126S =++⨯=正方形()份,314ADCG S =+=份,所以22126496(cm )ADCG S =÷⨯=【例 4】 如图,正方形ABCD 的面积是120平方厘米,E 是AB 的中点,F 是BC 的中点,四边形BGHF 的面积是_____平方厘米.EDCBEDCB【解析】 连接BH ,根据沙漏模型得:1:2BG GD =,设1BHC S =△份,根据燕尾定理2CHD S =△份,2BHD S =△份,因此122)210S =++⨯=正方形(份,127236BFHG S =+=,所以712010146BFHG S =÷⨯=(平方厘米).【例 5】 如图所示,在ABC △中,:3:1BE EC =,D 是AE 的中点,那么:AF FC = .FE D C BAFE DCB A【解析】 连接CD .由于:1:1ABD BED S S =△△,:3:4BED BCD S S =△△,所以:3:4ABD BCD S S =△△, 根据燕尾定理,::3:4ABD BCD AF FC S S ==△△.【巩固】在ABC ∆中,:3:2BD DC =, :3:1AE EC =,求:OB OE =?A BCDE OABCDE O【解析】 连接OC .因为:3:2BD DC =,根据燕尾定理,::3:2AOB AOC S S BD BC ∆∆==,即32AOB AOC S S ∆∆=; 又:3:1AE EC =,所以43AOC AOE S S ∆∆=.则3342223AOB AOC AOE AOE S S S S ∆∆∆∆==⨯=, 所以::2:1AOB AOEOB OE S S ∆∆==.【巩固】在ABC ∆中,:2:1BD DC =, :1:3AE EC =,求:OB OE =?A B CDE O【解析】 题目求的是边的比值,一般来说可以通过分别求出每条边的值再作比值,也可以通过三角形的面积比来做桥梁,但题目没告诉我们边的长度,所以应该通过面积比而得到边长的比.本题的图形一看就联想到燕尾定理,但两个燕尾似乎少了一个,因此应该补全,所以第一步要连接OC . 连接OC .A B CDE O因为:2:1BD DC =,根据燕尾定理,::2:1AOB AOC S S BD BC ∆∆==,即2AOB AOC S S ∆∆=; 又:1:3AE EC =,所以4AOC AOE S S ∆∆=.则2248AOB AOC AOE AOE S S S S ∆∆∆∆==⨯=, 所以::8:1AOB AOE OB OE S S ∆∆==.【例 6】 (2009年清华附中入学测试题)如图,四边形ABCD 是矩形,E 、F 分别是AB 、BC 上的点,且13AE AB =,14CF BC =,AF 与CE 相交于G ,若矩形ABCD 的面积为120,则AEG ∆与CGF ∆的面积之和为 .BEH BEBE【解析】 (法1)如图,过F 做CE 的平行线交AB 于H ,则::1:3EH HB CF FB ==,所以122AE EB EH ==,::2AG GF AE EH ==,即2AG GF =,所以122311033942AEG ABF ABCD S S S ∆∆=⨯⨯=⨯⨯=.且22313342EG HF EC EC ==⨯=,故CG GE =,则1152CGF AEG S S ∆∆=⨯⨯=.所以两三角形面积之和为10515+=.(法2)如上右图,连接AC 、BG .根据燕尾定理,::3:1ABG ACG S S BF CF ∆∆==,::2:1BCG ACG S S BE AE ∆∆==,而1602ABC ABCD S S ∆==,所以3321ABG S ∆=++,160302ABC S ∆=⨯=,2321BCG S ∆=++,160203ABC S ∆=⨯=,则1103AEG ABG S S ∆∆==,154CFG BCG S S ∆∆==,所以两个三角形的面积之和为15.【例 7】 如右图,三角形ABC 中,:4:9BD DC =,:4:3CE EA =,求:AF FB .O F EDCBA【解析】 根据燕尾定理得::4:912:27AOB AOC S S BD CD ===△△ ::3:412:16AOB BOC S S AE CE ===△△(都有AOB △的面积要统一,所以找最小公倍数) 所以:27:16:AOC BOC S S AF FB ==△△【点评】本题关键是把AOB △的面积统一,这种找最小公倍数的方法,在我们用比例解题中屡见不鲜,如果能掌握它的转化本质,我们就能达到解奥数题四两拨千斤的巨大力量!【巩固】如右图,三角形ABC 中,:3:4BD DC =,:5:6AE CE =,求:AF FB .O F EDCBA【解析】 根据燕尾定理得::3:415:20AOB AOC S S BD CD ===△△ ::5:615:18AOB BOC S S AE CE ===△△(都有AOB △的面积要统一,所以找最小公倍数) 所以:20:1810:9:AOC BOC S S AF FB ===△△【巩固】如图,:2:3BD DC =,:5:3AE CE =,则:AF BF =GF EDCBA【解析】 根据燕尾定理有:2:310:15ABG ACG S S ==△△,:5:310:6ABG BCGS S ==△△,所以:15:65:2:ACG BCG S S AF BF ===△△【巩固】如右图,三角形ABC 中,:2:3BD DC =,:5:4EA CE =,求:AF FB .O F EDCBA【解析】 根据燕尾定理得::2:310:15AOB AOC S S BD CD ===△△ ::5:410:8AOB BOC S S AE CE ===△△(都有AOB △的面积要统一,所以找最小公倍数) 所以:15:8:AOC BOC S S AF FB ==△△【点评】本题关键是把AOB △的面积统一,这种找最小公倍数的方法,在我们用比例解题中屡见不鲜,如果能掌握它的转化本质,我们就能达到解奥数题四两拨千斤的巨大力量!【例 8】 (2008年“学而思杯”六年级数学试题)如右图,三角形ABC 中,:::3:2AF FB BD DC CE AE ===,且三角形ABC 的面积是1,则三角形ABE 的面积为______,三角形AGE 的面积为________,三角形GHI 的面积为______.I HGFEDC BAI HG FEDCBA【分析】 连接AH 、BI 、CG .由于:3:2CE AE =,所以25AE AC =,故2255ABE ABC S S ∆∆==; 根据燕尾定理,::2:3ACG ABG S S CD BD ∆∆==,::3:2BCG ABG S S CE EA ∆∆==,所以::4:6:9ACG ABG BCG S S S ∆∆∆=,则419ACG S ∆=,919BCG S ∆=;那么2248551995AGE AGC S S ∆∆==⨯=;同样分析可得919ACH S ∆=,则::4:9A C G A C H EG EH S S ∆∆==,::4:19ACG ACB EG EB S S ∆∆==,所以::4:5:10EG GH HB =,同样分析可得::10:5:4AG GI ID =,所以5521101055BIE BAE S S ∆∆==⨯=,55111919519GHI BIE S S ∆∆==⨯=.【巩固】 如右图,三角形ABC 中,:::3:2AF FB BD DC CE AE ===,且三角形GHI 的面积是1,求三角形ABC 的面积.IH G FEDCBA IH G FEDCBA【解析】 连接BG ,AGC S △=6份根据燕尾定理,::3:26:4AGC BGC S S AF FB ===△△,::3:29:6ABG AGC S S BD DC ===△△得4BGC S =△(份),9ABG S =△(份),则19ABC S =△(份),因此619AGC ABC S S =△△,同理连接AI 、CH 得619ABH ABC S S =△△,619BIC ABC S S =△△,所以1966611919GHI ABC S S ---==△△ 三角形GHI 的面积是1,所以三角形ABC 的面积是19【巩固】(2009年第七届“走进美妙的数学花园”初赛六年级)如图,ABC ∆中2BD DA =,2CE EB =,2AF FC =,那么ABC ∆的面积是阴影三角形面积的 倍.BCB【分析】 如图,连接AI .根据燕尾定理,::2:1BCI ACI S S BD AD ∆∆==,::1:2BCI ABI S S CF AF ∆∆==, 所以,::1:2:4ACI BCI ABI S S S ∆∆∆=,那么,221247BCI ABC ABC S S S ∆∆∆==++.同理可知ACG ∆和ABH ∆的面积也都等于ABC ∆面积的27,所以阴影三角形的面积等于ABC ∆面积的211377-⨯=,所以ABC ∆的面积是阴影三角形面积的7倍.【巩固】如图在ABC △中,12DC EA FB DB EC FA ===,求GHI ABC △的面积△的面积的值. IHG FEDCBAIHG FEDCB A【解析】 连接BG ,设BGC S △=1份,根据燕尾定理::2:1AGC BGCS S AF FB ==△△,::2:1ABG AGC S S BD DC ==△△,得2AGC S =△(份),4ABG S =△(份),则7ABC S =△(份),因此27AGC ABC S S =△△,同理连接AI 、CH 得27ABH ABC S S =△△,27BIC ABC S S =△△, 所以7222177GHI ABC S S ---==△△ 【点评】如果任意一个三角形各边被分成的比是相同的,那么在同样的位置上的图形,虽然形状千变万化,但面积是相等的,这在这讲里面很多题目都是用“同理得到”的,即再重复一次解题思路,因此我们有对称法作辅助线.【巩固】如图在ABC △中,13DC EA FB DB EC FA ===,求GHI ABC △的面积△的面积的值. IHG FEDCBAIHG FEDCB A【解析】 连接BG ,设BGC S △=1份,根据燕尾定理::3:1AGC BGC S S AF FB ==△△,::3:1ABG AGC S S BD DC ==△△,得3AGC S =△(份),9ABG S =△(份),则13ABC S =△(份),因此313AGC ABC S S =△△,同理连接AI 、CH 得13ABH ABC S S =△△,313BIC ABC S S =△△, 所以1333341313GHI ABC S S ---==△△【巩固】如右图,三角形ABC 中,:::4:3AF FB BD DC CE AE ===,且三角形ABC 的面积是74,求角形GHI的面积.IH G FEDCBAIH G FEDCBA【解析】 连接BG ,AGC S △=12份根据燕尾定理,::4:312:9AGC BGC S S AF FB ===△△,::4:316:12ABG AGC S S BD DC ===△△得9BGC S =△(份),16ABG S =△(份),则9121637ABC S =++=△(份),因此1237AGC ABC S S =△△,同理连接AI 、CH 得1237ABH ABC S S =△△,1237BIC ABC S S =△△, 所以3712121213737GHI ABC S S ---==△△ 三角形ABC 的面积是74,所以三角形GHI 的面积是174237⨯=【例9】两条线段把三角形分为三个三角形和一个四边形,如图所示,三个三角形的面积分别是3,7,7,则阴影四边形的面积是多少?【解析】方法一:遇到没有标注字母的图形,我们第一步要做的就是给图形各点标注字母,方便后面的计算.再看这道题,出现两个面积相等且共底的三角形.设三角形为ABC,BE和CD交于F,则BF FE=,再连结DE.所以三角形DEF的面积为3.设三角形ADE的面积为x,则()():33:10:10x AD DB x+==+,所以15x=,四边形的面积为18.方法二:设ADFS x=△,根据燕尾定理::ABF BFC AFE EFCS S S S=△△△△,得到3AEFS x=+△,再根据向右下飞的燕子,有(37):7:3x x++=,解得7.5x=四边形的面积为7.57.5318++=【巩固】右图的大三角形被分成5个小三角形,其中4个的面积已经标在图中,那么,阴影三角形的面积是.【解析】方法一:整个题目读完,我们没有发现任何与边长相关的条件,也没有任何与高或者垂直有关系的字眼,由此,我们可以推断,这道题不能依靠三角形面积公式求解.我们发现右图三角形中存在一个比例关系:()2:13:4S=+阴影,解得2S=阴影.方法二:回顾下燕尾定理,有2:41:3S+=阴影(),解得2S=阴影.【例10】如图,三角形ABC被分成6个三角形,已知其中4个三角形的面积,问三角形ABC的面积是多少?35304084OFED CBA【解析】设BOFS x=△,由题意知:4:3BD DC=根据燕尾定理,得::4:3ABO ACO BDO CDOS S S S==△△△△,所以33(84)6344ACOS x x=⨯+=+△,再根据::ABO BCO AOE COES S S S=△△△△,列方程3(84):(4030)(6335):354x x++=+-解得56x=:35(5684):(4030)AOE S =++△,所以70AOE S =△所以三角形ABC 的面积是844030355670315+++++=【例 11】 三角形ABC 的面积为15平方厘米,D 为AB 中点,E 为AC 中点,F 为BC 中点,求阴影部分的面积.F CBAF CBA【解析】 令BE 与CD 的交点为M ,CD 与EF 的交点为N ,连接AM ,BN .在ABC △中,根据燕尾定理,::1:1ABM BCM S S AE CE ==△△,::1:1ACM BCM S S AD BD ==△△,所以13ABM ACM BCN ABC S S S S ===△△△△由于1122AEM AMC ABM S S S ==△△△S ,所以:2:1BM ME =在EBC △中,根据燕尾定理,::1:1BEN CEN S S BF CF ==△△::1:2CEN CBN S S ME MB ==△△ 设1CEN S =△(份),则1BEN S =△(份),2BCN S =△(份),4BCE S =△(份),所以1124BCN BCE ABC S S S ==△△△,1148BNE BCE ABC S S S ==△△△,因为:2:1BM ME =,F 为BC 中点,所以221133812BMN BNE ABC ABC S S S S ==⨯=△△△△,11112248BFN BNC ABC S S S ==⨯=△△△,所以115515 3.1251282424ABC ABC S S S ⎛⎫=+==⨯= ⎪⎝⎭△△阴影(平方厘米)【例 12】 如右图,ABC △中,G 是AC 的中点,D 、E 、F 是BC 边上的四等分点,AD 与BG 交于M ,AF 与BG 交于N ,已知ABM △的面积比四边形FCGN 的面积大7.2平方厘米,则ABC △的面积是多少平方厘米?N M GA BCD EFNMGA BCD EF【解析】 连接CM 、CN .根据燕尾定理,::1:1ABM CBM S S AG GC ==△△,::1:3ABM ACM S S BD CD ==△△,所以15ABM ABC S S =△△;再根据燕尾定理,::1:1ABN CBN S S AG GC ==△△,所以::4:3ABN FBN CBN FBN S S S S ==△△△△,所以:4:3AN NF =,那么1422437ANG AFC S S =⨯=+△△,所以2515177428FCGN AFC ABC ABC S S S S ⎛⎫=-=⨯= ⎪⎝⎭△△△.根据题意,有157.2528ABCABC S S -=△△,可得336ABC S =△(平方厘米)【巩固】(2007年四中分班考试题)如图,ABC ∆中,点D 是边AC 的中点,点E 、F 是边BC 的三等分点,若ABC ∆的面积为1,那么四边形CDMF 的面积是_________.F ABCDEM NFABCDEMN【解析】 由于点D 是边AC 的中点,点E 、F 是边BC 的三等分点,如果能求出BN 、NM 、MD 三段的比,那么所分成的六小块的面积都可以求出来,其中当然也包括四边形CDMF 的面积. 连接CM 、CN .根据燕尾定理,::2:1ABM ACM S S BF CF ∆∆==,而2ACM ADM S S ∆∆=,所以24ABM ACM ADM S S S ∆∆∆==,那么4BM DM =,即45BM BD =.那么421453215BMF BCD BM BF S S BD BC ∆∆=⨯⨯=⨯⨯=,14721530CDMF S =-=四边形. 另解:得出24ABM ACM ADM S S S ∆∆∆==后,可得111155210ADM ABD S S ∆∆==⨯=,则11731030ACF ADM CDMF S S S ∆∆=-=-=四边形.【例 13】 如图,三角形ABC 的面积是1,BD DE EC ==,CF FG GA ==,三角形ABC 被分成9部分,请写出这9部分的面积各是多少?GFE D CBAN MQPGF EDCBA【解析】 设BG 与AD 交于点P ,BG 与AE 交于点Q ,BF 与AD 交于点M ,BF 与AE 交于点N .连接CP ,CQ ,CM ,CN .根据燕尾定理,::1:2ABP CBP S S AG GC ==△△,::1:2ABP ACP S S BD CD ==△△,设1ABP S =△(份),则1225ABC S =++=△(份),所以15ABP S =△同理可得,27ABQ S =△,12ABN S =△,而13ABG S =△,所以2137535APQ S =-=△,1213721AQG S =-=△.同理,335BPM S =△121BDM S =△,所以1239273570PQMN S =--=四边形,139********MNED S =--=四边形,1151321426NFCE S =--=四边形,1115321642GFNQ S =--=四边形【巩固】如图,ABC ∆的面积为1,点D 、E 是BC 边的三等分点,点F 、G 是AC 边的三等分点,那么四边形JKIH 的面积是多少?K JI HABC D EF GKJI HA BCD EFG【解析】 连接CK 、CI 、CJ .根据燕尾定理,::1:2ACK ABK S S CD BD ∆∆==,::1:2ABK CBK S S AG CG ∆∆==,所以::1:2:4ACK ABK CBK S S S ∆∆∆=,那么111247ACK S ∆==++,11321AGK ACK S S ∆∆==.类似分析可得215AGI S ∆=.又::2:1ABJ CBJ S S AF CF ∆∆==,::2:1ABJ ACJ S S BD CD ∆∆==,可得14ACJ S ∆=.那么,111742184CGKJ S =-=.根据对称性,可知四边形CEHJ 的面积也为1784,那么四边形JKIH 周围的图形的面积之和为172161228415370CGKJ AGI ABE S S S ∆∆⨯++=⨯++=,所以四边形JKIH 的面积为61917070-=.【例 14】 如右图,面积为1的ABC △中,::1:2:1BD DE EC =,::1:2:1CF FG GA =,::1:2:1AH HI IB =,求阴影部分面积.BB【解析】 设IG 交HF 于M ,IG 交HD 于N ,DF 交EI 于P .连接AM , IF .∵:3:4AI AB =,:3:4AF AC =,916AIF ABC S S ∴=△△ ∵::2FIM AMF S S IH HA ==△△,::2FIM AIM S S FG GA ==△△,∴19464AIM AIF ABC S S S ==△△△ ∵:1:3AH AI = ∴364AHM ABC S S =△△,∵:1:4AH AB = :3:4AF AC = ∴316AHF ABC S S =△△ .同理 316CFD BDH ABC S S S ==△△△ ∴716FDH ABC S S =△△ 33::1:46416HM HF ==,∵ :3:4,:3:4AI AB AF AC ==,∴IF BC ∥ ,又∵:3:4,:1:2IF BC DE BC ==,∴:2:3,:2:3DE IF DP PF ==,同理 :2:3HN ND =,∵:1:4HM HF =,∴:2:5HN HD =,∴17710160160HMN HDF ABC S S S ===△△△. 同理 6个小阴影三角形的面积均为7160.阴影部分面积721616080=⨯=.【例 15】 如图,面积为l 的三角形ABC 中,D 、E 、F 、G 、H 、I 分别是AB 、BC 、CA 的三等分点,求阴影部分面积.GCBAGCBA【解析】 三角形在开会,那么就好好利用三角形中最好用的比例和燕尾定理吧!令BI 与CD 的交点为M ,AF 与CD 的交点为N ,BI 与AF 的交点为P ,BI 与CE 的交点为Q ,连接AM 、BN 、CP⑴求ADMI S 四边形:在ABC △中,根据燕尾定理,::1:2ABM CBM S S AI CI ==△△::1:2ACM CBM S S AD BD ==△△设1ABM S =△(份),则2CBM S =△(份),1ACM S =△(份),4ABC S =△(份),所以14ABM ACM ABC S S S ==△△△,所以11312ADM ABM ABC S S S ==△△△,112AIM ABC S S =△△,所以111()12126ABC ABC ADMI S S S =+=△△四边形,同理可得另外两个顶点的四边形面积也分别是ABC △面积的16⑵求DNPQE S 五边形:在ABC △中,根据燕尾定理::1:2ABN ACN S S BF CF ==△△::1:2ACN BCN S S AD BD ==△△,所以111133721ADN ABN ABC ABC S S S S ==⨯=△△△△,同理121BEQ ABC S S =△△在ABC △中,根据燕尾定理::1:2ABP ACP S S BF CF ==△△,::1:2ABP CBP S S AI CI ==△△所以15ABP ABC S S =△△所以1111152121105ABP ADN BEP ABC ABC DNPQE S S S S S S ⎛⎫=--=--= ⎪⎝⎭△△△△△五边形 同理另外两个五边形面积是ABC △面积的11105所以11113133610570S =-⨯-⨯=阴影【例 16】 如图,面积为l 的三角形ABC 中,D 、E 、F 、G 、H 、I 分别是AB 、BC 、CA 的三等分点,求中心六边形面积.GCBAGC BA【解析】 设深黑色六个三角形的顶点分别为N 、R 、P 、S 、M 、Q ,连接CR在ABC △中根据燕尾定理,::.2:1ABR ACR S S BG CG ==△△, ::1:2ABR CBR S S AI CI ==△△所以27ABR ABC S S =△△,同理27ACS ABC S S =△△,27CQB ABC S S =△△所以222117777RQS S =---=△同理17MNP S =△根据容斥原理,和上题结果11131777010S =+-=六边形【例 17】 (2009年数学解题能力大赛六年级初试试题)正六边形1A ,2A ,3A ,4A ,5A ,6A 的面积是2009平方厘米,1B ,2B ,3B ,4B ,5B ,6B 分别是正六边形各边的中点;那么图中阴影六边形的面积是 平方厘米.A 4B 5A 3A 45A 3 【解析】 (方法一)因为空白的面积等于23A A G △面积的6倍,所以关键求23A A G △的面积,根据燕尾定理可得2312333117732A A G A A A S S S ==⨯⨯△△正六边形,但在123A A A △用燕尾定理时,需要知道13,A D A D 的长度比,连接1363,A A A A ,1A G ,过6B 作12A A 的平行线,交13A A 于E ,根据沙漏模型得1A D DE =,再根据金字塔模型得13A E A E =,因此13:1:3A D A D =,在123A A A △中,设121A A G S =△份,则233A A G S =△份,313A A G S =△份,所以2312333111773214A A G A A A S S S S ==⨯⨯=△△正六边形正六边形,因此141620091148147S S =-⨯=⨯=阴影正六边形()(平方厘米)(方法二)既然给的图形是特殊的正六边形,且阴影也是正六边形我们可以用下图的割补思路,把正六边形分割成14个大小形状相同的梯形,其中阴影有8个梯形,所以阴影面积为82009114814⨯=(平方厘米)FA 3A【例 18】 已知四边形ABCD ,CHFG 为正方形,:1:8S S =乙甲,a 与b 是两个正方形的边长,求:?a b =baHFEDbaNMHFED【解析】 观察图形,感觉阴影部分像蝴蝶定理,但是细细分析发现用蝴蝶定理无法继续往下走,注意到题目条件中给出了两个正方形的边长,有边长就可以利用比例,再发现在连接辅助线后可以利用燕尾,那么我们就用燕尾定理来求解 连接EO 、AF ,根据燕尾定理:::AOE AOF S S a b =△△,::AOF EOF S S a b =△△ 所以 22::AOE EOF S S a b =△△,作OM ⊥AE 、ON ⊥EF , ∵AE =EF ∴22::OM ON a b = ∴33::1:8S S a b ==乙甲 ∴:1:2a b =THANKS !!!致力为企业和个人提供合同协议,策划案计划书,学习课件等等打造全网一站式需求欢迎您的下载,资料仅供参考。
小学奥数几何五大模型燕尾模型
燕尾定理:在三角形ABC 中,AD ,BE ,CF 相交于同一点O , 那么,::ABO ACO S S BD DC ∆∆=OFE DCBA上述定理给出了一个新的转化面积比与线段比的手段,因为ABO ∆和ACO ∆的形状很象燕子的尾巴,所以这个定理被称为燕尾定理.该定理在许多几何题目中都有着广泛的运用,它的特殊性在于,它可以存在于任何一个三角形之中,为三角形中的三角形面积对应底边之间提供互相联系的途径.通过一道例题证明燕尾定理:如右图,D 是BC 上任意一点,请你说明:1423:::S S S S BD DC ==S 3S 1S 4S 2EDCBA【解析】 三角形BED 与三角形CED 同高,分别以BD 、DC 为底,所以有14::S S BD DC =;三角形ABE 与三角形EBD 同高,12::S S ED EA =;例题精讲燕尾定理三角形ACE 与三角形CED 同高,43::S S ED EA =,所以1423::S S S S =;综上可得, 1423:::S S S S BD DC ==.【例 1】 (2009年第七届希望杯五年级一试试题)如图,三角形ABC 的面积是1,E 是AC 的中点,点D 在BC 上,且:1:2BD DC =,AD 与BE 交于点F .则四边形DFEC 的面积等于 .FED CBA33321F EDC BAABCDEF【解析】 方法一:连接CF ,根据燕尾定理,12ABF ACF S BD S DC ==△△,1ABF CBF S AES EC==△△,设1BDF S =△份,则2DCF S =△份,3ABF S =△份,3AEF EFC S S ==△△份,如图所标所以551212DCEF ABC S S ==△方法二:连接DE ,由题目条件可得到1133ABD ABC S S ==△△,11212233ADE ADC ABC S S S ==⨯=△△△,所以11ABD ADE S BF FE S ==△△, 111111122323212DEF DEB BEC ABC S S S S =⨯=⨯⨯=⨯⨯⨯=△△△△,而211323CDE ABC S S =⨯⨯=△△.所以则四边形DFEC 的面积等于512.【巩固】如图,已知BD DC =,2EC AE =,三角形ABC 的面积是30,求阴影部分面积.【解析】 题中条件只有三角形面积给出具体数值,其他条件给出的实际上是比例的关系,由此我们可以初步判断这道题不应该通过面积公式求面积. 又因为阴影部分是一个不规则四边形,所以我们需要对它进行改造,那么我们需要连一条辅助线,(法一)连接CF ,因为BD DC =,2EC AE =,三角形ABC 的面积是30,所以1103ABE ABC S S ==△△,1152ABD ABC S S ==△△.根据燕尾定理,12ABF CBF S AE S EC ==△△,1ABF ACF S BDS CD==△△,所以17.54ABF ABC S S ==△△,157.57.5BFD S =-=△,所以阴影部分面积是30107.512.5--=.(法二)连接DE ,由题目条件可得到1103ABE ABC S S ==△△,11210223BDE BEC ABC S S S ==⨯=△△△,所以11ABE BDE S AF FD S ==△△,1111112.5223232DEF DEA ADC ABC S S S S =⨯=⨯⨯=⨯⨯⨯=△△△△,而211032CDE ABC S S =⨯⨯=△△.所以阴影部分的面积为12.5.【巩固】如图,三角形ABC 的面积是2200cm ,E 在AC 上,点D 在BC 上,且:3:5AE EC =,:2:3BD DC =,AD 与BE 交于点F .则四边形DFEC 的面积等于 .FED CBAABC DEF FEDCBA【解析】 连接CF ,根据燕尾定理,2639ABF ACF S BD S DC ===△△,36510ABF CBF S AE S EC ===△△, 设6ABF S =△份,则9ACF S =△份,10BCF S =△份,5459358EFC S =⨯=+△份,310623CDF S =⨯=+△份,所以24545200(6910)(6)8(6)93(cm )88DCFE S =÷++⨯+=⨯+=【巩固】如图,已知3BD DC =,2EC AE =,BE 与CD 相交于点O ,则ABC △被分成的4部分面积各占ABC △面积的几分之几?OE DCBA13.54.59211213O E D CBA【解析】 连接CO ,设1AEO S =△份,则其他部分的面积如图所示,所以1291830ABC S =+++=△份,所以四部分按从小到大各占ABC △面积的12 4.5139313.59,,,30306030103020+===【巩固】(2007年香港圣公会数学竞赛)如图所示,在ABC △中,12CP CB =,13CQ CA =,BQ 与AP 相交于点X ,若ABC △的面积为6,则ABX △的面积等于 .XQPABC XQPABC4411XQPCBA【解析】 方法一:连接PQ .由于12CP CB =,13CQ CA =,所以23ABQ ABCSS =,1126BPQBCQABCSS S ==.由蝴蝶定理知,21:::4:136ABQ BPQ ABCABC AX XP SSS S ===, 所以441226 2.455255ABX ABP ABC ABC S S S S ==⨯==⨯=.方法二:连接CX 设1CPX S =△份,根据燕尾定理标出其他部分面积, 所以6(1144)4 2.4ABX S =÷+++⨯=△【巩固】如图,三角形ABC 的面积是1,2BD DC =,2CE AE =,AD 与BE 相交于点F ,请写出这4部分的面积各是多少?ABCDE F48621ABCDEF【解析】 连接CF ,设1AEF S =△份,则其他几部分面积可以有燕尾定理标出如图所示,所以121AEF S =△,62217ABF S ==△,821BDF S =△,242217FDCE S +==【巩固】如图,E 在AC 上,D 在BC 上,且:2:3AE EC =,:1:2BD DC =,AD 与BE 交于点F .四边形DFEC的面积等于222cm ,则三角形ABC 的面积 .A BCDE FA BCDEF 2.41.62A BC DEF 12【解析】 连接CF ,根据燕尾定理,12ABF ACF S BD S DC ==△△,23ABF CBF S AE S EC ==△△, 设1BDF S =△份,则2D C FS =△份,2ABF S =△份,4AFC S =△份,241.623AEF S =⨯=+△ 份,34 2.423EFC S =⨯=+△份,如图所标,所以2 2.4 4.4EFDC S =+=份,2349ABC S =++=△份 所以222 4.4945(cm )ABCS =÷⨯=△【巩固】三角形ABC 中,C 是直角,已知2AC =,2CD =,3CB =,AM BM =,那么三角形AMN (阴影部分)的面积为多少?【解析】 连接BN .ABC △的面积为3223⨯÷=根据燕尾定理,::2:1ACN ABN CD BD ==△△; 同理::1:1CBN CAN BM AM ==△△设AMN △面积为1份,则MNB △的面积也是1份,所以ANB △的面积是112+=份,而ACN △的面积就是224⨯=份,CBN △也是4份,这样ABC △的面积为441110+++=份,所以AMN △的面积为31010.3÷⨯=.【巩固】如图,长方形ABCD 的面积是2平方厘米,2EC DE =,F 是DG 的中点.阴影部分的面积是多少平方厘米?y B CD EGE D CBAEDB A【解析】 设1DEF S =△份,则根据燕尾定理其他面积如图所示551212BCD S S ==△阴影平方厘米.【例 2】 如图所示,在四边形ABCD 中,3AB BE =,3AD AF =,四边形AEOF 的面积是12,那么平行四边形BODC 的面积为________.OFE DBA684621O F E DB A【解析】 连接,AO BD ,根据燕尾定理::1:2ABO BDO S S AF FD ==△△,::2:1AOD BOD S S AE BE ==△△,设1BEO S =△,则其他图形面积,如图所标,所以221224BODC AEOF S S ==⨯=.【例 3】 ABCD 是边长为12厘米的正方形,E 、F 分别是AB 、BC 边的中点,AF 与CE 交于G ,则四边形AGCD 的面积是_________平方厘米.GFE DCBAGFE D CBA【解析】 连接AC 、GB ,设1A G C S =△份,根据燕尾定理得1AGB S =△份,1BGC S =△份,则11126S =++⨯=正方形()份,314ADCG S =+=份,所以22126496(cm )ADCG S =÷⨯=【例 4】 如图,正方形ABCD 的面积是120平方厘米,E 是AB 的中点,F 是BC 的中点,四边形BGHF 的面积是_____平方厘米.。
小学奥数-几何五大模型(燕尾模型)
燕尾定理:在三角形ABC 中,AD ,BE ,CF 相交于同一点O ,那么,::ABO ACOS S BD DCOFEDCBA上述定理给出了一个新的转化面积比与线段比的手段,因为ABO 和ACO 的形状很象燕子的尾巴,所以这个定理被称为燕尾定理.该定理在许多几何题目中都有着广泛的运用,它的特殊性在于,它可以存在于任何一个三角形之中,为三角形中的三角形面积对应底边之间提供互相联系的途径.通过一道例题证明燕尾定理:如右图,D 是BC 上任意一点,请你说明:1423:::S S S S BD DCS3S 1S 4S 2E DCBA 【解析】三角形BED 与三角形CED 同高,分别以BD 、DC 为底,所以有14::S S BD DC ;三角形ABE 与三角形EBD 同高,12::S S ED EA ;三角形ACE 与三角形CED 同高,43::S S ED EA ,所以1423::S S S S ;综上可得,1423:::S S S S BD DC .例题精讲燕尾定理【例 1】(2009年第七届希望杯五年级一试试题)如图,三角形ABC 的面积是1,E 是AC 的中点,点D 在BC 上,且:1:2BD DC,AD 与BE 交于点F .则四边形DFEC 的面积等于.FEDCBA33321F EDC BAABCDEF【解析】方法一:连接CF ,根据燕尾定理,12ABFACFS BD S DC△△,1ABF CBFS AE S EC△△,设1BDF S △份,则2DCFS △份,3ABF S △份,3AEFEFCS S △△份,如图所标所以551212DCEF ABCS S △方法二:连接DE ,由题目条件可得到1133ABD ABCS S △△,11212233ADE ADC ABC S S S △△△,所以11ABD ADE S BF FES △△,111111122323212DEF DEB BEC ABCS S S S △△△△,而211323CDEABCS S △△.所以则四边形DFEC 的面积等于512.【巩固】如图,已知BDDC ,2EC AE ,三角形ABC 的面积是30,求阴影部分面积.D EFC BAD EFC B AD EFCB A【解析】题中条件只有三角形面积给出具体数值,其他条件给出的实际上是比例的关系,由此我们可以初步判断这道题不应该通过面积公式求面积. 又因为阴影部分是一个不规则四边形,所以我们需要对它进行改造,那么我们需要连一条辅助线,(法一)连接CF ,因为BD DC ,2ECAE ,三角形ABC 的面积是30,所以1103ABE ABC S S △△,1152ABDABCS S △△.根据燕尾定理,12ABF CBF S AE S EC △△,1ABFACF S BD S CD△△,所以17.54ABFABCS S △△,157.57.5BFDS △,所以阴影部分面积是30107.512.5.(法二)连接DE ,由题目条件可得到1103ABEABCS S △△,11210223BDE BECABC S S S △△△,所以11ABE BDE S AF FD S △△,111111 2.5223232DEF DEA ADCABCS S S S △△△△,而211032CDEABCS S △△.所以阴影部分的面积为12.5.【巩固】如图,三角形ABC 的面积是2200cm ,E 在AC 上,点D 在BC 上,且:3:5AE EC,:2:3BD DC ,AD 与BE 交于点F .则四边形DFEC 的面积等于.FED CBAABCDEFFEDCBA【解析】连接CF ,根据燕尾定理,2639ABF ACFS BD S DC△△,36510ABF CBFS AE S EC△△, 设6ABF S △份,则9ACF S △份,10BCFS △份,5459358EFC S △份,310623CDFS △份,所以24545200(6910)(6)8(6)93(cm )88DCFES 【巩固】如图,已知3BD DC ,2EC AE ,BE 与CD 相交于点O ,则ABC △被分成的4部分面积各占ABC△面积的几分之几?OE DCBA13.54.59211213O EDCBA【解析】连接CO ,设1AEOS △份,则其他部分的面积如图所示,所以1291830ABCS △份,所以四部分按从小到大各占ABC △面积的12 4.5139313.59,,,30306030103020【巩固】(2007年圣公会数学竞赛)如图所示,在ABC △中,12CPCB ,13CQCA ,BQ 与AP 相交于点X ,若ABC △的面积为6,则ABX △的面积等于.XQPABC XQPAB C4411XQPCBA【解析】方法一:连接PQ .由于12CPCB ,13CQCA ,所以23ABQ ABC S S V V ,1126BPQBCQABC S S S V V V .由蝴蝶定理知,21:::4:136ABQ BPQ ABC ABC AX XP S S S S V V V V ,所以4412262.455255ABXABPABCABCS S S S V V V V .方法二:连接CX 设1CPX S △份,根据燕尾定理标出其他部分面积,所以6(1144)42.4ABXS △【巩固】如图,三角形ABC 的面积是1,2BDDC ,2CE AE ,AD 与BE 相交于点F ,请写出这4部分的面积各是多少?ABCDE F48621ABCDEF【解析】连接CF ,设1AEFS △份,则其他几部分面积可以有燕尾定理标出如图所示,所以121AEFS △,62217ABFS △,821BDFS △,242217FDCES 【巩固】如图,E 在AC 上,D 在BC 上,且:2:3AE EC,:1:2BD DC,AD 与BE 交于点F .四边形DFEC的面积等于222cm ,则三角形ABC 的面积.A BCDE FA BCDE F2.41.62A BCDEF12【解析】连接CF ,根据燕尾定理,12ABF ACFS BD S DC△△,23ABF CBFS AE S EC△△,设1BDF S △份,则2DCF S △份,2ABF S △份,4AFC S △份,24 1.623AEFS △份,342.423EFC S △份,如图所标,所以22.44.4EFDCS 份,2349ABCS △份所以222 4.4945(cm )ABCS △【巩固】三角形ABC 中,C 是直角,已知2AC ,2CD ,3CB ,AM BM ,那么三角形AMN (阴影部分)的面积为多少?ABCDM NABCDM N【解析】连接BN .ABC △的面积为3223根据燕尾定理,::2:1ACN ABN CD BD △△;同理::1:1CBN CAN BM AM △△设AMN △面积为1份,则MNB △的面积也是1份,所以ANB △的面积是112份,而ACN △的面积就是224份,CBN △也是4份,这样ABC △的面积为441110份,所以AMN △的面积为31010.3.【巩固】如图,长方形ABCD 的面积是2平方厘米,2EC DE ,F 是DG 的中点.阴影部分的面积是多少平方厘米?x yy xABCD E F GGFE D CBA33GF EDCB A213【解析】设1DEFS △份,则根据燕尾定理其他面积如图所示551212BCDS S △阴影平方厘米.【例 2】如图所示,在四边形ABCD 中,3AB BE ,3AD AF ,四边形AEOF 的面积是12,那么平行四边形BODC 的面积为________.OFE DCBA684621O F E DCBA 【解析】连接,AO BD ,根据燕尾定理::1:2ABO BDOS S AF FD △△,::2:1AOD BOD S S AE BE△△,设1BEOS △,则其他图形面积,如图所标,所以221224BODCAEOFS S .【例 3】ABCD 是边长为12厘米的正方形,E 、F 分别是AB 、BC 边的中点,AF 与CE 交于G ,则四边形AGCD 的面积是_________平方厘米.GFEDCBAGFEDCBA【解析】连接AC 、GB ,设1AGCS △份,根据燕尾定理得1AGBS △份,1BGCS △份,则11126S 正方形()份,314ADCGS 份,所以22126496(cm )ADCGS 【例 4】如图,正方形ABCD 的面积是120平方厘米,E 是AB 的中点,F 是BC 的中点,四边形BGHF 的面积是_____平方厘米.HGFEDCBAHGFEDCBA【解析】连接BH ,根据沙漏模型得:1:2BG GD,设1BHCS △份,根据燕尾定理2CHDS △份,2BHD S △份,因此122)210S 正方形(份,127236BFHGS ,所以712010146BFHGS (平方厘米).【例 5】如图所示,在ABC △中,:3:1BE EC,D 是AE 的中点,那么:AF FC.FE D C BAFE DCB A【解析】连接CD .由于:1:1ABD BEDS S △△,:3:4BED BCDS S △△,所以:3:4ABD BCD S S △△,根据燕尾定理,::3:4ABD BCDAF FCS S △△.【巩固】在ABC 中,:3:2BD DC,:3:1AE EC ,求:OB OE ?ABCDE OABCDE O 【解析】连接OC .因为:3:2BD DC ,根据燕尾定理,::3:2AOBAOCSS BD BC ,即32AOBAOCS S;又:3:1AE EC ,所以43AOCAOESS.则3342223AOBAOCAOEAOESSSS,所以::2:1AOBAOEOB OESS.【巩固】在ABC 中,:2:1BD DC,:1:3AE EC,求:OB OE ?ABCDE O【解析】题目求的是边的比值,一般来说可以通过分别求出每条边的值再作比值,也可以通过三角形的面积比来做桥梁,但题目没告诉我们边的长度,所以应该通过面积比而得到边长的比.本题的图形一看就联想到燕尾定理,但两个燕尾似乎少了一个,因此应该补全,所以第一步要连接OC .连接OC .ABCDE O因为:2:1BD DC ,根据燕尾定理,::2:1AOB AOCS S BD BC ,即2AOB AOCS S ;又:1:3AE EC ,所以4AOCAOE SS .则2248AOBAOCAOEAOES SSS,所以::8:1AOB AOEOB OES S.【例 6】(2009年清华附中入学测试题)如图,四边形ABCD 是矩形,E 、F 分别是AB 、BC 上的点,且13AEAB ,14CFBC ,AF 与CE 相交于G ,若矩形ABCD 的面积为120,则AEG 与CGF 的面积之和为.A BCDEF GHA BC DE F GA BCDEF G【解析】(法1)如图,过F 做CE 的平行线交AB 于H ,则::1:3EH HB CF FB ,所以122AE EB EH ,::2AG GF AE EH ,即2AG GF ,所以122311033942AEG ABF ABCD S S S X .且22313342EG HF EC EC ,故CG GE ,则1152CGF AEG S S .所以两三角形面积之和为10515.(法2)如上右图,连接AC 、BG .根据燕尾定理,::3:1ABG ACG S S BF CF ,::2:1BCG ACG S S BE AE ,而1602ABCABCDSS X ,所以3321ABGS ,160302ABCS,2321BCGS ,160203ABCS,则1103AEGABGSS,154CFGBCGS S,所以两个三角形的面积之和为15.【例 7】如右图,三角形ABC 中,:4:9BD DC ,:4:3CE EA ,求:AF FB .OFEDCBA【解析】根据燕尾定理得::4:912:27AOB AOC S S BD CD △△::3:412:16AOB BOCS S AE CE△△(都有AOB △的面积要统一,所以找最小公倍数)所以:27:16:AOC BOC S S AF FB△△【点评】本题关键是把AOB △的面积统一,这种找最小公倍数的方法,在我们用比例解题中屡见不鲜,如果能掌握它的转化本质,我们就能达到解奥数题四两拨千斤的巨大力量!【巩固】如右图,三角形ABC 中,:3:4BD DC ,:5:6AE CE ,求:AF FB .OF EDCBA【解析】根据燕尾定理得::3:415:20AOB AOC S S BD CD △△::5:615:18AOB BOCS S AE CE△△(都有AOB △的面积要统一,所以找最小公倍数)所以:20:1810:9:AOC BOC S S AF FB△△【巩固】如图,:2:3BD DC,:5:3AE CE ,则:AF BFGF EDCBA【解析】根据燕尾定理有:2:310:15ABG ACG S S △△,:5:310:6ABG BCGS S △△,所以:15:65:2:ACG BCGS S AF BF△△【巩固】如右图,三角形ABC 中,:2:3BD DC ,:5:4EA CE,求:AF FB .OF EDCBA【解析】根据燕尾定理得::2:310:15AOB AOC S S BD CD △△::5:410:8AOB BOCS S AE CE△△(都有AOB △的面积要统一,所以找最小公倍数)所以:15:8:AOC BOC S S AF FB△△【点评】本题关键是把AOB △的面积统一,这种找最小公倍数的方法,在我们用比例解题中屡见不鲜,如果能掌握它的转化本质,我们就能达到解奥数题四两拨千斤的巨大力量!【例 8】(2008年“学而思杯”六年级数学试题)如右图,三角形ABC 中,:::3:2AF FB BD DC CE AE ,且三角形ABC 的面积是1,则三角形ABE 的面积为______,三角形AGE 的面积为________,三角形GHI 的面积为______.I HGFEDCBAI HGFEDCBA【分析】连接AH 、BI 、CG .由于:3:2CE AE ,所以25AEAC ,故2255ABEABCSS;根据燕尾定理,::2:3ACGABGSS CD BD,::3:2BCG ABGS S CE EA,所以::4:6:9ACG ABGBCGS S S ,则419ACG S ,919BCGS;那么2248551995AGEAGCSS;同样分析可得919ACH S ,则::4:9ACG ACH EG EH S S ,::4:19ACG ACBEG EBS S,所以::4:5:10EG GH HB ,同样分析可得::10:5:4AG GI ID ,所以5521101055BIE BAE S S ,55111919519GHI BIES S .【巩固】如右图,三角形ABC 中,:::3:2AF FBBD DC CE AE,且三角形GHI 的面积是1,求三角形ABC 的面积.IH G FEDCBAIH G FEDCBA【解析】连接BG ,AGCS △6份根据燕尾定理,::3:26:4AGC BGCS S AF FB△△,::3:29:6ABG AGC S S BD DC △△得4BGCS △(份),9ABGS △(份),则19ABCS △(份),因此619AGC ABCS S △△,同理连接AI 、CH 得619ABH ABC S S △△,619BIC ABCS S △△,所以1966611919GHI ABCS S △△三角形GHI 的面积是1,所以三角形ABC 的面积是19【巩固】(2009年第七届“走进美妙的数学花园”初赛六年级)如图,ABC 中2BD DA ,2CE EB ,2AF FC ,那么ABC 的面积是阴影三角形面积的倍.A BCDEFGHI IHGFEDCBA 【分析】如图,连接AI .根据燕尾定理,::2:1BCIACI SSBD AD ,::1:2BCIABISS CF AF,所以,::1:2:4ACIBCIABIS SS ,那么,221247BCIABCABCS SS.同理可知ACG 和ABH 的面积也都等于ABC 面积的27,所以阴影三角形的面积等于ABC 面积的211377,所以ABC 的面积是阴影三角形面积的7倍.【巩固】如图在ABC △中,12DC EA FB DBECFA,求GHI ABC △的面积△的面积的值.IHG FEDCBAIHG FEDCB A【解析】连接BG,设BGCS △1份,根据燕尾定理::2:1AGC BGCS S AF FB△△,::2:1ABG AGCS S BD DC△△,得2AGC S △(份),4ABG S △(份),则7ABCS △(份),因此27AGC ABCS S △△,同理连接AI 、CH 得27ABH ABC S S △△,27BIC ABC S S △△, 所以7222177GHI ABCS S △△【点评】如果任意一个三角形各边被分成的比是相同的,那么在同样的位置上的图形,虽然形状千变万化,但面积是相等的,这在这讲里面很多题目都是用“同理得到”的,即再重复一次解题思路,因此我们有对称法作辅助线.【巩固】如图在ABC △中,13DC EA FB DBECFA,求GHI ABC △的面积△的面积的值.IHG FEDCBAIHG FEDCB A【解析】连接BG,设BGCS △1份,根据燕尾定理::3:1AGC BGCS S AF FB△△,::3:1ABG AGCS S BD DC△△,得3AGC S △(份),9ABG S △(份),则13ABCS △(份),因此313AGC ABCS S △△,同理连接AI 、CH 得13ABH ABC S S △△,313BIC ABC S S △△,所以1333341313GHI ABCS S △△【巩固】如右图,三角形ABC 中,:::4:3AF FBBD DCCE AE ,且三角形ABC 的面积是74,求角形GHI 的面积.IH G FEDCBAIH G FEDCBA【解析】连接BG ,AGCS △12份根据燕尾定理,::4:312:9AGC BGCS S AF FB△△,::4:316:12ABG AGC S S BD DC△△得9BGCS △(份),16ABGS △(份),则9121637ABCS △(份),因此1237AGC ABCS S △△,同理连接AI 、CH 得1237ABH ABCS S △△,1237BIC ABCS S △△,所以3712121213737GHI ABCS S △△三角形ABC 的面积是74,所以三角形GHI 的面积是174237【例 9】两条线段把三角形分为三个三角形和一个四边形,如图所示,三个三角形的面积分别是3,7,7,则阴影四边形的面积是多少?773773FEDCBAx+3x 773FE D CBA【解析】方法一:遇到没有标注字母的图形,我们第一步要做的就是给图形各点标注字母,方便后面的计算.再看这道题,出现两个面积相等且共底的三角形.设三角形为ABC ,BE 和CD 交于F ,则BF FE ,再连结DE .所以三角形DEF 的面积为 3.设三角形ADE 的面积为x ,则:33:10:10x AD DB x ,所以15x ,四边形的面积为18.方法二:设ADF S x △,根据燕尾定理::ABF BFCAFE EFC S S S S △△△△,得到3AEFS x△,再根据向右下飞的燕子,有(37):7:3xx ,解得7.5x四边形的面积为7.57.5318【巩固】右图的大三角形被分成5个小三角形,其中4个的面积已经标在图中,那么,阴影三角形的面积是.4321【解析】方法一:整个题目读完,我们没有发现任何与边长相关的条件,也没有任何与高或者垂直有关系的字眼,由此,我们可以推断,这道题不能依靠三角形面积公式求解.我们发现右图三角形中存在一个比例关系:2:13:4S 阴影,解得2S 阴影. 方法二:回顾下燕尾定理,有2:41:3S 阴影(),解得2S 阴影.【例 10】如图,三角形ABC 被分成6个三角形,已知其中4个三角形的面积,问三角形ABC 的面积是多少?35304084OFEDCBA【解析】设BOFS x △,由题意知:4:3BD DC根据燕尾定理,得::4:3ABO ACOBDO CDOS S S S △△△△,所以33(84)6344ACO S x x △,再根据::ABO BCO AOECOE S S S S △△△△,列方程3(84):(4030)(6335):354x x解得56x:35(5684):(4030)AOE S △,所以70AOES △所以三角形ABC 的面积是844030355670315【例 11】三角形ABC 的面积为15平方厘米,D 为AB 中点,E 为AC 中点,F 为BC 中点,求阴影部分的面积.FEDCBANMFEDCBA【解析】令BE 与CD 的交点为M ,CD 与EF 的交点为N ,连接AM ,BN .在ABC △中,根据燕尾定理,::1:1ABM BCM S S AE CE △△,::1:1ACM BCMS S AD BD△△,所以13ABM ACM BCN ABCS S S S △△△△由于1122AEMAMCABM S S S △△△S ,所以:2:1BM ME在EBC △中,根据燕尾定理,::1:1BEN CEN S S BF CF△△::1:2CEN CBNS S ME MB△△设1CEN S △(份),则1BENS △(份),2BCNS △(份),4BCES △(份),所以1124BCN BCE ABC S S S △△△,1148BNEBCEABC S S S △△△,因为:2:1BM ME ,F 为BC 中点,所以221133812BMN BNEABC ABC S S S S △△△△,11112248BFN BNCABC S S S △△△,所以1155153.1251282424ABC ABCS S S △△阴影(平方厘米)【例 12】如右图,ABC △中,G 是AC 的中点,D 、E 、F 是BC 边上的四等分点,AD 与BG 交于M ,AF 与BG 交于N ,已知ABM △的面积比四边形FCGN 的面积大7.2平方厘米,则ABC △的面积是多少平方厘米?N M GA BCDEFNMGABCD EF 【解析】连接CM 、CN .根据燕尾定理,::1:1ABM CBM S S AG GC△△,::1:3ABM ACMS S BD CD△△,所以15ABMABC S S △△;再根据燕尾定理,::1:1ABN CBNS S AG GC △△,所以::4:3ABN FBN CBN FBNS S S S △△△△,所以:4:3AN NF ,那么1422437ANG AFCS S △△,所以2515177428FCGNAFCABCABC S S S S △△△.根据题意,有157.2528ABCABCS S △△,可得336ABCS △(平方厘米)【巩固】(2007年四中分班考试题)如图,ABC 中,点D 是边AC 的中点,点E 、F 是边BC 的三等分点,若ABC 的面积为1,那么四边形CDMF 的面积是_________.FABCDEM NFABCDEMN【解析】由于点D 是边AC 的中点,点E 、F 是边BC 的三等分点,如果能求出BN 、NM 、MD 三段的比,那么所分成的六小块的面积都可以求出来,其中当然也包括四边形CDMF 的面积.连接CM 、CN .根据燕尾定理,::2:1ABMACMSSBF CF,而2ACMADMSS,所以24ABMACMADMSSS,那么4BM DM ,即45BMBD .那么421453215BMFBCDBMBF SS BDBC,14721530CDMFS 四边形.另解:得出24ABMACMADMS S S 后,可得111155210ADMABDS S,则11731030ACFADMCDMFS S S四边形.【例 13】如图,三角形ABC 的面积是1,BDDEEC ,CF FG GA ,三角形ABC 被分成9部分,请写出这9部分的面积各是多少?GFED CBANMQPGFEDCBA【解析】设BG 与AD 交于点P ,BG 与AE 交于点Q ,BF 与AD 交于点M ,BF 与AE 交于点N .连接CP ,CQ ,CM ,CN .根据燕尾定理,::1:2ABP CBP S S AG GC△△,::1:2ABP ACPS S BD CD△△,设1ABPS △(份),则1225ABCS △(份),所以15ABPS △同理可得,27ABQ S △,12ABNS △,而13ABGS △,所以2137535APQ S △,1213721AQGS △.同理,335BPM S △121BDMS △,所以1239273570PQMNS 四边形,13953357042MNEDS 四边形,1151321426NFCE S 四边形,1115321642GFNQS 四边形【巩固】如图,ABC 的面积为1,点D 、E 是BC 边的三等分点,点F 、G 是AC 边的三等分点,那么四边形JKIH 的面积是多少?KJIHABC DEF GKJIHABCD EFG【解析】连接CK 、CI 、CJ .根据燕尾定理,::1:2ACK ABK S SCD BD,::1:2ABKCBKSS AG CG ,所以::1:2:4ACKABKCBKSSS,那么111247ACKS ,11321AGKACKSS.类似分析可得215AGIS.又::2:1ABJCBJSSAF CF ,::2:1ABJ ACJS S BD CD,可得14ACJS.那么,111742184CGKJS .根据对称性,可知四边形CEHJ 的面积也为1784,那么四边形JKIH 周围的图形的面积之和为172161228415370CGKJAGIABES SS,所以四边形JKIH 的面积为61917070.【例 14】如右图,面积为1的ABC △中,::1:2:1BD DE EC,::1:2:1CF FG GA ,::1:2:1AH HI IB ,求阴影部分面积.IHGFED C BA PNMA BCD EFGHI【解析】设IG 交HF 于M ,IG 交HD 于N ,DF 交EI 于P .连接AM ,IF .∵:3:4AI AB,:3:4AF AC,916AIFABCS S △△∵::2FIM AMF S S IH HA △△,::2FIM AIMS S FG GA△△,∴19464AIMAIFABCS S S △△△∵:1:3AH AI∴364AHM ABC S S △△,∵:1:4AH AB :3:4AF AC ∴316AHF ABC S S △△.同理316CFDBDHABC S S S △△△∴716FDHABC S S △△33::1:46416HM HF,∵:3:4,:3:4AI ABAF AC,∴IF BC ∥,又∵:3:4,:1:2IF BC DE BC ,∴:2:3,:2:3DE IF DP PF ,同理:2:3HN ND ,∵:1:4HM HF,∴:2:5HN HD,∴17710160160HMNHDFABCS S S △△△.同理6个小阴影三角形的面积均为7160.阴影部分面积721616080.【例 15】如图,面积为l 的三角形ABC 中,D 、E 、F 、G 、H 、I 分别是AB 、BC 、CA 的三等分点,求阴影部分面积.IGHFED CBAIN MQPGHF EDCBA【解析】三角形在开会,那么就好好利用三角形中最好用的比例和燕尾定理吧!令BI 与CD 的交点为M ,AF 与CD 的交点为N ,BI 与AF 的交点为P,BI 与CE 的交点为Q,连接AM 、BN 、CP ⑴求ADMI S 四边形:在ABC △中,根据燕尾定理,::1:2ABM CBM S S AI CI△△::1:2ACM CBMS S AD BD △△设1ABM S △(份),则2CBMS △(份),1ACMS △(份),4ABC S △(份),所以14ABM ACMABC S S S △△△,所以11312ADM ABMABC S S S △△△,112AIMABC S S △△,所以111()12126ABCABC ADMIS S S △△四边形,同理可得另外两个顶点的四边形面积也分别是ABC △面积的16⑵求DNPQES 五边形:在ABC △中,根据燕尾定理::1:2ABN ACN S S BF CF△△::1:2ACN BCN S S AD BD△△,所以111133721ADNABNABCABC S S S S △△△△,同理121BEQABCS S △△在ABC △中,根据燕尾定理::1:2ABP ACP S S BF CF△△,::1:2ABP CBPS S AI CI△△所以15ABPABCS S △△所以1111152121105ABPADNBEPABCABCDNPQES S S S S S △△△△△五边形同理另外两个五边形面积是ABC △面积的11105所以11113133610570S 阴影【例 16】如图,面积为l 的三角形ABC 中,D 、E 、F 、G 、H 、I 分别是AB 、BC 、CA 的三等分点,求中心六边形面积.IGHFED CBAS RINMQ P GHFEDCBA【解析】设深黑色六个三角形的顶点分别为N 、R 、P 、S 、M 、Q ,连接CR在ABC △中根据燕尾定理,::.2:1ABR ACRS S BG CG △△,::1:2ABR CBR S S AI CI△△所以27ABR ABC S S △△,同理27ACS ABCS S △△,27CQBABCS S △△所以222117777RQS S △同理17MNPS △根据容斥原理,和上题结果11131777010S 六边形【例 17】(2009年数学解题能力大赛六年级初试试题)正六边形1A ,2A ,3A ,4A ,5A ,6A 的面积是2009平方厘米,1B ,2B ,3B ,4B ,5B ,6B 分别是正六边形各边的中点;那么图中阴影六边形的面积是平方厘米.A 6B 4B 5B 3B 2B 6B 1A 5A 4A 3A 2A 1GB 3B 2A 6B 4B 5B 6B 1A 5A 4A 3A 2A 1ED【解析】(方法一)因为空白的面积等于23A A G △面积的6倍,所以关键求23A A G △的面积,根据燕尾定理可得2312333117732AA GA AA S S S △△正六边形,但在123A A A △用燕尾定理时,需要知道13,A D A D 的长度比,连接1363,A A A A ,1A G ,过6B 作12A A 的平行线,交13A A 于E ,根据沙漏模型得1A DDE ,再根据金字塔模型得13A E A E ,因此13:1:3A D A D,在123A A A △中,设121A AGS △份,则233A A GS △份,313AA GS △份,所以2312333111773214A A GA AA S S S S △△正六边形正六边形,因此141620091148147S S 阴影正六边形()(平方厘米)(方法二)既然给的图形是特殊的正六边形,且阴影也是正六边形我们可以用下图的割补思路,把正六边形分割成14个大小形状相同的梯形,其中阴影有8个梯形,所以阴影面积为82009114814(平方厘米)BCDAEFGE A 1A 2A 3A 4A 5B 1B 6B 5B 4A 6B 2B 3GD 【例 18】已知四边形ABCD ,CHFG 为正方形,:1:8S S 乙甲,a 与b 是两个正方形的边长,求:?a b 乙甲baGHOFEDCBA乙甲b aN MGH OFED CBA【解析】观察图形,感觉阴影部分像蝴蝶定理,但是细细分析发现用蝴蝶定理无法继续往下走,注意到题目条件中给出了两个正方形的边长,有边长就可以利用比例,再发现在连接辅助线后可以利用燕尾,那么我们就用燕尾定理来求解连接EO 、AF ,根据燕尾定理:::AOE AOF S S a b △△,::AOF EOF S S a b△△所以22::AOE EOF S S a b △△,作OM ⊥AE 、ON ⊥EF ,∵AEEF∴22::OM ONa b∴33S S a b::1:8甲乙∴:1:2a b。
小学奥数-几何五大模型(燕尾模型)
燕尾定理:在三角形ABC 中,AD ,BE ,CF 相交于同一点O , 那么,::ABO ACO S S BD DC ∆∆=OFE DCBA上述定理给出了一个新的转化面积比与线段比的手段,因为ABO ∆和ACO ∆的形状很象燕子的尾巴,所以这个定理被称为燕尾定理.该定理在许多几何题目中都有着广泛的运用,它的特殊性在于,它可以存在于任何一个三角形之中,为三角形中的三角形面积对应底边之间提供互相联系的途径.通过一道例题如右图,D 是BC 上任意一点,请你说明:1423:::S S S S BD DC ==S 3S 1S 4S 2EDCBA【解析】 三角形BED 与三角形CED 同高,分别以BD 、DC 为底,所以有14::S S BD DC =;三角形ABE 与三角形EBD 同高,12::S S ED EA =;三角形ACE 与三角形CED 同高,43::S S ED EA =,所以1423::S S S S =;综上可得, 1423:::S S S S BD DC ==.例题精讲燕尾定理【例 1】 (2009年第七届希望杯五年级一试试题)如图,三角形ABC 的面积是1,E 是AC 的中点,点D 在BC 上,且:1:2BD DC =,AD 与BE 交于点F .则四边形DFEC 的面积等于 .FED CBA33321F E DC BAABCDEF【解析】 方法一:连接CF ,根据燕尾定理,12ABF ACF S BD S DC ==△△,1ABF CBF S AES EC==△△,设1BDF S =△份,则2DCF S =△份,3ABF S =△份,3AEF EFC S S ==△△份,如图所标所以551212DCEF ABC S S ==△方法二:连接DE ,由题目条件可得到1133ABD ABC S S ==△△,11212233ADE ADC ABC S S S ==⨯=△△△,所以11ABD ADE S BF FE S ==△△, 111111122323212DEF DEB BEC ABC S S S S =⨯=⨯⨯=⨯⨯⨯=△△△△,而211323CDE ABC S S =⨯⨯=△△.所以则四边形DFEC 的面积等于512.【巩固】如图,已知BD DC =,2EC AE =,三角形ABC 的面积是30,求阴影部分面积.【解析】 题中条件只有三角形面积给出具体数值,其他条件给出的实际上是比例的关系,由此我们可以初步判断这道题不应该通过面积公式求面积. 又因为阴影部分是一个不规则四边形,所以我们需要对它进行改造,那么我们需要连一条辅助线,(法一)连接CF ,因为BD DC =,2EC AE =,三角形ABC 的面积是30,所以1103ABE ABC S S ==△△,1152ABD ABC S S ==△△.根据燕尾定理,12ABF CBF S AE S EC ==△△,1ABF ACF S BDS CD==△△,所以17.54ABF ABC S S ==△△,157.57.5BFD S =-=△,所以阴影部分面积是30107.512.5--=.(法二)连接DE ,由题目条件可得到1103ABE ABC S S ==△△,11210223BDE BEC ABC S S S ==⨯=△△△,所以11ABE BDE S AF FD S ==△△,1111112.5223232DEF DEA ADC ABC S S S S =⨯=⨯⨯=⨯⨯⨯=△△△△,而211032CDE ABC S S =⨯⨯=△△.所以阴影部分的面积为12.5.【巩固】如图,三角形ABC 的面积是2200cm ,E 在AC 上,点D 在BC 上,且:3:5AE EC =,:2:3BD DC =,AD 与BE 交于点F .则四边形DFEC 的面积等于 .FED CBAABC DEF FEDCBA【解析】 连接CF ,根据燕尾定理,2639ABF ACF S BD S DC ===△△,36510ABF CBF S AE S EC ===△△, 设6ABF S =△份,则9ACF S =△份,10BCF S =△份,5459358EFC S =⨯=+△份,310623CDF S =⨯=+△份,所以24545200(6910)(6)8(6)93(cm )88DCFE S =÷++⨯+=⨯+=【巩固】如图,已知3BD DC =,2EC AE =,BE 与CD 相交于点O ,则ABC △被分成的4部分面积各占ABC △面积的几分之几?OE DCBA13.54.59211213O E D CBA【解析】 连接CO ,设1AEO S =△份,则其他部分的面积如图所示,所以1291830ABC S =+++=△份,所以四部分按从小到大各占ABC △面积的12 4.5139313.59,,,30306030103020+===【巩固】(2007年香港圣公会数学竞赛)如图所示,在ABC △中,12CP CB =,13CQ CA =,BQ 与AP 相交于点X ,若ABC △的面积为6,则ABX △的面积等于 .XQPABC XQPAB C4411XQPCBA【解析】 方法一:连接PQ .由于12CP CB =,13CQ CA =,所以23ABQABC SS =,1126BPQ BCQ ABCS S S ==.由蝴蝶定理知,21:::4:136ABQBPQABC ABC AX XP SSS S ===,所以441226 2.455255ABX ABP ABC ABC SS S S ==⨯==⨯=. 方法二:连接CX 设1CPX S =△份,根据燕尾定理标出其他部分面积, 所以6(1144)4 2.4ABX S =÷+++⨯=△【巩固】如图,三角形ABC 的面积是1,2BD DC =,2CE AE =,AD 与BE 相交于点F ,请写出这4部分的面积各是多少?ABCDE F48621ABCDEF【解析】 连接CF ,设1AEF S =△份,则其他几部分面积可以有燕尾定理标出如图所示,所以121AEF S =△,62217ABF S ==△,821BDF S =△,242217FDCE S +==【巩固】如图,E 在AC 上,D 在BC 上,且:2:3AE EC =,:1:2BD DC =,AD 与BE 交于点F .四边形DFEC的面积等于222cm ,则三角形ABC 的面积 .A BCDE FA BCDEF 2.41.62A BC DE F 12【解析】 连接CF ,根据燕尾定理,12ABF ACF S BD S DC ==△△,23ABF CBF S AE S EC ==△△,设1BDF S =△份,则2D C F S =△份,2ABF S =△份,4AFC S =△份,241.623AEF S =⨯=+△ 份,34 2.423EFC S =⨯=+△份,如图所标,所以2 2.4 4.4EFDC S =+=份,2349ABC S =++=△份 所以222 4.4945(cm )ABCS =÷⨯=△【巩固】三角形ABC 中,C 是直角,已知2AC =,2CD =,3CB =,AM BM =,那么三角形AMN (阴影部分)的面积为多少?【解析】 连接BN .ABC △的面积为3223⨯÷=根据燕尾定理,::2:1ACN ABN CD BD ==△△; 同理::1:1CBN CAN BM AM ==△△设AMN △面积为1份,则MNB △的面积也是1份,所以ANB △的面积是112+=份,而ACN △的面积就是224⨯=份,CBN △也是4份,这样ABC △的面积为441110+++=份,所以AMN △的面积为31010.3÷⨯=.【巩固】如图,长方形ABCD 的面积是2平方厘米,2EC DE =,F 是DG 的中点.阴影部分的面积是多少平方厘米?y B CD EGE D CBAEDB A【解析】 设1DEF S =△份,则根据燕尾定理其他面积如图所示551212BCD S S ==△阴影平方厘米.【例 2】 如图所示,在四边形ABCD 中,3AB BE =,3AD AF =,四边形AEOF 的面积是12,那么平行四边形BODC 的面积为________.OFE DBA684621O F E DB A【解析】 连接,AO BD ,根据燕尾定理::1:2ABO BDO S S AF FD ==△△,::2:1AOD BOD S S AE BE ==△△,设1BEO S =△,则其他图形面积,如图所标,所以221224BODC AEOF S S ==⨯=.【例 3】 ABCD 是边长为12厘米的正方形,E 、F 分别是AB 、BC 边的中点,AF 与CE 交于G ,则四边形AGCD 的面积是_________平方厘米.GFE DCBAGFE D CBA【解析】 连接AC 、GB ,设1A G CS =△份,根据燕尾定理得1AGB S =△份,1BGC S =△份,则11126S =++⨯=正方形()份,314ADCG S =+=份,所以22126496(cm )ADCG S =÷⨯=【例 4】 如图,正方形ABCD 的面积是120平方厘米,E 是AB 的中点,F 是BC 的中点,四边形BGHF 的面积是_____平方厘米.EDCBEDCB【解析】 连接BH ,根据沙漏模型得:1:2BG GD =,设1BHC S =△份,根据燕尾定理2CHD S =△份,2BHD S =△份,因此122)210S =++⨯=正方形(份,127236BFHG S =+=,所以712010146BFHG S =÷⨯=(平方厘米).【例 5】 如图所示,在ABC △中,:3:1BE EC =,D 是AE 的中点,那么:AF FC = .FE D C BAFE DCB A【解析】 连接CD .由于:1:1ABD BED S S =△△,:3:4BED BCD S S =△△,所以:3:4ABD BCD S S =△△, 根据燕尾定理,::3:4ABD BCD AF FC S S ==△△.【巩固】在ABC ∆中,:3:2BD DC =, :3:1AE EC =,求:OB OE =?A BCDE OABCDE O【解析】 连接OC .因为:3:2BD DC =,根据燕尾定理,::3:2AOB AOC S S BD BC ∆∆==,即32AOB AOC S S ∆∆=; 又:3:1AE EC =,所以43AOC AOE S S ∆∆=.则3342223AOB AOC AOE AOE S S S S ∆∆∆∆==⨯=, 所以::2:1AOB AOEOB OE S S ∆∆==.【巩固】在ABC ∆中,:2:1BD DC =, :1:3AE EC =,求:OB OE =?A B CDE O【解析】 题目求的是边的比值,一般来说可以通过分别求出每条边的值再作比值,也可以通过三角形的面积比来做桥梁,但题目没告诉我们边的长度,所以应该通过面积比而得到边长的比.本题的图形一看就联想到燕尾定理,但两个燕尾似乎少了一个,因此应该补全,所以第一步要连接OC . 连接OC .A B CDE O因为:2:1BD DC =,根据燕尾定理,::2:1AOB AOC S S BD BC ∆∆==,即2AOB AOC S S ∆∆=; 又:1:3AE EC =,所以4AOC AOE S S ∆∆=.则2248AOB AOC AOE AOE S S S S ∆∆∆∆==⨯=, 所以::8:1AOB AOE OB OE S S ∆∆==.【例 6】 (2009年清华附中入学测试题)如图,四边形ABCD 是矩形,E 、F 分别是AB 、BC 上的点,且13AE AB =,14CF BC =,AF 与CE 相交于G ,若矩形ABCD 的面积为120,则AEG ∆与CGF ∆的面积之和为 .BEH BEBE【解析】 (法1)如图,过F 做CE 的平行线交AB 于H ,则::1:3EH HB CF FB ==,所以122AE EB EH ==,::2AG GF AE EH ==,即2AG GF =,所以122311033942AEG ABF ABCD S S S ∆∆=⨯⨯=⨯⨯=.且22313342EG HF EC EC ==⨯=,故CG GE =,则1152CGF AEG S S ∆∆=⨯⨯=.所以两三角形面积之和为10515+=.(法2)如上右图,连接AC 、BG .根据燕尾定理,::3:1ABG ACG S S BF CF ∆∆==,::2:1BCG ACG S S BE AE ∆∆==,而1602ABC ABCD S S ∆==,所以3321ABG S ∆=++,160302ABC S ∆=⨯=,2321BCG S ∆=++,160203ABC S ∆=⨯=,则1103AEG ABG S S ∆∆==,154CFG BCG S S ∆∆==,所以两个三角形的面积之和为15.【例 7】 如右图,三角形ABC 中,:4:9BD DC =,:4:3CE EA =,求:AF FB .O F EDCBA【解析】 根据燕尾定理得::4:912:27AOB AOC S S BD CD ===△△ ::3:412:16AOB BOC S S AE CE ===△△(都有AOB △的面积要统一,所以找最小公倍数) 所以:27:16:AOC BOC S S AF FB ==△△【点评】本题关键是把AOB △的面积统一,这种找最小公倍数的方法,在我们用比例解题中屡见不鲜,如果能掌握它的转化本质,我们就能达到解奥数题四两拨千斤的巨大力量!【巩固】如右图,三角形ABC 中,:3:4BD DC =,:5:6AE CE =,求:AF FB .O F EDCBA【解析】 根据燕尾定理得::3:415:20AOB AOC S S BD CD ===△△ ::5:615:18AOB BOC S S AE CE ===△△(都有AOB △的面积要统一,所以找最小公倍数) 所以:20:1810:9:AOC BOC S S AF FB ===△△【巩固】如图,:2:3BD DC =,:5:3AE CE =,则:AF BF =GF EDCBA【解析】 根据燕尾定理有:2:310:15ABG ACG S S ==△△,:5:310:6ABG BCGS S ==△△,所以:15:65:2:ACG BCG S S AF BF ===△△【巩固】如右图,三角形ABC 中,:2:3BD DC =,:5:4EA CE =,求:AF FB .O F EDCBA【解析】 根据燕尾定理得::2:310:15AOB AOC S S BD CD ===△△ ::5:410:8AOB BOC S S AE CE ===△△(都有AOB △的面积要统一,所以找最小公倍数) 所以:15:8:AOC BOC S S AF FB ==△△【点评】本题关键是把AOB △的面积统一,这种找最小公倍数的方法,在我们用比例解题中屡见不鲜,如果能掌握它的转化本质,我们就能达到解奥数题四两拨千斤的巨大力量!【例 8】 (2008年“学而思杯”六年级数学试题)如右图,三角形ABC 中,:::3:2AF FB BD DC CE AE ===,且三角形ABC 的面积是1,则三角形ABE 的面积为______,三角形AGE 的面积为________,三角形GHI 的面积为______.I HGFEDC BAI HG FEDCBA【分析】 连接AH 、BI 、CG .由于:3:2CE AE =,所以25AE AC =,故2255ABE ABC S S ∆∆==; 根据燕尾定理,::2:3ACG ABG S S CD BD ∆∆==,::3:2BCG ABG S S CE EA ∆∆==,所以::4:6:9ACG ABG BCG S S S ∆∆∆=,则419ACG S ∆=,919BCG S ∆=;那么2248551995AGE AGC S S ∆∆==⨯=;同样分析可得919ACH S ∆=,则::4:9A C G A C H EG EH S S ∆∆==,::4:19ACG ACB EG EB S S ∆∆==,所以::4:5:10EG GH HB =,同样分析可得::10:5:4AG GI ID =,所以5521101055BIE BAE S S ∆∆==⨯=,55111919519GHI BIE S S ∆∆==⨯=.【巩固】 如右图,三角形ABC 中,:::3:2AF FB BD DC CE AE ===,且三角形GHI 的面积是1,求三角形ABC 的面积.IH G FEDCBAIH G FEDCBA【解析】 连接BG ,AGC S △=6份根据燕尾定理,::3:26:4AGC BGC S S AF FB ===△△,::3:29:6ABG AGC S S BD DC ===△△得4BGC S =△(份),9ABG S =△(份),则19ABC S =△(份),因此619AGC ABC S S =△△,同理连接AI 、CH 得619ABH ABC S S =△△,619BIC ABC S S =△△, 所以1966611919GHI ABC S S ---==△△ 三角形GHI 的面积是1,所以三角形ABC 的面积是19【巩固】(2009年第七届“走进美妙的数学花园”初赛六年级)如图,ABC ∆中2BD DA =,2CE EB =,2AF FC =,那么ABC ∆的面积是阴影三角形面积的 倍.BCB【分析】 如图,连接AI .根据燕尾定理,::2:1BCI ACI S S BD AD ∆∆==,::1:2BCI ABI S S CF AF ∆∆==, 所以,::1:2:4ACI BCI ABI S S S ∆∆∆=,那么,221247BCI ABC ABC S S S ∆∆∆==++.同理可知ACG ∆和ABH ∆的面积也都等于ABC ∆面积的27,所以阴影三角形的面积等于ABC ∆面积的211377-⨯=,所以ABC ∆的面积是阴影三角形面积的7倍.【巩固】如图在ABC △中,12DC EA FB DB EC FA ===,求GHI ABC △的面积△的面积的值. IHG FEDCBAIHG FEDCB A【解析】 连接BG ,设BGC S △=1份,根据燕尾定理::2:1AGC BGC S S AF FB ==△△,::2:1ABG AGC S S BD DC ==△△,得2AGC S =△(份),4ABG S =△(份),则7ABC S =△(份),因此27AGC ABC S S =△△,同理连接AI 、CH 得27ABH ABC S S =△△,27BIC ABC S S =△△, 所以7222177GHI ABC S S ---==△△ 【点评】如果任意一个三角形各边被分成的比是相同的,那么在同样的位置上的图形,虽然形状千变万化,但面积是相等的,这在这讲里面很多题目都是用“同理得到”的,即再重复一次解题思路,因此我们有对称法作辅助线.【巩固】如图在ABC △中,13DC EA FB DB EC FA ===,求GHI ABC △的面积△的面积的值.IHG FEDCBAIH G FEDCB A【解析】 连接BG ,设BGC S △=1份,根据燕尾定理::3:1AGC BGC S S AF FB ==△△,::3:1ABG AGC S S BD DC ==△△,得3AGC S =△(份),9ABG S =△(份),则13ABC S =△(份),因此313AGC ABC S S =△△,同理连接AI 、CH 得13ABH ABC S S =△△,313BIC ABC S S =△△, 所以1333341313GHI ABC S S ---==△△【巩固】如右图,三角形ABC 中,:::4:3AF FB BD DC CE AE ===,且三角形ABC 的面积是74,求角形GHI的面积.IH G FEDCBAIH G FEDCBA【解析】 连接BG ,AGC S △=12份根据燕尾定理,::4:312:9AGC BGC S S AF FB ===△△,::4:316:12ABG AGC S S BD DC ===△△得9BGC S =△(份),16ABG S =△(份),则9121637ABC S =++=△(份),因此1237AGC ABC S S =△△,同理连接AI 、CH 得1237ABH ABC S S =△△,1237BIC ABC S S =△△, 所以3712121213737GHI ABC S S ---==△△ 三角形ABC 的面积是74,所以三角形GHI 的面积是174237⨯=【例 9】 两条线段把三角形分为三个三角形和一个四边形,如图所示, 三个三角形的面积 分别是3,7,7,则阴影四边形的面积是多少?【解析】 方法一:遇到没有标注字母的图形,我们第一步要做的就是给图形各点标注字母,方便后面的计算.再看这道题,出现两个面积相等且共底的三角形.设三角形为ABC ,BE 和CD 交于F ,则BF FE =,再连结DE .所以三角形DEF 的面积为3.设三角形ADE 的面积为x ,则()():33:10:10x AD DB x +==+,所以15x =,四边形的面积为18.方法二:设ADF S x =△,根据燕尾定理::ABF BFC AFE EFC S S S S =△△△△,得到3AEF S x =+△,再根据向右下飞的燕子,有(37):7:3x x ++=,解得7.5x =四边形的面积为7.57.5318++=【巩固】右图的大三角形被分成5个小三角形,其中4个的面积已经标在图中,那么,阴影三角形的面积是 .【解析】 方法一:整个题目读完,我们没有发现任何与边长相关的条件,也没有任何与高或者垂直有关系的字眼,由此,我们可以推断,这道题不能依靠三角形面积公式求解.我们发现右图三角形中存在一个比例关系:()2:13:4S =+阴影,解得2S =阴影.方法二:回顾下燕尾定理,有2:41:3S +=阴影(),解得2S =阴影.【例 10】 如图,三角形ABC 被分成6个三角形,已知其中4个三角形的面积,问三角形ABC 的面积是多少?35304084O FED CBA【解析】 设BOF S x =△,由题意知:4:3BD DC =根据燕尾定理,得::4:3ABO ACO BDO CDO S S S S ==△△△△,所以33(84)6344ACO S x x =⨯+=+△,再根据::ABO BCO AOE COE S S S S =△△△△,列方程3(84):(4030)(6335):354x x ++=+-解得56x =:35(5684):(4030)AOE S =++△,所以70AOE S =△所以三角形ABC 的面积是844030355670315+++++=【例 11】 三角形ABC 的面积为15平方厘米,D 为AB 中点,E 为AC 中点,F 为BC 中点,求阴影部分的面积.F CBAF CBA【解析】 令BE 与CD 的交点为M ,CD 与EF 的交点为N ,连接AM ,BN .在ABC △中,根据燕尾定理,::1:1ABM BCM S S AE CE ==△△,::1:1ACM BCM S S AD BD ==△△,所以13ABM ACM BCN ABC S S S S ===△△△△由于1122AEM AMC ABM S S S ==△△△S ,所以:2:1BM ME =在EBC △中,根据燕尾定理,::1:1BEN CEN S S BF CF ==△△::1:2CEN CBN S S ME MB ==△△ 设1CEN S =△(份),则1BEN S =△(份),2BCN S =△(份),4BCE S =△(份),所以1124BCN BCE ABC S S S ==△△△,1148BNE BCE ABC S S S ==△△△,因为:2:1BM ME =,F 为BC 中点,所以221133812BMN BNE ABC ABC S S S S ==⨯=△△△△,11112248BFN BNC ABC S S S ==⨯=△△△,所以115515 3.1251282424ABC ABC S S S ⎛⎫=+==⨯= ⎪⎝⎭△△阴影(平方厘米)【例 12】 如右图,ABC △中,G 是AC 的中点,D 、E 、F 是BC 边上的四等分点,AD 与BG 交于M ,AF 与BG 交于N ,已知ABM △的面积比四边形FCGN 的面积大7.2平方厘米,则ABC △的面积是多少平方厘米?N M GA BCD EFNMGA BCD EF【解析】 连接CM 、CN .根据燕尾定理,::1:1ABM CBM S S AG GC ==△△,::1:3ABM ACM S S BD CD ==△△,所以15ABM ABC S S =△△;再根据燕尾定理,::1:1ABN CBN S S AG GC ==△△,所以::4:3ABN FBN CBN FBN S S S S ==△△△△,所以:4:3AN NF =,那么1422437ANG AFC S S =⨯=+△△,所以2515177428FCGN AFC ABC ABC S S S S ⎛⎫=-=⨯= ⎪⎝⎭△△△.根据题意,有157.2528ABCABC S S -=△△,可得336ABC S =△(平方厘米)【巩固】(2007年四中分班考试题)如图,ABC ∆中,点D 是边AC 的中点,点E 、F 是边BC 的三等分点,若ABC ∆的面积为1,那么四边形CDMF 的面积是_________.F ABCDEM NFABCDEMN【解析】 由于点D 是边AC 的中点,点E 、F 是边BC 的三等分点,如果能求出BN 、NM 、MD 三段的比,那么所分成的六小块的面积都可以求出来,其中当然也包括四边形CDMF 的面积. 连接CM 、CN .根据燕尾定理,::2:1ABM ACM S S BF CF ∆∆==,而2ACM ADM S S ∆∆=,所以24ABM ACM ADM S S S ∆∆∆==,那么4BM DM =,即45BM BD =.那么421453215BMF BCD BM BF S S BD BC ∆∆=⨯⨯=⨯⨯=,14721530CDMF S =-=四边形.另解:得出24ABM ACM ADM S S S ∆∆∆==后,可得111155210ADM ABD S S ∆∆==⨯=,则11731030ACF ADM CDMF S S S ∆∆=-=-=四边形.【例 13】 如图,三角形ABC 的面积是1,BD DE EC ==,CF FG GA ==,三角形ABC 被分成9部分,请写出这9部分的面积各是多少?GFE D CBAN MQPGF EDCBA【解析】 设BG 与AD 交于点P ,BG 与AE 交于点Q ,BF 与AD 交于点M ,BF 与AE 交于点N .连接CP ,CQ ,CM ,CN .根据燕尾定理,::1:2ABP CBP S S AG GC ==△△,::1:2ABP ACP S S BD CD ==△△,设1ABP S =△(份),则1225ABC S =++=△(份),所以15ABP S =△同理可得,27ABQ S =△,12ABN S =△,而13ABG S =△,所以2137535APQ S =-=△,1213721AQG S =-=△.同理,335BPM S =△121BDM S =△,所以1239273570PQMN S =--=四边形,139********MNED S =--=四边形,1151321426NFCE S =--=四边形,1115321642GFNQ S =--=四边形【巩固】如图,ABC ∆的面积为1,点D 、E 是BC 边的三等分点,点F 、G 是AC 边的三等分点,那么四边形JKIH 的面积是多少?K JI HABC D EF GKJI HA BCD EFG【解析】 连接CK 、CI 、CJ .根据燕尾定理,::1:2ACK ABK S S CD BD ∆∆==,::1:2ABK CBK S S AG CG ∆∆==,所以::1:2:4ACK ABK CBK S S S ∆∆∆=,那么111247ACK S ∆==++,11321AGK ACK S S ∆∆==.类似分析可得215AGI S ∆=.又::2:1ABJ CBJ S S AF CF ∆∆==,::2:1ABJ ACJ S S BD CD ∆∆==,可得14ACJ S ∆=.那么,111742184CGKJ S =-=.根据对称性,可知四边形CEHJ 的面积也为1784,那么四边形JKIH 周围的图形的面积之和为172161228415370CGKJ AGI ABE S S S ∆∆⨯++=⨯++=,所以四边形JKIH 的面积为61917070-=.【例 14】 如右图,面积为1的ABC △中,::1:2:1BD DE EC =,::1:2:1CF FG GA =,::1:2:1AH HI IB =,求阴影部分面积.CBB【解析】 设IG 交HF 于M ,IG 交HD 于N ,DF 交EI 于P .连接AM , IF .∵:3:4AI AB =,:3:4AF AC =,916AIF ABC S S ∴=△△ ∵::2FIM AMF S S IH HA ==△△,::2FIM AIM S S FG GA ==△△,∴19464AIM AIF ABC S S S ==△△△ ∵:1:3AH AI = ∴364AHM ABC S S =△△,∵:1:4AH AB = :3:4A F A C = ∴316AHF ABC S S =△△ . 同理 316CFD BDH ABC S S S ==△△△ ∴716FDH ABC S S =△△ 33::1:46416HM HF ==,∵ :3:4,:3:4AI AB AF AC ==,∴IF BC ∥ ,又∵:3:4,:1:2IF BC DE BC ==,∴:2:3,:2:3DE IF DP PF ==,同理 :2:3HN ND =,∵:1:4HM HF =,∴:2:5HN HD =,∴17710160160HMN HDF ABC S S S ===△△△. 同理 6个小阴影三角形的面积均为7160.阴影部分面积721616080=⨯=.【例 15】 如图,面积为l 的三角形ABC 中,D 、E 、F 、G 、H 、I 分别是AB 、BC 、CA 的三等分点,求阴影部分面积.GCBAGCBA【解析】 三角形在开会,那么就好好利用三角形中最好用的比例和燕尾定理吧!令BI 与CD 的交点为M ,AF 与CD 的交点为N ,BI 与AF 的交点为P ,BI 与CE 的交点为Q ,连接AM 、BN 、CP⑴求ADMI S 四边形:在ABC △中,根据燕尾定理,::1:2ABM CBM S S AI CI ==△△::1:2ACM CBM S S AD BD ==△△设1ABM S =△(份),则2CBM S =△(份),1ACM S =△(份),4ABC S =△(份),所以14ABM ACM ABC S S S ==△△△,所以11312ADM ABM ABC S S S ==△△△,112AIM ABC S S =△△,所以111()12126ABC ABC ADMI S S S =+=△△四边形,同理可得另外两个顶点的四边形面积也分别是ABC △面积的16⑵求DNPQE S 五边形:在ABC △中,根据燕尾定理::1:2ABN ACN S S BF CF ==△△::1:2ACN BCN S S AD BD ==△△,所以111133721ADN ABN ABC ABC S S S S ==⨯=△△△△,同理121BEQ ABC S S =△△在ABC △中,根据燕尾定理::1:2ABP ACP S S BF CF ==△△,::1:2ABP CBP S S AI CI ==△△所以15ABP ABC S S =△△所以1111152121105ABP ADN BEP ABC ABC DNPQE S S S S S S ⎛⎫=--=--= ⎪⎝⎭△△△△△五边形同理另外两个五边形面积是ABC △面积的11105所以11113133610570S =-⨯-⨯=阴影【例 16】 如图,面积为l 的三角形ABC 中,D 、E 、F 、G 、H 、I 分别是AB 、BC 、CA 的三等分点,求中心六边形面积.GCBAGCBA【解析】 设深黑色六个三角形的顶点分别为N 、R 、P 、S 、M 、Q ,连接CR在ABC △中根据燕尾定理,::.2:1ABR ACR S S BG CG ==△△, ::1:2ABR CBR S S AI CI ==△△所以27ABR ABC S S =△△,同理27ACS ABC S S =△△,27CQB ABC S S =△△所以222117777RQS S =---=△同理17MNP S =△根据容斥原理,和上题结果11131777010S =+-=六边形【例 17】 (2009年数学解题能力大赛六年级初试试题)正六边形1A ,2A ,3A ,4A ,5A ,6A 的面积是2009平方厘米,1B ,2B ,3B ,4B ,5B ,6B 分别是正六边形各边的中点;那么图中阴影六边形的面积是 平方厘米.A 4B 5A 3A 45A 3【解析】 (方法一)因为空白的面积等于23A A G △面积的6倍,所以关键求23A A G △的面积,根据燕尾定理可得2312333117732A A G A A A S S S ==⨯⨯△△正六边形,但在123A A A △用燕尾定理时,需要知道13,A D A D 的长度比,连接1363,A A A A ,1A G ,过6B 作12A A 的平行线,交13A A 于E ,根据沙漏模型得1A D DE =,再根据金字塔模型得13A E A E =,因此13:1:3A D A D =,在123A A A △中,设121A A G S =△份,则233A A G S =△份,313A A G S =△份,所以2312333111773214A A G A A A S S S S ==⨯⨯=△△正六边形正六边形,因此141620091148147S S =-⨯=⨯=阴影正六边形()(平方厘米)(方法二)既然给的图形是特殊的正六边形,且阴影也是正六边形我们可以用下图的割补思路,把正六边形分割成14个大小形状相同的梯形,其中阴影有8个梯形,所以阴影面积为82009114814⨯=(平方厘米)FA 3A【例 18】 已知四边形ABCD ,CHFG 为正方形,:1:8S S =乙甲,a 与b 是两个正方形的边长,求:?a b =baHFEDbaMED【解析】 观察图形,感觉阴影部分像蝴蝶定理,但是细细分析发现用蝴蝶定理无法继续往下走,注意到题目条件中给出了两个正方形的边长,有边长就可以利用比例,再发现在连接辅助线后可以利用燕尾,那么我们就用燕尾定理来求解 连接EO 、AF ,根据燕尾定理:::AOE AOF S S a b =△△,::AOF EOF S S a b =△△所以 22::AOE EOF S S a b =△△,作OM ⊥AE 、ON ⊥EF , ∵AE =EF∴22::OM ON a b = ∴33::1:8S S a b ==乙甲 ∴:1:2a b =。
小学奥数之几何五大模型
小学奥数之几何五大模型
五大模型
一、等积变换模型
在等底等高的情况下,两个三角形的面积相等。
此外,如果两个三角形的高相等,则它们的面积比等于它们的底之比;如果两个三角形的底相等,则它们的面积比等于它们的高之比。
当两个三角形的面积比为a:b时,可以表示为
二、共角定理模型
如果两个三角形中有一个角相等或互补,则这两个三角形是共角三角形。
共角三角形的面积比等于对应角(相等角或互
补角)两夹边的乘积之比。
例如,在△ABC中,如果D在BA
的延长线上,E在AC上,则S△
三、蝴蝶定理模型
任意四边形中的比例关系(“蝴蝶定理”):.
四、相似模型
相似三角形的形状相同,但大小不同。
相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比。
相似三角形的面积比等于它们相似比的平方。
例如,在金字塔模型和沙漏模型中,有AD/AB=AE/AC=DE/BC,S△.
五、燕尾定理模型
在燕尾定理模型中,S△
通过点G作MN和PQ两条直线,可以得到两个正方形MGQA和PCNG。
设MGQA的面积为S1,PCNG的面积为
S2,则.
在点G处,通过作MN和PQ两条直线,可以构建出两个正方形,分别为MGQA和PCNG。
假设MGQA的面积为S1,PCNG的面积为S2,则.。
小学奥数-几何五大模型(燕尾模型)
小学奥数-几何五大模型(燕尾模型)燕尾定理是一个有关于三角形的定理。
它表明在三角形ABC中,若有AD,BE,CF三条线段相交于同一点O,则可以得出以下关系:S△现在我们通过一道例题来证明燕尾定理。
如右图,D是BC上任意一点,请你说明:解析】我们可以通过以下方法来证明燕尾定理。
首先,我们连接CF,然后根据燕尾定理,我们可以得到△ABF/△ACF=BD/DC=1/2.接着,我们可以得到△ABF=3份,△DCF=2份,△AEF=△EFC=3份。
因此,我们可以得到SDFEC=S△ABC/2=1/2.另外一种证明方法是连接DE。
根据题目条件,我们可以得到S△ABD=S△ABC=1/3,S△ADE=S△ADC=1/6.因此,我们可以得到S△DEF/S△DEB=S△ADE/S△ABD*S△BEC/S△ADC=1/2*1/3*2/1=2/3.同时,我们可以得到S△CDE/S△ABC=1/3.因此,我们可以得到SDFEC=S△ABC/2=1/2.综上所述,我们证明了燕尾定理。
已知BD=3DC,EC=2AE,可以得到连接OE,可以得到△OEC和△OEB的面积比为2:3,因此△ABC被分成的第一部分面积为2/5.连接OD,可以得到△OBD和△OCD的面积比为1:3,因此△ABC被分成的第二部分面积为3/20.连接AE,可以得到△ABE和△AEC的面积比为2:5,因此△ABC被分成的第三部分面积为5/20=1/4.连接BO和CO,可以得到△BOC和△BEO的面积比为3:2,因此△ABC被分成的第四部分面积为3/20.因此,△ABC被分成的四部分面积分别为2/5、3/20、1/4、3/20,即它们各占△ABC面积的40%、15%、25%、15%。
解析】连接CF,设S△ABF=1份,则S△ACF=2份,S△BDF=1份,S△DCF=2份,S△AEF=4份,S△EFC=4份。
根据燕尾定理,SDFEC=S△ACF+S△DCF+S△BDF=5份。
几何五大模型之五燕尾定理
几何五大模型之五(燕尾定理)燕尾定理燕尾定理:在三角形ABC 中,AD ,BE ,CF 相交于同一点O , 那么,::ABO ACO S S BD DC ∆∆=OFDBA上述定理给出了一个新的转化面积比与线段比的手段,因为ABO ∆和ACO ∆的形状很象燕子的尾巴,所以这个定理被称为燕尾定理.该定理在许多几何题目中都有着广泛的运用,它的特殊性在于,它可以存在于任何一个三角形之中,为三角形中的三角形面积对应底边之间提供互相联系的途径.通过一道例题 证明燕尾定理:如右图,D 是BC 上任意一点,请你说明:1423:::S SS S BD DC==S 3S 1S 4S 2EDCBA【解析】 三角形BED 与三角形CED 同高,分别以BD 、DC 为底,所例题精讲以有14::S SBD DC=;三角形ABE 与三角形EBD 同高,12::S SED EA=; 三角形ACE 与三角形CED 同高,43::SS ED EA=,所以1423::S S S S =;综上可得, 1423:::S SS S BD DC==.【例 1】(2009年第七届希望杯五年级一试试题)如图,三角形ABC 的面积是1,E 是AC 的中点,点D 在BC 上,且:1:2BD DC =,AD 与BE 交于点F .则四边形DFEC 的面积等于 .FED CBA【巩固】如图,已知BD DC =,2EC AE =,三角形ABC 的面积是30,求阴影部分面积.【巩固】如图,三角形ABC 的面积是2200cm ,E 在AC 上,点D在BC 上,且:3:5AE EC =,:2:3BD DC =,AD 与BE 交于点F .则四边形DFEC 的面积等于 .FED CBA【巩固】如图,已知3BD DC =,2EC AE =,BE 与CD 相交于点O ,则ABC△被分成的4部分面积各占ABC △ 面积的几分之几?OE DCBA【巩固】(2007年香港圣公会数学竞赛)如图所示,在ABC △中,12CP CB =,13CQ CA =,BQ 与AP 相交于点X ,若ABC △的面积为6,则ABX △的面积等于 .XQPA BC【巩固】如图,三角形ABC 的面积是1,2BD DC =,2CE AE =,AD 与BE 相交于点F ,请写出这4部分的面积各是多少?ABCDE F【巩固】如图,E 在AC 上,D 在BC 上,且:2:3AE EC =,:1:2BD DC =,AD 与BE 交于点F .四边形DFEC 的面积等于222cm ,则三角形ABC 的面积 .ABCDE F【巩固】三角形ABC 中,C 是直角,已知2AC =,2CD =,3CB =,AM BM =,那么三角形AMN (阴影部分)的面积为多少?【巩固】如图,长方形ABCD 的面积是2平方厘米,2EC DE =,F是DG 的中点.阴影部分的面积是多少平方厘米?x yy x ABCD E FGE D CBA【例 2】如图所示,在四边形ABCD 中,3AB BE =,3AD AF =,四边形AEOF 的面积是12,那么平行四边形BODC 的面积为________.OFEDCBA【例 3】 ABCD是边长为12厘米的正方形,E 、F 分别是AB 、BC 边的中点,AF 与CE 交于G ,则四边形AGCD 的面积是_________平方厘米.GFE D CBA【例 4】如图,正方形ABCD 的面积是120平方厘米,E 是AB 的中点,F 是BC 的中点,四边形BGHF 的面积是_____平方厘米.EDCB【例 5】如图所示,在ABC △中,:3:1BE EC =,D 是AE 的中点,那么:AF FC = .F E DCB A【巩固】在ABC ∆中,:3:2BD DC =, :3:1AE EC =,求:OB OE =?ABCDE O【巩固】在ABC ∆中,:2:1BD DC =, :1:3AE EC =,求:OB OE =?A B CDE O【例 6】(2009年清华附中入学测试题)如图,四边形ABCD 是矩形,E 、F 分别是AB 、BC 上的点,且13AE AB =,14CF BC =,AF与CE 相交于G ,若矩形ABCD 的面积为120,则AEG ∆与CGF ∆的面积之和为 .BE【例 7】如右图,三角形ABC 中,:4:9BD DC =,:4:3CE EA =,求:AF FB .O F EDCBA【巩固】如右图,三角形ABC 中,:3:4BD DC =,:5:6AE CE =,求:AF FB .O F EDCBA【巩固】如图,:2:3BD DC =,:5:3AE CE =,则:AF BF =GF EDCBA【巩固】如右图,三角形ABC 中,:2:3BD DC =,:5:4EA CE =,求:AF FB .O F EDCBA【例 8】(2008年“学而思杯”六年级数学试题)如右图,三角形ABC 中,:::3:2AF FB BD DC CE AE ===,且三角形ABC 的面积是1,则三角形ABE 的面积为______,三角形AGE 的面积为________,三角形GHI 的面积为______.I HGFEDCBA【巩固】 如右图,三角形ABC 中,:::3:2AF FB BD DC CE AE ===,且三角形GHI 的面积是1,求三角形ABC 的面积.IH G FEDCBA【巩固】(2009年第七届“走进美妙的数学花园”初赛六年级)如图,ABC ∆中2BD DA =,2CE EB =,2AF FC =,那么ABC ∆的面积是阴影三角形面积的 倍.BC【巩固】如图在ABC △中,12DC EA FB DB EC FA ===,求GHI ABC △的面积△的面积的值. IHG FEDCBA课后作业1、如图,已知3BD DC =,2EC AE =,BE 与CD 相交于点O ,则ABC △被分成的4部分面积各占ABC △ 面积的几分之几?OE DCBA2、两条线段把三角形分为三个三角形和一个四边形,如图所示, 三个三角形的面积 分别是3,7,7,则阴影四边形的面积是多少?3、右图的大三角形被分成5个小三角形,其中4个的面积已经标在图中,那么,阴影三角形的面积是 .page 10 of 114、如图,三角形ABC 的面积是1,2BD DC =,2CE AE =,AD 与BE 相交于点F ,请写出这4部分的面积各是多少?AB CD EF5、如右图,三角形ABC 中,:4:9BD DC =,:4:3CE EA =,求:AF FB .O FE D C B A。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
燕尾定理
燕尾定理:
在三角形ABC 中,AD ,BE ,CF 相交于同一点O , 那么,
::ABO ACO S S BD DC ∆∆=
O
F
E D
C
B
A
上述定理给出了一个新的转化面积比与线段比的手段,因为ABO ∆和ACO ∆的形状很象燕子的尾巴,所以这个定理被称为燕尾定理.该定理在许多几何题目中都有着广泛的运用,它的特殊性在于,它可以存在于任何一个三角形之中,为三角形中的三角形面积对应底边之间提供互相联系的途径.
通过一道例题 证明燕尾定理:
如右图,D 是BC 上任意一点,请你说明:1423:::S S S S BD DC ==
S 3
S 1S 4S 2E
D
C
B
A
【解析】 三角形BED 与三角形CED 同高,分别以BD 、DC 为底,所以有14::S S BD DC =;
三角形ABE 与三角形EBD 同高,12::S S ED EA =;
三角形ACE 与三角形CED 同高,43::S S ED EA =,所以1423::S S S S =;
综上可得, 1423:::S S S S BD DC ==.
例题精讲
【例 1】 (2009年第七届希望杯五年级一试试题)如图,三角形ABC 的面积是1,E 是AC 的中点,点D 在
BC 上,且:1:2BD DC =,AD 与BE 交于点F .则四边形DFEC 的面积等于 .
F
E
D C
B
A
【巩固】如图,已知BD DC =,2EC AE =,三角形ABC 的面积是30
,求阴影部分面积.
【巩固】如图,三角形ABC 的面积是2200cm ,E 在AC 上,点D 在BC 上,且:3:5AE EC =,:2:3BD DC =,
AD 与BE 交于点F .则四边形DFEC 的面积等于 .
F
E
D C
B
A
【巩固】如图,已知3BD DC =,2EC AE =,BE 与CD 相交于点O ,则ABC △被分成的4部分面积各占ABC △
面积的几分之几?
O
E D
C
B
A
【巩固】(2007年香港圣公会数学竞赛)如图所示,在ABC △中,12CP CB =,1
3
CQ CA =,BQ 与AP 相交于
点X ,若ABC △的面积为6,则ABX △的面积等于 .
X
Q
P
A B
C
【巩固】如图,三角形ABC 的面积是1,2BD DC =,2CE AE =,AD 与BE 相交于点F ,请写出这4部分
的面积各是多少?
A
B
C
D
E F
【巩固】如图,E 在AC 上,D 在BC 上,且:2:3AE EC =,:1:2BD DC =,AD 与BE 交于点F .四边形DFEC
的面积等于222cm ,则三角形ABC 的面积 .
A
B
C
D
E F
【巩固】三角形ABC 中,C 是直角,已知2AC =,2CD =,3CB =,AM BM =,那么三角形AMN (阴影
部分)的面积为多少?
【巩固】如图,长方形ABCD 的面积是2平方厘米,2EC DE =,F 是DG 的中点.阴影部分的面积是多少
平方厘米
?
x y y x A
B
C
D E F
G
E D C
B
A
【例 2】 如图所示,在四边形ABCD 中,3AB BE =,3AD AF =,四边形AEOF 的面积是12,那么平行四边
形BODC 的面积为________.
O
F
E D
C
B
A
【例 3】 ABCD 是边长为12厘米的正方形,E 、F 分别是AB 、BC 边的中点,AF 与CE 交于G ,则四边形
AGCD 的面积是_________平方厘米.
G
F
E D
C
B
A
【例 4】 如图,正方形ABCD 的面积是120平方厘米,E 是AB 的中点,F 是BC 的中点,四边形BGHF 的
面积是_____平方厘米.
E
D
【例 5】 如图所示,在ABC △中,:3:1BE EC =,D 是AE 的中点,那么:AF FC = .
F
E D
C
B A
【巩固】在ABC ∆中,:3:2BD DC =, :3:1AE EC =,求:OB OE =?
A
B
C
D
E O
【巩固】在ABC ∆中,:2:1BD DC =, :1:3AE EC =,求:OB OE =?
A B C
D
E O
【例 6】 (2009年清华附中入学测试题)如图,四边形ABCD 是矩形,E 、F 分别是AB 、BC 上的点,且
13AE AB =,1
4CF BC =,AF 与CE 相交于G ,若矩形ABCD 的面积为120,则AEG ∆与CGF ∆的
面积之和为 .
B
E
【例 7】 如右图,三角形ABC 中,:4:9BD DC =,:4:3CE EA =,求:AF FB .
O F E
D
C
B
A
【巩固】如右图,三角形ABC 中,:3:4BD DC =,:5:6AE CE =,求:AF FB .
O F E
D
C
B
A
【巩固】如图,:2:3BD DC =,:5:3AE CE =,则:AF BF =
G
F E
D
C
B
A
【巩固】如右图,三角形ABC 中,:2:3BD DC =,:5:4EA CE =,求:AF FB .
O F E
D
C
B
A
【例 8】 (2008年“学而思杯”六年级数学试题)如右图,三角形ABC 中,:::3:2AF FB BD DC CE AE ===,
且三角形ABC 的面积是1,则三角形ABE 的面积为______,三角形AGE 的面积为________,三角形GHI 的面积为______.
I H
G
F
E
D
C B
A
【巩固】 如右图,三角形ABC 中,:::3:2AF FB BD DC CE AE ===,且三角形GHI 的面积是1,求三角形
ABC 的面积.
I
H G F
E
D
C
B
A
【巩固】(2009年第七届“走进美妙的数学花园”初赛六年级)如图,ABC ∆中2BD DA =,2CE EB =,
2AF FC =,那么ABC ∆的面积是阴影三角形面积的 倍.
B
【巩固】如图在ABC △中,
1
2
DC EA FB DB EC FA ===,求
GHI ABC △的面积△的面积的值. I
H
G F
E
D
C
B
A
课后作业
1、如图,已知3BD DC =,2EC AE =,BE 与CD 相交于点O ,则ABC △被分成的4部分面积各占
ABC △ 面积的几分之几?
O
E D
C
B
A
2、两条线段把三角形分为三个三角形和一个四边形,如图所示, 三个三角形的面积 分别是3,7,7,则阴影四边形的面积是多少?
3、右图的大三角形被分成5个小三角形,其中4个的面积已经标在图中,那么,阴影三角形的面积是 .
4、如图,三角形ABC 的面积是1,2BD DC =,2CE AE =,AD 与BE 相交于点F ,请写出这4部分的面积各是多少?
A
B
C
D
E F
5、如右图,三角形ABC 中,:4:9BD DC =,:4:3CE EA =,求:AF FB .
O F E
D
C
B
A。