高三数学测试题(理科)
陕西省汉中市某校2022-2023学年高三上学期第三次质量检测理科数学试题
陕西省汉中市某校2022-2023学年高三上学期第三次质量检测理科数学一、单选题(共60分)1.已知集合{}2,M x x n n Z ==∈,{}2,N x x n n Z ==+∈,则M N = ()A.∅ B.MC.ND.R 2.在复平面内,复数z 的对应点为()1,1-,则2z =()A. B. C.2i D.2i-3.若偶函数()()f x x R ∈满足()()2f x f x +=且[]0,1x ∈时,()f x x =,则方程()3log f x x =的根的个数是()A.2个 B.3个 C.4个 D.多于4个4.公元前3世纪,古希腊欧几里得在《几何原本》里提出:“球的体积(V )与它的直径(D )的立方成正比”,此即3V kD =,欧几里得未给出k 的值.17世纪日本数学家们对球的体积的方法还不了解,他们将体积公式3V kD =中的常数k 称为“立圆率”或“玉积率”.类似地,对于等边圆柱(轴截面是正方形的圆柱),正方体也可利用公式3V kD =求体积(在等边圆柱中,D 表示底面圆的直径;在正方体中,D 表示棱长).假设运用此体积公式求得球(直径为a ),等边圆柱(底面圆的直径为a ),正方体(棱长为a )的“玉积率”分别为1k 、2k 、3k ,那么123::k k k =)A.::232ππ B.::264ππ C.::132ππ D.::164ππ5.设函数()sin (0)4f x x πωω⎛⎫=+> ⎪⎝⎭在,123ππ⎛⎤- ⎥⎝⎦上为增函数,在,32ππ⎡⎫⎪⎢⎣⎭上是减函数,则ω的可能取值为()A.362k +,k Z ∈ B.32 C.364k +,k Z ∈ D.346.已知0,2πα⎛⎫∈ ⎪⎝⎭且212cos 7sin 240αα+-=,若tan()3αβ+=,则tan β=()A.113- B.711-或1 C.1 D.113-或-77.设两个独立事件A ,B 都不发生的概率为19.则A 与B 都发生的概率值可能为()A.89 B.23 C.59 D.298.若x ,y 满足条件202602x y x y x +-≥⎧⎪-+≥⎨⎪≤⎩,则目标函数22z x y =+的最小值是()A. B.2 C.4 D.6899.设等差数列{}n a 的前n 项和为n S ,且满足20190S >,20200S <,对任意正整数n ,都有n k a a ≥,则k 的值为()A.1009 B.1010 C.1011 D.101210.如图,已知1F ,2F 是双曲线C :()22221,0y b a bx a -=>的上、下焦点,直线12l F F ⊥且l 与双曲线C 交于A ,B 两点,若2F AB △是正三角形且点1F 是2F AB △的内心,则双曲线C 的离心率是() A.312+B.+C. D.6211.设2021ln 2019a =,2020b =,2019ln 2021c =,则()A.a b c >> B.c b a >> C.a c b >> D.b a c>>12.如图,在棱长为1的正方体1111ABCD A B C D -中,P 是11B D 上的动点,则下列说法不正确的是()A.直线DP 与1BC 是异面直线B.CP ∥平面1A BDC.1A P PB +的最小值是2D.当P 与1B 重合时,三棱锥1P A BD -的外接球半径为32二、填空题(共20分)13.已知非零向量a ,b 满足a b a b +=- ,且a b = ,则a 和b a - 的夹角为_________.14.52(31)1x x ⎛⎫-⋅- ⎪⎝⎭的展开式中的常数项为_________.15.如图,为测塔高,在塔底所在的水平面内取一点C ,测得塔顶的仰角为θ,由C 向塔前进30米后到点D ,测得塔顶的仰角为2θ,再由D 向塔前进米后到点E 后,测得塔顶的仰角为4θ,则塔高为_________米.16.若关于x 的不等式ln x a e x a -≥+对一切正实数x 恒成立,则实数a 的取值范围是_________.三、解答题(共70分)(一)必考题:共60分.17.(本题12分)某研究机构为了研究华为公司由于技术创新对订单产生的影响,调查了技术创新前、后华为(1)是否有95%的把握认为华为公司技术创新影响了华为在欧洲的订单?(2)现从技术创新前、后华为在欧洲的订单数中,采用分层抽样的方法抽取5个进行调查,若从抽得的5个订单中随机抽取2个进行调查结果的比较,求这2个订单中恰好有一个是技术创新后的订单的概率.附:()()()()()22n ad bc K a b c d a c b d +++-+=,其中n a b c d =+++.()20P K k ≥0.1000.0500.0100.0010k 2.706 3.841 6.63510.82818.(本题12分)已知公比大于1的等比数列{}n a 满足2420a a +=,38a =.(1)求{}n a 的通项公式;(2)求112231(1)n n n a a a a a a -+-+⋅⋅⋅+-.19.(本题12分)已知抛物线C :23y x =的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若4AF BF +=,求l 的方程;(2)若3AP PB = ,求AB .20.(本题12分)已知AB 是圆O 的直径,且长为4,C 是圆O 上异于A 、B 的一点,点P 到A ,B ,C 的距离均为.设二面角P AC B --与二面角P BC A --的大小分别为α,β.(1)求2211tan tan αβ+的值;(2)若tan βα=,求二面角A PC B --的余弦值.21.(本题12分)已知函数()(0)x f x ae a ≠,21()2g x x =.(1)当2a =-时,求曲线()f x 与()g x 的公切线方程;(2)若()()y f x g x =-有两个极值点1x ,2x ,且213x x ≥,求实数a 的取值范围.(二)选考题:10分.请考生在22,23题中任选一题作答.如果多做,则按所做的第一题计分.22.【选修4-4:坐标系与参数方程】在直角坐标系xOy 中,曲线C 的参数方程为2cos 22sin x y αα=⎧⎨=+⎩(α为参数),以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为cos 3πρθ⎛⎫+= ⎪⎝⎭.(1)求曲线C 的极坐标方程和直线l 的直角坐标方程;(2)设射线(0)6πθρ=->与直线l 交于点A ,点B 在曲线C 上,且3AOB π∠=,求AB .23.【选修4-5:不等式选讲】已知函数()2g x x =-,()f x x a =-.(1)当1a =时,解不等式1()()02g x f x -->;(2)若正数a ,b ,c ,d 满足22(4)a b g +=,221c d +=,求ac bd +的最大值.第三次质量检测数学参数答案题号123456789101112答案B DCD D A D B B A A C 13.135°14.3115.1516.]1,(∞-11.设211ln ln (),()+1(1)x x x f x f x x x +-'==+,当2[e ,)x ∈+∞时,()0,()f x f x '<在2[,)e +∞上单调递减,(2019)(2020)f f >,即ln 2019ln 202020202021>,2021ln 20192020ln 2020>,所以a b >;设211ln ln (),()1(1)x x x g x g x x x --'==--,当2[e ,)x ∈+∞时,()0,()g x g x '<在2[,)e +∞上单调递减,(2020)(2021)g g >,即ln 2020ln 202120192020>,2020ln 20202019ln 2021>,所以b c >,所以a b c >>.故选:A.12.C C 选项,延长1BB 到2B ,使得1211B B B D ==21B D ,在21B D 上取点M ,使得11111D M A D ==,则111A D P MD P ≅ ,有1MP PA =.故1A P PB MP PB BM +=+≥.过点M 作12MN B B ⊥,交12B B 于点N ,在121B B D 中,因为1211B B B D ==,所以212B D =,又111D M =,所以2MN=,1B N ,1BN =BM ==所以1A P PB +,故选项C 错误;16解:设()(0)x a f x e lnx a x -=-->,则()0f x 对一切正实数x 恒成立,即()0min f x ,由1()x a f x e x -'=-,令1()x a h x e x -=-,则21()0x a h x e x -'=+>恒成立,所以()h x 在(0,)+∞上为增函数,当0x →时,()h x →-∞,当x →+∞时,()h x →+∞,则在(0,)+∞上,存在0x 使得0()0h x =,当00x x <<时,()0h x <,当0x x >时,()0h x >,故函数()f x 在0(0,)x 上单调递减,在0(x ,)+∞上单调递增,所以函数()f x 在0x x =处取得最小值为000()0x a f x e lnx a -=-- ,因为001x a e x -=,即00x a lnx -=-,所以0010x a a x +-- 恒成立,即0012a x x + ,又0012x x += ,当且仅当001x x =,即01x =时取等号,故22a ,所以1a .故选:C .17.(1)有95%的把握认为华为公司技术创新影响了华为在欧洲的订单;(2)35.(1)由题意知,22150(20403060) 5.357 3.841708050100K ⨯⨯-⨯=≈>⨯⨯⨯,所以有95%的把握认为华为公司技术创新影响了华为在欧洲的订单.(2)由题意知,从技术创新前、后的订单数中应分别抽取的订单数为2个和3个.将来自技术创新前的订单分别记作12,A A ,来自技术创新后的订单分别记作123B B B ,,.则从这5个订单中抽取2个订单的所有结果有()()()()()()121112132122,,,,,,,,,,,A A A B A B A B A B A B ,()()()()23121323,,,,,,,A B B B B B B B ,共10种,其中恰有一个是来自技术后的订单的结果有()()()()()()111213212223,,,,,,,,,,,A B A B A B A B A B A B ,共6种,故所求概率63105P ==.19.(1)2n n a =;(2)2382(1)55n n +--(1)设等比数列{}n a 的公比为q (q >1),则32411231208a a a q a q a a q ⎧+=+=⎨==⎩,整理可得:22520q q -+=,11,2,2q q a >== ,数列的通项公式为:1222n n n a -=⋅=.(2)由于:()()()1121111122112n n n n n n n n a a --++-+=-⨯⨯=--,故:112231(1)n n n a a a a a a -+-+⋯+-35791212222(1)2n n -+=-+-+⋯+-⋅()()3223221282(1)5512n n n +⎡⎤--⎢⎥⎣⎦==----.20.(1)12870x y --=;(2(1)设直线l 方程为:32y x m =+,()11,A x y ,()22,B x y 由抛物线焦半径公式可知:12342AF BF x x +=++=1252x x ∴+=联立2323y x m y x⎧=+⎪⎨⎪=⎩得:()229121240x m x m +-+=则()2212121440m m ∆=-->12m ∴<121212592m x x -∴+=-=,解得:78m =-∴直线l 的方程为:3728y x =-,即:12870x y --=(2)设(),0P t ,则可设直线l 方程为:23x y t =+联立2233x y t y x ⎧=+⎪⎨⎪=⎩得:2230y y t --=则4120t ∆=+>13t ∴>-122y y ∴+=,123y y t =-3A P P B = 123y y ∴=-21y ∴=-,13y =123y y ∴=-则AB ==21.(1)12;(2)(1)连结PO ,OC .因为PA PB =,O 为AB 的中点,所以PO AB ⊥.因为C 是圆O 上异于A ,B 的一点,AB 是圆O 的直径,所以AC BC ⊥,从而AO CO =.又因为PA PC =,PO PO =,所以 ≌PAO PCO ,所以∠=∠POC POA ,即PO AC ⊥.因为,AO CO ⊂平面ABC ,AO CO O = ,所以PO ⊥平面ABC .分别取AC ,BC 的中点M ,N ,连接PM ,OM ,PN ,ON ,则在圆O 中,OM AC ⊥.由PO ⊥平面ABC ,得PO AC ⊥.又PO OM O = ,故AC ⊥平面PMO ,所以AC PM ⊥.所以∠=PMO α.同理,∠=PNO β.于是22222222111tan tan 2⎛⎫⎛⎫⎛⎫+=+=== ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭OM ON OC OC OP OP OP AP OA αβ.(2)因为tan βα,所以BC ==在圆O 中,CA CB ⊥,以点C 为坐标原点,CA 所在直线为x 轴,CB 所在直线为y 轴,过C 且垂直于平面ABC 的直线为z 轴建立空间直角坐标系C xyz -.则(0,0,0)C ,(2,0,0)A ,(0,B .又因为PO ⊥平面ABC,所以OP//z轴,从而P .则(2,0,0)CA =,=CB,= CP .设平面PAC 的法向量为(,,)m x y z = ,则00m CA m CP ⎧⋅=⎨⋅=⎩,即200x x =⎧⎪⎨+=⎪⎩,不妨取y =0x =,z =,此时(0,m = .同理,平面PBC的一个法向量n = .所以cos ,||||m n m n m n ⋅<>==⋅ A PC B --为钝二面角,所以二面角A PC B --的余弦值为22.(1)22y x =--;(2)ln 3]解:(1)2a =-时,()2x f x e =-,设曲线()f x 上的切点为11(,2)x x e -,则切线方程为11122()x x y e e x x +=--,设曲线()g x 上的切点为2221(,)2x x ,则切线方程为22221()2y x x x x -=-由两条切线重合得112212212(1)2x x e x e x x ⎧-=⎪⎨-=-⎪⎩,则1202x x =⎧⎨=-⎩,所以,公切线方程为22y x =--;(2)21()()2x y f x g x ae x =-=-,x y ae x '=-,设其零点为1x ,2x ,1212x x ae x ae x -=- ,1212x x x x a e e ∴==,令21(3)x kx k =≥,可得1111x kx x kx e e =,则1ln 1k x k =-令ln ()(3)1x h x x x =≥-,211ln ()(1)x x h x x --'=-,又令1()1ln (3)t x x x x =--≥,21()0x t x x -'=<,则()t x 单调递减,2()(3)ln 303t x t ≤=-<,()0h x '∴<,()h x 单调递减,ln 3()2h x ≤,易知()0h x >,1ln 3(0,2x ∴∈,令()x x x e ϕ=,1()x x x e ϕ-'=,则()ϕx 在(,1]-∞上递增,113]x xa e ∴=∈23.(1)4sin ρθ=,0x -=;(2)2.(1)曲线C 的普通方程22(2)4x y +-=,所以极坐标方程为4sin ρθ=.由cos 3πρθ⎛⎫+= ⎪⎝⎭(cos cos sin sin )33ππρθθ-=即cos sin ρθθ=l的直角坐标方程为0x -=.(2)由,6cos 3πθπρθ⎧=-⎪⎪⎨⎛⎫⎪+= ⎪⎪⎝⎭⎩得2,,6A π⎛⎫- ⎪⎝⎭射线OB 的极坐标方程为63ππθ=-+,即6πθ=.由,64sin ,πθρθ⎧=⎪⎨⎪=⎩得2,6B π⎛⎫ ⎪⎝⎭,,3AOB AOB π∠=∴ 为等边三角形,2AB ∴=24.(1)5|4x x ⎧⎫<⎨⎬⎩⎭;(2.(1)当1a =时,()()102g x f x -->,即1212x x --->,当1x ≤时,()1212x x --->,即112>恒成立,故1x ≤,当12x <<时,()()1212x x ---->,即1322x ->,解得:514x <<,当2x ≥时,()()1212x x --->,112->不成立,不等式无解,综上,不等式的解集是5|4x x ⎧⎫<⎨⎬⎩⎭.(2)由题意得:()224422a b g +==-=,且221c d +=,()()()2222ac bd ac abcd bd ∴+=++()()()()2222ac bd ad bc ≤+++()()22222a b c d =++=,ac bd ∴+≤a ,b ,c ,d 都是正数,∴当且仅当1a b ==,c d ==“=”,ac bd +。
【高三数学试题】高三数学试题1(理科)及参考答案
高三数学试题1(理科)一、选择题1、设集合{1,2}A =,则满足{1,2,3}A B ⋃=的集合B 的个数是( )A .1B .3C .4D .82、若集合{|3},{|33}xM y y P x y x ====-,则M P I =( ) A {|1}x x > B {|1}y y ≥ C {|0}y y > D {|0}x x ≥3、已知命题p :若,022=+y x 则x 、y 全为0;命题q :若a b >,则11a b <.给出下列四个命题:①p 且q ,②p 或q ,③p 的逆否命题,④ q ⌝,其中真命题的个数为( )()A 1()B 2 ()C 3 ()D 44.集合{}22M x x =-≤≤,{}02N y y =≤≤,给出下列四个图形,其中能表示以M 为定义域,N 为值域的函数关系的是( ).5、已知集合A ={(x ,y)|32y x --=1,x ,y ∈R},B={(x ,y)|y=ax+2,x ,y ∈R},若A ⋂B =∅,则a 的值为( )A .a =1或a =32B .a=1或a =12 C .a =2或a =3 D .以上都不对 6、若函数)(212)(为常数a k k x f xx⋅+-=在定义域上为奇函数,则的值为k ( )A . 1 B. 1- C. 1± D. 07、若函数()(2)()[1,1]()||,()f x f x f x x f x x y f x +=∈-==满足且时则函数的图象与 函数||log 3x y =的图像的交点个数是( )A .2B .3C .4D .多于4x y 0-2 2x y 0 -2 22 xy 0 -2 22 xy 0 -2 2 2A. B. C . D.8、已知函数2()24(03),f x ax ax a =++<<若1212,1,x x x x a <+=-则( )A .12()()f x f x >B .12()()f x f x <C .12()()f x f x = D .1()f x 与2()f x 的大小不能确定二、填空题9、设,0.(),0.x e x g x lnx x ⎧≤=⎨>⎩则1[()]2g g =__________.10.已知函数22(),1x f x x R x =∈+,则1()()f x f x += ;11、设0)1)((:;1|34:|≤---≤-a x a x q x p ,若p 是q 的充分不必要条件,则实数a 的取值范围是 .12、若某学校要从5名男生和2名女生中选出3人作为上海世博会的志愿者,则选出的志愿者中男女生均不少于1名的概率是 (结果用最简分数表示)。
四川省绵阳市第一中学高三数学理测试题含解析
四川省绵阳市第一中学高三数学理测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 定义两种运算:则函数()A. 是奇函数B. 是偶函数C.既是奇函数又是偶函数D. 既不是奇函数又不是偶函数参考答案:【知识点】函数奇偶性的判断. B4【答案解析】A 解析:根据题意得:,由得这时,所以因为,是奇函数,所以选A.【思路点拨】先利用新定义把f(x)的表达式找出来,在利用函数的定义域把函数化简,最后看f (x)与f(-x)的关系得结论.2. 已知流程图如右图所示,该程序运行后,为使输出的值为16,则循环体的判断框内①处应填()(A)(B)(C)(D)参考答案:3. 已知当,时,,则以下判断正确的是()A. B.C. D. m与n的大小关系不确定参考答案:C【分析】设,利用导数求得函数在单调递增,再根据,即可求解,得到答案.【详解】由题意,设,则,当时,,单调递增,又由,所以,即,故选C.【点睛】本题主要考查了利用导数研究函数的单调性及其应用,其中解答中设出新函数,利用导数求得函数的单调性是解答的关键,着重考查了推理与运算能力,属于中档试题.4. 函数y=的图象可能是( )A.B.C.D.参考答案:B【考点】函数的图象.【专题】函数的性质及应用.【分析】当x>0时,,当x<0时,,作出函数图象为B.【解答】解:函数y=的定义域为(﹣∞,0)∪(0,+∞)关于原点对称.当x>0时,,当x<0时,,此时函数图象与当x>0时函数的图象关于原点对称.故选B【点评】本题考查了函数奇偶性的概念、判断及性质,考查了分段函数的图象及图象变换的能力.5. 数列共有12项,其中,,,且,则满足这种条件的不同数列的个数为()A.84B.168C.76D.152参考答案:【知识点】数列问题;计数原理. D1 J1【答案解析】A 解析:满足且的数列前5项有4种情况,满足,,且的数列的第5至12项有种,所以满足题设条件的不同数列的个数为个.【思路点拨】由树图法求出满足题设条件的不同数列的个数.6. 设全集,则A.B.C.D.参考答案:B 7. 执行右面的框图,若输入的是,则输出的值是()A. B. C. D.参考答案:B第一次循环:,第二次循环:,第三次循环:,第四次循环:,第五次循环:,第六次循环:此时条件不成立,输出,选B.8. 若,且,则向量与的夹角为 ( )A.30° B.60° C.120°D.150°参考答案:C略9. 已知函数为偶函数,若将的图像向右平移一个单位又得到一个奇函数,若,则等于 ( )(A)(B)(C)(D)参考答案:B略10. 将一颗质地均匀的骰子(它是一种各面上分别标有1,2,3,4,5,6点数的正方体玩具)先后抛掷2次,记第一次出现的点数为m,记第二次出现的点数为n,则m=2n的概率为()A. B. C. D.参考答案:B【分析】基本事件总数n=6×6=36,利用列举法求出m=2n(k∈N*)包含的基本事件有3个,由古典概型概率公式计算即可.【详解】由题意得,基本事件总数有:种,事件“”包含的基本事件有:,,共3个,所以事件“”的概率为.故选B.【点睛】本题考查概率的求法,考查列举法、古典概型等基础知识,是基础题.二、填空题:本大题共7小题,每小题4分,共28分11. 对任意实数K,直线:与椭圆:恰有一个公共点,则b取值范围是_______________参考答案:答案:[-1,3]12. 已知R上可导数学的图象如图所示,则不等式的解集为_______.参考答案:13. 已知满足对任意都有成立,则的取值范围是___ ____.参考答案:14. 从中任取四个数字组成无重复数字的四位数,其中偶数的个数是(用数字作答).参考答案:6015. 曲线在点处的切线方程为.参考答案:【知识点】导数的几何意义。
高三数学试卷理科及答案
一、选择题(每小题5分,共50分)1. 已知函数f(x) = x^3 - 3x,若存在实数a,使得f(a) = 0,则a的取值范围是()。
A. a > 0B. a < 0C. a = 0D. a ≠ 02. 下列函数中,是奇函数的是()。
A. y = x^2B. y = x^3C. y = |x|D. y = x^2 + 13. 在等差数列{an}中,若a1 = 2,d = 3,则第10项an的值为()。
A. 27B. 28C. 29D. 304. 若等比数列{bn}中,b1 = 2,b3 = 8,则公比q的值为()。
A. 2B. 4C. 8D. 165. 下列命题中,正确的是()。
A. 函数y = log2(x + 1)的图像在y轴上无定义B. 函数y = e^x的图像在第一象限内单调递减C. 函数y = sin(x)的周期为πD. 函数y = tan(x)的图像在y轴上无定义6. 已知直线l的方程为2x - y + 3 = 0,点P(1, 2)到直线l的距离为()。
A. 1B. 2C. 3D. 47. 在直角坐标系中,点A(1, 2),B(3, 4),C(5, 6)构成三角形ABC,则三角形ABC的面积S为()。
A. 2B. 3C. 4D. 58. 已知函数f(x) = ax^2 + bx + c,若f(1) = 2,f(2) = 4,则f(3)的值为()。
A. 6B. 8C. 10D. 129. 在等差数列{an}中,若a1 = 3,d = 2,则前n项和Sn的表达式为()。
A. Sn = n^2 + 2nB. Sn = n^2 + 3nC. Sn = n^2 + 4nD. Sn = n^2 + 5n10. 已知等比数列{bn}中,b1 = 3,b3 = 27,则前n项和Tn的表达式为()。
A. Tn = 3^nB. Tn = 3^(n+1)C. Tn = 3^(n-1)D. Tn = 3^(n-2)二、填空题(每小题5分,共25分)11. 若函数y = ax^2 + bx + c的图像开口向上,则a的取值范围是__________。
高三理科数学试卷(含答案)
理科数学试卷参考答案及评分标准本试卷分第Ⅰ卷和第Ⅱ卷两部分,共11页,满分150分,考试时间120分钟.考试结束后,将本试卷和答题卡一并交回. 注意事项:1. 答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、准考证号、县区和科类填写在答题卡和试卷规定的位置上,并将准考证号条形码粘贴在答题卡上指定位置.2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上.3. 第Ⅱ卷必须用0.5毫米黑色签字笔在答题卡各题的答题区域内作答;不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效.4. 填空题请直接填写答案,解答题应写出文字说明,证明过程或演算步骤.第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设全集I 是实数集R , 3{|2}{|0}1x M x x N x x -=>=≤-与都是I 的子集(如图所示), 则阴影部分所表示的集合为A .{}2x x <B .{}21x x -≤<C .{}12x x <≤D .{}22x x -≤≤2.下列函数中既不是奇函数,又不是偶函数的是A .2xy = B . (lg y x =C . 22xxy -=+ D . 1lg1y x =+ 3.若曲线x x x f -=4)(在点P 处的切线平行于直线03=-y x ,则点P 的坐标为A .(1,0)B .(1,5)C .(1,-3)D .(-1,2)4.在ABC ∆中,a b 、分别是角A B 、所对的边,条件“a b <”是使 “cos cos A B >”成立的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 5.422142x x dx -⎛⎫-++= ⎪⎝⎭⎰ A .16 B .18 C .20 D .226. 已知函数),6cos()6sin()(ππ++=x x x f 则下列判断正确的是A .)(x f 的最小正周期为2π,其图象的一条对称轴为12π=xB .)(x f 的最小正周期为2π,其图象的一条对称轴为6π=xC .)(x f 的最小正周期为π,其图象的一条对称轴为12π=xD .)(x f 的最小正周期为π,其图象的一条对称轴为6π=x7. 一空间几何体的三视图如图所示,则该几何体的表面积为 A.2π+ B.42π+ C.6π+ D.62π+ 8. 若直线:10 l ax by ++=始终平分圆M :224210x y x y ++++=的周长,则()()2222a b -+-的最小值为AB .5C.D .109. 设b c 、表示两条直线,αβ、表示两个平面,下列命题中真命题是A .若c ∥α,c ⊥β,则αβ⊥B .若b α⊂,b ∥c ,则c ∥αC .若b α⊂,c ∥α,则b ∥cD .若c ∥α,αβ⊥,则c β⊥10.已知数列{}n x 满足3n n x x +=,21||()n n n x x x n N *++=-∈,若11x =,2 (1,0)x a a a =≤≠,则数列{}n x 的前2010项的和2010S 为A .669B .670C .1338D .134011. 在平面直角坐标系中,O 为坐标原点,设向量).3,1(),1,3(,,====其中若10,≤≤≤+=μλμλ且,C 点所有可能的位置区域用阴影表示正确的是俯视图正视图侧视图(第7题图)A .B .C .D .12.已知点F 是双曲线)0,0(12222>>=-b a by a x 的左焦点,点E 是该双曲线的右顶点,过F 且垂直于x 轴的直线与双曲线交于A B 、两点,若ABE ∆是锐角三角形,则该双曲线的离心率e 的取值范围是A . ()1,+∞B .()1,2C.(1,1+D.(2,1+第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分. 13. 对任意非零实数a b 、,若a b ⊗的运算原理如图所示,则()221log 82-⎛⎫⊗= ⎪⎝⎭___1___.14.在ABC ∆中,已知41AB AC ==,,ABCS AB AC ∆=⋅则的值为 ±2 .15. 设n S 表示等差数列{}n a 的前n 项和,且918S =,240n S =,若()4309n a n -=>,则n = 15 .16. 已知两个不相等的实数a b 、满足以下关系式:204a sin a cos πθθ⋅+⋅-=,204b sin b cos πθθ⋅+⋅-=,则连接A ()2a ,a 、 B ()2b ,b 两点的直线与圆心在原点的单位圆的位置关系是 相交 . 三、解答题:本大题共6个小题,共74分. 17.(本小题满分12分)已知函数2()sin cos f x x x x =. (Ⅰ)求()f x 的最小正周期;(Ⅱ)求()f x 在区间,62ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值. 解:(Ⅰ)∵2()sin cos f x x x x =+)12sin cos cos 212x x x =⋅++(第13题图)1sin 2cos 2222x x =++ ……………3分sin 23x π⎛⎫=++ ⎪⎝⎭ ……………5分 ∴ 函数()f x 的最小正周期22T ππ==. ……………6分 (Ⅱ)∵ 62x ππ-≤≤,40233x ππ≤+≤∴sin 213x π⎛⎫≤+≤ ⎪⎝⎭, ……………9分 ∴0sin 213x π⎛⎫≤++≤= ⎪⎝⎭, ∴ ()f x 在区间,62ππ⎡⎤-⎢⎥⎣⎦上的最大值为22,最小值为0.……………12分 18.(本小题满分12分)已知等腰直角三角形RBC ,其中∠RBC =90º, 2==BC RB .点A 、D 分别是RB 、RC 的中点,现将△RAD 沿着边AD 折起到△PAD 位置,使PA ⊥AB ,连结PB 、PC . (Ⅰ)求证:BC ⊥PB ;(Ⅱ)求二面角P CD A --的余弦值. 解:(Ⅰ)∵点D A 、分别是RB 、RC 的中点,∴ BC AD BC AD 21//=且. …… 2分∴ ∠090=∠=∠=RBC RAD PAD . ∴ AD PA ⊥又PA ⊥AB ,DA AB A =∴ ABCD PA 面⊥ ∴BC PA ⊥ ∵ A AB PA AB BC =⊥ ,,∴ BC ⊥平面PAB . …… 4分 ∵ ⊂PB 平面PAB ,∴ PB BC ⊥. …… 6分 (Ⅱ)法一:取RD 的中点F ,连结AF 、PF .PCADBR(第18题图)∵ 1==AD RA ,∴ RC AF ⊥.又由(Ⅰ)知ABCD PA 面⊥, 而⊂RC 平面ABCD ,∴ RC PA ⊥. ………………… 8分 ∵ ,A PA AF= ∴ ⊥RC 平面PAF .∴ ∠AFP 是二面角P CD A --的平面角. ………………10分 在Rt △RAD 中, 22212122=+==AD RA RD AF , 在Rt △PAF 中, 2622=+=AF PA PF , ∴ 332622cos ===∠PF AF AFP . ………………11分 ∴ 二面角P CD A --的平面角的余弦值是33. ………………12分 (Ⅱ)法二:建立如图所示的空间直角坐标系xyz A -. 则D (-1,0,0),C (-2,1,0),P (0,0,1).∴=(-1,1,0), =(1,0,1), ……8分 设平面PCD 的法向量为),,(z y x n =,则n DC x y n DP x z ⎧⋅=-+=⎪⎨⋅=+=⎪⎩……10分 令1=x ,得1,1-==z y , ∴ )1,1,1(-=n.FR ADBCP (第18题图)R(第18题图)显然,是平面ACD 的一个法向量=(,0,01-).∴ cos<n ,33131=⨯=. ∴ 二面角P CD A --的余弦值是33. ………………12分 19.(本小题满分12分)已知数列{}n a 的首项15a =,前n 项和为n S ,且125n n S S n +=++()n N *∈.(Ⅰ)设1n n b a =+,求数列{}n b 的通项公式; (Ⅱ)求数列{}n a 的前n 项和n S . 解:(Ⅰ)由125n n S S n +=++()n N *∈得 ()1215n n S S n -=+-+(,2)n N n *∈≥两式相减得 121n n a a +=+ ……………………………… 3分 ∴ ()1121n n a a ++=+即 n n b b 21=+(,2)n N n*∈≥ …………………………………… 4分 又1165111122=+=++=-=a S S S a ∴ 12122=+=a b ,6111=+=a b∴ 122b b = …………………………………… 6分 ∴ 数列{}n b 是首项为6,公比为2的等比数列 ∴ n n n b 23261⋅=⋅=- ………………………………… 8分(Ⅱ)法一由(Ⅰ)知321nn a =⋅- ……………………………… 9分 ∴ 12n n S a a a =++⋅⋅⋅+2323232nn =⨯+⨯+⋅⋅⋅+⋅- ……………………………10分()221321n n -=⨯--1626326n n n n +=⋅--=⋅--. ……………………… 12分(Ⅱ)法二由已知125n n S S n +=++()n N *∈ ① 设()()112n n S c n d S cn d ++++=++ 整理得 12n n S S cn d c +=++- ②对照① 、②,得 1,6c d == ……………………………………8分 即①等价于 ()()11626n n S n S n ++++=++∴ 数列{}6n S n ++是等比数列,首项为11161612S a ++=++=,公比为2q = ∴ 11612232n n n S n -+++=⋅=⋅∴ 1326n n S n +=⋅--. …………………………………… 12分20.(本小题满分12分)如图所示,将一矩形花坛ABCD 扩建成一个更大的矩形花坛AMPN ,要求B 点在AM 上,D 点在AN 上,且对角线MN 过C 点,已知3=AB 米,2=AD 米.(I )要使矩形AMPN 的面积大于32平方米,则DN 的长应在什么范围内? (II )当DN 的长度是多少时,矩形花坛AMPN 的面积最小?并求出最小值. 解:(I )设DN 的长为x (0x >)米,则2AN x =+米∵AMDC ANDN =,∴()32x AM x+=, ……………………2分∴ ()232AMPN x S AN AM x+=⋅=由32>AMPN S 得()23232x x+> ,(第20题图)又0x >,得 2320120x x -+>,解得:2063x x <<> 或 即DN 长的取值范围是2(0)(6)3∞ ,,+ ……………………7分(II )矩形花坛AMPN 的面积为()22323121212312x x x y x xx x+++===++1224≥= ……………………10分 当且仅当1232x x ,x==即时矩形花坛AMPN 的面积取得最小值24. 故,DN 的长度是2米时,矩形AMPN 的面积最小,最小值为24平方米.…12分 21.(本小题满分12分)已知函数22()ln ()f x x a x ax a R =-+∈.(Ⅰ)当1a =时,证明函数()f x 只有一个零点;(Ⅱ)若函数()f x 在区间()1,+∞上是减函数,求实数a 的取值范围. 解:(Ⅰ)当1a =时,2()ln f x x x x =-+,其定义域是(0,)+∞∴ 2121()21x x f x x x x --'∴=-+=- …………2分令()0f x '=,即2210x x x ---=,解得12x =-或1x =. 0x >Q ,∴ 12x ∴=-舍去. 当01x <<时,()0f x '>;当1x >时,()0f x '<.∴ 函数()f x 在区间()01,上单调递增,在区间()1,+∞上单调递减 ∴ 当x =1时,函数()f x 取得最大值,其值为2(1)ln1110f =-+=. 当1x ≠时,()(1)f x f <,即()0f x <.∴ 函数()f x 只有一个零点. ……………………6分(Ⅱ)显然函数22()ln f x x a x ax =-+的定义域为(0,)+∞∴ 222121(21)(1)()2a x ax ax ax f x a x a x x x-++-+-'=-+== ………7分① 当0a =时,1()0,()f x f x x'=>∴在区间()1,+∞上为增函数,不合题意……8分 ② 当0a >时,()()00f x x '≤>等价于()()()21100ax ax x +-≥>,即1x a≥ 此时()f x 的单调递减区间为1,a ⎡⎫+∞⎪⎢⎣⎭.依题意,得11,0.a a ⎧≤⎪⎨⎪>⎩解之得1a ≥.………10分③ 当0a <时,()()00f x x '≤>等价于()()()21100ax ax x +-≥>,即12x a≥- 此时()f x 的单调递减区间为12,a ⎡⎫-+∞⎪⎢⎣⎭, ∴1120a a ⎧-≤⎪⎨⎪<⎩得12a ≤-综上,实数a 的取值范围是1(,][1,)2-∞-+∞U …………12分 法二:①当0a =时,1()0,()f x f x x'=>∴在区间()1,+∞上为增函数,不合题意……8分 ②当0a ≠时,要使函数()f x 在区间()1,+∞上是减函数,只需()0f x '≤在区间()1,+∞上恒成立,0x > ∴只要22210a x ax --≥恒成立,2214210aa a a ⎧≤⎪∴⎨⎪--≥⎩解得1a ≥或12a ≤-综上,实数a 的取值范围是1(,][1,)2-∞-+∞U …………12分 22.(本小题满分14分)已知椭圆C 中心在原点、焦点在x 轴上,椭圆C 上的点到焦点的最大值为3,最小值为1.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)若直线l :()0y kx m k =+≠与椭圆交于不同的两点M N 、(M N 、不是左、右顶点),且以MN 为直径的圆经过椭圆的右顶点A .求证:直线l 过定点,并求出定点的坐标. 解:(Ⅰ)设椭圆的长半轴为a ,半焦距为c ,则31a c a c +=⎧⎨-=⎩ 解得 21a c =⎧⎨=⎩∴ 椭圆C 的标准方程为 22143x y +=. ………………… 4分(Ⅱ)由方程组22143x y y kx m⎧⎪+=⎨⎪=+⎩ 消去y ,得()2223484120k xk m x m +++-= 由题意:△()()()22284344120km km=-+->整理得:22340k m +-> ① ……7分 设()()1122,,M x y N x y 、,则122834kmx x k+=-+, 212241234m x x k -=+………………… 8分 由已知,AM AN ⊥ , 且椭圆的右顶点为A (2,0) ∴()()1212220x x y y --+=………………… 10分即 ()()()2212121240kx x km x x m++-+++=也即 ()()22222412812403434m km k km m k k--+⋅+-⋅++=++ 整理得: 2271640m mk k ++= 解得: 2m k =- 或 27km =-,均满足① ……………………… 12分 当2m k =-时,直线l 的方程为 2y kx k =-,过定点(2,0),舍去当27k m =-时,直线l 的方程为 27y k x ⎛⎫=- ⎪⎝⎭,过定点2(,0)7,故,直线l 过定点,且定点的坐标为2(,0)7.……………………… 14分。
河南省2023届高三上学期第一次考试数学理科试题(解析版)
“顶尖计划”2023届高中毕业班第一次考试理科数学一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}223,N ,18400A x x n nB x x x ==+∈=--<∣∣,则A B 中的元素个数为()A.8B.9C.10D.11【答案】B 【解析】【分析】解一元二次不等式化简集合B ,再根据已知列出不等式,求解判断作答.【详解】解不等式218400x x --<得:220x -<<,即{|220}B x x =-<<,而{}23,N A x x n n ==+∈∣,由22320n -<+<解得:51722n -<<,又N n ∈,显然满足51722n -<<的自然数有9个,所以A B 中的元素个数为9.故选:B 2.已知复数33i2i z =+,则z =()A.1B.35C.355D.3【答案】C 【解析】【分析】利用复数的除法化简复数z ,利用复数的模长公式可求得结果.【详解】因为()()()33i 2i 3i 3i 36i 2i 2i 2i 2i 55z +====-++--+,因此,5z ==.故选:C.3.已知非零向量a 、b满足a b =r r ,且()2a b b +⊥ ,则,a b <>= ()A.π6B.π3C.2π3D.5π6【答案】C 【解析】【分析】由已知可得出()20a b b +⋅= ,利用平面向量数量积的运算性质求出cos ,a b <> 的值,结合平面向量夹角的取值范围可求得结果.【详解】因为()2a b b +⊥ ,则()222cos ,0a b b a b a b b +⋅=⋅<>+= ,a b = ,可得1cos ,2a b <>=- ,因为0,πa b ≤<>≤ ,因此,2π,3a b <>= .故选:C.4.某士兵进行射击训练,每次命中目标的概率均为34,且每次命中与否相互独立,则他连续射击3次,至少命中两次的概率为()A.2732B.916C.2764D.932【答案】A 【解析】【分析】根据相互独立事件的概率乘法公式及互斥事件的概率加法公式即可求解.【详解】解:因为每次命中目标的概率均为34,且每次命中与否相互独立,所以连续射击3次,至少命中两次的概率322333327C 144432P ⎛⎫⎛⎫⎛⎫=+-= ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,故选:A.5.已知函数()2sin 3cos f x x x =+在x ϕ=处取得最大值,则cos ϕ=()A.13 B.13C.13-D.31313-【答案】A 【解析】【分析】根辅助角公式和正弦函数最值求解即可.【详解】()()2sin 3cos f x x x x θ=+=+,其中θ为锐角,sin 13θ=.因为当x ϕ=处取得最大值,所以22πϕθπ+=+k ,k Z ∈,即22πϕθπ=-+k ,k Z ∈,所以313cos cos 2sin 213πϕθπθ⎛⎫=-+== ⎪⎝⎭k .故选:A6.已知定义域为R 的偶函数()f x 满足()(4)0f x f x +-=,且当[2,2)x ∈-时,2()4f x x =-,则(2021)f =()A.3-B.1- C.1D.3【答案】D 【解析】【分析】根据给定条件,探讨出函数()f x 的周期,再结合已知函数式求解作答.【详解】因R 上的偶函数()f x 满足()(4)0f x f x +-=,即有()()()4f x f x f x -=-=--,则(8)(4)()f x f x f x -=--=-,因此,函数()f x 是周期为8的周期函数,2(2021)(25285)(5)(1)[(1)4]3f f f f =⨯+==--=---=.故选:D7.我国古代经典数学名著《九章算术》中有一段表述:“今有圆堡壔(dăo ),周四丈八尺,高一丈一尺”,意思是有一个圆柱,底面周长为4丈8尺,高为1丈1尺.则该圆柱的外接球的表面积约为()(注:1丈=10尺,π取3)A.1185平方尺B.1131平方尺C.674平方尺D.337平方尺【答案】B 【解析】【分析】根据题意作图,再由底面周长求得底面半径,连接上下底面圆心,取中点为外接圆的圆心,根据勾股定理,可得外接圆半径,可得答案.【详解】由1丈=10尺,则4丈8尺=48尺,1丈1尺=11尺,如下图:则11,2·48BC AB π==,即8AB =,假设点D 为圆柱外接圆的圆心,即AD 为外接圆的半径,且112BD DC ==,在Rt ABD △中,222AB BD AD +=,解得294.25AD =,则外接球的表面积241131S AD π=⋅=,故选:B.8.甲、乙、丙、丁、戊五名志愿者去,,A B C 三个不同的小区参加新冠疫情防控志愿服务,每个小区至少去1人,每人只去1个小区,且甲、乙去同一个小区,则不同的安排方法有()A.28种B.32种C.36种D.42种【答案】C 【解析】【分析】先将甲、乙看成一个元素,然后先分组后排列可得.【详解】将甲、乙看成一个元素A ,然后将A 、丙、丁、戊四个元素分为3组,共有21142122C C C 6A =种,再将3组分到3个不同小区有33A =6种,所以满足条件的安排方法共有66=36⨯种.故选:C9.已知角α的顶点在坐标原点,始边与x 轴的非负半轴重合,终边经过点(,4)m -,其中0m <,若7cos 225α=-,则πtan 2m α⎛⎫+= ⎪⎝⎭()A.2B.12-C.43-D.34-【答案】D 【解析】【分析】利用三角函数定义求出tan α,再利用二倍角的余弦公式结合齐次式法求解作答.【详解】依题意,4tan 0mα=->,又22222222cos sin 1tan 7cos 2cos sin cos sin 1tan 25ααααααααα--=-===-++,解得4tan 3α=,从而得3m =-,所以3πsin()π3πcos 132tan(tan()3π22sin tan 4cos(2m ααααααα-+=-===-=---.故选:D10.过抛物线()2:20C y px p =>的焦点F 且斜率为1-的直线交C 于A 、B (其中A 在x轴上方)两点,交C 的准线于点M ,且16AB =,O 为坐标原点,则OM =()A.2B.C.D.【答案】D 【解析】【分析】将直线AB 的方程与抛物线的方程联立,利用韦达定理结合抛物线的焦点弦长公式求出p 的值,可求得点M 的坐标,再利用平面间两点间的距离公式可求得OM 的值.【详解】抛物线C 的焦点为,02p F ⎛⎫⎪⎝⎭,准线方程为2p x =-,直线AB 的方程为2⎛⎫=--⎪⎝⎭p y x ,设点()11,A x y 、()22,B x y ,联立222p y x y px⎧⎛⎫=--⎪ ⎪⎝⎭⎨⎪=⎩可得22304p x px -+=,2290p p ∆=->,由韦达定理可得123x x p +=,则12416x x p A p B =++==,可得4p =,联立22p x p y x ⎧=-⎪⎪⎨⎛⎫⎪=-- ⎪⎪⎝⎭⎩可得2p x y p ⎧=-⎪⎨⎪=⎩,即点()2,4M -,因此,OM ==.故选:D.11.已知32()2(2)3f x x a x x =+--是奇函数,则过点(1,2)P -向曲线()y f x =可作的切线条数是()A.1B.2C.3D.不确定【答案】C 【解析】【分析】根据给定条件,求出a ,再求出函数()f x 的导数,设出切点坐标,借助导数的几何意义列出方程求解作答.【详解】因函数()f x 是奇函数,则由()()0f x f x -+=得()2220a x -=恒成立,则2a =,即有3()23f x x x =-,2()63'=-f x x ,设过点(1,2)P -向曲线()y f x =所作切线与曲线()y f x =相切的切点为3000(,23)Q x x x -,而点(1,2)P -不在曲线()y f x =上,则320000232631x x x x ---=+,整理得32004610x x +-=,即2000(21)(221)0x x x ++-=,解得012x =-或0132x -±=,即符合条件的切点有3个,所以过点(1,2)P -向曲线()y f x =可作的切线条数是3.故选:C12.设双曲线2222:1(0,0)x y a b a bΓ-=>>的左、右焦点分别为点12(,0),(,0)F c F c -,过点(2,0)P c -且斜率为12的直线与双曲线的左、右两支分别交于,M N 两点,若||3||PN PM =,且直线2F N 的斜率为3,则Γ的离心率为()A.132B.2C.2D.2【答案】B 【解析】【分析】通过题意可以得到直线PN 和直线2NF 的方程,两条方程联立可以得到N 的坐标,代入双曲线即可求出答案【详解】解:由题意可得直线PN 的方程为()122y x c =+,直线2NF 的方程为()3y x c =-,所以()()1223y x c y x c ⎧=+⎪⎨⎪=-⎩,解得8595c x cy ⎧=⎪⎪⎨⎪=⎪⎩,即89,55c c N ⎛⎫ ⎪⎝⎭,将89,55c c N ⎛⎫ ⎪⎝⎭代入双曲线可得2222648112525c c a b-=即()22222648112525c c a c a -=-,所以2264811125251e e -=⎛⎫- ⎪⎝⎭,因为1,e >所以e =故选:B二、填空题:本题共4小题,每小题5分,共20分.13.已知函数2()log (1)f x x a =-+在区间(2,3)上有且仅有一个零点,则实数a 的取值范围为_____.【答案】(1,0)-【解析】【分析】结合函数的单调性和零点的存在定理,即可求解【详解】解:由对数函数的性质,可得()f x 为单调递增函数,且函数()f x 在(2,3)上有且仅有一个零点,所以()()230f f ⋅<,即(1)0a a ⋅+<,解得10a -<<,所以实数a 的取值范围是(1,0)-,故答案为:(1,0)-14.写出一个同时具有下列性质①②③的函数:()f x =_____.①()()()1212f x x f x f x =+;②当,()0x ∈+∞时,()f x 单调递减;③()f x 为偶函数.【答案】12log x (不唯一)【解析】【分析】根据对数函数性质即可做出判断.【详解】性质①显然是和对数有关,性质②只需令对数的底01a <<即可,性质③只需将自变量x 加绝对值即变成偶函数.故答案为:12log x (不唯一)15.已知平面上的动点P 到点(0,0)O 和(2,0)A 的距离之比为32,则点P 到x 轴的距离最大值为_____.【答案】【解析】【分析】设(,)P x y ,然后根据题意列方程化简可得点P 的轨迹是以(6,0)-为圆心,为半径的圆,从而可求得答案.【详解】设(,)P x y ,因为动点P 到点(0,0)O 和(2,0)A 的距离之比为32,2=,22223(2)4x y x y +=-+,2222443(44)3x y x x y +=-++,221212x y x ++=22(6)48x y ++=,所以点P 的轨迹是以(6,0)-为圆心,所以点P 到x 轴的距离最大值为故答案为:16.微型航空遥感技术以无人机为空中遥感平台,为城市经济和文化建设提供了有效的技术服务手段.如图所示,有一架无人机在空中P 处进行航拍,水平地面上甲、乙两人分别在,A B 处观察该无人机(两人的身高忽略不计),C 为无人机在水平地面上的正投影.已知甲乙两人相距100m ,甲观察无人机的仰角为45︒,若再测量两个角的大小就可以确定无人机的飞行高度PC ,则这两个角可以是_____.(写出所有符合要求的编号)①BAC ∠和ABC ∠;②BAC ∠和PAB ∠;③PAB ∠和PBA ∠;④PAB ∠和ABC ∠.【答案】①③④【解析】【分析】①:根据已知先解ABC 得AC ,然后可得;②:根据已知直接判断可知;③:先解PAB △得PA ,然后可得;④:先由最小角定理的BAC ∠,解ABC 可得AC ,然后可得.【详解】①:当已知BAC ∠和ABC ∠时,在ABC 利用内角和定理和正弦定理可得AC ,然后在Rt PAC △中,由三角函数定义可得PC ,故①正确;②:当已知BAC ∠和PAB ∠时,在ABC 已知一角一边,在PAB △中已知一角一边,显然无法求解,故②错误;③:当已知PAB ∠和PBA ∠时,在PAB △中已知两角一边,可解出PA ,然后在Rt PAC △中,由三角函数定义可得PC ,故③正确;④:当已知PAB ∠和ABC ∠时,可先由最小角定理求得BAC ∠,然后解ABC 可得AC ,最后在Rt PAC △中,由三角函数定义可得PC ,故④正确.故答案为:①③④三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答.(一)必考题:共60分.17.设等差数列{}n a 的前n 项和为n S ,已知251,15a S ==.(1)求数列{}n a 的通项公式;(2)若23log 2n n n b a a +=,求数列{}n b 的前n 项和n T .【答案】(1)23n a n =-(2)1(25)210n n T n +=-⨯+【解析】【分析】(1)根据等差数列的通项公式和前n 项和公式列方程组直接求解可得;(2)由错位相减法可得.【小问1详解】设数列{}n a 的公差为d ,由题设可得111,51015a d a d +=⎧⎨+=⎩解得112,a d =-⎧⎨=⎩所以1(1)223n a n n =-+-⨯=-.【小问2详解】由(1)知2log 23n b n n =-,所以223nn bn =-可得(23)2nn b n =-⨯,所以231121232(25)2(23)2n n n T n n -=-⨯+⨯+⨯++-⨯+-⨯ ①23412121232(25)2(23)2n n n T n n +=-⨯+⨯+⨯++-⨯+-⨯ ②②减①可得:341112222(23)2n n n T n ++=⨯----+-⨯ 118(12)(23)2212n n n -+⨯-=-⨯+--1(25)210n n +=-⨯+18.某工厂共有甲、乙两个车间,为了比较两个车间的生产水平,分别从两个车间生产的同一种零件中各随机抽取了100件,它们的质量指标值m 统计如下:质量指标值m [)0,20[)20,40[)40,60[)60,80[]80,100甲车间(件)152025319乙车间(件)510153931(1)估计该工厂生产这种零件的质量指标值m 的平均数;(同一组中的数据用该组区间的中点值作代表)(2)根据所给数据,完成下面的22⨯列联表(表中数据单位:件),并判断是否有99%的把握认为甲、乙两个车间的生产水平有差异.60m <60m ≥合计甲车间乙车间合计附:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.()2P K k≥0.050.010.001k3.8416.63510.828【答案】(1)58;(2)列联表见解析,有99%把握认为甲乙两个车间的生产水平有差异.【解析】【分析】(1)根据给定的数表,求出各组数据的频率,再列式计算作答.(2)完善22⨯列联表,计算2K 的观测值,再与临界值比对作答.【小问1详解】由所给数据,各组的频率分别为0.1,0.15,0.2,0.35,0.2,所以该工厂生产这种零件的质量指标值m 的平均数的估计值为:100.1300.15500.2700.35900.258⨯+⨯+⨯+⨯+⨯=.【小问2详解】22⨯列联表如下:60m <60m ≥合计甲车间6040100乙车间3070100合计90110200所以22200(60704030)18.18210010090110K ⨯⨯-⨯=≈⨯⨯⨯因为18.182大于6.635,所以有99%把握认为甲乙两个车间的生产水平有差异.19.如图,在直三棱柱111ABC A B C -中,190,24,ACB AA AC BC M ︒∠====为棱1AA 上靠近1A 的三等分点,N 为棱AC 的中点,点P 在棱BC 上,且直线PN ∥平面1BMC .(1)求PC 的长;(2)求二面角1P BM C --的余弦值.【答案】(1)23PC =(2)22110【解析】【分析】(1)在1CC 上取一点Q ,使得CP CQ =,根据面面平行判定定理证明平面PQN平面1BMC ,再根据面面平行性质定理确定CQ 的长即可,(2)建立空间直角坐标系,求出平面PBM ,平面1BC M 的法向量,根据二面角向量公式求二面角1P BM C --的余弦值.【小问1详解】在1CC 上取一点Q ,使得CP CQ =,连接,PQ NQ .由已知得11CC AA CB ==,所以1CQ CPCC CB=所以1PQ BC ∥.因为PQ ⊄平面1BMC ,1BC ⊂平面1BMC ,所以PQ ∥平面1BMC .又因为PN ∥平面1,BMC PN PQ P ⋂=,,PN NQ ⊂平面PQN ,所以平面PQN 平面1BMC .平面11ACC A 平面PQN QN =,平面11ACC A 平面11BC M MC =,根据面面平行的性质可知1//MC QN .在矩形11ACC A 中,可得11CQN A MC ∽,所以11123A M CQ CN A C ==,所以2233PC CQ CN ===.【小问2详解】以C 为坐标原点,分别以1,,CA CB CC 所在直线为,,x y z 轴建立空间直角坐标系.则182(0,0,0),(0,0,4),(0,4,0),2,0,,0,,033C C B M P ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭.114(0,4,4),2,0,3C B C M ⎛⎫=-=- ⎪⎝⎭ ,8102,4,,0,,033BM BP ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭ ,设平面1C MB 的法向量为()111,,m x y z =r,则110,0,C B m C M m ⎧⋅=⎪⎨⋅=⎪⎩ ,所以1111440,420,3y z x z -=⎧⎪⎨-=⎪⎩,取13z =得()2,3,3.m = 设平面PMB 的法向量为()222,,n x y z =r ,则0,0,BM n BP n ⎧⋅=⎨⋅=⎩ 所以22228240,3100,3x y z y ⎧-+=⎪⎪⎨⎪-=⎪⎩取23z =-,得()4,0,3.n =- 所以22cos ,110m n m n m n ⨯++⨯-⋅===-⋅结合图可知二面角1PBM C --的余弦值为110.20.过椭圆22:143x y C +=上任意一点P 作直线:l y kx p=+(1)证明:2234p k + ;(2)若0,p O ≠为坐标原点,线段OP 的中点为M ,过M 作l 的平行线,l l ''与C 交于,A B 两点,求ABP △面积的最大值.【答案】(1)证明见解析(2)32.【解析】【分析】(1)联立椭圆方程与直线方程,消元整理一元二次方程,由题意,该方程有解,则判别式大于等于零,可得答案.(2)设出题目中的两点,根据平行,设出另一条直线,根据中点,找出两直线的截距之间的关系,联立椭圆方程与直线方程,消元整理一元二次方程,写出韦达定理,根据三角形的等积变换,利用分割法,整理函数,根据(1),可得答案.【小问1详解】联立221,43,x y y kx p ⎧+=⎪⎨⎪=+⎩,消去y 整理得:()2223484120k x kpx p +++-=,因为点P 在C 上,所以()()2222644412340,k p p k ∆=--+ 化简得2234p k + .【小问2详解】设:l y kx m '=+,点()00,P x y ,则00,22x y M ⎛⎫⎪⎝⎭.由已知得00y kx p =+,所以00222y x p k =⋅+,即点00,22x y M ⎛⎫⎪⎝⎭满足方程2p y kx =+,所以2p m =.由221,43,x y y kx m ⎧+=⎪⎨⎪=+⎩得()2223484120k x kmx m +++-=,设()()1122,,,A x y B x y ,则21212228412,3434km m x x x x k k-+=-=++.所以122.34x x k-==+∣所以121||2ABPABOSS m x x ==-==令2234m t k =+,因为2223444p k m += ,所以10,4t ⎛⎤∈ ⎥⎝⎦.所以32ABPS ==所以ABP △面积的最大值为32.21.设函数()()e xf x mx m m =--∈R .(1)讨论()f x 的单调性;(2)若()f x 有两个零点1x 和2x ,设1202x x x +=,证明:()00f x '>(()f x '为()f x 的导函数).【答案】(1)答案见解析(2)证明见解析【解析】【分析】(1)分0m ≤、0m >两种情况讨论,分析导数的符号变化,由此可得出函数()f x 的增区间和减区间;(2)由函数零点的定义可得出1212e 0e 0x x mx m mx m ⎧--=⎨--=⎩,可得出1212e e x x m x x -=-,将所证不等式等价变形为12212212eex x x x x x --->-,令1202x x t -=>,即证e e 2t t t -->,构造函数()e e 2t t g t t -=--,其中0t >,利用导数分析函数()g t 的单调性,即可证得结论成立.【小问1详解】解:因为()e x f x mx m =--,则()e xf x m '=-,若0m ≤,对任意的x ∈R ,则()0f x '<,函数()f x 的单调递减区间为(),-∞+∞;若0m >,令()e 0xf x m '=-=,得ln x m =,当ln x m <时,()0f x '>,当ln x m >时,()0f x '<.所以()f x 的增区间为(),ln m -∞,减区间为()ln ,m +∞.综上所述,当0m ≤时,函数()f x 的单调递减区间为(),-∞+∞;当0m >时,函数()f x 的增区间为(),ln m -∞,减区间为()ln ,m +∞.【小问2详解】证明:不妨令12x x >,由题设可得1212e 0e 0x x mx m mx m ⎧--=⎨--=⎩,两式相减整理可得1212e e x x m x x -=-.所以()1212121222012e e ee 2x x x x x x x xf x f m x x ++''+-⎛⎫==-=- ⎪-⎝⎭,要证()00f x '>,即证1212212e e e 0x x x x x x +-->-,即证12212212eex x x x x x --->-,令1202x x t -=>,即证e e 2t t t -->,其中0t >,构造函数()e e 2ttg t t -=--,其中0t >,则()e e 220t t g t -'=+->=,所以,函数()g t 在()0,∞+上单调递增,所以,当0t >时,()()00g t g >=,即e e 2t t t -->,故原不等式得证.【点睛】方法点睛:利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式()()f x g x >(或()()f x g x <)转化为证明()()0f x g x ->(或()()0f x g x -<),进而构造辅助函数()()()h x f x g x =-;(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.(二)选考题:共10分.请考生在22,23题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy 中,曲线C 的参数方程为2(cos sin )(,0),(cos sin )x m m y m ϕϕϕϕϕ=-⎧≠⎨=+⎩为参数以O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为sin 504πθ⎛⎫+-= ⎪⎝⎭.(1)写出l 的直角坐标方程;(2)若l 与C 只有一个公共点,求m 的值.【答案】(1)50x y +-=(2)102=±m 【解析】【分析】(1)利用和差化积的正弦公式把直线l 的极坐标方程展开,再利用极坐标与直角坐标的互化公式即可求解.(2)先得出曲线C 的普通方程,再联立方程,利用判别式等于0即可求解.【小问1详解】由l 的极坐标方程可得sin cos 50ρθρθ+-=,由cos sin x y ρθρθ=⎧⎨=⎩可知,直角坐标方程为:50x y +-=.【小问2详解】由C 的参数方程可得2222x y m m ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,即C 的普通方程为222480x y m +-=.联立方程22250480x y x y m +-=⎧⎨+-=⎩得:2254010080x x m -+-=,因为直线l 与曲线C 只有一个公共点,所以()222404510081604000m m∆=-⨯⨯-=-=,解得:2=±m .[选修4-5:不等式选讲]23.已知,,a b c 均为正实数,且1abc =.(1)求124a b c++的最小值;(2)证明:222++≥+++++bc ac ab b c a c a b.【答案】(1)6(2)证明见解析【解析】【分析】(1)利用三元基本不等式求解即可.(2)利用基本不等式证明即可得到答案.【小问1详解】由基本不等式可知1246++≥==a b c ,当且仅当124a b c ==,即1,1,22a b c ===时等号成立,所以124a b c++的最小值为6.【小问2详解】因为1abc =,所以111bc ac ab a b c++=++.11242+≥=≥=++a b a b a b .同理可得114b c b c+≥+,114a c a c+≥+所以4111442⎛⎫++≥++⎪+++⎝⎭a b c b c a c a b,当且仅当a b c==时等号成立.所以111222++≥+++++a b c b c a c a b,即222. ++≥+++++ bc ac abb c a c a b。
安徽省合肥市新明中学2021-2022学年高三数学理测试题含解析
安徽省合肥市新明中学2021-2022学年高三数学理测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1.若函数的图象按向量平移后,它的一条对称轴是=,则的一个可能值A. B. C. D.参考答案:答案:B2. 函数y=的定义域为()A.(-4,-1) B.(-4,1)C.(-1,1) D.(-1,1参考答案:C3. 在空间中,a, b是两条不同的直线,,是两个不同的平面,则下列命题中的真命题是A.若 a //, b//,则 a//bB.若a,b,则a丄bC.若a//,a//b,则b//D.若//,a,则a//参考答案:D4. 下列说法正确的是A. 命题“存在x∈R,x2+x+2013>0”的否定是“任意x∈R,x2+x+2013<0”B. 两个三角形全等是这两个三角形面积相等的必要条件C. 函数在其定义域上是减函数D. 给定命题p、q,若“p且q”是真命题,则是假命题参考答案:D5. 已知实数a<0,函数,若f(1﹣a)≥f(1+a),则实数a的取值范围是()A.(﹣∞,﹣2] B.[﹣2,﹣1] C.[﹣1,0) D.(﹣∞,0)参考答案:B【考点】函数的值.【分析】根据条件判断1﹣a和1+a的范围,结合分段函数的表达式进行转化求解即可.【解答】解:∵a<0,则1﹣a>1,1+a<1,则f(1﹣a)≥f(1+a)等价为﹣(1﹣a)≥(1+a)2+2a,即a2+3a+2≤0,得﹣2≤a≤﹣1,即实数a的取值范围是[﹣2,﹣1],故选:B【点评】本题主要考查不等式的求解,根据分段函数的表达式判断变量1﹣a和1+a的范围是解决本题的关键.6. 已知集合,集合,则A. B. C. D.参考答案:B略7. 若一个底面是正三角形的三棱柱的正视图如图所示,其顶点都在一个球面上,则该球的表面积为()A. B. C. D.参考答案:C8. 已知函数f(x)=klnx+1(k∈R),函数g(x)=f(x2﹣4x+5),若存在实数k使得关于x的方程g(x)+sin x=0有且只有6个实数根,则这6个根的和为()A.3πB.6 C.12 D.12π参考答案:C【考点】根的存在性及根的个数判断.【分析】根据条件,先判断g(x)关于x=2对称,然后利用函数与方程之间的关系转化为两个函数的交点问题进行求解即可.【解答】解:∵y=x2﹣4x+5的对称轴为x=2,∴由g(x)=f(x2﹣4x+5),得g(x)关于x=2对称,由g(x)+sin x=0得g(x)=﹣sin x,作出函数y=﹣sin x的图象,若程g(x)+sin x=0只有6个根,则六个根两两关于x=2对称,则关于对称的根分别为x1和x2,x3和x4,x5和x6,则=2, =2, =2则x1+x2=4,x3+x4=4,x5+x6=4则这6个根之和为4+4+4=12,故选:C.9. 设集合M={x|x2+3x+2<0},集合{y|y=x2﹣2},则M∪N=()A.(﹣2,﹣1)B.[﹣2,﹣1)C.(﹣2,+∞)D.[﹣2,+∞)参考答案:D【考点】1D:并集及其运算.【分析】解不等式得集合M、求值域得集合N,再计算M∪N.【解答】解:集合M={x|x2+3x+2<0}={x|﹣2<x<﹣1}=(﹣2,﹣1),集合N={y|y=x2﹣2}={y|y≥﹣2}=[﹣2,+∞),则M∪N=[﹣2,+∞).故选:D.10. 已知正三棱锥的高为6,侧面与底面成60°的二面角,则其内切球(与四个面都相切)的表面积为()A.4πB.16 πC.36πD.64π参考答案:B如图,过点P作PD⊥平面ABC于D,连结并延长AD交BC于E,连结PE,△ABC是正三角形,∴AE是BC边上的高和中线,D为△ABC的中心.∴为侧面与底面所成的二面角的平面角,∴=∵PD=6,∴DE=2,PE=4 , AB=12,∴S△ABC=×(12)2=36,S△PAB=S△PBC=S△PCA==24.∴S表=108.设球的半径为r,以球心O为顶点,棱锥的四个面为底面把正三棱锥分割为四个小棱锥,∵PD=6,∴V P﹣ABC=?36?6=72.则由等体积可得r==2,∴S球=4π22=16π.故选B.二、填空题:本大题共7小题,每小题4分,共28分11. 如图圆上的劣弧所对的弦长CD=,弦AB是线段CD的垂直平分线,AB=2,则线段AC的长度为____参考答案:12. 把正整数排列成如图甲的三角形数阵,然后擦去第偶数行中的奇数和第奇数行中的偶数,得到如图乙的三角形数阵,再把图乙中的数按从小到大的顺序排成一列,得到一个数列,若,则___.参考答案:103313. 设函数f(x)=,则f(f(﹣1))的值为.参考答案:﹣2【考点】分段函数的应用;函数的值.【专题】函数的性质及应用.【分析】直接利用分段函数化简求解即可.【解答】解:函数f(x)=,则f(﹣1)=,f(f(﹣1))=f()=log2=﹣2.故答案为:﹣2.【点评】本题考查分段函数的应用,函数值的求法,考查计算能力.14. 已知集合M={f(x)},有下列命题①若f(x)=,则f(x)M;②若f(x)=2x,则f(x)M;③f(x)M,则y=f(x)的图像关于原点对称;④f(x)M,则对于任意实数x1,x2(x1x2),总有﹤0成立;其中所有正确命题的序号是_______。
高三数学导数测试题(理)
导数测试题班别:_____________姓名:______________一、选择题1.函数n m mx y -=2的导数为y ' =4x 3,则( )A 、m = 1, n = 2B 、m =-1,n = 2C 、m =-1,n =-2D 、m = 1, n =-22. 函数3y x x =+的递增区间是( )A 、),0(+∞B 、 )1,(-∞C 、),(+∞-∞D 、),1(+∞3.函数()323922y x x x x =---<<有( )A 、极大值5,极小值-27B 、极大值5,极小值-11C 、极大值5,无极小值D 、极小值-27,无极大值4.(2020全国卷Ⅰ理) 已知直线y=x+1与曲线y ln()x a =+相切,则α的值为( )(A)1 (B)2 (C) -1 (D)-25、若函数f(x)=x n x 3+在点M(1,4)处切线的斜率为3+3ln3,则n 的值是( )A 、3B 、2C 、4D 、16、函数93)(23-++=x ax x x f ,已知)(x f 在3-=x 时取得极值,则a =( )A 、2B 、3C 、4D 、5 7、在函数x x y 83-=的图象上,其切线的倾斜角小于4π的点中,坐标为整数的点的个数是 A .3 B .2 C .1 D .08、(2020天津卷理)设函数1()ln (0),3f x x x x =->则()y f x =( ) A 在区间1(,1),(1,)e e 内均有零点。
B 在区间1(,1),(1,)e e内均无零点。
C 在区间1(,1)e内有零点,在区间(1,)e 内无零点。
D 在区间1(,1)e内无零点,在区间(1,)e 内有零点。
9、若函数)1,0( )(log )(3≠>-=a a ax x x f a 在区间)0,21(-内单调递增,则a 的取值范围是( ) A .)1,41[ B . )1,43[ C .),49(+∞ D .)49,1( 10、函数y ' =4x 2(x -2)在[-2,2]上的最大值为( )A.278- B.16 C.0 D.5 11、过曲线y=x 3-3x 2上的点(0,0)的切线方程是( )。
湖南省株洲市林方中学2020年高三数学理测试题含解析
湖南省株洲市林方中学2020年高三数学理测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 等于(A) 16 (B) 8 (C) 4 (D) 2参考答案:A2. 如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积为()A. B. C. D.参考答案:D点睛:空间几何体表面积的求法(1)以三视图为载体的几何体的表面积问题,关键是分析三视图确定几何体中各元素之间的位置关系及数量.(2)多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理.(3)旋转体的表面积问题注意其侧面展开图的应用.3. 已知,则()(A)(B)(C)(D)参考答案:B4. 若m>0且m≠1,n>0,则“<0”是“(m-1)(n-1)<0”的()A、充要条件B、充分不必要条件C、必要不充分条件D、既不充分也不必要条件参考答案:A略5. 如右图,已知正四棱锥所有棱长都为1,点E是侧棱SC上一动点,过点E垂直于SC的截面将正四棱锥分成上、下两部分,记,截面下面部分的体积为,则函数的图像大致为()参考答案:A略6. 函数f(x)=tanx﹣(﹣2π≤x≤3π)的所有零点之和等于( )A.πB.2πC.3πD.4π参考答案:B【考点】函数的零点;函数的图象.【专题】函数的性质及应用.【分析】函数f(x)=tanx﹣(﹣2π≤x≤3π)的零点即函数y=tanx 与函数y==的交点的横坐标,由于函数y=tanx 与函数y=的交点关于点(,0)对称,故有得x1+x4=π,x2+x3=π,由此求得所有的零点之和 x1+x2+x3+x4的值.【解答】解:函数f(x)=tanx﹣(﹣2π≤x≤3π)的零点即函数y=tanx 与函数y==的交点的横坐标.由于函数y=tanx 的图象关于点(,0)对称,函数y=的图象也关于点(,0)对称,故函数y=tanx 与函数y=的交点关于点(,0)对称,如图所示:设函数f(x)=tanx﹣(﹣2π≤x≤3π)的零点分别为:x1、x2、x3、x4,则由对称性可得 x1+x4=π,x2+x3=π,∴x1+x2+x3+x4=2π,故选 B.【点评】本题主要考查函数的零点的定义,函数的零点与方程的根的关系,体现了转化、数形结合的数学思想,属于基础题.7. 若,则cos2α+2sin2α=()A.B.1 C.D.(0,0,1)参考答案:A【考点】三角函数的化简求值.【分析】原式利用同角三角函数间的基本关系变形,将tanα的值代入计算即可求出值.【解答】解:由,得=﹣3,解得tanα=,所以cos2α+2sin2α====.故选A.8. 设x,y满足约束条件,若目标函数的最大值为18,则a的值为()A.3 B.5 C.7 D.9参考答案:A根据不等式组得到可行域是一个封闭的四边形区域,目标函数化为当直线过点时,有最大值,将点代入得到故答案为:A.9. 已知等差数列( )A.420B.380C.210D.140参考答案:C略10. 下列命题中错误的是()A.如果平面α⊥平面β,那么平面α内一定存在直线平行于平面βB.如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βC.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥平面γD.如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β参考答案:D考点:平面与平面垂直的性质.专题:空间位置关系与距离;简易逻辑.分析:本题考查的是平面与平面垂直的性质问题.在解答时:A注意线面平行的定义再结合实物即可获得解答;B反证法即可获得解答;C利用面面垂直的性质通过在一个面内作交线的垂线,然后用线面垂直的判定定理即可获得解答;D结合实物举反例即可.解答:解:由题意可知:A、结合实物:教室的门面与地面垂直,门面的上棱对应的直线就与地面平行,故此命题成立;B、假若平面α内存在直线垂直于平面β,根据面面垂直的判定定理可知两平面垂直.故此命题成立;C、结合面面垂直的性质可以分别在α、β内作异于l的直线垂直于交线,再由线面垂直的性质定理可知所作的垂线平行,进而得到线面平行再由线面平行的性质可知所作的直线与l平行,又∵两条平行线中的一条垂直于平面那么另一条也垂直于平面,故命题成立;D、举反例:教室内侧墙面与地面垂直,而侧墙面内有很多直线是不垂直与地面的.故此命题错误.故选D.点评:本题考查的是平面与平面垂直的性质问题.在解答的过程当中充分体现了面面垂直、线面垂直、线面平行的定义判定定理以及性质定理的应用.值得同学们体会和反思.二、填空题:本大题共7小题,每小题4分,共28分11. 全集求集合.参考答案:略12. 设函数由方程确定,下列结论正确的是(请将你认为正确的序号都填上)①是上的单调递减函数;②对于任意,恒成立;③对于任意,关于的方程都有解;④存在反函数,且对于任意,总有成立.参考答案:①②③④13. 设a∈R,函数f(x)=x|x﹣a|﹣a,若对任意的x∈[2,3],f(x)≥0恒成立,则a的取值范围是.参考答案:(﹣∞,]∪[,+∞)【考点】函数恒成立问题.【分析】讨论a的取值:a<2,2≤a≤3,a>3,三种情况,求出每种情况下的f(x)的最小值,让最小值大于等于0从而求出a的取值范围.【解答】解:f(x)=x|x﹣a|﹣a;∴①若a<2,则x=2时,f(x)在[2,3]上取得最小值f(2)=2(2﹣a)﹣a=4﹣3a;∴4﹣3a≥0,a≤;∴a≤;②若2≤a≤3,则x=a时,f(x)取得最小值f(a)=﹣a;﹣a<0,不满足f(x)≥0;即这种情况不存在;③若a>3,则x=3时,f(x)取得最小值f(3)=3(a﹣3)﹣a=2a﹣9;∴2a﹣9≥0,a≥;∴a≥;综上得a的取值范围为:(﹣∞,]∪[,+∞).【点评】考查奇函数的定义,奇函数在原点有定义时f(0)=0,函数零点的定义,含绝对值函数求最值的方法:观察解析式的方法,以及画出分段函数的图象,以及根据图象求函数零点个数的方法.14. 若关于x的不等式有解,则实数的取值范围是:.参考答案:15.在中,“”是“”▲的条件.参考答案:【知识点】充分条件、必要条件A2【答案解析】充要条件若sinA>sinB成立,由正弦定理=2R,所以a>b,所以A>B.反之,若A>B成立,所以a>b,因为a=2RsinA,b=2RsinB,所以sinA>sinB,所以sinA>sinB是A>B的充要条件.故答案为:充要条件.【思路点拨】由正弦定理知,由sinA>sinB,知a>b,所以A>B,反之亦然,故可得结论.16. (几何证明选讲选做题)如图,平行四边形中,, 的面积为6,则的面积为 .参考答案:略17. (5分)直线l1:x+my+6=0与直线l2:(m﹣2)x+3y+2m=0互相平行,则m的值为.参考答案:﹣1考点:两条直线平行的判定.专题:计算题.分析:利用两直线平行,一次项系数之比相等,但不等于常数项之比,解方程求的m的值.解答:解:由于直线l1:x+my+6=0与直线l2:(m﹣2)x+3y+2m=0互相平行,∴,∴m=﹣1,故答案为﹣1.点评:本题考查两直线平行的性质,两直线平行,一次项系数之比相等,但不等于常数项之比.三、解答题:本大题共5小题,共72分。
高三数学模拟考试试题
高三数学模拟试题〔理科〕班别: 姓名: .一.选择题〔12小题,每题5分共60分〕1、设集合},02|{},01|{2≤-=<-=x x x B x x A 那么=B A〔A 〕}21|{<<x x 〔B 〕}21|{≤<x x 〔C 〕1|{<x x 或}2≥x 〔D 〕1|{≤x x 或}2>x2、向量, ), ,2( ),3 ,5(b a x b x a⊥=-=且那么=x〔A 〕2或3 〔B 〕–1或6 〔C 〕6 〔D 〕23、假设x x x 44cos sin ,12-=则π的值为〔A 〕21 〔B 〕21- 〔C 〕23-〔D 〕23 4、i 是虚数单位,复数ii z -+=1)1(2等于〔A 〕i --1 〔B 〕 i +-1 〔C 〕i -1 〔D 〕i +1 5、以抛物线x y 82=的焦点为焦点,且离心率为21的椭圆的标准方程为〔A 〕1121622=+y x 〔B 〕1161222=+y x 〔C 〕141622=+y x 〔D 〕116422=+y x6、假设数列{}n a 的通项公式为=+++++=99531,32a a a a n a n 则 〔A 〕5150〔B 〕2700 〔C 〕9270 〔D 〕48607、设P 〔x ,y 〕是不等式组⎪⎩⎪⎨⎧≥≤≤+023y x y y x 所表示平面区域内任意一点,那么目标函数y x z +=2的最大值是 〔A 〕3〔B 〕4〔C 〕5〔D 〕68、从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同的工作,假设其中甲、乙两名志愿者都不能从事翻译工作,那么选派方案共有〔A 〕280种 〔B 〕240种 〔C 〕180种〔D 〕96种9、正三棱柱111C B A ABC -的侧棱长与底面边长相等,那么1AB 与侧面11A ACC 所成角的正切值是 〔A 〕515〔B 〕315 〔C 〕46 〔D 〕410 10、抛物线c bx x y ++=2在点〔1,2〕处的切线与其平行直线0=++c y bx 间的距离是〔A 〕42 〔B 〕22 〔C 〕223〔D 〕211、设函数1)( , )0( )0( 7)21()(<⎪⎩⎪⎨⎧≥<-=a f x x x x f x若,那么实数a 的取值范围是(A) )3,(--∞ (B)),1(+∞ (C))1,3(- (D)),1()3,(+∞--∞ 12、设|2|)(2x x f -=,假设b a <<0,且)()(b f a f =,那么ab 的取值范围是〔A 〕)2,0( 〔B ]3,0( 〔C 〕]4,0( 〔D 〕]2,2(二、填空题:本大题共4小题,每题5分,共20分.13、函数)1,0(log )(≠>=a a x x f a ,满足2)9(=f ,那么)1(1-f的值是 . 14、双曲线122=+my x 的一个焦点是)0 , 3(,那么实数m 的值是 . 15、)()13(6R a xax ∈-的展开式的常数项是–20,那么=++++∞→)(lim 32n n a a a a ;16、球O 的内接三棱锥P —ABC 底面的三个顶点A 、B 、C在球O 的同一个大圆上,如果AB=AC=5,BC=8,点P 在平面ABC 上的射影恰是球心O ,那么此三棱锥 的体积为 .三、解答题:本大题共6小题,共70分17、〔10分〕三角形ABC 中,a ,b ,c 分别是角A ,B ,C的对边,假设.3))((bc a c b c b a =-+++ 〔Ⅰ〕求角A 的值;〔Ⅱ〕在〔Ⅰ〕的结论下,假设.322cos =B 求)2sin(B A +的值.18、〔12分〕袋中装着标有数字1,2,3,4,5的小球各2个,从袋中任取3个小球,每个小球被取出的可能性都相等,用ξ表示取出的3个小球上的最大数字,求:〔Ⅰ〕取出的3个小球上的数字互不一样的概率; 〔Ⅱ〕随机变量ξ的概率分布列与数学期望;y19、(12分) 如图,三棱锥ABC V -中,VAB ∆是边长为2的正三角形,点V 在平面ABC 上的射影D 在AB 边上,ABC ∆是以B 为直角顶点的等腰直角三角形〔Ⅰ〕求证:面⊥VAB 面VBC ; 〔Ⅱ〕求二面角C VA B --的大小. 20、〔12分〕数列*).(212121:}{2221N n n n a a a a n n n ∈+=-++-+- 满足 求:〔Ⅰ〕数列}{n a 的通项公式; 〔Ⅱ〕数列}{n a 的前n 项与n S .21、〔12分〕).2()()(2≤++=-m e m mx x x f x〔Ⅰ〕当0=m 时,求)(x f 的单调区间; 〔Ⅱ〕证明:当0≥x 时,2)(≤x f 恒成立.22、〔12分〕如下图,圆8)1(:22=++y x C ,定点)0 , 1(A ,M 为圆上一动点,P 为AM 的中点,AM 的垂直平分线PN 交CM 于点N .〔Ⅰ〕求点N 的轨迹E 的方程;〔Ⅱ〕假设过定点)2 , 0(F 的直线交曲线E 于不同的两点G 、H 〔点G 在点F 、H 之间〕,且满足FG FH λ=,求实数λ的取值范围..M数学参考答案一、BDCBA ADBAC CA二、13、3 ;14、 81-;15、 21; 16、350三、17、〔Ⅰ〕由,1800212cos 222︒<<=-+=A bc a c b A 及 ∴A =60°〔Ⅱ〕由322cos =B 及0<B <90°, ∴sin B =3118、解:(Ⅰ)P 〔A 〕=3231012121235=C C C C C . 〔Ⅱ〕ξ有可能的取值为:2,3,4,5.103)4(31022161226=+==C C C C C P ξ,158)5(31022181228=+==C C C C C P ξ 随机变量ξ的概率分布〔略〕;ξ的数学期望为19、〔Ⅰ〕证明:⊥VD 面ABC ,⊂VD 面VAB ,∴面VAB ⊥面ABC ,交线为.ABAB BC ⊥ , ⊥∴BC 面VAB ,又VBC BC 面⊂, ∴面VAB ⊥面VBC〔Ⅱ〕解:过B 作VA BE ⊥于E ,连结CE ,,由〔Ⅰ〕知,CE VA ⊥,CEB ∠∴ 就是二面角CVA B --的平面角.VABAB ∆=,2 是正三角形3=∴BE .又AB BC ==2,332tan =∠∴CEB ,. 二面角的大小为332arctan. C20、解:〔Ⅰ〕*)(2121212221N n n n a a a n n ∈+=-++-+-在〔1〕中令适合有511==a n 〔3〕式,故*)(121N n n a n n ∈+=+〔Ⅱ〕设,21+=n n n b 其前n 项与为,n T 那么21、解:〔Ⅰ〕0=m 时,)2()(2/x x e x f x +-=-,由0)(/>x f 得:f (x )的单调递增区间为〔0,2〕,∴单调递减区间为〔-∞,0〕与〔2,+∞〕2=m 时,0)(2≤-='-x e x x f 0[)(在x f ,)∞+2)0()(=≤∴f x f 成立;2<m 时, 令mx x x f -==='20,0)(或得,2max )4()2()(--=-=m e m m f x f设2)4()(--=m e m m g ,0)3()(2/>-=-m e m m g ,∴)(m g 在]2,(-∞上是增函数,∴2)2()(=≤g m g ,∴0≥x 时,2)(≤x f 恒成立22、解:〔Ⅰ〕NP 为AM 的垂直平分线,∴|NA|=|NM|.∴222||||>=+AN CN ∴动点N 的轨迹是以点C 〔–1,0〕,A 〔1,0〕为焦点的椭圆,且椭圆长轴长为222=a ,焦距2c=2.1,1,22===b c a ∴点N的轨迹E 的方程为1222=+y x 〔Ⅱ〕当直线GH 的斜率存在时,GH 方程为2+=kx y 代入椭圆方程得:034)21(22=+++kx x k ,由0>∆得:232>k ,设),(11y x G ,),(22y x H 又→-→-=FH FG λ,∴)2,()2,(2211-=-y x y x λ,∴21x x λ=, ∴λλ22)1()121(316+=+k,由于232>k ,∴316)1(42<+<λλ,即331<<λ 又10<<λ,∴131<<λ,又当直线GH 的斜率不存在时,31=λ,∴)1,31[∈λ。
高三数学理科试题参考答案
高三理科数学试题参考答案CADDC ADACA BC 13.{}52x x x <≠且 14.6a ≥- 15. 9 16.①③④17答案:解:(Ⅰ)()1cos 22f x x x ωω=-π2sin 216x ω⎛⎫=-+ ⎪⎝⎭. 因为函数()f x 的最小正周期为π,且0ω>, 所以2ππ2ω=,解得1ω=. (Ⅱ)由(Ⅰ)得π()2sin 216f x x ⎛⎫=-+ ⎪⎝⎭. 因为2π03x ≤≤, 所以ππ7π2666x --≤≤, 所以π1sin 226x ⎛⎫-- ⎪⎝⎭≤2≤. 因此π0sin 216x ⎛⎫-+ ⎪⎝⎭≤≤3,即()f x 的取值范围为[]03,. 18解:(1)由3cos()cos 2A CB -+=及π()B AC =-+得 3cos()cos()2A C A C --+=,-------2分 3cos cos sin sin (cos cos sin sin )2A C A C A C A C +--=, 3sin sin 4A C =. 又由题知2b ac =及正弦定理得2sin sin sin B A C =, 故23sin 4B =,-------4分sin 2B =或sin 2B =-(舍去), 于是π3B =或2π3B =.又由2b ac =知b a ≤或b c ≤, 所以π3B =.------------6分 由以上知:π3B =代入3cos()cos 2A C B -+=得:cos()1A C -=; 即3A C π==;因此ABC △为等边三角形,-------9分(2)因为ABC △为等边三角形,π83b B ==,. 所以ABC △的面积为21sin 2ABCS b B ∆==分 19.解:设1(1)n a a n d =+-,则1125,613,a d a d +=⎧⎨+=⎩解得11,2a d ==.………………4分 所以}{n a 的通项公式为1(1)221n a n n =+-⨯=-.…………………………………6分(2)解:依题意得2133n a n n b -==.……………………………………………………8分 因为21121393n n n n b b ++-==,所以}{n b 是首项为1133b ==,公比为9的等比数列,……10分 所以}{n b 的前n 项和3(19)3(91)198n n n T ⨯-==--.………………………………12分 20解:(1)21,3nn n a n b =-=。
河南省豫南名校2022-2023学年高三上学期9月质量检测试题数学理科试卷
(2) 2 3 + 6
【18 题答案】
【答案】(1)0, 2 ;
(2){m∣m 11}.
【19 题答案】
【答案】(1)
f
(x)
=
2sin
2x
+
3
(2) a − 2 3 【20 题答案】
【答案】(1) f ( x) (0, 2) 上单调递增,在 (2, +) 上单调递减;
(2)
0,
1 2
(1)若 x = 1 是 f ( x) 的极值点,求 f ( x) 的单调区间;
(2)若关于 x 的方程 f (x) =1+ ln a 恰有一个解,求 a 的取值范围.
22.已知函数 f ( x) = sin x cos 2x , g ( x) = a + cos x sin 2x .
(1)求 g ( x) 在 (0, π) 上的极小值点;
0
称#所以)'#/3(/(''!%#(=0'%0! /'!
!-!+!设经过# 天后#%进步%的值是%退步&的值的!---倍#则!---='!%-!#(#'!!###即'-!! !# ((#'!---#所以
#')7>!-!!#(!---'))>>!! --! !-# (-')>$$# ')>$$%)>#*-!!$:/!*!:!
的外部#所以%& 在%"$' 的外部&是%%"$' 为钝角三角形&的充要条件!
"!,!设点 &'#-#(-(#因为)'#(' !$#$%(#%.#所以)*'#('##%(#由##-%('!##-&-#得#-'%$#又
高三总复习数学前四章测试题
高三数学(理)试卷(前四章)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2=680A x x x ∈-+≤N ,集合{}=28xB x ≥,则A ∩B =( )A .{3,4}B .{2,3,4}C .{2,3}D .{4}2.已知函数无极值,则实数c 的取值范围为( )A .B .C .D .3.为得到函数 的图象,只需将函数图象上所有的点( )A .横坐标缩短到原来的倍 B .横坐标伸长到原来的 倍C .横坐标缩短到原来的倍,再向右平移个单位 D .横坐标伸长到原来的倍,再向右平移个单位4.设0.60.6a =,0.6log 1.5b =,0.61.5c =,则a ,b ,c 的大小关系是( ) A .a b c << B .a c b << C .b a c << D .b c a <<5.已知α,β均为第一象限角,那么“α>β”是“sin α>sin β”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件6.在下列区间中函数()243x f x x =-+的零点所在的区间为( )A .1(,1)2B .1(0,)2C .3(1,)2D .(1,2)7.已知 , ,且 ∥ ,则的值是A .B .C .D .8.下列命题中,真命题是( )A .∃x 0∈R ,sin 2⎝ ⎛⎭⎪⎫x 03+cos 2⎝ ⎛⎭⎪⎫x 03=13 B .∀x ∈(0,π),sin x >cos xC .∃x 0∈R ,x 20+x 0=-2D .∀x ∈(0,+∞),e x>x +19.已知函数2log ,0()3,0x x x f x x >⎧=⎨≤⎩,则1(())4f f 的值是( )A .19-B .9-C .19D .910.已知函数f (x )的导函数为f ′(x ),且满足f (x )=2xf ′(1)+ln x ,则f ′(1)=( )A .-eB .1C .-1D .e 11.函数2018()4cos(2018)x f x x e =-(e 为自然对数的底数)的图像可能是( )12.设函数的最大值为M ,最小值为m ,则的值是( )A . 2B .1C .22019D .32019第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.在区间上任选两个数x 和y ,则事件“y<sin x ”发生的概率为____________.14.已知4cos 35πα⎛⎫+= ⎪⎝⎭,则13sin 6πα⎛⎫-⎪⎝⎭的值是_____________. 15.函数22log (23)y x x =+-的单调递减区间为 _______.16.函数f (x )满足f (x +2)=f (x ),且当-1≤x ≤1时,f (x )=|x |.若函数y =f (x )的图象与函数g (x )=log a x (a >0,且a ≠1)的图象有且仅有4个交点,则a 的值为______________.三、解答题:本大题共6个大题,共70分.解答应写出文字说明、证明222cos ))ππ(2(x x e f x x e ⎛⎫-++ ⎪⎝⎭=+()20191M m +-过程或演算步骤.17. 已知cos α-sin α=5213,α∈⎝⎛⎭⎫0,π4. (1)求sin αcos α的值; (2)求sin ⎝⎛⎭⎫π2-2αcos ⎝⎛⎭⎫π4+α的值.18. 给定命题p :对任意实数x ,都有ax 2+ax +1>0成立;命题q :关于x 的方程x 2-x +a=0有实数根,若p ∧q 为真,求a 的取值范围。
新课标高三数学理科综合测试题与参考答案
新课程高三年级理科数学综合测试题与参考答案试题(一)一、选择题(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一 项是符合题目要求的)1.设集合{}{}211M x|x ,P x|x =>=>则下列关系中正确的是 ( ) A .M P = B .P M ⊆ C .M P R ⋃= D .P M ⊆2. 已知向量OA u u u r 和向量OC u u u r 对应的复数分别为34i +和2i -,则向量AC u u u r对应的复数为( )A .15i --B .15i + C. 53i + D .53i --3. 若抛物线px y 22=的焦点与椭圆12622=+y x 的右焦点重合,则p 的值为 ( )A .-4B .4C .-2D .24.“1=a ”是“函数ax ax y 22sin cos -=的最小正周期为π”的 ( ).A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5. x x n+⎛⎝ ⎫⎭⎪132展开式的第6项系数最大,则其常数项为( ) A. 120B. 210C. 252D. 456.等比数列{}n a 前n 项的积为n T ,若3618a a a 是一个确定的常数,那么数列10T ,13T ,17T ,25T 中也是常数的项是( )A .17TB . 13TC .10TD . 25T 7.如图,一个空间几何体的主视图和左视图都是边长为1的正三角形, 俯视图是一个圆,那么这个几何体的侧面积...为( ) A. 4πB. 4C. 2D. 12π8.如果对于函数f (x )定义域内任意的x ,都有f (x )≥M (M 为常数),称M 为f (x )的下界,下界M 中的最大值叫做f (x )的下确界,下列函数中,有下确界的所有函数是 ( )①x x f sin )(=②x x f lg )(=③xe xf =)(④⎪⎩⎪⎨⎧-<-=>=)1(1)0(0)0(1)(x x x x fA .①B .④C .②③④D .①③④二、填空题:(本大题共7小题,每小题5分,其中9-12为必做题,13-15为选做题,13-15题只选做2小题.共30分.) 9.函数4()x f x -=的定义域是 .10. 由数字0、1、2、3、4组成无重复数字的5位数,其中奇数有 个. 11.已知函数|3|)(-=x x f ,以下程序框图 表示的是给定x 值,求其相应函数值的 算法,请将该程度框图补充完整。
高三数学十一月阶段性检测题(理科)
高三数学十一月份阶段性检测题(理科)(时间120分钟,满分150分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合M ={x |x 2<4},N ={x |x 2-2x -3<0},则集合M ∩N 等于( C )A .{x |x <-2}B .{x |x >3}C .{x |-1<x <2}D .{x |2<x <3}2.已知a 、,R ∈b 那么“122<+b a ”是“b a ab +>+1”的 (B ) A .充要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件3.若关于x 的不等式2log (17)x x a +--≤的解集为R ,则a 的取值范围是( A )A .3a ≥B .3a >C .3a ≤D .3a <4.已知a ,b ,c 成等比数列,a ,m ,b 和b ,n ,c 分别成两个等差数列,则a m +c n 等于 ( C )A .4B .3C .2D .15.已知53415,0,,===<⋅==∆∆S b a b CA a CB ABC ABC 中,,则与的夹角为(D )A.65π-B.6πC.6π或65πD.65π6.若x 是三角形的最小内角,则函数sin cos sin cos y x x x x =++的最大值是( D )A .1-BC .12-D .127.已知函数)(x f 是),(+∞-∞上的偶函数,若对于0≥x ,都有)()2(x f x f -=+,且当[)2,0∈x 时, )2010()2009(),1(log )(2-++=f f x x f 则的值为 ( C )A .-2B .-1C .1D .28.已知向量a ,b 满足|a|=2|b|≠0,且关于x 的函数f(x)= 21x 3+21|a|x 2+a ·bx 在R 上单调递增,则a ,b 的夹角的取值范围是(B ) A .[0,2π) B . [0, 3π] C .(3π,2π] D .(3π,32π] 9、定义:在数列{a n }中,若满足a n +2a n +1-a n +1a n =d (n ∈N *,d 为常数),我们称{a n }为“等差比数列”.已知在“等差比数列”{a n }中,a 1=a 2=1,a 3=2,则a 2009a 2006的个位数字是( C )A .3B .4C .6D .810、某公司租地建仓库,每月土地占用费y 1与仓库到车站的距离成反比,而每月库存货物的运费y 2与仓库到车站的距离成正比,如果在距离车站10 km 处建仓库,这两项费用y 1和y 2分别为2万元和8万元,那么,要使这两项费用之和最小,仓库应建在离车站( A )A 、5km 处B 、4km 处C 、3km 处D 、2km 处二、填空题(本大题共5小题,每小题4分,共20分.将答案填在题中横线上)11、在△ABC 中,∠B =45°,∠C =60°,a =2(3+1),那么△ABC 的面积为__6+23______12.读下面的流程图,若输入的值为-5时,输出的结果是_2_______.13.已知函数f(x)=-x 3+ax 2+bx(a ,b ∈R)的图象如图所示,它与x 轴在原点处相切,且x 轴与函数图象所围区域(图中阴影部分)的面积为121,则a 的值为___-1_________.14.设函数()f x x x a =-,若对于任意21,x x 21),,3[x x ≠+∞∈,不等式0)()(2121>--x x x f x f 恒成立,则实数a 的取值范围是 3a ≤ .15. 已知等差数列{}n a 中,若,m n a a a b ==则有m n am bna m n +-=-,则在等比数列{}nb 中,若,m n b p b q ==会有类似的结论:1()m m n m nn p b q-+=______.三、解答题(本大题共6个小题,共75分,解答应写出文字说明,证明过程或演算步骤)16.(本题满分12分)设函数()3f x x a x =-+,其中0a >。
高三数学试题(理科)
高三数学试题(理科)本试卷分Ⅰ、Ⅱ两卷,第Ⅰ卷1至2页,第Ⅱ卷3到6页,共150分,考试时间120分注意事项:1.考生必须将自己的姓名、学号、考试科目用铅笔涂写在答题卡上,并在答卷前将班别、姓名、学号、等填写在试卷上.2.第一大题每小题选出答案后,用铅笔把答题卡上对应的答案标号涂黑. 3.请用蓝色或黑色钢笔或圆珠笔答卷.考试结束后,试卷必须全部上交.参考公式:如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B ) 如果事件A 在一次试验中的发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率为:P n (k )=C n k P k (1-p )n-k球的表面积公式为:S=4πR 2,其中R 表示球的半径. 球的体积公式为:V=34πR 3,其中R 表示球的半径. 第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的4个选项中,只有一项是符合题目要求的.1.已知U 为全集,若集合A 、B 、C 满足A ∩B=A ∩C ,则可以推出( ) A . B=C B .A ∪B=A ∪C C .A ∪(U C B)=A ∪(U C C) D .(U C A)∪B=(U C A)∪C 2.函数g (x )满足g (x )g (-x )=1,且g (x )≠1,g (x )不恒为常数,则函数f (x)=g(x)+1g(x)-1( )A .是奇函数不是偶函数B .是偶函数不是奇函数C .既是奇函数又是偶函数D .既不是奇函数也不是偶函数3.已知函数f (x)=223(1)131(1)x x x x x x ⎧+->⎪-⎨⎪+≤⎩,则f –1(3)=( ) A .10 B .12 C . 23 D . -124.设f (x)=1()0x x ⎧⎨⎩为有理数(为无理数),使所有x 均满足x ·f (x)≤g (x)的函数g(x)是( )A .g (x)=sinxB .g (x)=xC .g (x)=x 2D .g (x)=|x| 5.二项式(1x-)n 展开式中含有x 4项,则n 的可能取值是( )A .5B .6C .3D .76.设OA u u u v =a v ,OB uuu v =b v ,OC u u u v =c v ,当c v =λa v +μb v (λ,μ∈R),且λ+μ=1时,点C 在( )A .线段AB 上 B .直线AB 上C .直线AB 上,但除去点AD . 直线AB 上,但除去点B7.从17个相异的元素中选出2a -1个不同元素的选法记为P ,从17个相异的元素中选出2a 个不同元素的选法记为Q ,从18个相异的元素中选出12个不同元素的选法记为S ,若P+Q=S ,则a 的值为( )A . 6B . 6或8C .3D .3或68.若一个平面与正方体的12条棱所成的角均为θ,那么cos θ等于( ) A.3 B .3 C .2 D.69.设OM u u u u v =(1,12),ON u u u v =(0,1),则满足条件0≤OP uuu v ·OM u u u u v ≤1,0≤OP uuu v ·ON u u u v ≤1的10.已知函数f k图象上相邻的一个最大值点与一个最小值点恰好在x 2+y 2=k 2上,则f (x)的最小正周期为( )A .1B .2C .3D .411.2003年12月,全世界爆发“禽流感”,科学家经过深入的研究终于发现了一种细菌M在杀死“禽流感”病毒N 的同时能够自我复制,已知1个细菌M 可以杀死1个病毒N ,并生成2个细菌M ,那么1个细菌M 和2047个“禽流感”病毒N 最多可生成细菌M 的数值是( )A . 1024B .2047C .2048D .204912.已知抛物线的一条过焦点F 的弦PQ ,点R 在直线PQ 上,且满足OR uuu v =12(OP uuu v +OQ uuu v),R 在抛物线准线上的射影为S ,设α,β是ΔPQS 中的两个锐角,则下面4个式子中不一定正确的是( )A .tan α·tan β=1B .sin α+sinC .cos α+cos β>1D .|tan(α-β)|>tan2αβ+高三(1-12班)数学试题(理科)班别____________ 学号______________ 姓名___________ 得分___________第II 卷 (非选择题 共90分)二、填空题13.把函数sin y x x =-的图象,按向量(),m n =-va (m >0)平移后所得的图象关于y 轴对称,则m 的最小正值为__________________14.若关于x 的不等式2-2x >|x -a | 至少有一个负数解,则a 的取值范围为__________________. 15.利用函数f (t)=12+3sin[2365π(t -81)]可用来估计某一天的白昼时间的长短,其中f (t)表示白昼的小时数,t 是某天的序号,t=0表示1月1日,依此类推0≤t ≤365,若二月份28天,则这一地区一年中白昼最长的大约是 月 日.16.在平面几何里,有勾股定理“设ΔABC 的两边AB 、AC 互相垂直,则AB 2+AC 2=BC 2”.拓展到空间,类比平面几何的勾股定理,研究三棱锥的侧面面积与底面面积间的关系,可以得出的正确结论是:“设三棱锥O -ABC 的三个侧面OAB 、OAC 、OBC 两两相互垂直, 则______________________________________________.” 三、解答题:本大题6个小题,共74分17.(本小题满12分)已知A 、B 是ΔABC 的两个内角,a v sin 22A B A B i j +-+v v ,其中i j v v 、为互相垂直的单位向量,若||a =v.(Ⅰ) 试问tanA ·tanB 是否为定值? 若为定值,请求出;否则请说明理由. (Ⅱ) 求tanC 的最大值,并判断此时三角形的形状.18. (本小题12分)设数列{a n }的前n 项和为S n ,已知a 1=1,S n =na n ﹣2n(n ﹣1),(n ∈N*)(Ⅰ) 求证数列{a n }为等差数列,并写出通项公式; (Ⅱ) 是否存在自然数n ,使得40032321=++++nS S S S n Λ?若存在,求出n 的值; 若不存在,说明理由;19.(本小题满分12分)甲、乙两人进行乒乓球比赛,在每一局比赛中,甲获胜的概率为P . (Ⅰ)如果甲、乙两人共比赛4局,甲恰好负2局的概率不大于其恰好胜3局的概率,试求P的取值范围; (Ⅱ)如果P=13,当采用3局2胜制的比赛规则时,求甲获胜的概率.20. (本小题满分12分)在正四棱柱ABCD —A 1B 1C 1D 1中,侧棱是底面边长的2倍,P 是侧棱CC 1上的一点. (Ⅰ)求证:不论P 在侧棱CC 1上任何位置,总有BD ⊥AP ;(Ⅱ)若CC 1=3C 1P ,求平面AB 1P 与平面ABCD 所成二面的余弦值. (Ⅲ)当P 点在侧棱CC 1上何处时,AP 在平面B 1AC 上的射影是∠B 1AC 的平分线.21. (本小题满分14分)已知点Q 位于直线3x =-右侧,且到点()1,0F -与到直线3x =-的距离之和等于4. (Ⅰ) 求动点Q 的轨迹C ;(Ⅱ) 直线l 过点()1,0M 交曲线C 于A 、B 两点,点P 满足1()2FP FA FB =+u u u r u u u r u u u u r ,0EP AB =u u ur u u u r g ,又OE uuu r=(0x ,0),其中O 为坐标原点,求0x 的取值范围;(Ⅲ) 在(Ⅱ)的条件下,PEF ∆能否成为以EF 为底的等腰三角形?若能,求出此时直线l 的方程;若不能,请说明理由.ABCDA 1 D 1C 1 B 1P22.(本小题满分12分)已知函数f(x)满足f(x+y)= f(x)·f(y)且f(1)=1 2 .(Ⅰ)当n∈N+时,求f(n)的表达式.(Ⅱ)设a n=n·f(n),n∈N+,求证a1+a2+…+a n<2.答案:1.D 由A ∩B=A ∩C 知B ,C 在A 内部的元素相同,由韦恩图可得. 2.A3.C 2231x x x +--=(1)(3)1x x x -+-=x+3 依题意 当x>1时 f(x)>4当x ≤1时 f(x)=3x+1≤4 令t= f -1(3) ∴f(t)=3<4 即3t+1=3 ∴t=234.D 将f(x)拆成:当x 是有理数时,f(x)=1;当x 是无理数时,f(x)=0,然后一一验证即可5.C 展开式的通项为r nC (1x)n-r ·(-)r =(-1)r ·r n C 4()3r n r x --(r=0,1,2,…n )即存在自然数r ,使43r -(n -1) =4即7r=3n+12且n ≥r,故选C. 6.B ∵n+μ=1 ∴λ=1-μ,∵c v =λa v +μb v =a v +μ(b v -a v )=a v +μAB u u u v∴AC u u u v =c v -a v =μAB u u u v ,即AC u u u v 与AB u u u v共线.7.D 法一:反代法.分别取a=6,8代入验证。
高三数学综合测试题(含答案)
高三数学试题(理科)一、选择题(本大题共12小题,每小题5.0分,共60分)1.已知复平面内的平行四边形ABCD中,定点A对应的复数为i(i是虚数单位),向量BC 对应的复数为2+i,则点D对应的复数为()A. 2 B. 2+2i C.-2 D.-2-2i2.在判断两个变量y与x是否相关时,选择了4个不同的模型,它们的相关指数分别为:模型1的相关指数为0.98,模型2的相关指数为0.80,模型3的相关指数为0.50,模型4的相关指数为0.25.其中拟合效果最好的模型是().A.模型1 B.模型2 C.模型3 D.模型43.设随机变量X的分布列如下表,且E(X)=1.6,则a-b=()A.0.2B.0.1C.-0.2D.-0.44.若方程x3-3x+m=0在[0,2]上有解,则实数m的取值范围是()A. [-2,2] B. [0,2]C. [-2,0]D. (-∞,-2)∪(2,+∞)5.已知圆上9个点,每两点连一线段,所有线段在圆内的交点有()A.36个 B.72个 C.63个 D.126个6.函数f(x)=ax3+x+1有极值的一个充分而不必要条件是()A.a<0 B.a>0 C.a<-1 D.a<17.若(n∈N*),且,则() A.81 B.16 C.8 D.18.一个篮球运动员投篮一次得3分的概率为a,得2分的概率为b,不得分的概率为c(a,b,c∈(0,1)),已知他投篮一次得分的均值为2(不计其他得分情况),则ab的最大值为()A. B. C. D.9.高三毕业时,甲、乙、丙等五位同学站成一排合影留念,已知甲、乙二人相邻,则甲、丙相邻的概率是()A. B. C. D.10.已知x与y之间的几组数据如表:假设根据如表数据所得线性回归直线方程为,若某同学根据表中的前两组数据(1,0)和(2,2)求得的直线方程为,则以下结论正确的是()A., B., C., D.,11.某人射击一发子弹的命中率为0.8,现在他射击19发子弹,理论和实践都表明,在这19发子弹中命中目标的子弹数X的概率满足P(X=k)=(k=0,1,2,…,19),则他射完19发子弹后,击中目标的子弹最可能是 ()A.14发 B.15发 C.16发 D.15发或16发12.函数f(x)=ax3+bx2+cx+d(a≠0),若a+b+c=0,导函数f′(x)满足f′(0)f′(1)>0,设f′(x)=0的两根为x1,x2,则|x1-x2|的取值范围是()A.323⎡⎫⎪⎢⎪⎣⎭,B.14,39⎡⎤⎢⎥⎣⎦C.133⎡⎫⎪⎢⎪⎣⎭, D.1193⎡⎫⎪⎢⎣⎭,第II 卷非选择题二、填空题(本大题共4小题,每小题5.0分,共20分)13.某人从某城市的A地乘公交车到火车站,由于交通拥挤,所需时间(单位:分钟)X~N(50,),则他在时间段(30,70]内赶到火车站的概率为________.14.如图(1),在三角形ABC中,AB⊥AC,若AD⊥BC,则AB2=BD·BC;若类比该命题,如图(2),三棱锥A-BCD中,AD⊥面ABC,若A点在三角形BCD所在平面内的射影为M,则有________.15.设M=,则M与1的大小关系是__________.16.若对任意的x∈A,则x∈,就称A是“具有伙伴关系”的集合.集合M={-1,0,,,1,2,3,4}的所有非空子集中,具有伙伴关系的集合的个数为________.三、解答题(本大题共6小题,共70分)17.(本小题共12分)已知一元二次方程x2-ax+1=0(a∈R).(1)若x=37+i44是方程的根,求a的值;(2)若x1,x2是方程两个虚根,且|x1-1|>|x2|,求a的取值范围.18. (本小题共12分)随着生活水平的提高,人们的休闲方式也发生了变化.某机构随机调查了n 个人,其中男性占调查人数的.已知男性中有一半的人的休闲方式是运动,而女性只有的人的休闲方式是运动.(1)完成如图2×2列联表:(2)若在犯错误的概率不超过0.05的前提下,可认为“休闲方式有关与性别”,那么本次被调查的人数至少有多少?(3)根据(2)的结论,本次被调查的人中,至少有多少人的休闲方式是运动?参考公式:=,其中n=a+b+c+d.参考数据:19.若n为正整数,试比较3·2n-1与n2+3的大小,分别取n=1,2,3,4,5加以试验,根据试验结果猜测一个一般性结论,并用数学归纳法证明.20.为防止风沙危害,某地决定建设防护绿化带,种植杨树、沙柳等植物.某人一次种植了n株沙柳.各株沙柳的成活与否是相互独立的,成活率为p,设ξ为成活沙柳的株数,数学期望E(ξ)为3,标准差为.(1)求n和p的值,并写出ξ的分布列;(2)若有3株或3株以上的沙柳未成活,则需要补种.求需要补种沙柳的概率.21.已知函数f(x)=(ax-x2)e x.(1)当a=2时,求f(x)的单调递减区间;(2)若函数f(x)在(-1,1]上单调递增,求a的取值范围;(3)函数f(x)是否可为R上的单调函数?若是,求出a的取值范围,若不是,说明理由.22.设函数f(x)=|x-a|+x.(1)当a=2时,求函数f(x)的值域;(2)若g(x)=|x+1|,求不等式g(x)-2>x-f(x)恒成立时a的取值范围.答案解析1.B2.A3.C4.A5.D【解析】此题可化归为:圆上9个点可组成多少个四边形,每个四边形的对角线的交点即为所求,所以,交点有=126(个)6.C7.A8.D9.C10. C11. D【解析】由≥且≥,解得15≤k≤16,即P(X=15)=P(X=16)最大12.A【解析】由题意得f′(x)=3ax2+2bx+c,∵x1,x2是方程f′(x)=0的两个根,∴x 1+x2=-,x1·x2=,∴|x1-x2|2=(x+x2)2-4x1·x2=.∵a+b+c=0,∴c=-a-b,∴|x 1-x2|2==()2+·+.∵f′(0)·f′(1)>0,f′(0)=c=-(a+b),且f′(1)=3a+2b+c=2a+b,∴(a+b)(2a+b)<0,即2a2+3ab+b2<0,∵a≠0,两边同除以a2,得()2+3+2<0,解得-2<<-1.由二次函数的性质可得,当=-时,|x 1-x2|2有最小值为,当趋于-1时,|x1-x2|2趋于,故|x 1-x2|2∈[,),故|x1-x2|∈[,).13. 0.9544 14.=S △BCM·S△BCD15.【答案】M<1【解析】∴M==1.16.【答案】15【解析】具有伙伴关系的元素组有-1;1;,2;,3;共4组,所以集合M的所有非空子集中,具有伙伴关系的非空集合中的元素,可以是具有伙伴关系的元素组中的任一组、二组、三组、四组,又集合中的元素是无序的,因此,所求集合的个数为+++=15.17.解(1)已知一元二次方程x2-ax+1=0(a∈R),若x=+i是方程的根,则x=-i也是方程的根.(+i)+(-i)=a,解得a=.(2)x 1,x2是方程x2-ax+1=0的两个虚根,不妨设x1=,x2=,a∈(-2,2),|x 1-1|>|x2|,∴(-1)2+(-)2>()2+()2,∴a<1.综上,-2<a<1.18.【解】(1)依题意,被调查的男性人数为,其中有人的休闲方式是运动;被调查的女性人数为,其中有人的休闲方式是运动,则2×2列联表如图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Z 数学(理科)试题第 1 页 (共 13 页)高三数学测试题(理科)姓名______________ 准考证号___________________ 本试题卷分选择题和非选择题两部分。
全卷共5页,选择题部分1至3页,非选择题部分4至5页。
满分150分,考试时间120分钟。
请考生按规定用笔将所有试题的答案涂、写在答题纸上。
选择题部分 (共50分)注意事项:1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试卷和答题纸规定的位置上。
2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
不能答在试题卷上。
一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 设集合S ={x |3<x ≤6},T ={x |x 2-4x -5≤0},则= A .(-≦,3]∪(6,+≦) B .(-≦,3]∪(5,+≦) C .(-≦,-1)∪(6,+≦)D .(-≦,-1)∪(5,+≦)R (S ∩T )2.已知i是虚数单位,则3i2i-+=A.-1+i B.-1-i C.1+i D.1-i3.设函数f(x)=x2-ax+b (a,b∈R),则“f(x)=0在区间[1,2]有两个不同的实根”是“2<a<4”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.若某几何体的三视图(单位:cm)如图所示,则该几何体的体积等于A.10 cm3B.20 cm3C.30 cm3D.40 cm35.已知α,β,γ是三个不同的平面,α∩γ=m,β∩γ=n.A.若m⊥n,则α⊥βB.若α⊥β,则m⊥nC.若m∥n,则α∥βD.若α∥β,则m∥n6.已知箱中共有6个球,其中红球、黄球、蓝球各2个.每次从该箱中取1个球(有放回,每球取到的机会均等),共取三次.设事件A:“第一次取到的球和第二次取到的球颜色相同”,事件B:“三次取到的球颜色都相同”,则P(B|A)=A.16B.13C.23D.17.设a,b为单位向量,若向量c满足|c-(a+b)|=|a-b|,则|c|的最大值是A.B.2 CD.18.如图,A,F分别是双曲线2222C 1 (0)x ya ba b-=:,>的左顶点、右焦点,过F的直线l与C的一条渐近线垂直且与另一条渐近线和y轴分别交于P,Q两点.若AP⊥AQ,则C的离心率是ABCD9.若0<x,y<π2,且sin x=x cos y,则俯视图(第4题图)Z数学(理科)试题第2页 (共13页)Z 数学(理科)试题第 3 页 (共 13 页)A .y <4x B .4x <y <2x C .2x<y <x D .x <y 10.如图,正三棱锥P -ABC 的所有棱长都为4.点D ,E ,F 分别在棱P A ,PB ,PC 上,满足DE =EF =3,DF =2的△DEF 个数是A .1B .2C .3D .4ACP D EF (第10题图)Z 数学(理科)试题第 4 页 (共 13 页)非选择题部分 (共100分)注意事项:1.用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。
2.在答题纸上作图,可先使用2B 铅笔,确定后必须使用黑色字迹的签字笔或钢笔描黑。
二、填空题:本大题共7小题,每小题4分,共28分。
11.若某程序框图如图所示,则该程序运行后输出的值等于 .12.若二项式n 的展开式中的常数项是80,则该展开式中的二项式系数之和等于 . 13.已知点O (0,0),A (2,0),B (-4,0),点C 在直线l :y =-x上.若CO 是∠ACB 的平分线,则点C 的坐标为 .14.设x ,y ∈R ,若不等式组 320,220,10x y x y ax y -+≥⎧⎪--≤⎨⎪-+≥⎩所表示的平面区域是一个锐角三角形,则a 的取值范围是 .15.如图,在梯形ABCD 中,AB ∥CD ,AB =3,CD =4.过AC与BD 的交点O 作EF ∥AB ,分别交AD ,BC 于点E ,F ,则EF = .16.由1,2,3,4,5,6组成没有重复数字的六位数,要求奇数不相邻,且4不在第四位,则这样的六位数共有 个.17.设数列{a n }满足a n +1=2n a -2,n ∈N *.若存在常数A ,对于任意n ∈N *,恒有|a n |≤A ,则a 1的取值范围是 .三、解答题:本大题共5小题,共72分。
解答应写出文字说明、证明过程或演算步骤。
18.(本题满分14分) 在△ABC 中,内角A ,B ,C 满足4 sin A sin C -2 cos (A -C )=1.(Ⅰ) 求角B 的大小;(Ⅱ) 求sin A +2 sin C 的取值范围.(第11题图) (第15题图)Z 数学(理科)试题第 5 页 (共 13 页)19.(本题满分14分) 如图,已知曲线C :y =x 2 (0≤x ≤1),O (0,0),Q (1,0),R (1,1).取线段OQ 的中点A 1,过A 1作x 轴的垂线交曲线C 于P 1,过P 1作y 轴的垂线交RQ 于B 1,记a 1为矩形A 1P 1B 1Q 的面积.分别取线段OA 1,P 1B 1的中点A 2,A 3,过A 2,A 3分别作x 轴的垂线交曲线C 于P 2,P 3,过P 2,P 3分别作y 轴的垂线交A 1P 1,RB 1于B 2,B 3,记a 2为两个矩形A 2P 2B 2 A 1与矩形A 3P 3B 3B 1的面积之和.以此类推,记a n 为2n-1个矩形面积之和,从而得数列{a n },设这个数列的前n 项和为S n . (I) 求a 2与a n ;(Ⅱ) 求S n ,并证明S n <13.20.(本题满分15分) 在四棱锥P -ABCD 中,P A ⊥平面ABCD ,AD ∥BC ,BC =2AD =4,AB =CD. (Ⅰ) 证明:BD ⊥平面P AC ;(Ⅱ) 若二面角A -PC -D 的大小为60°,求AP 的值.21.(本题满分15分) 如图,已知O (0,0),E (,0),F,0),圆F :(x)2+y 2=5.动点P 满足 |PE |+|PF |=4.以P 为圆心,|OP |为半径的圆P 与圆F 的一个公共点为Q .(Ⅰ) 求点P 的轨迹方程;(Ⅱ) 证明:点Q 到直线PF 的距离为定值,并求此值.22.(本题满分14分) 已知a 为给定的正实数,m 为实数,函数f(x )=ax 3-3(m +a )x 2+12mx +1.(Ⅰ) 若f(x )在(0,3)上无极值点,求m 的值;(Ⅱ) 若存在x 0∈(0,3),使得f(x 0)是f(x )在[0,3]上的最值,求m 的取值范围.ABDCP(第20题图)(第19题图)(第21题图)测试卷A答案数学(理科)说明:一、本解答指出了每题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制订相应的评分细则。
二、对计算题,当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定后续部分的给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分。
三、解答右端所注分数,表示考生正确做到这一步应得的累加分数。
四、只给整数分数。
选择题和填空题不给中间分。
五、未在规定区域内答题,每错一个区域扣卷面总分1分。
一、选择题:本题考查基本知识和基本运算。
每小题5分,满分50分。
1.B 2.D 3.A 4.B5.D6.B 7.A 8.D 9.C 10.C二、填空题:本题考查基本知识和基本运算。
每小题4分,满分28分。
11.313212.32 13.(4,-4) 14.(-2,-13)15.24716.120 17.[-2,2]三、解答题:本大题共5小题,共72分。
解答应写出文字说明、证明过程或演算步骤。
18.本题主要考查三角变换、三角函数值域等基础知识,同时考查运算求解能力。
满分14分。
(Ⅰ) 因为4sin A sin C-2 cos (A-C)=4sin A sin C-2cos A cos C+2 sin A sin C=-2(cos A cos C-sin A sin C),所以-2 cos (A+C)=1,故Z数学(理科)试题第6页 (共13页)Z 数学(理科)试题第 7 页 (共 13 页)cos B =12. 又0<B <π,所以B =π3. ………… 6分(Ⅱ) 由(Ⅰ)知C =2π3-A ,故sin A +2 sin C =2 sin Acos Asin (A +θ), 其中0<θ<π2,且sin θcos θ由0<A <2π3知,θ<A +θ<2π3+θ,故sin (A +θ)≤1. 所以sin A +2 sin C ∈]. ………… 14分 19.本题主要考查等比数列的概念与求和公式、不等式等基础知识,同时考查运算求解能力。
满分14分。
(I) 由题意知P 1(12,21()2), 故a 1=12×21()2=18. 又P 2(212,221()2), P 3(232,223()2), 故a 2=212×[221()2+223()2-222()2]=612×(12+32-22)=332. 由题意,对任意的k =1,2,3,…,n ,有12k i P -+(212k i +,221()2k i +), i =0,1,2,…,2k -1-1,Z 数学(理科)试题第 8 页 (共 13 页)故a n =12n ×[21()2n +23()2n -22()2n +25()2n -24()2n +…+221()2n n --222()2n n -]=312n ×[12+32-22+52-42+…+(2n -1)2-(2n -2)2] =312n ×{1+(4×1+1)+(4×2+1)+…+[4×(2n -1-1)+1]} =312n ×11[14(21)1]22n n --+⨯-+⨯=21212n n +-. 所以a 2=332, a n =21212n n +-, n ∈N *. ………… 10分(Ⅱ) 由(I)知a n =1211122n n ++-, n ∈N *, 故S n =11(1)42112n ⨯---11(1)84114n ⨯--=11(1)22n ⨯--11(1)64n ⨯-=2121232132n n n ++-⨯+⨯. 又对任意的n ∈N *,有321n ⨯->0,所以S n =13-2132132n n +⨯-⨯<13. ………… 14分 20.本题主要考查空间线、面位置关系,二面角等基础知识,空间向量的应用,同时考查空间想象能力和运算求解能力。