脉冲多普勒雷达的汇总
脉冲多普勒雷达的总结
脉冲多普勒雷达的总结1、适用范围脉冲多普勒(PD)雷达是在动目标显示雷达基础上发展起来的一种新型雷达体制。
这种雷达具有脉冲雷达的距离分辨力和连续波雷达的速度分辨力,有更强的抑制杂波的能力,因而能在较强的杂波背景中分辨出动目标回波。
2、PD雷达的定义及其特征(1)定义:PD雷达是一种利用多普勒效应检测目标信息的脉冲雷达。
(2)特征:①具有足够高的脉冲重复频率(简称PRF),以致不论杂波或所观测到的目标都没有速度模糊。
②能实现对脉冲串频谱单根谱线的多普勒滤波,即频域滤波。
③PRF很高,通常对所观测的目标产生距离模糊。
3、PD雷达的分类图1 PD雷达的分类图①MTI雷达(低PRF):测距清晰,测速模糊②PD雷达(中PRF):测距模糊,测速模糊,是机载雷达的最佳波形选择③PD雷达(高PRF):测距模糊,测速清晰4、机载下视PD雷达的杂波谱分析机载下视PD雷达的地面杂波是由主瓣杂波、旁瓣杂波和高度线杂波所组成的。
、PRF的选择(1)高、中、低脉冲重复频率的选择①机载雷达在没有地杂波背景干扰的仰视情况下,通常采用低PRF加脉冲压缩。
②迎面攻击时高PRF优于中PRF。
尾随时,在低空,中PRF优于高PRF ;在高空,高PRF优于中PRF。
③交替使用中、高PRF的方法,或者再加上在下视时采用低PRF的方法,并在低、中PRF时配合采用脉冲压缩技术,将是在所有工作条件下得到远距离探测性能的最有效的方法。
(2)高PRF时重复频率的选择①使迎面目标谱线不落人旁瓣杂波区中:②为了识别迎面和离去的目标:A、当接收机单边带滤波器对主瓣杂波频率固定时:B、当接收机单边带滤波器相对发射频率是固定时:注:单边带滤波器的通带范围应从,单边带滤波器的中心频率是固定的,但偏离应为。
6、PD雷达的信号处理系统PD雷达的信号处理系统主要由单边带滤波器、主瓣杂波抑制滤波器、零多普勒频率抑制滤波器、多普勒滤波器组、检波积累、转换器和门限等部分组成,下面总结各组成部分的特点及其实现方法。
SQ-雷达系统(第三章)脉冲多普勒雷达
PD雷达的应用
强杂波背景下检测动目标的雷达系统
应用
要求
机载或空间监视
探测距离远;距离数据精确
战场监视(低速目标检测) 中等探测距离;距离和速度数据精确
导弹告警
探测距离近;非常低的虚警率
2
2020/12/8
第三章 脉冲多普勒雷达
3.1 脉冲多普勒(PD)雷达基本概念 3.2 脉冲多普勒雷达的杂波 3.3 PD雷达典型框图与原理 3.4 PD雷达的距离性能
措施:
① 降低天线副瓣 杂波功率谱 提高相对强度
② 提高载机飞行高度 fc max
18
2020/12/8
第三章 脉冲多普勒雷达
3.1 脉冲多普勒(PD)雷达基本概念 3.2 脉冲多普勒雷达的杂波 3.3 PD雷达典型框图与原理 3.4 PD雷达的距离性能
19
2020/12/8
机载PD雷达典型框图与原理
3
2020/12/8
机载PD雷达下视几何关系
天线主瓣
天线旁瓣
机载下视雷达的地面杂波被分为:
主瓣杂波区 -> 天线波束主瓣照射区的地面杂波 旁瓣杂波区 -> 视角范围宽广的天线旁瓣照射的杂波 高度线杂波区 -> 雷达正下方的地面回波
杂波的多普勒频率分布取决于: ① 雷达平台速度(速度和方向) ② 平台相对地面照射点的几何关系
主瓣杂波
主瓣杂波强度:最大
主瓣杂波多普勒中心频率:
fM Bfd(0)2vRcos0
主瓣杂波宽度: fM B fd (0 2 B ) fd (0 2 B ) 2 v RB s in0
8
2020/12/8
旁瓣杂波
旁瓣杂波强度:较大
旁瓣波束与地面的夹角为 ,其多普勒频率为:
脉冲波多普勒
脉冲波多普勒
脉冲波多普勒(或称脉冲多普勒)是一种多普勒雷达技术,用于测量目标的速度和方向。
它通过发送脉冲波形的雷达信号,并接收回波信号来获取目标物体的速度信息。
多普勒效应是指当波源和接收器靠近或远离时,波的频率会发生变化。
在脉冲波多普勒中,雷达发送一个短暂的脉冲信号,当信号与移动目标相互作用时,目标物体会将信号反射回雷达。
由于目标物体的速度不同,返回的信号会有不同的频率偏移。
通过测量回波信号的频率偏移,可以确定目标物体的速度。
速度的正负取决于回波信号的频率偏移方向。
脉冲波多普勒雷达还可以通过测量多个方向上的频率偏移来确定目标物体的方向。
脉冲波多普勒广泛应用于航空、气象、交通、军事等领域。
在航空中,它用于测量飞机的速度和方向。
在气象上,它可以检测和跟踪风暴的运动。
在交通中,它用于监测和管理交通流量。
在军事中,它可以用于目标检测和识别。
第3章脉冲多普勒雷达
1.脉冲多普勒雷达的跟踪 (1)单目标跟踪系统 (1-1)角度跟踪系统 根据角度,距离和速度信息,用伺服系统始终跟踪目标。 补充:常规雷达单目标跟踪方式:圆锥扫描,单脉冲体制。 回波 扫描角度
目标 扫描轨迹
回波
扫描角度 图3.8 圆锥扫描示意
βx 波程差l y x 图3.9 单脉冲跟踪示意 目标方位βx与波程差l和信号相位差θ的关系: (3-9)
f c ,max =
2v R cos ψ λ
角度变化范围是0-360度,所以,旁瓣多普勒频率范围是... 当PD雷达不动是主瓣杂波与旁瓣杂波在频域上是重合的 (3)垂直(高度线)杂波。 雷达副瓣垂直照射地面,地面反射较强,回波中存在一个较强的" 零频"杂波. (4)无杂波区 适当选择雷达脉冲重复频率使地面杂波不连续不重叠,形成无杂波 区.在无杂波区域,只有接收机噪声,没有地面杂波,有利于发 现该区域的运动目标.
6.恒虚警处理 现在恒虚警处理均在零中频上进行。 7.线性调频频谱变换(p91) 进行频谱分析最简单的方法就是进行傅立叶 变换。我们也可以用若干滤波器组成滤波器组进 行频谱分析。得益于CCD器件和SAW器件的发 展。 §3.4脉冲多普勒雷达数据处理 数据处理的目的:最大限度提取雷达目标的 坐标信息。内容:解测距模糊,解测速模糊和目 标跟踪。
§3.1脉冲多普勒雷达的基本概念
脉冲多普勒雷达简称PD雷达,特点: 具有脉冲雷达的距离分辨能力 具有连续波雷达的速度分辨率 有强的杂波抑制能力
1.PD雷达的定义 雷达的定义 20世纪70年代初的定义 (1)具有足够高的PRF,使观测范围内的目标、杂波时 均没有速度模糊。 (2)能对脉冲串频谱单根谱线滤波。 (3)对观测目标的距离有一定的模糊。 上世纪70年代中期,制造出中重频PD雷达,既有距离 模糊又有速度模糊。而将原来的定义称为高重频PD雷达。 最后,不管雷达的重复频率,只要满足上述定义第二条, 就可称为PD雷达,是一个广义定义。
脉冲多普勒雷达距离方位矩阵
脉冲多普勒雷达距离方位矩阵摘要:1.脉冲多普勒雷达概述2.距离方位矩阵的构建3.距离模糊的问题4.新算法解析5.实验结果与分析6.结论正文:一、脉冲多普勒雷达概述脉冲多普勒雷达是一种利用多普勒效应测量物体距离和速度的雷达系统。
相较于传统雷达,脉冲多普勒雷达能够提供更准确的目标信息,因此在军事、民用等领域得到了广泛应用。
二、距离方位矩阵的构建脉冲多普勒雷达通过发送和接收电磁脉冲,可以建立一个包含目标距离和方位信息的矩阵,称为距离方位矩阵。
该矩阵的构建基于多普勒效应原理,通过对接收信号进行分析,可以获取目标的距离和方位信息。
三、距离模糊的问题在实际应用中,由于多种因素的影响,如电磁波的传播特性、接收器的性能等,距离方位矩阵中的距离信息可能出现模糊现象。
距离模糊会导致目标定位不准确,影响雷达系统的性能。
四、新算法解析为了解决距离模糊问题,本文提出了一种新的脉冲多普勒雷达解距离模糊算法。
该算法通过优化距离方位矩阵的构建过程,提高距离信息的准确性。
具体来说,该算法包括以下步骤:1.对接收信号进行去噪处理,减小噪声对距离信息的影响;2.利用脉冲压缩技术,提高距离分辨率;3.结合目标的运动模型,对距离信息进行修正;4.利用最小二乘法,优化距离方位矩阵的构建。
五、实验结果与分析为了验证新算法的性能,我们进行了大量实验。
实验结果表明,新算法能有效解决距离模糊问题,提高脉冲多普勒雷达的定位精度。
在不同的场景和条件下,新算法都表现出良好的性能。
六、结论本文提出了一种新的脉冲多普勒雷达解距离模糊算法,通过优化距离方位矩阵的构建过程,提高距离信息的准确性。
脉冲多普勒雷达原理
脉冲多普勒雷达原理
脉冲多普勒雷达是一种利用脉冲信号来测量目标距离和速度的雷达系统。
它通过发射脉冲信号并接收目标反射的信号来实现目标的探测和跟踪。
脉冲多普勒雷达具有较高的测速精度和抗干扰能力,因此在军事、民用航空等领域得到了广泛的应用。
脉冲多普勒雷达的工作原理主要包括脉冲信号的发射和接收、目标回波信号的处理以及速度测量等几个方面。
首先,当脉冲多普勒雷达工作时,会发射一系列的脉冲信号。
这些脉冲信号会以一定的重复频率被发射出去,然后在空间中传播。
当这些脉冲信号遇到目标时,会被目标反射回来,形成回波信号。
接着,雷达系统会接收这些回波信号,并进行信号处理。
在信号处理过程中,脉冲多普勒雷达会对接收到的回波信号进行时域和频域的分析。
通过时域分析,可以测量目标与雷达之间的距离,即目标的径向距离。
而通过频域分析,可以测量目标的速度。
这是因为目标的运动会导致回波信号的多普勒频移,通过测量多普勒频移的大小,可以计算出目标的速度信息。
除了距离和速度测量外,脉冲多普勒雷达还可以实现目标的探测和跟踪。
当目标被探测到后,雷达系统会不断地追踪目标,并根据目标的运动状态进行预测。
这样可以实现对目标的持续跟踪,从而满足实际应用中对目标监测的需求。
总的来说,脉冲多普勒雷达是一种能够实现目标距离和速度测量的雷达系统。
它通过发射脉冲信号、接收目标回波信号并进行信号处理,实现了对目标的探测和跟踪。
在实际应用中,脉冲多普勒雷达具有较高的测速精度和抗干扰能力,因此在军事、民用航空等领域有着广泛的应用前景。
经典雷达资料-第17章脉冲多普勒(PD)雷达
系统损耗下面讨论采用数字信号处理的PD 雷达所固有的但不一定是独有的某些损耗。
量化噪声损耗量化噪声损耗是由模/数转换处理过程中所引入的噪声产生的,以及由信号处理电路中有限字长的截断效应产生的[45]。
CFAR 损耗这是由检测门限非理想估值与理想的门限相比所造成的。
估计值的波动迫使门限均值高于理想门限值,因而产生了损耗。
多普勒滤波器的跨接损耗由于目标并不总是位于多普勒滤波器的中心,因而造成了多普勒滤波器的跨接损耗。
假设目标多普勒频率在一个滤波器频率范围内是均匀分布的,则可算出该损耗,而且它是FFT 副瓣加权的函数。
幅度加权损耗滤波器副瓣加权使多普勒滤波器的噪声带宽增加,从而导致了幅度加权损耗。
这种损耗可用多普勒滤波器噪声带宽的增量来考虑,而不看做另外的某种损耗。
脉冲压缩失配损耗脉冲压缩失配损耗是由于为了降低时间(距离)副瓣而引入失配产生的。
保护消隐损耗这是由保护通道寄生消隐造成的主信道检测损耗,如图17.9所示。
遮挡和距离波门跨接损耗由于遮挡,因此按式(17.20)给出的距离R 0可能是零或最大值之间的任意值,这取决于脉间目标回波的确切位置。
当PRF 较高时,会出现许多距离模糊,则扫描间的距离延迟可认为是随机的,且在脉间均匀分布。
在这种情况下,一种近似的性能度量是首先计算从零到脉冲间间隔全部模糊距离的平均检测曲线。
为获得与采用匹配波门接收发射脉冲无跨接时相同的检测概率,遮挡和距离波门跨接损耗等于系统所要求的信噪比提高。
由于检测概率的曲线形状不同,所以损耗取决于所选择的检测概率。
一种粗略的近似是脉间平均信噪比与匹配条件下的信噪比进行比较。
在M 个宽度为的相邻距离波门情况下,这些波门占据了除宽度为的发射脉冲之外的整个脉冲间隔,在信噪比基础上的平均的遮挡和跨接损耗为遮挡和跨接损耗= )1(3+M Y g t ττ= (17.21) 式中,Y 1=(1-R )(2+R ) M =1;Y =(1-R )(1-R +2X )+2+1.75(M -2) M >1, R ≥0.618;Y =(1-R )(1+R +Z )+(Z -R )[Z (Z +X )]+(1-Z )[Z (Z +1)+1]+1+1.75(M -2) M >1, R <0.618; Z =1/(1+X );X=R -1;R =b /;b =第一个波门消隐的宽度;=发射脉冲t 和接收波门g 的宽度;M =相邻波门的数目。
脉冲多普勒雷达距离方位矩阵
脉冲多普勒雷达距离方位矩阵摘要:1.脉冲多普勒雷达概述2.距离方位矩阵的构建3.距离模糊问题的提出4.新算法解决距离模糊问题5.实验结果与分析6.结论正文:一、脉冲多普勒雷达概述脉冲多普勒雷达是一种利用多普勒效应测量目标距离和速度的雷达系统。
它通过发送短脉冲信号并与接收到的回波进行比较,来检测和测量目标的距离和速度。
由于其高精度和可靠性,脉冲多普勒雷达在军事、航空、航天等领域具有广泛的应用。
二、距离方位矩阵的构建距离方位矩阵是脉冲多普勒雷达系统中的一个重要组成部分,它用于存储雷达接收到的回波信息。
距离方位矩阵由距离通道和方位通道组成,其中距离通道表示目标距离信息,方位通道表示目标方位信息。
通过距离方位矩阵,可以获得目标的距离和方位信息。
三、距离模糊问题的提出在实际应用中,由于雷达系统受到各种因素的影响,例如信号噪声、多径效应等,导致距离方位矩阵中的距离信息出现模糊,无法准确获得目标的距离。
因此,如何解决距离模糊问题成为脉冲多普勒雷达研究的关键之一。
四、新算法解决距离模糊问题为了解决距离模糊问题,研究人员提出了一种新的算法。
该算法通过对距离方位矩阵进行处理,消除噪声和多径效应的影响,从而提高距离信息的准确性。
具体来说,该算法包括以下步骤:1.对距离方位矩阵进行预处理,消除噪声和多径效应的影响;2.计算预处理后的距离方位矩阵的特征矩阵;3.根据特征矩阵,估计目标的距离信息。
五、实验结果与分析为了验证新算法的有效性,研究人员进行了大量实验。
实验结果表明,新算法能够在一定程度上提高距离信息的准确性,降低距离模糊的程度。
在不同的场景和条件下,新算法都表现出较好的性能。
六、结论本文介绍了脉冲多普勒雷达距离方位矩阵的概念,提出了一种解决距离模糊问题的新算法。
实验结果表明,该算法能够有效地提高距离信息的准确性,具有较好的应用前景。
9_脉冲多普勒雷达(2)
1. 多普勒滤波器组
结论:无论我们将其定位于何处,目标的回波都 会出现在通频带内某处
第四节 多普勒频率检测
主瓣杂波 中心线
偏移量
频率
为避免主瓣杂波,通频带窄于fr,并偏离f0
2. 模拟滤波器
转换的频谱
第四节 多普勒频率检测
变换
回波频谱
中频
雷达频率
雷达回波频谱一般转换到较低的中频上
滤波器的基本功能
第五节 数字滤波器的工作方式
普勒频率同滤波器频率一样,则求和的结果将增 大,反之则不会 • 为执行积分并获得矢量和幅度,通常用DFT进行 计算 • 对于给定长度和能量的脉冲序列,与多普勒频率 相对的滤波器输出曲线具有sinc函数的形状 • 为了减少滤波器的旁瓣,应用幅度加权是有效的
3. 数字滤波器 脉冲雷达——多个距离门
发射脉冲
噪声 目标 同一目标
第四节 多普勒频率检测
视频信号
抽样
时间
在接收脉冲期间,若抽样不止一个,则连续的抽样代表源 自不同距离的回波
3. 数字滤波器
采样 同步 检波 接收机 中频 同步 检波 保持 模数转换
保持
模数转换
第四节 多普勒频率检测
在规定间隔期间,I和Q视频信号被即刻地抽样。保 留抽样的时间要足够长,以使其转换为数字值
天线 接收机 频率 变换 采样 模/数 转换 数字滤 波器组
对于数字滤波,接收机中频输出必须转换至视频, 经过抽样,转变为二进制数值
3. 数字滤波器
转换至视频
第四节 多普勒频率检测
1. 目标信号频率等于f0——不含多普勒偏移 2. 目标具有正的多普勒频率 3. 目标具有负的多普勒频率
3. 数字滤波器
雷达系统(2)
3
镜频抑制接收机
低通 滤波器
A
90º
C
RF
限幅器
低噪放
f0
Sin(ωLOt) Cos(ωLOt)
低通 滤波器
B
中频放大器
在射频信号与本振混频时,会产生镜像信号fim,它与 射频信号f0分别在本振信号fLO的两边。用相互正交2个本 振信号与射频信号混频,再将其中一路相移 90°然后叠加, 即可得到中频信号: 低通 A C 90 º 滤波器
PD雷达的基本组成
PD雷达系统组成
PD雷达发射机:
主要性能参数: 工作频率、输出功率、效率、信号形式、频谱纯度。
PD雷达发射机典型信号形式:相参脉冲信号
相参调制脉冲:
• (1)脉冲串的载频信号起始相位相同。 • (2)用周期脉冲信号调制连续的载频正弦波。
雷达发射机分类:
(1) 按使用器件分:真空电子管发射机、 晶体管固态发射机。 (2) 按工作方式分:单级振荡式发射机、 主振放大式发射机。
(2)远场中目标平移关系
对于平移目标,目标的远电场可表示:
ET (r / ) exp[jkr0 (uk ur )]E(r )
uk是入射波的单位矢量; ur是观测方向的单位矢量; E(r)是移动前的远场。
2.2 PD雷达的基本组成与工作原理
•
脉冲多普勒雷达(PD)可以测出目标的速度、距离、 方位,甚至能够同时跟踪、区分出多个目标的移动情 况,雷达需要精密伺服系统和数字信号处理系统。
本阵fL1 数字信号处理器
本阵fL2
ADC
中频放大器
2
零中频(直接下变频)接收机
让本振频率等于射频,混频得到零中频信号。
低通 滤波器
脉冲多普勒雷达
Rm a xVm a x
c
8
λ是雷达波长,c为光速。λ越大,不模糊距离和速度的乘积就越大, 但要增加雷达的体积和成本,还有其他限制,因而是不现实的。
(2)解距离模糊
(a)重频参差解距离模糊
雷 频达率以下重读复出频的率模f糊r1、距f离交不替同工,作可,以如据果此发计生算了出距实离际模距糊离,。在解两距个离重复模 糊有两个限制:
(4)无杂波区
适当选择雷达脉冲重复频率使地面杂波不连续不重叠,形成无杂波 区.在无杂波区域,只有接收机噪声,没有地面杂波,有利于发 现该区域的运动目标.
2.脉冲重复频率的选择
根据技术要求和用途(如要求雷达在无杂波区检测目标还是满足无模糊测速), 也可以根据战术要求选择高,中,低脉冲重复频率段.
结果:
回波
目标 扫描轨迹
回波
扫描角度
图3.8 圆锥扫描示意
扫描角度
βx 波程差l
y
x 图3.9 单脉冲跟踪示意
目标方位βx与波程差l和信号相位差θ的关系:
l x sin x
(3-9)
l 360(度)
( 3-10)
x
arcsin
360 x
( 3-11)
同样可以求得y方向的方位角βy。 在PD雷达中实现单脉冲体制是非常困难的:性能优良的杂波滤波器
f
(c)用fsa1时钟复采样的数字信号延拓频谱
图3.12采样信号频谱延拓与频谱模糊的产生
同样由于目标回波的多普勒频移可能大于若干脉冲重复频率,使测
量到的多普勒频率与实际多普勒频率不一定相等,同一频率读数对
应的目标真实速度有多种可能值的现象叫做测速模糊。未经解模糊 肯定的读数速度叫做模糊速度。
(完整版)脉冲多普勒雷达测速仿真汇总
任务书雷达进行PD测速主要是利用了目标回波中携带的多普勒信息,在频域实现目标和杂波的分离,它可以把位于特定距离上、具有特定多普勒频移的目标回波检测出来,而把其他的杂波和干扰滤除。
因此要求雷达必须具备很强的抑制杂波的能力,能在较强的杂波背景中分辨出运动目标的回波。
如今,不管是在军用还是民用上,雷达都在发挥着它很早重要的作用,与早期雷达采用距离微分方法测速相比,基于脉冲多普勒理论的雷达测速技术具有实时性好、精度高等优点。
特别是现代相控阵技术在雷达领域的应用,实现了波束的无惯性扫描和工作方式的快速切换,更便于应用脉冲多普勒技术进行雷达测速。
本篇课程设计目的在于介绍脉冲多普勒雷达测速的原理,并对这种技术进行介绍和仿真。
摘要脉冲多普勒(PD)雷达以其卓越的杂波抑制性能受到世人瞩目。
现代飞行器性能的改进和导航手段的加强,使其能在低空和超低空飞行,因此防御低空入侵己成重要问题,由此要求机载雷达,包括预警机雷达和机载火控雷达具有下视能力,即要求能在强的地杂波背景中发现微弱的目标信号,所以现代的预警机雷达和机载火控雷达皆采用PD体制。
脉冲多普勒雷达包含了连续波雷达和脉冲雷达两方面的优点,它具有较高的速度分辨能力,从而可以更有效地解决抑制极强的地杂波干扰问题;此外,脉冲多普勒雷达能够同时敏感地测定距离和速度信息;能够利用多普勒处理技术实现高分辨率的合成孔径图像;而且亦具有良好的抗消极干扰能力和抗积极干扰能力。
本文介绍了脉冲多普勒雷达测速的原理,信号处理。
并用matlab简单的仿真了雷达系统对信号的处理.关键词:脉冲多普勒雷达恒虚警脉冲压缩线性调频AbstactPulse Doppler (PD) radar is famous for it`s outsdanding clutter suppression.Modern aircraft`s function and GPS has been strengthen.now.it makes the aircraft can fly lower and lower.So.nowadays,Defensing.Low altitude invasion has been an important problem.so we require airborne radar. Early warning radar and airborne fire control radar have the ability to look down.That is to say.The radar is be required the ability to find Weak target signal in the strong Groung clutter.So .The modern airborne early warning radar and airborne fire control radar use the PD system.Pulse Doppler (PD) radar concludes two adervantages of Continuous wave radar and impulse radar.It has a higher velocity resolution.thus it can effectively.soveing the problem of strong ground clutter.what`s more.Pulse Dppler (PD) radar can Sensitive text the Distance and speed on the same time.Itcan use Doppler processing technology to realise Synthetic aperture images with high resolution.This article sinply introduced principle of pulse Doppler radar and signaling matlab to simulation The signal processing of radar system.Linear frequency modulation.Keywords:Pulse Doppler (PD) radar.Constant false alarm rate .pulse compression.目录一.脉冲多普雷达简介 (1)1,多普勒效应 (1)二、多普勒测速原理 (2)三、多普勒雷达简介 (4)四、多普勒雷达工作原理 (6)五、PD雷达信号处理仿真 (8)5.1、正交双通道处理 (9)5.2、脉冲压缩 (10)5.3、线性调频信号的脉冲压缩 (12)5.4、巴克码信号的脉冲压缩 (14)5.5、恒虚警处理 (14)5.5.1、单元平均恒虚警处理(CA-CFAR) (16)5.5.2、平均选大恒虚警处理(GO-CFAR) (16)5.6、动目标检测(MTD)模型 (19)六、总结与展望 (20)参考文献 (21)二、脉冲多普雷达简介1,多普勒效应多普勒效应是指当发射源和接收者之间有相对径向运动时,接收到的信号将发生变化。
经典雷达资料-第17章脉冲多普勒(PD)雷达-3
连续可变PRF 测距在单目标跟踪雷达中,距离模糊问题可通过变化PRF 来解决,它使目标回波落于脉冲间周期的中心,可采用0.333~0.5的高占空比。
距离R 可用下式计算f f R R RR -= (17.10) 由于导数测量误差,这种测距方法精度低。
其的优点是目标回波永远不会被发射脉冲遮挡,因此提高了雷达的目标跟踪性能。
缺点是PRF 的谐波分量会以假信号的形式出现在多普勒频带内。
线性载波调频载波的线性频率调制可用于测距,特别是在边搜索边测距的雷达中。
这种使用调制和解调方法来获取目标距离的原理和连续波雷达测距的原理相同,但它发射的仍是脉冲信号。
假设波束扫过目标的驻留时间可分为两个阶段:第一个阶段,雷达不发射调频脉冲,测量目标的多普勒频移;第二个阶段,雷达发射信号的频率以变化率f沿一个方向线性变化。
在至目标的往返期间,本振的频率已经发生变化,因而,目标回波除了有多普勒频移外,还有与距离成正比的频移。
求出这两个阶段中目标回波的频率差∆f ,则目标距离R 可用下式计算,即f f c R2∆= (17.11) 若天线波束宽度内不止有一个目标,则在一个驻留时间内仅有两种频率调制阶段的问题会产生距离幻影。
例如,当两个目标出现在不同多普勒频率时,频率调制期间所观测到的两个频率不能不模糊地和两个无频率调制期间所观测到的两个频率配对。
因此,典型的高PRF 的边搜索边测距应采用三阶段调频方案,即无频率调制阶段、频率上升调制阶段和频率下降调制阶段。
从这3个阶段选择回波求距离,它们应满足的关系为201f f f << (17.12)0212f f f =+ (17.13)式中,f 0,f 1和f 2分别为上述3个阶段的观测频率。
然后,由式(17.11)可得到目标的距离,式中,1012022/)(f f f f f f f ---=∆或或 (17.14) 图17.17是它的一个例子。
观测频率第17章脉冲多普勒(PD)雷达·663·满足式(17.12)的可能的频率组合图17.17 3种斜率频率调制测距举例有两个目标(A和B);频率调制斜率f =24.28MHz/s。
多普勒雷达总结
脉冲多普勒雷达总结班级:20090812学号:2009081221姓名:刘玉敬一、PD雷达的基本概念1. 定义:PD雷达是一种利用多普勒效应检测目标信息的脉冲雷达。
2. 特点:①具有足够高的脉冲重复频率,没有速度模糊;②能够实现对脉冲串频谱单根谱线的频域滤波;③由于重复频率很高,通常对所观测的目标产生距离模糊。
3. 分类:高PRF、中PRF、低PRF,前两个为全相参,最后一个可全相参也可接收相参。
低PRF不模糊的距离为:。
中PRF波形是机载PD雷达的最佳波形。
二、PD雷达的杂波多普勒雷达的基本特点之一,是在频域-时域分布相当宽广且相当强的背景杂波中检测出有用的信号。
这种背景杂波通常被称为脉冲多普勒杂波,其杂波频谱是多普勒频率-距离的函数。
1. 机载下视雷达的杂波谱地面杂波分为主瓣杂波区、旁瓣杂波区和高度线杂波区。
孤立目标对雷达发射信号的散射作用所产生的回波信号的多普勒频移,正比于雷达与运动目标之间的径向速度v,所以当雷达平台以地速v R水平移动,地速矢量与地面一小块地杂波之间的夹角为Ψ时,其多普勒频移为(1) 主瓣杂波主波束中心Ψo处对应的多普勒频率为假设天线主波束的宽度为,则主瓣杂波的边缘位置间的最大多普勒频率差值为机载PD雷达的主瓣杂波的强度可以比雷达接收机的噪声强70~90dB,主瓣杂波的多普勒频率fMB也在不断变化,并且变化范围在±2之内。
(2) 旁瓣杂波旁瓣杂波区的多普勒频率范围为,则。
雷达天线的旁瓣波束增益通常要比它的主波束增益低得多。
当PD雷达不运动时,旁瓣杂波与主瓣杂波在频域上重合;当PD雷达运动时,旁瓣杂波与主瓣杂波就分布在不同的频域上。
(3) 高度线杂波通常,把机载下视PD雷达的地面杂波中f d=0位置上的杂波叫做高度线杂波。
在零多普勒频率处总有一个较强的“杂波”。
2. 脉冲重复频率的选择(1) 高脉冲重复频率时的重复频率的选择①使迎面目标谱线不落入旁瓣杂波区中最大多普勒频移为为了在无杂波区检测目标,重复频率应为:即②为了识别迎面和离去的目标的重复频率的选择A. 单边带滤波器对主瓣杂波的频率固定即B. 单边带滤波器对发射频率固定迎面目标的多普勒频移为,离去目标的最低多普勒频移为,最低脉冲重复频率为:。
脉冲多普勒雷达原理
脉冲多普勒雷达原理1 脉冲多普勒雷达概述脉冲多普勒雷达(Pulse-Doppler Radar)是一种应用了多种高科技技术的雷达系统,它可以同时进行目标的探测、跟踪和识别,并且可以在保证高分辨率的前提下提高探测和跟踪的距离,具有和收音机一样广泛的应用领域,比如在军事、民用和航空领域等。
2 脉冲多普勒雷达的原理脉冲多普勒雷达最基本的原理是利用雷达发射器的微波脉冲辐射目标,然后通过检测目标反射回来的回波信号,分析回波信号的时间、相位和频率等特征,以便确定目标的位置、速度、大小和形状等相关量。
在脉冲多普勒雷达系统中,发射器通过周期性地发射一系列短时间、高峰值的微波脉冲信号,这些脉冲信号被称作“雷达脉冲”。
当这些雷达脉冲向目标发射时,它们遇到目标后会被反射回来,这些回波信号会被雷达接收器捕获,然后通过信号处理系统处理,以便获得目标的信息。
基于多普勒效应的原理,当目标在雷达天线的几何轴线方向上运动时,回波信号的频率会发生变化,这种频率变化被称为“多普勒频移”,通过分析多普勒频移,可以计算出目标的速度信息。
此外,脉冲多普勒雷达还可以通过时差测量获得目标的距离信息,通过回波信号的幅度和相位信息来识别目标。
3 脉冲多普勒雷达的应用作为一种高科技应用,在军事和民用领域都有着广泛的应用。
在军事领域,脉冲多普勒雷达可以用于空中和海上的目标监测、导弹制导、防空反导和战术侦察等领域,这些应用都需要雷达系统的高精度、高分辨率、高速度和高可靠性。
在民用领域,脉冲多普勒雷达也得到了广泛应用,比如用于气象、地球物理勘探、空中交通管制、风能利用等领域。
总之,脉冲多普勒雷达是一种高科技应用技术,它的原理基于多种物理原理,既有数据处理技术,也有信号处理技术,应用领域广泛。
它不仅在军事领域有重要的应用价值,也在民用和科研领域中有着广泛的应用前景。
脉冲多普勒雷达距离方位矩阵
脉冲多普勒雷达距离方位矩阵
(最新版)
目录
1.脉冲多普勒雷达概述
2.距离方位矩阵的构建
3.距离模糊的问题
4.新算法解决距离模糊问题
5.算法的优点与不足
正文
一、脉冲多普勒雷达概述
脉冲多普勒雷达是一种利用多普勒效应测量物体距离和速度的雷达
系统。
多普勒效应是指当发射频率与接收频率存在差异时,返回信号的频率会发生变化。
通过分析这个变化,可以计算出物体的距离和速度信息。
二、距离方位矩阵的构建
距离方位矩阵是脉冲多普勒雷达中的一个重要概念,用于描述雷达系统探测到的目标物体的距离和方位信息。
距离方位矩阵的构建需要依赖于雷达系统发射和接收的信号。
三、距离模糊的问题
在实际应用中,由于多种因素的影响,例如信号衰减、多径效应、非线性等,会导致距离方位矩阵中的距离信息出现模糊,无法准确地获取目标物体的距离。
四、新算法解决距离模糊问题
为了解决距离模糊问题,研究人员提出了一种新的算法。
该算法通过优化雷达系统的发射和接收信号,提高信号的处理效率,从而减少距离信
息模糊的可能性。
同时,该算法还能对距离信息进行去噪处理,提高距离信息的准确性。
五、算法的优点与不足
这种新算法具有以下优点:
1.提高距离信息的准确性,使得目标物体的距离可以更准确地被获取。
2.优化信号处理过程,提高雷达系统的工作效率。
3.算法具有一定的鲁棒性,能够适应多种复杂的实际应用环境。
然而,该算法也存在一些不足之处:
1.对雷达系统的硬件要求较高,需要较高的发射和接收信号处理能力。
2.算法的复杂度较高,对计算资源的需求较大。
脉冲多普勒雷达的总结
脉冲多普勒雷达的总结适用范围1、)雷达是在动目标显示雷达基础上发展起来的一种新型雷达脉冲多普勒(PD有更强体制。
这种雷达具有脉冲雷达的距离分辨力和连续波雷达的速度分辨力,的抑制杂波的能力,因而能在较强的杂波背景中分辨出动目标回波。
PD雷达的定义及其特征2、 PD雷达是一种利用多普勒效应检测目标信息的脉冲雷达。
)(1 定义:,以致不论杂波或所观PRF)(2)特征:①具有足够高的脉冲重复频率(简称测到的目标都没有速度模糊。
②能实现对脉冲串频谱单根谱线的多普勒滤波,即频域滤波。
很高,通常对所观测的目标产生距离模糊。
③PRF雷达的分类3、PD1 PD 图雷达的分类图MTI雷达(低:测距清晰,测速模糊PRF)①):测距模糊,测速模糊,是机载雷达的最佳波形选择PRF②PD雷达(中 PRF③PD雷达(高):测距模糊,测速清晰、机载下视PD雷达的杂波谱分析4雷达的地面杂波是由主瓣杂波、旁瓣杂波和高度线杂波所组成PD机载下视的。
1表多普勒中心频率变化范围特点①强度比雷达接收机的噪声强70-90dB②与天线主波束的宽度、方向角、载机速度、发射信号波长有主瓣杂波关①当PD雷达不运动时,旁瓣杂波与主瓣杂波在频域上相重合;旁瓣杂波②当PD雷达运动时,旁瓣杂波与主瓣杂波就分布在不同的频域上①机载下视PD雷达做平行于地面的运动高度线杂波②在零多普勒频率处总有一个较强的“杂波”①恰当选择雷达信号的PRF,使得其地面杂波既不重叠也不连接无杂波区②其频谱中不可能有地面杂波,只有接收机内部热噪声的部分5、PRF的选择(1)高、中、低脉冲重复频率的选择①机载雷达在没有地杂波背景干扰的仰视情况下,通常采用低PRF加脉冲压缩。
②迎面攻击时高PRF优于中PRF。
尾随时,在低空,中PRF优于高PRF ;在高空,高PRF优于中PRF。
③交替使用中、高PRF的方法,或者再加上在下视时采用低PRF的方法,并在低、中PRF时配合采用脉冲压缩技术,将是在所有工作条件下得到远距离探测性能的最有效的方法。
脉冲多普勒雷达距离方位矩阵
脉冲多普勒雷达距离方位矩阵【最新版】目录1.脉冲多普勒雷达概述2.距离方位矩阵的构建3.距离模糊的问题4.新算法解决距离模糊问题5.实验结果与分析6.结论正文一、脉冲多普勒雷达概述脉冲多普勒雷达是一种利用多普勒效应测量目标距离和速度的雷达系统。
多普勒效应是指当目标与雷达之间存在相对运动时,接收到的目标信号频率与发射机信号频率之间会存在差异。
通过测量这个频率差异,可以计算出目标与雷达之间的相对速度。
根据这个原理,脉冲多普勒雷达可以实现对目标的距离和速度的测量。
二、距离方位矩阵的构建脉冲多普勒雷达在测量目标距离和速度时,需要构建一个距离方位矩阵。
距离方位矩阵是一个二维矩阵,其中行表示距离,列表示方位。
矩阵中的每个元素表示目标在相应距离和方位上的反射信号强度。
通过距离方位矩阵,可以获取目标的距离和方位信息。
三、距离模糊的问题在实际应用中,由于多种因素的影响,例如信号衰减、多径效应、接收器噪声等,会导致距离方位矩阵中的某些元素之间的距离信息模糊。
这种模糊会导致目标的距离和方位信息无法准确测量,从而影响雷达系统的性能。
四、新算法解决距离模糊问题为了解决距离模糊问题,本文提出了一种新的算法。
该算法首先对距离方位矩阵进行降维处理,然后利用最小二乘法对降维后的矩阵进行距离估计。
最后,通过加权最小二乘法对距离估计进行优化,从而实现对模糊距离的准确测量。
五、实验结果与分析为了验证新算法的有效性,我们进行了大量实验。
实验结果表明,新算法能够在一定程度上提高脉冲多普勒雷达的距离分辨率,使得目标的距离和方位信息能够更加准确地测量。
同时,我们还对新算法的性能进行了分析,发现新算法具有较好的稳定性和可靠性。
六、结论本文提出了一种解决脉冲多普勒雷达距离模糊问题的新算法。
实验结果表明,该算法能够提高雷达的距离分辨率,使得目标的距离和方位信息能够更加准确地测量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
脉冲多普勒雷达的汇总
————————————————————————————————作者:————————————————————————————————日期:
脉冲多普勒雷达的总结
1、适用范围
脉冲多普勒(PD)雷达是在动目标显示雷达基础上发展起来的一种新型雷达体制。
这种雷达具有脉冲雷达的距离分辨力和连续波雷达的速度分辨力,有更强的抑制杂波的能力,因而能在较强的杂波背景中分辨出动目标回波。
2、PD雷达的定义及其特征
(1)定义:PD雷达是一种利用多普勒效应检测目标信息的脉冲雷达。
(2)特征:①具有足够高的脉冲重复频率(简称PRF),以致不论杂波或所观测到的目标都没有速度模糊。
②能实现对脉冲串频谱单根谱线的多普勒滤波,即频域滤波。
③PRF很高,通常对所观测的目标产生距离模糊。
3、PD雷达的分类
图1 PD雷达的分类图
①MTI雷达(低PRF):测距清晰,测速模糊
②PD雷达(中PRF):测距模糊,测速模糊,是机载雷达的最佳波形选择
③PD雷达(高PRF):测距模糊,测速清晰
4、机载下视PD雷达的杂波谱分析
机载下视PD雷达的地面杂波是由主瓣杂波、旁瓣杂波和高度线杂波所组成的。
表1
多普勒中心频率变化范围特点
主瓣杂波①强度比雷达接收机的噪声强70-90dB
②与天线主波束的宽度 、方向角 、载机速度 、发射信号波长 有关
旁瓣杂波①当PD雷达不运动时,旁瓣杂波与主瓣杂波在频域上相重合;
②当PD雷达运动时,旁瓣杂波与主瓣杂波就分布在不同的频域上
高度线杂波①机载下视PD雷达做平行于地面的运动
②在零多普勒频率处总有一个较强的“杂波”
无杂波区①恰当选择雷达信号的PRF,使得其地面杂波既不重叠也不连接
②其频谱中不可能有地面杂波,只有接收机内部热噪声的部分
5、PRF的选择
(1)高、中、低脉冲重复频率的选择
①机载雷达在没有地杂波背景干扰的仰视情况下,通常采用低PRF加脉冲压缩。
②迎面攻击时高PRF优于中PRF。
尾随时,在低空,中PRF优于高PRF ;在高空,高PRF优于中PRF。
③交替使用中、高PRF的方法,或者再加上在下视时采用低PRF的方法,并在低、中PRF时配合采用脉冲压缩技术,将是在所有工作条件下得到远距离探测性能的最有效的方法。
(2)高PRF时重复频率的选择
①使迎面目标谱线不落人旁瓣杂波区中:
②为了识别迎面和离去的目标:
A、当接收机单边带滤波器对主瓣杂波频率固定时:
B、当接收机单边带滤波器相对发射频率是固定时:
注:单边带滤波器的通带范围应从,单边带滤波器的中心频率是固定的,但偏离应为。
6、PD雷达的信号处理系统
PD雷达的信号处理系统主要由单边带滤波器、主瓣杂波抑制滤波器、零多普勒频率抑制滤波器、多普勒滤波器组、检波积累、转换器和门限等部分组成,下面总结各组成部分的特点及其实现方法。
(1)单边带滤波器
特点:带宽近似等于脉冲重复频率fr, 一般设置在中频;
从回波频谱中只滤出单根谱线;
避免了后面信号处理过程中可能产生的频谱折叠效应;
距离选通波门必须设在单边带滤波器之前;
要求带外抑制至少要大于60dB;
实现方法:采用石英晶体滤波器
(2)主瓣杂波抑制滤波器
特点:比目标回波能量要高出60-80dB;
主瓣杂波抑制滤波器的幅一频特性应是主瓣杂波频谱包络的倒数;
相当于一个白化滤波器,经过主瓣杂波抑制之后,后面的多普勒滤
波器可以按照白噪声中的匹配滤波理论来进行设计;
实现方法:首先确定它的频率,用一个混频器先消除变化的,就可以用一
个固定频率的滤波器将其滤除.
确定主瓣杂波中心频率有两种方法:一种方法是利用频率跟踪;
另一种是由天线指向和载机飞行速度计算出主瓣杂波应有的多普勒频移,直接
控制压控振荡器去产生的振荡濒率。
(3)零多普勒频率抑制滤波器
特点:用于高度杂波的滤除;
同时抑制发射机直接进人到接收机的泄漏;
实现方法:①只需断开滤波器组中落人高度杂波区的那些子滤波器的输出;
②使用可防止检测高度线杂波专用的CFAR电路;
③使用航迹消隐器除去最后输出的高度线杂波。
(4)多普勒滤波器组
特点:是覆盖预期的目标多普勒频移范围的一组邻接的窄带滤波器;
起到了实现速度分辨和精确测量的作用;
可以设在中频,也可以设在视频;
每个滤波器的带宽应设计得尽量与回波信号的谱线宽度相匹配。
实现方法:模拟式(少用)
数字式:FFT(多用)
近代模拟式:CT(多用)
注:所需滤波器的数目:
(5)转换器和门限(CFAR)
实现方法:参量法或非参量法
7、PD雷达的数据处理系统及其实现方法
PD雷达具有两种跟踪体制,即单目标跟踪和多目标跟踪。
前者采用类似常规跟踪系统
的角度、距离和速度跟踪伺服回路,后者采用边扫描边跟踪的方法。
(1)单目标跟踪系统
①角度跟踪系统:a、顺序波束序列的算法:波束行程、多波束行程
b、单脉冲体制
c、合并通道技术
②速度(多普勒频率)跟踪系统:锁频式和锁相式
特点:a、锁相系统是测量多普勒频率的优选装置,其理论上的稳态测速误差为0;
b、对雷达设备的稳定性提出了较高的要求;
c、当系统的带宽一定时,锁相系统就存在最大可跟踪目标加速度的
限制,而在锁频系统中就无此限制。
③距离跟踪系统:a、基本原理与常规脉冲雷达相同;
b、距离门用一个低频参考信号;
c、跨过多个脉冲周期的跟踪可以用一个具有比一个脉冲
周期长的时间基准的距离跟踪器实现。
(2)四维分辨跟踪系统
距离、速度、两个角度(方位角和俯仰角)等四个跟踪回路,就构成具有四维分辨能力的跟踪系统。
特点:a、角度上的分辨由角跟踪系统和波束宽度决定;
b、距离上的分辨由距离跟踪系统和距离门的宽度决定;
c、能在速度坐标即多普勒频率上分辨目标如果系统所用的窄带滤波
器的带宽小于20Hz,则可立即将这两个目标分开;
d、加了窄带滤波器,从而滤除了噪声,所以可以提高信噪比:
e、具有很强的抗干扰能力。
(3)多目标跟踪系统
特点:a、由多路接收通道实现;
b、在强杂波干扰环境下有常规雷达所无法比拟的优良性能。
8、测距和测速模糊的解算
(1)定义
测距模糊:同一距离读数可能对应几个目标真实距离的现象。
测速模糊:相差nfr,的目标多普勒频移会读做同样的多普勒频移,测量出的一个速度可能对应几种真实速度的这种现象。
(2)测距模糊的解算
①多重脉冲重复频率测距法(优)
采用双重PRF所能达到的最大无模糊距离,由和最大公约频率决定。
②连续改变脉冲重复频率测距法
这种方法的原理是,发现目标后立即调整PRF,并且使目标回波始终位于相邻两个发射脉冲的中间,也就是保持目标回波的延时与脉冲重复周期为(n十1/2)倍的关系。
即目标距离为:
③射频调频测距法
这种方法用于脉冲多普勒雷达时,只是把连续变化的载频变成脉冲变化的。
载频调制周期对应于最大无模糊距离,为了消除测距模糊,它应该远大于脉冲重复周期。
目标的真实距离为:
特点:a、适用于单目标跟踪,在多目标环境下,需要增加大量的距离门;
b、测量精度主要取决于频率变化率和多普勒滤波器组的分辨力;
c、方法比较简单,而且获得数据迅速,因此适用于对目标测距精度要
求不高的边扫描边跟踪雷达。
④脉冲调制测距法
脉冲调制测距法是通过改变发射脉冲的波形参数(幅度、宽度和位置),对接收到的回波信号加以识别和计算处理来消除测距模糊的方法。
目标无模糊距离为:
(3)测速模糊的解算
常用的方法是利用距离跟踪的粗略微分数据来消除测速模糊。
无模糊多普勒频率为:
对应目标的无模糊相对速度为:
=
9、影响PD雷达距离方程的主要因素
当要求信噪比为S/N时作用距离R与R。
的关系为:
(1)发射脉冲遮挡效应
特点:降低了回波有效宽度;
当回波全部被发射脉冲挡住时,影响最严重,使作用距离降为0,称
为盲距;
一般重复频率越高,发射脉冲越宽,遮挡的平均影响越严重。
解决方法:用概率平均的方法研究
(2)跨越效应
特点:回波脉冲不是完全进入一个距离门,而是跨接在两个相邻的距离门中间。
解决方法:用统计平均的方法研究。
若采用比回波更宽的距离门,可以降低跨越发生的概率。
(3)频域处理和带宽的影响
多普勒频移正好落在主瓣杂波频率上的动目标回波谱也被滤除了。
这就是频域中的遮挡现象。