计算方法 5 解线性方程组的迭代法.
线性方程组的求解方法
线性方程组的求解方法线性方程组是数学中的基础概念,广泛应用于各个领域,如物理、经济学、工程学等。
解决线性方程组的问题,对于推动科学技术的发展和解决实际问题具有重要意义。
本文将介绍几种常见的线性方程组的求解方法,包括高斯消元法、矩阵法和迭代法。
一、高斯消元法高斯消元法是求解线性方程组的经典方法之一。
它的基本思想是通过一系列的行变换将方程组化为阶梯形或行最简形,从而得到方程组的解。
首先,将线性方程组写成增广矩阵的形式,其中增广矩阵是由系数矩阵和常数向量组成的。
然后,通过行变换将增广矩阵化为阶梯形或行最简形。
最后,通过回代法求解得到方程组的解。
高斯消元法的优点是简单易懂,容易实现。
但是,当方程组的规模较大时,计算量会很大,效率较低。
二、矩阵法矩阵法是求解线性方程组的另一种常见方法。
它的基本思想是通过矩阵运算将方程组化为矩阵的乘法形式,从而得到方程组的解。
首先,将线性方程组写成矩阵的形式,其中矩阵是由系数矩阵和常数向量组成的。
然后,通过矩阵运算将方程组化为矩阵的乘法形式。
最后,通过求逆矩阵或伴随矩阵求解得到方程组的解。
矩阵法的优点是计算效率高,适用于方程组规模较大的情况。
但是,对于奇异矩阵或非方阵的情况,矩阵法无法求解。
三、迭代法迭代法是求解线性方程组的一种近似解法。
它的基本思想是通过迭代计算逐步逼近方程组的解。
首先,将线性方程组写成矩阵的形式,其中矩阵是由系数矩阵和常数向量组成的。
然后,选择一个初始解,通过迭代计算逐步逼近方程组的解。
最后,通过设定一个误差限,当迭代结果满足误差限时停止计算。
迭代法的优点是计算过程简单,适用于方程组规模较大的情况。
但是,迭代法的收敛性与初始解的选择有关,有时可能无法收敛或收敛速度较慢。
综上所述,线性方程组的求解方法有高斯消元法、矩阵法和迭代法等。
每种方法都有其适用的场景和特点,选择合适的方法可以提高计算效率和解决实际问题的准确性。
在实际应用中,根据问题的具体情况选择合适的方法进行求解,能够更好地推动科学技术的发展和解决实际问题。
计算方法-线性方程组的迭代法实验
实验五 线性方程组的迭代法实验一. 实验目的(1)深入理解线性方程组的迭代法的设计思想,学会利用系数矩阵的性质以保证迭代过程的收敛性,以及解决某些实际的线性方程组求解问题。
(2)熟悉Matlab 编程环境,利用Matlab 解决具体的方程求根问题。
二. 实验要求建立Jacobi 迭代公式、Gauss-Seidel 迭代公式和超松弛迭代公式,用Matlab 软件实现线性方程组求解的Jacobi 迭代法、Gauss-Seidel 迭代法和超松弛迭代法,并用实例在计算机上计算。
三. 实验内容1. 实验题目(1)分别利用Jacobi 迭代和Gauss-Seidel 迭代求解下列线性方程组,取()T 0,0,0,0,0,0=x ,要求精度510-=ε:⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡---------------626050410100141010014001100410010141001014654321x x x x x x ①Jacobi 迭代:②Gauss-Seidel迭代:(2)分别取1ω、1.05、1.1、1.25和1.8,用超松弛法求解上面的方程组,要求精度=为5ε。
=10-超松弛迭代代码如下所示:运行时初始化如下:分别以不同的松弛因子代入,W=1:W=1.05W=1.1:W=1.25W=1.8:当最大迭代次数增加时,我们可以看到,x向量的各个元素都变无穷大了,迭代发散2. 设计思想要求针对上述题目,详细分析每种算法的设计思想。
求解线性方程组的迭代法,其实质是将所给的方程组逐步地对角化或三角化,即将线性方程组的求解过程加工成对角方程组或三角方程组求解过程的重复。
⑴Jacobi迭代:将一般形式的线性方程组归结为对角方程组求解过程的重复;⑵Gauss-Seidel迭代:将一般形式的线性方程组的求解归结为下三角方程组求解过程的重复;⑶超松弛法:选择合适的松弛因子,利用旧值生成新值,使迭代加速;四.实验体会对实验过程进行分析总结,对比求解线性方程组的不同方法的优缺点,指出每种方法的设计要点及应注意的事项,以及自己通过实验所获得的对线性方程组求解问题的各种解法的理解。
数值分析实验报告--解线性方程组的迭代法及其并行算法
disp('请注意:高斯-塞德尔迭代的结果没有达 到给定的精度,并且迭代次数已经超过最大迭 代次数max1,方程组的精确解jX和迭代向量X 如下: ') X=X';jX=jX' end end X=X';D,U,L,jX=jX'
高斯-塞德尔的输入为:
A=[10 2 3;2 10 1;3 1 10]; b=[1;1;2]; X0=[0 0 0]'; X=gsdddy(A,b,X0,inf, 0.001,100) A=[10 2 3;2 10 1;3 1 10]; 请注意:因为对角矩阵 D 非奇异,所以此方程组有解.
0.0301 0.0758 0.1834
8.心得体会:
这已经是第三次实验了, 或多或少我已经对 MATLAB 有了更多的了 解与深入的学习。通过这次实验我了解了雅可比迭代法和高斯- 塞德尔迭代法的基本思想,虽然我们不能熟练编出程序,但还是 能看明白的。运行起来也比较容易,让我跟好的了解迭代法的多 样性,使平常手算的题能得到很好的验证。通过这次实验让我对 MATLAB 又有了更深一层的认识,使我对这门课兴趣也更加浓厚。
运行雅可比迭代程序输入: A=[10
b=[1;1;2];X0=[0 0 0]'; X=jacdd(A,b,X0,inf,0.001,100)
2 3;2 10 1;3 1 10];
结果为:
k= 1 X=
0.1000 k= 2 X= 0.0200 k= 3 X= 0.0400 k= 4 X= 0.0276 k= 5 X= 0.0314 k= 6 X= 0.0294 k= 7 X= 0.0301 k= 8 X= 0.0297
6、 设计思想:先化简,把对角线的项提到左边,其它项
线性方程组的几种求解方法
线性方程组的几种求解方法1.高斯消元法高斯消元法是求解线性方程组的一种常用方法。
该方法的基本思想是通过对方程组进行一系列简化操作,使得方程组的解易于求得。
首先将方程组表示为增广矩阵,然后通过一系列的行变换将增广矩阵化为行简化阶梯形,最后通过回代求解出方程组的解。
2.列主元高斯消元法列主元高斯消元法是在高斯消元法的基础上进行改进的方法。
在该方法中,每次选取主元时不再仅仅选择当前列的第一个非零元素,而是从当前列中选取绝对值最大的元素作为主元。
通过选取列主元,可以避免数值稳定性问题,提高计算精度。
3.LU分解法LU分解法是一种将线性方程组的系数矩阵分解为一个下三角矩阵L 和一个上三角矩阵U的方法。
首先进行列主元高斯消元法得到行阶梯形矩阵,然后对行阶梯形矩阵进行进一步的操作,得到L和U。
最后通过回代求解出方程组的解。
4.追赶法(三角分解法)追赶法也称为三角分解法,适用于系数矩阵是对角占优的三对角矩阵的线性方程组。
追赶法是一种直接求解法,将系数矩阵分解为一个下三角矩阵L和一个上三角矩阵U,然后通过简单的代数运算即可求得方程组的解。
5.雅可比迭代法雅可比迭代法是一种迭代法,适用于对称正定矩阵的线性方程组。
该方法的基本思想是通过不断迭代求解出方程组的解。
首先将方程组表示为x=Bx+f的形式,然后通过迭代计算不断逼近x的解。
6.高斯-赛德尔迭代法高斯-赛德尔迭代法是雅可比迭代法的改进方法。
该方法在每一次迭代时,使用已经更新的解来计算新的解。
相比于雅可比迭代法,高斯-赛德尔迭代法的收敛速度更快。
7.松弛因子迭代法松弛因子迭代法是一种对高斯-赛德尔迭代法的改进方法。
该方法在每一次迭代时,通过引入松弛因子来调节新解与旧解之间的关系。
可以通过选择合适的松弛因子来加快迭代速度。
以上是一些常用的线性方程组求解方法,不同的方法适用于不同类型的线性方程组。
在实际应用中,根据问题的特点和要求选择合适的求解方法可以提高计算的效率和精度。
第五章 解线性方程组的迭代解法
定义迭代法为: 定义迭代法为:
x ( k + 1) = G J x ( k ) + g
其中Jacobi迭代矩阵:GJ = D1 ( L + U ) 迭代矩阵: 其中 迭代矩阵
g = D 1b = (7.2, 8.3, 8.4)T 取 x ( 0 ) = (0, 0, 0)T , 代入迭代式,得x(1) = Bx ( 0 ) + g = (7.2, 8.3, 8.4)T x ( 2 ) = Bx (1) + g = (9.71,10.70,11.5)T x (9 ) = (10.9994,11.9994,12.9992) 精确解为 x = (11,12,13)T .
记
A = D L U
其中 D = diag (a11 ,, ann ) , L, U 分别为 A 的 严格下、上三角形部分元素构成的三角阵 严格下、上三角形部分元素构成的三角阵. Gauss-Seidel方法的矩阵形式为 方法的矩阵形式为
x ( k +1) = D1 ( Lx ( k +1) + Ux ( k ) + b)
或者
x ( k +1) = ( D L)1Ux ( k ) + ( D L)1 b
( 这说明Gauss-Seidel方法的迭代矩阵为 D L)1U 方法的迭代矩阵为 这说明
从而有
定理5.2 定理5.2 Gauss-Seidel方法收敛的充分必要条件为 方法收敛的充分必要条件为
ρ (GG ) < 1 或
数值分析第三章线性方程组迭代法
数值分析第三章线性方程组迭代法线性方程组是数值分析中的重要问题之一,涉及求解线性方程组的迭代法也是该领域的研究重点之一、本文将对线性方程组迭代法进行深入探讨。
线性方程组的一般形式为AX=b,其中A是一个n×n的系数矩阵,x和b是n维向量。
许多实际问题,如电路分析、结构力学、物理模拟等,都可以归结为求解线性方程组的问题。
然而,当n很大时,直接求解线性方程组的方法计算量很大,效率低下。
因此,我们需要寻找一种更高效的方法来求解线性方程组。
线性方程组迭代法是一种基于迭代思想的求解线性方程组的方法。
其基本思想是通过构造一个序列{xn},使得序列中的每一项都逼近解向量x。
通过不断迭代,可以最终得到解向量x的一个近似解。
常用的线性方程组迭代法有雅可比迭代法、高斯-赛德尔迭代法和逐次超松弛迭代法等。
雅可比迭代法是其中的一种较为简单的迭代法。
其基本思想是通过分解系数矩阵A,将线性方程组AX=b转化为x=Tx+c的形式,其中T是一个与A有关的矩阵,c是一个常向量。
然后,通过不断迭代,生成序列xn,并使序列中的每一项都逼近解向量x。
高斯-赛德尔迭代法是雅可比迭代法的改进方法。
其核心思想是利用当前迭代步骤中已经求得的近似解向量的信息。
具体而言,每次迭代时,将前一次迭代得到的近似解向量中已经计算过的分量纳入计算,以加速收敛速度。
相比于雅可比迭代法,高斯-赛德尔迭代法的收敛速度更快。
逐次超松弛迭代法是高斯-赛德尔迭代法的改进方法。
其核心思想在于通过引入一个松弛因子ω,将高斯-赛德尔迭代法中的每次迭代变为x[k+1]=x[k]+ω(d[k+1]-x[k])的形式,其中d[k+1]是每次迭代计算得到的近似解向量的一个更新。
逐次超松弛迭代法可以根据问题的特点调整松弛因子的值,以获得更好的收敛性。
除了以上提到的三种迭代法,还有一些其他的线性方程组迭代法,如SOR迭代法、共轭梯度法等。
这些方法都具有不同的特点和适用范围,可以根据问题的具体情况选择合适的迭代法。
线性方程组的迭代式求解方法
线性方程组的迭代式求解方法迭代法解方程的基本原理1.概述把 Ax=b 改写成 x=Bx+f ,如果这一迭代格式收敛,对这个式子不断迭代计算就可以得到方程组的解。
道理很简单:对 x^{(k+1)}=bx^{(k)}+f 两边取极限,显然如果收敛,则最终得到的解满足 \lim_{k\rightarrow\infty } x^{(k)}=x^*=Bx^*+f ,从而必然满足原方程 Ax^*=b 。
迭代方法的本质在于这一次的输出可以当作下一次的输入,从而能够实现循环往复的求解,方法收敛时,计算次数越多越接近真实值。
2.收敛条件充要条件:迭代格式 x=Bx+f 收敛的充要条件是 \rho (B)<1充分条件: \Vert B\Vert <1即 \Vert B\Vert <1 \Rightarrow \rho(B)<1\Leftrightarrow 迭代收敛一、Jacobi迭代法怎样改写Ax=b ,从而进行迭代求解呢?一种最简单的迭代方法就是把第i行的 x_i 分离出来(假定 a_{ii} \ne 0 ):\sum_{j=1}^{n}a_{ij}x_j=b_i\Rightarrow x_i=\frac{b_i-\sum_{j=1,j\ne i}^{n}a_{ij}x_j}{a_{ii}}\quad \\这就是Jacobi(雅可比)迭代法。
迭代格式给定x^{(0)}=\left[x_1^{(0)},x_2^{(0)},\cdots,x_n^{(0)}\rig ht]^T ,则Jacobi法的迭代格式(也称分量形式)为x_i^{(k+1)}=\frac{1}{a_{ii}}\left ( {b_i-\sum_{j=1,j\ne i}^{n}a_{ij}x_j^{(k)}}\right),\quadi=1,2,\cdots,n\\矩阵形式设 A=D-L-U。
Jacobi法的矩阵形式(也称向量形式)为x^{(k+1)}=B_Jx^{(k)}+D^{-1}b\\其中迭代矩阵 B_J=D^{-1}(L+U)收敛条件\begin{eqnarray} \left. \begin{array}{lll} \VertB_J\Vert <1 \\ A 严格对角占优\\ A, 2D-A对称正定\end{array} \right \} \end{eqnarray} \Rightarrow \rho (B_J)<1\Leftrightarrow 迭代收敛特别地,若 A 对称正定且为三对角,则 \rho^2(B_J)=\rho (B_G)<1 。
常微分方程的解线性方程组的迭代法
实验五 解线性方程组的迭代法【实验内容】对1、设线性方程组⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--------------------------2119381346323125136824381004120291372642212341791110161035243120536217758683233761624491131512013012312240010563568000012132410987654321x x x x x x x x x x()Tx 2,1,1,3,0,2,1,0,1,1*--=2、设对称正定系数阵线性方程组⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------------------45152292320601924336002141103520411144334310422181233416120653811414023121220024042487654321x x x x x x x x ()Tx 2,0,1,1,2,0,1,1*--=3、三对角形线性方程组⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------------------5541412621357410000000014100000000141000000001410000000014100000000141000000001410000000014100000000141000000001410987654321x x x x x x x x x x ()Tx 1,1,0,3,2,1,0,3,1,2*---=试分别选用Jacobi 迭代法,Gauss-Seidol 迭代法和SOR 方法计算其解。
解线性方程组的迭代法
解线性方程组的迭代法Haha送给需要的学弟学妹摘要:因为理论的分析表明,求解病态的线性方程组是困难的,但是实际情况是否如此,需要我们来具体检验。
系数矩阵H 为Hilbert 矩阵,是著名的病态问题。
因而决定求解Hx b =此线性方程组来验证上述问题。
详细过程是通过用Gauss 消去法、J 迭代法、GS 迭代法和SOR 迭代法四种方法求解Hx b =线性方程组。
关键词:病态方程组、Gauss 消去法、J 迭代法、GS 迭代法、SOR 迭代法目录:一、问题背景介绍二、建立正确额数学模型 三、求解模型的数学原理1、Gauss 消去法求解原理2、Jacobi 迭代法求解原理3、G-S 迭代法求解原理4、SOR 迭代法求解原理5、Jacobi 和G-S 两种迭代法收敛的充要条件 四、计算过程(一)Hilbert 矩阵维数n=6时1、Gauss 消去法求解2、Jacobi 迭代法求解3、G-S 迭代法求解4、SOR 迭代法求解(二)Hilbert 矩阵维数n=20、50和100时1、G-S 迭代法求解图形2、SOR 迭代法求解图形 五、编写计算程序 六、解释计算结果1、Gauss 消去法误差分析2、G-S 迭代法误差分析3、SOR 迭代法误差分析G-S 迭代法与SOR 迭代法的误差比较 七、心得体会正文:一、问题背景介绍。
理论的分析表明,求解病态的线性方程组是困难的。
实际情况是否如此,会出现怎样的现象呢?二、建立正确的数学模型。
考虑方程组Hx b =的求解,其中系数矩阵H 为Hilbert 矩阵,,,1(), , ,1,2,,1i j n n i j H h h i j n i j ⨯===+-这是一个著名的病态问题。
通过首先给定解(为方便计算,笔者取x 的各个分量等于1),再计算出右端,b Hx =这样Hx b =的解就明确了,再用Gauss 消去法、J 迭代法、GS 迭代法和SOR 迭代法四种方法分别求解,Hx b =将求解结果与给定解比较,而后求出上述四种方法的误差,得出哪种方法比较好。
解线性方程组的迭代法
|| x || 0 (非负性) ; (1)|| x || 0 ,当且仅当 x 0 时,
(2) || x ||| | || x || (齐次性); (3) || x y |||| x || || y || (三角不等式). 则称 || x || 为向量 x 的范数 (或模).
4.1.2 向量范数和向量序列的极限
常用的向量范数:设 x R n (1)向量的 - 范数 (最大范数): || x || max | xi |
1 i n
|| x ||1 (2)向量的 1 - 范数 (绝对值范数):
(3)向量的 2 - 范数:|| x ||2 ( x , x ) (
|| A ||2 3+2 2 , || A ||F 6
4.1.3 矩阵范数和矩阵序列的极限
(k ) ) R nn ,如果存 定义5 (矩阵序列的极限) 设有矩阵序列 Ak (aij
在 A (aij ) R nn,使
k (k ) lim aij aij ,
i, j 1, 2,
(4) || AB |||| A || || B || ; 则称 || A || 为矩阵 A 的范数.
4.1.3 矩阵范数和矩阵序列的极限
相容性: 设有矩阵范数 || ||s 和向量范数 || ||t ,如果对任何向量 x R n 及矩阵 A R nn ,有/2 || A ||F ( aij ) i , j 1 n
它是与向量 2-范数相容的矩阵范数,但不是从属范数.
4.1.3 矩阵范数和矩阵序列的极限
解线性方程组的迭代法
0.9906
0.0355
5 1.01159 0.9953
1.01159 0.01159
6 1.000251 1.005795 1.000251 0.005795
7 0.9982364 1.0001255 0.9982364 0.0017636
可见,迭代序列逐次收敛于方程组的解, 而且迭代7次得到精确到小数点后两位的近似解.
a11x1 a12x2 a13x3 b1 a21x1 a22x2 a23x3 b2 a31x1 a32x2 a33x3 b3
从而得迭代公式
x1
a12 a11
x2
a13 a11
x3
b1 a11
x2
a21 a22
x1
a23 a22
x3
b2 a22
x3
a31 a33
M 00.8 00..75
但(M)=0.8<1,所以迭代法 x(k+1)=Mx(k)+g 是收敛的.
由(3.5)式可见,‖M‖越小收敛越快,且当‖x (k) -x(k-1) ‖很小时,‖x(k) –x*‖就很小,实际中用‖x (k) x(k-1) ‖<作为
迭代终止的条件。 例如,对例1中的Jacobi迭代计算结果
+‖x(k+1) –x*‖‖M‖‖x(k) –x(k-1)‖+‖M‖‖x(k) –x*‖ 从而得‖x(k) –x*‖‖M‖‖x (k) -x(k-1) ‖/(1- ‖M‖)
(3.5) (3.6)
估计式(3.5)得证。利用(3.5)式和
‖x(k+1) 得到
-x(k)
‖‖M‖‖x
(k)
-x(k-1)
‖
解线性方程组 的迭代法
线性方程组迭代法
线性方程组迭代法
线性方程组迭代法,又称坐标下降法,是一种用于解线性方程组的迭代求解方法,常用于线性规划以及单纯形法等技术。
早在上世纪50年代,此方法就在解决
线性规划问题中得到了广泛应用,到目前为止,这种技术仍然广泛使用。
线性方程组迭代法是一种基于不断迭代调整变量,使目标函数达到最优结果的
迭代求解法。
其基本步骤是:
(1) 初始化目标函数变量:首先,初始化线性方程组的目标函数的变量;
(2) 评估梯度:选择合适的算法计算目标函数的梯度;
(3) 根据该梯度更新变量:更新目标函数变量的值,使得在此次更新之后的值
更加有利于满足线性方程组的要求;
(4) 重复上述步骤,直到目标函数足够接近最优值为止;
线性方程组迭代法能够快速地求解出线性规划问题的最优解,因此,它在计算
机上经常被用来优化问题,进而提高系统运行效率。
随着网络技术的发展,线性方程组迭代法在互联网领域得到了广泛应用,这在大大缩短了计算机程序的运行时间,提高了互联网的效率。
同时,线性方程组迭代法也有助于提高系统的性能,改善用户的体验,提升企业的品牌形象。
5-2计算方法
x (k+1) 3
=
1 20
x (k) 2
−
1 8
x (k) 3
+
21 10
⎡ ⎢
0
将上式中xj(k) (j=1,2,…,i-1)替换为xj(k+1) (j=1,2,…,i-1),得到
2.Gauss-Seidel迭代法
i −1
n
∑ ∑ bi − aij x j(k ) −
aij x j (k )
xi (k+1) =
j =1
j =i +1
a ii
, i = 1, , n
将上式中xj(k) (j=1,2,…,i-1)替换为xj(k+1) (j=1,2,…,i-1),得到
⎧ ⎪
x1
=
−
2 5
x2
−
1 5
−
12 5
⎪ ⎨
x2
⎪
⎪⎩x3 =
= −
1 4
x1
−
1 2
1 5
x1
+
3 10
x3 x2
+5
+
3 10
Jacobi迭代格式为
x (14)
=
⎜⎛ − 3.9997 ⎟⎞ ⎜ 2.9998 ⎟
⎜⎝ 1.9998 ⎟⎠
⎧ ⎪
x1( k +1)
=
−
2 5
x2(k )
−
1 5
x3(k )
−
12 5
⎪ ⎨ ⎪ ⎪⎩
x2(k x3(k +1)
+1)
=
=
1 4
x1( k
−
1 5
数值分析实验报告--实验6--解线性方程组的迭代法
1 / 8数值分析实验六:解线性方程组的迭代法2016113 张威震1 病态线性方程组的求解1.1 问题描述理论的分析表明,求解病态的线性方程组是困难的。
实际情况是否如此,会出现怎样的现象呢?实验内容:考虑方程组Hx=b 的求解,其中系数矩阵H 为Hilbert 矩阵,,,1(),,,1,2,,1i j n n i j H h h i j n i j ⨯===+-这是一个著名的病态问题。
通过首先给定解(例如取为各个分量均为1)再计算出右端b 的办法给出确定的问题。
实验要求:(1)选择问题的维数为6,分别用Gauss 消去法、列主元Gauss 消去法、J 迭代法、GS 迭代法和SOR 迭代法求解方程组,其各自的结果如何?将计算结果与问题的解比较,结论如何?(2)逐步增大问题的维数(至少到100),仍然用上述的方法来解它们,计算的结果如何?计算的结果说明了什么?(3)讨论病态问题求解的算法1.2 算法设计首先编写各种求解方法的函数,Gauss 消去法和列主元高斯消去法使用实验5中编写的函数myGauss.m 即可,Jacobi 迭代法函数文件为myJacobi.m ,GS 迭代法函数文件为myGS.m ,SOR 方法的函数文件为mySOR.m 。
1.3 实验结果1.3.1 不同迭代法球求解方程组的结果比较选择H 为6*6方阵,方程组的精确解为x* = (1, 1, 1, 1, 1, 1)T ,然后用矩阵乘法计算得到b ,再使用Gauss 顺序消去法、Gauss 列主元消去法、Jacobi 迭代法、G-S 迭代法和SOR 方法分别计算得到数值解x1、x2、x3、x4,并计算出各数值解与精确解之间的无穷范数。
Matlab 脚本文件为Experiment6_1.m 。
迭代法的初始解x 0 = (0, 0, 0, 0, 0, 0)T ,收敛准则为||x(k+1)-x(k)||∞<eps=1e-6,SOR方法的松弛因子选择为w=1.3,计算结果如表1。
线性代数方程组迭代法PPT课件
超松弛法
收敛速度快
总结词
总结词
计算量较大
ABCD
详细描述
超松弛法具有较快的收敛速度,尤其对于大型线 性方程组,能够显著减少迭代次数。
详细描述
由于超松弛法的计算量较大,因此在实际应用中 可能需要考虑计算效率的问题。
CHAPTER 04
迭代法的实现步骤
初始化
设置初值
为方程组的解向量设定一个初始值。
迭代法的应用场景
当方程组的系数矩阵难以直接求解时 ,迭代法可以作为一种有效的替代方 案。
在科学计算、工程技术和经济领域中 ,许多问题可以转化为线性代数方程 组求解,而迭代法在这些领域有广泛 的应用。
迭代法的优缺点
优点
迭代法通常比直接法更加灵活和通用,对于大规模和高维度的线性代数方程组, 迭代法更加高效。
缺点
迭代法需要选择合适的迭代公式和参数,并且需要满足收敛条件,否则可能无 法得到正确的解。此外,迭代法的计算过程比较复杂,需要较高的计算成本。
CHAPTER 02
迭代法的基本原理
迭代法的数学模型
迭代法是一种求解线性代数方程组的数值方法,通过不断迭代逼近方程的 解。
迭代法的数学模型通常表示为:$x_{n+1} = T(x_n)$,其中$x_n$表示第 $n$次迭代时的近似解,$T(x)$表示迭代函数。
03
非线性方程组的迭代法在求解优化问题、控制问题 等领域有广泛应用。
在优化问题中的应用
01
迭代法在优化问题中也有广泛应用,如求解无约束优化问题、 约束优化问题和多目标优化问题等。
02
常见的优化问题迭代法包括梯度下降法、牛顿法和共轭梯度法
等。
这些方法通过不断迭代来逼近最优解,广泛应用于机器学习、
数值分析第六章线性方程组迭代解法
数值分析第六章线性方程组迭代解法线性方程组是数值分析中的重要内容之一,其求解方法有很多种。
其中一种常用的方法是迭代解法,即通过不断迭代逼近方程组的解。
本文将介绍线性方程组迭代解法的基本思想和常用方法。
线性方程组可以用矩阵形式表示为Ax=b,其中A是系数矩阵,b是常数向量,x是未知向量。
线性方程组的解可以是唯一解,也可以是无穷多个解。
迭代解法的基本思想是通过不断迭代,并利用迭代序列的极限,逼近线性方程组的解。
迭代解法适用于大型的线性方程组,而直接求解法则适用于小型的线性方程组。
常用的迭代解法有雅可比迭代法、高斯-赛德尔迭代法和逐次超松弛迭代法。
雅可比迭代法是最简单的线性方程组迭代解法之一、它的基本思想是将线性方程组的每个方程都单独表示为未知数x的显式函数,然后通过不断迭代求解。
雅可比迭代法的迭代公式为:x(k+1)=D^(-1)(b-(L+U)x(k))其中,D是A的对角元素构成的对角矩阵,L是A的下三角矩阵,U 是A的上三角矩阵,x(k)是第k次迭代的解。
高斯-赛德尔迭代法是雅可比迭代法的改进版。
它的基本思想是将每个方程的解带入到下一个方程中,而不是等到所有方程都迭代完毕后再计算下一组解。
高斯-赛德尔迭代法的迭代公式为:x(k+1)=(D-L)^(-1)(b-Ux(k))其中,D是A的对角矩阵,L是A的下三角矩阵(除去对角线),U是A的上三角矩阵(除去对角线),x(k)是第k次迭代的解。
逐次超松弛迭代法是对高斯-赛德尔迭代法的改进。
它引入了松弛因子w,通过调节松弛因子可以加快收敛速度。
逐次超松弛迭代法的迭代公式为:x(k+1)=(D-wL)^(-1)[(1-w)D+wU]x(k)+w(D-wL)^(-1)b其中,D是A的对角矩阵,L是A的下三角矩阵(除去对角线),U是A的上三角矩阵(除去对角线),w是松弛因子,x(k)是第k次迭代的解。
线性方程组迭代解法需要设置迭代停止准则,通常可以设置迭代次数上限或者设置一个精度要求。
数值分析-- 解线性方程组的迭代法
算法1(高斯 塞德尔迭代法) 设Ax b, A Rnn非奇异,
且aii 0(i 1,2,, n),数组x(n)开始存放x(0),后存放x(k),
N0为最大迭代次数.
1. xi 0.0(i 1,2,,n),
2. 对于k 1,2,, N0,
i1
n
xi
( bi
j1aij x j
j i 1
aij
A D LU,
其中
a11 D
a22
0
,
L
a21 annan1 Nhomakorabea0
an,n1
0
,U
0
a12 0
a1n
.
an1,n
0
就有
Dx(k1) Lx(k) Ux(k) b
雅可比迭代法的矩阵表示形式为
x(k1) D1(L U ) x(k) D1b BJ x(k) f
a21x1
a22x2
a2n xn
b2
an1x1 an2x2 annxn bn
Ax=b.
(2.1)
进行矩阵分裂
A=M-N,
(2.2)
其中M为可选择的非奇异矩阵,且使Mx=d容易求解.
于是,
Ax=b⇔x=M-1Nx+M-1b.
可得一阶定常迭代法:
取初始向量x(0),
x
(
k
1)
Bx(k )
零元素多,适合用迭代法。
我们将介绍迭代法的一般理论及雅可比迭代法、高 斯—塞德尔迭代法、超松弛迭代法,研究它们的收 敛性。
例1 求解线性方程组
8 x1 4 x1
3x2 2 11x2
x3 x3
20, 33,
6x1 3x2 12x3 36.
线性方程组的几种求解方法
线性方程组的几种求解方法线性方程组是指由一系列线性方程组成的方程组。
求解线性方程组是在给定的约束条件下找到满足所有方程的解。
在数学和工程领域,线性方程组的求解是一项重要的任务,涉及到许多实际问题的建模和分析。
本文将介绍几种常见的线性方程组的求解方法。
1. 高斯消元法(Gaussian elimination)高斯消元法是求解线性方程组的最常用方法之一、它通过矩阵的初等行变换将线性方程组化简为阶梯形矩阵,然后通过回代求解未知数的值。
高斯消元法具有简单、直观的特点,适用于一般的线性方程组求解。
2. 列主元高斯消元法(Gaussian elimination with partial pivoting)列主元高斯消元法是高斯消元法的改进版本。
它在每一步选择主元时,选取列中绝对值最大的元素作为主元,以减小误差的传播。
这种方法可以提高数值稳定性,但相对于普通高斯消元法,计算量较大。
3. 克拉默法则(Cramer's rule)克拉默法则是一种用于求解线性方程组的代数方法。
它通过计算系数矩阵的行列式和各个未知数的代数余子式,得到每个未知数的值。
克拉默法则适用于方程组个数和未知数个数相等的情况,但由于计算行列式的复杂度高,不适用于大规模的线性方程组求解。
4. 矩阵分解法(Matrix factorization)矩阵分解法通过将系数矩阵分解为两个或多个特定形式的矩阵的乘积,从而简化线性方程组的求解。
常见的矩阵分解方法有LU分解、QR分解、Cholesky分解等。
矩阵分解法适用于大规模线性方程组的求解,具有高效、稳定的特点。
5. 迭代法(Iterative methods)迭代法是一种逐步逼近解的方法,通过迭代计算逐渐接近线性方程组的解。
常见的迭代法有雅可比迭代法、高斯-赛德尔迭代法和共轭梯度法等。
迭代法适用于大规模稀疏线性方程组的求解,具有快速收敛、节约存储空间的特点。
6. 特殊结构法(Special structure methods)对于具有特殊结构的线性方程组,可以利用其特殊性质设计相应的求解方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
|| B || x || || x ( k ) x ( k 1) || 1 || B ||
*
(误差的事后估计)
(误差的事前估计)
2. Gauss-Seidel迭代法 –
(k) b1n xn f1 (k) b2 n xn f2 (k) b3 n xn f3
( k 1) bn1 x1( k 1) bn 2 x2
( k 1) (k) bnn1 xn b x 1 nn n f n
矩阵格式: B=L+U, 方程组x=Bx+f
x Bx f xi bij x j fi , i 1,
构造迭代格式
j 1
n
, n.
1. 各分量的计算顺序无关。 2. 迭代格式仅有前后两步有关。 3. 新的近似解是已知近似解的线性函数。
任取初始向量x (0) , 给出迭代格式 x ( k 1) Bx ( k ) f xi( k 1) bij x (j k ) fi ,
第五章 解线性代数方程组的迭代法 – 适用于求解大型稀疏方程组的解
解线性代数方程组: Ax b, 其中,矩阵A R nn ,b R n .
迭代法的基本思想:给定一初始向量x (0),按照一定的计算格式,构造 一个向量序列{ x ( k ) },当x ( k ) x*时,使x*是Ax b的解.
于是
x ( k 1) x* 0 B k 1 x (0) x* 0
Bk 1 0
可证明: ( B) 1
lim B k 0
k
定理1.1.对任意右端项f 和初始向量x(0),迭代格式收敛 ( B) 1.
根据系数矩阵的特点,给出判断收敛的几个常用条件:
1. 若A是严格对角占优阵,则Jacobi迭代收敛. 2. 若A是对称正定阵,2D-A也是对称正定阵,则Jacobi迭代格式收敛. 若A是对称正定阵,2D-A是非对称正定阵,则Jacobi迭代格式不收敛.
收敛速度的定量刻画
( B) ||B ||
定理1.2. 若 || B || 1,则迭代格式收敛于问题的解x*,且有误差估计 || x 或
任取初始向量x
x
( k 1) i n j 1
(0)
x , ,x
(0) 1
可看作Jacobi迭代的一种改进
(0) n
T
, 和Jacobi迭代格式
构造迭代格式
bij x (j k ) fi x ( k 1) Bx ( k ) f ,i 1, , n. k 0,1,
x1(1) (1) x2 (1) (1) x x3 (1) xn
b x
(0) 11 1
b x
(0) 12 2
b x
(0) 1n n
f1
假设迭代格式收敛,
* 则x1(1)比x1(0)更接近x1 .
(0) b21 x1(0) b22 x2 (0) b31 x1(0) b32 x2
1 k 1;0 k 得到迭代格式!
x1( k 1) ( k 1) x2 ( k 1) x3 ( k 1 ) xn
(k) b11 x1( k ) b12 x2 (k) b21 x1( k 1) b22 x2 ( k 1) (k) b31 x1( k 1) b32 x2 b33 x2
(0) b2 n xn f2 (0) b3 n xn f3
第二行:x1(1) x1(0) 类似地进行下去
(0) bn1 x1(0) bn 2 x2
(0) (0) bnn1 xn b x 1 nn n f n
(0) (0) x1(1) b11 x1(0) b12 x2 b1n xn f1 (1) ( 1) (0) (0) x b x b x b x 2 21 1 22 2 2 n n f2 x (1) b x (1) b x (1) b x (1) b x (0) f n n1 1 n2 2 nn1 n1 nn n n
需考虑如下几个问题:
1. 2. 3. 4. 5. 如何选取初始向量? 初始向量任选. 如何构造迭代序列? 迭代序列是否收敛?在什么条件下收敛? 若收敛,收敛速度如何?并给出定量的刻画. 讨论近似解的误差估计.
简单迭代法的基本思想: 是构造不动点方程,以 求得近似根。
f B 1. Jacobi迭代法 ① x ( I A) x b f B 方程组:Ax b 1 1 ② ( M N ) x b Mx Nx b x M Nx M b 同解构造 即:Ax b 可统一地表示成 x Bx f
x=Lx+Ux+b
x( k 1) Lx( k 1) Ux( k ) f
此迭代格式称为Gauss-Seidel迭代格式。 1) Ux ( k ) f ( I L) x ( k 1) Ux ( k ) f x
j 1 n
k 0,1,
迭代格式的收敛性
i 1,
, n.
此迭代格式称为Jacobi 迭代格式(或简单迭代 法),称B为Jacobi迭 代矩阵.
若由迭代格式产生的向量序列{x ( k ) }收敛, 即lim x ( k ) x * .
k
则称迭代格式收敛,否则称为发散.
假设x*为方程组的精确解,即x* Bx* f . 再与迭代格式相减,得 x ( k 1) x* B x ( k ) x* , k 0,1, B 2 x ( k 1) x * B k 1 x (0) x *