TL开关电源设计BUCK电路探素
开关直流降压电源(BUCK)设计
开关直流降压电源(BUCK)设计摘要随着电子技术的高速发展,电子系统的应用领域越来越广泛,电子设备的种类也越来越多,电子设备与人们的工作、生活的关系日益密切。
近年来,随着功率电子器件(如IGBT、MOSFET)、PWM技术以及电源理论发展,新一代的电源开始逐步取代传统的电源电路。
该电路具有体积小,控制方便灵活,输出特性好、纹波小、负载调整率高等特点。
开关电源中的功率调整管工作在开关状态,具有功耗小、效率高、稳压范围宽、温升低、体积小等突出优点,在通信设备、数控装置、仪器仪表、视频音响、家用电器等电子电路中得到广泛应用。
开关电源的高频变换电路形式很多, 常用的变换电路有推挽、全桥、半桥、单端正激和单端反激等形式。
本论文采用双端驱动集成电路——TL494输的PWM脉冲控制器设计开关电源,利用MOSFET 管作为开关管,可以提高电源变压器的工作效率,有利于抑制脉冲干扰,同时还可以减小电源变压器的体积。
关键词:直流,降压电源,TL494,MOSFET1目录摘要 (1)Abstract........................................................... ........ 错误!未定义书签。
1.方案论证与比较 (4)1.1 总方案的设计与论证 ...................................... 错误!未定义书签。
1.2 控制芯片的选择 (4)1.3 隔离电路的选择 .............................................. 错误!未定义书签。
2. BUCK电路工作原理 ......................................... 错误!未定义书签。
3. 控制电路的设计及电路参数的计算 ................ 错误!未定义书签。
3.1 TL494控制芯片................................................ 错误!未定义书签。
TL494开关电源设计--BUCK电路解析
+5V
IN2 +
GND
IN2 -
CT
RT
DE AD
4
16
C2 332
15
R4 10K
R3 10K R9 0.1
R8 120
图三:由TL494组成降压型开关稳压电源
过载保护--过载时,降低输出电压使负载电流保持在保护值。 不论开关管T2是否导通,流过负载的电流都经过R9(由上向下),R9的下端
电位为负,当负载电流达一定值时,误差放大器2的反相端电位为负,误差
t
电流连续状态CCM
续流管阴极电位VK 、 电感电流IL、负载电流IO 2IOC
CO=(3~5)(ΔI) T/(2ΔVP-P)
产生纹波的两个因素:1.输出电容容 量有限;2.开关过程产生的过冲,这
VIN-VSTA IOC
-VF
t
(tON)min (tOFF)max
临界连续状态
部分较难滤除。
续流管阴极电位VK 、 电感电流IL、负载电流IO VIN-VSTA VO -VF (tON)min (tOFF)max IO<IOC
tON=TOSCVO/(VIN-Vsta)=13.0~21.4uS(Vsta~1.2V)。
七、参数选择 4.开关管:
开关速度<1uS,
IC VEC PT
VIN+VF
IECO tON tOFF
VSTA t
耐压>2(VIN)max,
电流>2(IO)max
图四:开关管开关速度与功耗分析
TIP127(100V/5A,
死区时间控制 触发器 时钟
反馈/PWM比较器输入
Q
Q
Q1射极
深入了解开关电源BUCK电路各个元器件
深入了解开关电源BUCK电路各个元器件课程介绍分析开关电源BUCK电路当中各个元器件的一些特点。
随着即将进入电路设计的阶段,我们要对元器件有深入的了解。
对于BUCK电路而言,负载电流跟电感电流是串联的。
是一个平均电源电流,但实际上电感电流是有纹波的,就是平均电压电流,它是一个平均值。
电流的纹波率直接决定电感的电流,电感的纹波的电流,纹波电流大小决定了电感量,也决定了电感的体积。
因此电流的纹波利确定的话,整个电感就确定了。
其他的一些电感参数就基本确定了。
将分为两章节课程来详细讲这些相关的参数,以及计算方式。
专栏课程学习获得:1. 通过举例讲解开关电源工作的方式.开关电源的工作原理.2. 通过举例开关电源工作方式与线性电源工作方式的区别.3. 分析和讲解为什么线性电源的效率比较低,开关电源的效率比较高?4. 讲解开关电源是如何实现能量转移的?以及如何实现稳定电压输出?如何进行调节的?为什么说输入电压的变化以及负载的变化会影响调节?为什么会有纹波的产生?为什么说速度响应是衡量开关电源的重要指标?5. 详细分析开关损耗是如何产生的?如何控制温升?温升对系统有哪些危害?6. 开关电源体积与频率的关系?以及开关电源的效率问题。
7. 开关器件的如何选择?详细分析MOSFET,IGBT,三极管各自的有点和缺点。
8. 详细推导开关电源的BUCK电路拓扑的过程。
9.引入重要模拟电路中重要器件:电感。
10. 详细讲解电感电压的的形成和公式计算,电感电压受什么参数影响?如何改变电感两端电压?11. 详细讲解电感电压的与电感中电流大小以及电流变化率的相互关系。
为什么说电感电。
TL494控制BUCK型开关电源电路
TL494控制BUCK型开关电源电路摘要1、引言电源的优劣直接影响到各类电子设备的性能。
因此设计出性能良好的电源意义重大。
广义的讲,能够提供电能的设备称为电源。
我们这里所指的电源是把身边现有的电源转化成我们电子设备所需要的某种类型电源的一种电子装置。
开关电源是直流稳压电源的一种,自问世以来,以其轻小高效越来越受到人们的青睐,在直流电源的大多场合已取代了传统的线性开关电源,并且正不断发展,其市场广阔。
2、DC/Dc变换器主电路及其控制方式开关电源功率调整管都工作在开关状态下,而线性稳压电源的功率管工作在线性放大状态下,这是开关电源与线性稳压电源的显著区别,也是开关电源这个名字由来的原因。
目前开关电源中目前常用的半导体开关管有GTR、MOSFET、IGBT等,通过控制信号控制其导通与关断,实现将一种直流电转换成另外一种大小的直流电,配上电感电容滤波器件能输出稳定。
DC/DC变换器是开关电源中最主要的功率变换环节。
DC/DC变换器有输入输出无隔离(即“直通”)型和输人输出隔离型两种类型。
“直通”型DC/oC变换器典型的电路有Buck(降压)型、Boost(升压)型、Buck一Boost(升降压)式和Cuk型等几种类型;输人与输出隔离型的DC/DC变换器典型的电路有单端正激式、单端反激式、推挽式、半桥式和全桥式等几种类型。
但无论哪种类型的DC/DC变换器的开关电源,其基本原理都是开关管工作于开关状态下,通过改变开关管导通与关断的时间关系来改变输出电压的。
开关电源要实现输出稳定少不了相应的控制电路,其电路有三种:(l)由分立元件构成;(2)通过软件编程由单片机系统来实现;(3)由专用的集成控制器来实现。
其中专用集成控制器实现方式以其使用方便、无需编程、所需元件数量少等优点,是开关电源常用的一种控制方式。
TL494就是其中常见的一种专用集成控制器。
3、TL494介绍TL494由德州仪器公司设计并推出,推出后立刻得到市场的广泛接受,尤其是在PC机的ATx半桥电源上。
一种buck-boost开关电源环路补偿电路设计
一种buck-boost开关电源环路补偿电路设计
设计一种buck-boost开关电源环路补偿电路的步骤如下:
1. 确定需要补偿的电源环路特性:首先,需要确定要补偿的电源环路具有哪些频率成分的干扰或噪音。
例如,可以通过频谱分析确定这些频率成分的频率范围和幅度。
2. 设计补偿网络:根据第一步的分析结果,设计一个合适的补偿网络来抵消电源环路的干扰或噪音。
补偿网络通常包括电容、电感和阻抗器等元件,可以选择串联或并联配置以实现所需的补偿效果。
3. 选择补偿元件参数:根据补偿网络的设计,选择合适的元件参数,如电容值、电感值和阻抗器阻值等。
可以通过仿真或实验来优化参数选择,并确保所选元件能够在所需频率范围内提供所需的补偿效果。
4. 布局和连接补偿电路:根据设计,将补偿网络的元件布局在电源环路中,并通过适当的连接方式将其与开关电源环路连接。
确保补偿网络能够有效地接收和处理来自电源环路的干扰或噪音,并将补偿信号输出到开关电源环路中。
5. 验证和调整:在连接完补偿电路后,进行验证和调整以确保补偿效果符合预期。
可以使用示波器、频谱仪等仪器来观察和测量电源环路的干扰或噪音幅度,并通过调整补偿网络的参数来优化补偿效果。
需要注意的是,设计补偿电路时需要考虑电路的稳定性和安全性,确保补偿网络不会引入额外的噪音或干扰,并且不会对开关电源环路的性能产生负面影响。
同时,还需遵守相关的电气标准和规范,以确保设计符合相关要求。
简单介绍开关电源拓扑结构---Buck电路
简单介绍开关电源拓扑结构---Buck电路
Buck电路也称之为降压(step-down)变换器,Buck电路属于最简单的开关电源拓扑结构,它的等效电路模型入下图所示:
它由开关管(有些图画成一个开关),二极管,电感,电容构成了。
控制回路一般采用PWM(脉冲宽度调制)芯片控制占空比决定开关管的通断。
Buck电路的功能是把直流电压Vin转换成直流电压Vout,实现降压目的。
1、电路中主要器件Q,我们称呼为开关管,一般实现采用了IGBT或者MOS管,主要功能是实现电路的通断;
2、电路中主要器件D,我们称呼为续流二极管,主要功能是实现了开关管在关断的时候储能电感上的电量能完成一个回路输出,另外一个功能是保护开关管,因为储能电感在开关管由导通到关断的时候会产生很高的电势;
3、电路中主要器件C,我们称呼为输出滤波电容,主要功能当然就是滤除输出电压所带的杂波。
4、电路中主要器件L,我们称呼为储能电感,在开关管导通的时候,Vin给负载供电,由于自感的原因,L是左正右负,电能转换为磁能储存起来;在开关管断开的时候,电感L是左负右正,磁能转换成电能给负载供电。
Buck电路有三种工作模式,分别是CCM(连续模式),BCM (临界模式),DCM(断续模式)
1、连续模式
2、临界模式
3、断续模式。
直流斩波电路Buck、Buck-Boost 开关电路实验
直流斩波电路Buck、Buck-Boost 开关电路实验一、实验目的(1)加深理解三相桥式全控整流及有源逆变电路的工作原理。
(3)了解KC系列集成触发器的调整方法和各点的波形。
二、实验线路的构成及原理(1)DDS02主电路挂箱配置原理DDS02挂箱包括脉冲和熔断丝指示、晶闸管(I组桥、Ⅱ组桥)电路、电抗器等内容。
脉冲有无指示为方便实验中判断对应晶闸管上门阴极上是否正常,若正常,则指示灯亮,否则则不亮;同样熔断丝指示也是同理。
主要分I组桥和Ⅱ组桥分别指示。
晶闸管电路装有12只晶闸管、6只整流二极管。
12只晶闸管分两组晶闸管变流桥,其中VTl~VT6为正组桥(I组桥),由KP5-8晶闸管元件构成,一般不可逆、可逆系统的正桥、交-直-交变频器的整流部分均使用正组元件;由VT1ˊ~VT6ˊ组成反组桥(Ⅱ组桥),元件为KP5-12晶闸管,可逆系统的反桥、交-直-交变频器的逆变部分使用反组元件;同时还配置了6只整流二极管VDl~VD6,可构成不可控整流桥作为直流电源,元件的型号为KZ5-10。
所有这些功率半导体元件均配置有阻容吸收、熔丝保护,电源侧、直流环节、电机侧均配置有压敏电阻或阻容吸收等过电压保护装置。
电抗器为平波电抗器L,共有4档电感值,分别为50mH、100mH、200mH、700mH,1200 mH可根据实验需要选择电感值。
续流二极管为桥式整流实验时电路续流用,型号为KZ5-10;另外挂箱还配有一组阻容吸收电路。
(2)DDS03控制电路挂箱配置原理DDS03挂箱包括三相触发电路及功放电路、FBC+FA(电流反馈与过流保护)、G(给定器)等内容。
面板上部为同步变压器,其连线已在内部接好,连接组为△/Y-1.可在“同步电源观察孔”观察同步电源的相位。
三相触发电路(GT)及功放电路(AP)包括有GTF正组(I组)触发脉冲装置和GTR 反组(Ⅱ组)触发脉冲装置,分别通过开关连至VF正组晶闸管和VR反组晶闸管的门极、阴极。
buck电路设计原则
buck电路设计原则Buck电路,也称为降压电路,是一种常见的开关电源拓扑结构,用于将输入电压降低到较低的输出电压。
以下是设计Buck电路时应考虑的一些基本原则:1.选择合适的元件:选择适当的功率开关器件(如MOSFET)、电感和电容是设计中的关键步骤。
这些元件的选取会影响电路的效率、稳定性和功率处理能力。
2.控制电路设计:选择合适的控制方案,如电压模式控制(Voltage Mode Control)或当前模式控制(Current Mode Control)。
电压模式控制通常用于轻负载条件,而当前模式控制则对于大范围负载变化具有更好的响应。
3.反馈回路设计:设计准确的反馈回路以确保输出电压的稳定性。
这可能包括使用反馈电压调节器、误差放大器和比较器等元件。
4.过电流和过温度保护:考虑加入过电流保护和过温度保护电路,以防止电路元件受损。
5.EMI和滤波设计:由于开关电源可能引起电磁干扰(EMI),设计中需要采取措施来降低这些干扰。
这可能包括使用滤波器和合适的线路布局。
6.稳定性分析:进行控制环路稳定性分析,以确保电路在各种工作条件下都能保持稳定。
这通常需要考虑控制环路的相位和幅度裕度。
7.效率优化:设计时需要考虑电路的整体效率。
这可能包括最小化开关损耗、导通损耗以及减小其他电源损耗。
8.温度管理:确保电路元件在正常工作条件下的温度不超过其规定的极限,可以通过选择合适的散热器和热管理方案来实现。
9.输入输出电容选择:选择合适的输入和输出电容以实现足够的滤波和稳压效果。
10.负载变化响应:考虑负载变化时电路的响应速度,确保在快速变化的负载条件下仍能维持稳定的输出。
在设计Buck电路时,综合考虑上述原则可以帮助确保电路的性能、稳定性和可靠性。
最终的设计选择将取决于特定的应用和要求。
TL494开关电源设计--BUCK电路
VIN-VSTA IOC
-VF
t
(tON)min (tOFF)max
临界连续状态
L0 ~
VIN T 8I
续流管阴极电位VK 、 电感电流IL、负载电流IO VIN-VSTA VO -VF (tON)min (tOFF)max IO<IOC
t
I (10% ~ 20%) I O max
电流断续状态DCM
t
电流连续状态CCM
续流管阴极电位VK 、 电感电流IL、负载电流IO 2IOC
CO=(3~5)(ΔI) T/(2ΔVP-P)
产生纹波的两个因素:1.输出电容容 量有限;2.开关过程产生的过冲,这
VIN-VSTA IOC
-VF
t
(tON)min (tOFF)max
临界连续状态
部分较难滤除。
续流管阴极电位VK 、 电感电流IL、负载电流IO VIN-VSTA VO -VF (tON)min (tOFF)max IO<IOC
5. 较典型的设计验证方法和负载实验。
三、BUCK型DC-DC变换器(CCM工作模式)
1. 导通状态 U I UO UL I ON t1 t1 L L 2. 截止状态 UO UL I OFF t2 t2 L L 3. 输入输出关系
I ON I OFF
U O DU I
100u/25V
C6
220u/25V
T2 TIP127 (100V/5A/Darl-L) 104 R2 C3 1K
10 9
3K R6
FR307 D4 103 C5 570 R13
C7
104 C9 5K1 R17
R16 3K6
5
6
buck电路简单原理
buck电路简单原理
Buck电路是一种常见的降压转换器,用于将高电压转换为较低的电压。
它是
一种开关电源,通过不断切换开关以控制电流和电压来完成降压操作。
Buck电路的基本原理是利用开关管(通常为MOSFET晶体管)和电感器组成
一个电压调节器。
当开关管关闭时,电流通过电感器,形成一个磁场能量储存器。
当开关管打开时,电感器释放储存的能量,通过输入电压向负载提供较低的电压。
具体工作原理如下:当开关管处于导通状态时,电感器充电,负载电流开始增加。
而当开关管关闭时,电感器上的存储能量将释放到负载上。
这样,周期性地开关和关闭开关管,就能实现对输出电压的调整和稳定。
Buck电路的主要优点之一是效率高,能够提供相对较高的输出功率。
此外,Buck电路具有较小的体积和重量,适用于多种应用场景,如电源适配器、电池充
电器等。
值得注意的是,Buck电路中还包括输出电容器和滤波器,用于减小输出电压
的波动和噪声。
这些元件的合理选择和设计,可以进一步提高电路的性能和稳定性。
总之,Buck电路是一种常用的降压转换器,通过周期性地开关和关闭来实现
对输入电压的降低和稳定输出。
其简单的原理和高效率使其在很多电子设备中得到广泛应用。
开关电源拓扑之BUCK电路详解
Buck电路原理
上式中,对于Lc和D1 为固定值时,降压变换器的电流连续与否是由R = Vo/Io 值确定的。当R的欧姆值增大时,工作状态将从连续转化为不连续。另一方面 ,如果R和DTs 是固定的,则电感器的L<Lc 时,其工作状态由连续转化为不连 续。当Fs增大时,则保持开关变换器的连续状态工作的Lc降低。 从上图14、图15中可看到输入电流is是脉动的,与降压变换器的连续与否工作 状态无关。这个脉动电流,在实际应用中应受到限制,以免影响其他电器正常 工作。通常,电源Vs 和变换器的输入端之间会加上一些输入滤波器,这种滤 波器必须在开关变换器设计的早期阶段和建立模型过程就要预先进行考虑。否 则,在开关变换器与输入滤波器连接时,可能会引起意外的自激振荡。
+-
D
+
S
L2 C2
R
-
图6:Sepic
S
D
T
L
+
C
R
-
图8:单端反激变换器
开关电源拓扑概述
S1
D1
L
T
S2
D2
+
C
R
-
图9:推挽变换器
D1
L
C1
S1
T
D2
C2
S2
+
C3
R
-
D1
L
S1 S2
T
C
D2 S3 S4
图10:半桥变换器
+
R
-
图11:全桥变换器
之 开关电源拓扑介绍
Buck电路原理
Buck电路原理 Buck变换器又称降压变换器、串联开关稳压电源、三端开关型降压稳 压器。
源的主要组成部分是开关型DC_DC变换器,它是整个变换的核心。
(完整版)BUCK电路
纹波增大,斜率增大
纹波减小,斜率减小
BCM电感电流临界导电模式
CCM电感电流连续导电模式
DCM电感电流断续导电模式
注意 1、若输入输出电压不变,则占空比不变,电流上升和下降时长不变 2、磁芯大小不变,L与线圈匝数N2成正比 3、磁芯大小不变,在不引起磁饱和的情况下,改变L的大小仅影响电流的形态, 不影响电感所能传递的功率大小,要改变功率,必须改变磁芯的规格。
I L _ m ax I L _ avg
I L _ m in
电磁感应定律
UL
n
T
(Uin UO ) TON UO TOFF
UO
Uin
Ton Ton Toff
Uin D
D<1,故为降压
UL
L I T
I U L 电流线性变化
T L
若 输入输出电压、开关频率、 占空比不变,仅改变L大小
测试内容 输出电压
ON 12VDC
示波器探头
GND
示波器夹子 (接地)
结果分析
波形(近似线性,相当于电感电流波形,CCM) 输出电压不等于
电压平均值(6.32V,纹波电压3.6V(57%))
12x0.96(11.5V) 现在还不是BUCK
提示:R11功耗大,温度较高,小心烫伤,测试时间尽量不要太长。
则 电流的斜率和纹波大小会相应改变
电感电流模式
I U L k T L
若输入输出电压不变,开关频率不变,不限制电流的峰值
I L _ m ax
I L _ avg I L _ m in
电感量L减小
I L _ m ax I L _ avg
I L _ m in
TL494开关电源设计BUCK电路
通,称为单端工 作方式。
死区 时间控 制
反馈 /PWM比较 器输入
图二 :TL494时序 图
3.功能描述
▪ 含有控制开关式电源所需的主要功能块。 ▪ 线性锯齿波振荡器(3V),频率Fosc = 1.1/ (RT* CT ) ▪ 输出开关管导通时间由“死区时间控制”和“反馈/PWM比
较器输入”两个信号中电平较高的一个控制,控制信号电 平与电容器CT 上的锯齿波进行比较,实现脉冲宽度的调整。 ▪ 控制信号电平线性增加时,Q1 和Q2 的导通时间线性减少。 ▪ “输出控制”=5V为推挽输出,最小死区2%,最大占空比 48%; “输出控制” =0为单端输出,最小死区4%。
2. TL494的时
序(续)
触发 器
时钟
当输出控制电压 =H时, Q和时钟 Q
信号均为0时, Q
Q1基极高电平导
通, /Q和时钟信 Q1射极
号均为0时, Q2
基极高电平导通, Q2射极
两管轮流导通,
称为推挽工作方 输出控制
式。
当输出控制电压 =L时,时钟信号 为0时, Q1和Q2 基极获高电平导
C7 C8
5 CT 6 RT
GND 7
I N2+ 16
I N215
10u/16V
C2
332 R3
R8
120
10K
R9
图三:由TL494组成降压型开关稳压电源
0.1
+12
104 C9
5K1 R17
R16 3K6
稳压原理--输出电压负反馈。
若某因致输出电压过高,则误差放大器1同向端电位升高,反馈/PWM端电位 上升,Q1管导通时间减少,占空比减少,输出电压减少。负反馈使输出电压 保持稳定,R17和R16中点电压为5V。R12/R10为误差放大器1的静态放大倍 数,影响控制精度。C3和R6、C4、C5和R13补偿网络,提高静、动态性能。
(TI) 认识开关型电源中的BUCK-BOOST
a ia VI + Drive Circuit
Q1
CR1
p
VO C
c L IL = ic
R
RC
RL
图1.buck-boost 功率级原理图
在buck-boost功率级的正常工作中,Q1在控制电路的开关时间内,重复的打开、关上。在Q1、CR1 和L的连结节点处,开关动作产生了一个脉冲序列。电感L跟输出电容C相连,只有在CR1导通时,一 个有效的L/C输出滤波器才形成,过滤脉冲序列,产生直流输出电压。
商标属于各自所有者持有。
ZHCA041–1999年3月–2002年11月修订
全面认识开关型电源中的BU
1
介绍
开关电源最常见的三种结构布局是降压(buck)、升压(boost)和降压–升压(buck-boost),这 三种布局都不是相互隔离的,也就是说,输入级电压和输出电压是共地的,但是也存在这种隔离拓 扑的变型 。电源布局主要是指这些开关、输出电感和输出电容怎么连接的。每种布局都有它独自的 特性,这些性能主要包括稳态电压转换比、输入输出电流的状态、输出电压的纹波特征,另一个主 要特性就是占空比–输出电压的传输函数的频率响应。 Buck-boost是一种流行的非隔离、逆功率级的拓扑,有时也称为升降功率级。电源设计者选用buckboost功率级是因为输出电压和输入电压是反向的,这种拓扑结构可以得到在幅度上,比输入电压更 高的输出电压(像升压(boost)功率级),或者更低的输出电压(像降压(buck)功率级),这就 是它名字的由来,但是输出电压在极性上跟输入电压是相反的。由于功率开关(Q1)的作用,buckboost的输入电流是非连续的或脉冲的,在每个开关周期内,脉冲电流从0变化到IL,输出电流也是 非连续或脉冲的,这是因为输出二极管只能在开关周期内的一部分时间内导通,输出电容提供开关 周期内其它时间的所有负载电流。这篇报告描述了在给定的理想波形下,连续模式和非连续模式中 buck-boost转换器的稳态工作过程。 在介绍了脉冲宽度调制(PWM)开关模型后,给出了占空比–输出电压的传输函数。图1显示了包括 驱动电路模块在内的buck-boost功率级的简单原理图,功率开关Q1是以一个n通道的金属氧化物半导 体场效应管(MOSFET),输出二极管是CR1。电感L和电容C组成了有效的输出滤波器。在分析过 程中,考虑了电容ESR(等效串联电阻),RC ,和电感DC的阻抗,R L 。电阻R ,代表了在功率输出端的 负载。
boost和buck两种开关电源的基本电路拓扑和工作原理
boost和buck两种开关电源的基本电路拓扑和工作
原理
Boost和Buck两种开关电源的基本电路拓扑和工作原理如下:
1. Boost拓扑电路:Boost电路是一个升压电路。
当开关管导通时,输入电压Vi对电感Ls充电,形成的回路是:输入Vi→电感Ls→开关管Q。
当开关管关断时,输入的能量和电感能量一起向输出提供能量,形成的回路是:输入Vi→电感Ls→二极管D→电容C→负载RL。
此时负载的供电电源相当于Vi加上电感的感应电动势,从而实现升压。
2. Buck拓扑电路:Buck电路是一个降压电路。
当开关闭合时,续流二极管D是截止的,由于输入电压Vi与储能电感Ls接通,因此输入-输出压差(Vi-Vo)就加在Ls上,使通过Ls上的电流线性地增加。
在此阶段,除向负载供电外,还有一部分电能储存在电感Ls和电容Cr中。
当开关断开时,在电感Ls上产生反向电动势,使二极管D从截止变成导通。
如需了解更多信息,建议咨询专业技术人员或者查阅相关技术手册。
TL494开关电源设计--BUCK电路解析
100u/25V
C6
220u/25V
T2 TIP127 (100V/5A/Darl-L) 104 R2 C3 1K
10 9
3K R6
FR307 D4 103 C5 570 R13
C7
104 C9 5K1 R17
R16 3K6
5
6
7
六、原理图
CT
2. TL494的时 序 (续 )
当输出控制电压 =H时, Q和时钟 信号均为0时, Q1基极高电平导 通, /Q和时钟信 号均为0时, Q2 基极高电平导通, 两管轮流导通, 称为推挽工作方 式。 当输出控制电压 =L时,时钟信号 为0时, Q1和Q2 基极获高电平导 通,两管同时导 通,称为单端工 作方式。
设计案例分析
降压型(BUCK型)开关稳压电源设计
一. 技术指标
1. 电源容量 输入:15~24Vac(或18~28.8Vdc)。 输出:电源电压+12V(不可调),纹波小于 150mVP-P,最大输出电流2.0A(限流型保 护 )。 工作频率
2.
3.
开关电源的工作频率为30~40kHz。
100u/25V
C6
220u/25V
T2 TIP127 (100V/5A/Darl-L) 104 R2 C3 1K
10 9
3K R6
FR307 D4 103 C5 570 R13
C7
104 C9 5K1 R17
R16 3K6
5
6
7
七、参数选择
1.整流管:桥式整流,整流管工作电流=0.5负载电流,大反向电
682 1M
BUCK电路解析全解
4.BUCK变换器CCM稳态分析
由电感电压伏秒平衡原理有:
(Vs Vo ) DTs Vo (1 D)Ts
得:
M Vo D Vs
BUCK变换器的稳态电压变比永远小于1,所以 BUCK变换器也称为降压变换器。
M BUCK变换器稳态电压变比特性
M BUCK变换器电感电流纹波
电感电流纹波 I (峰值到平均值)为:
i
Vs Vo 2L
DTs
峰-峰值为:
iPP
Vs
Vo L
DTs
假设效率为1,则输入输出的电流比为:
MI
Io IS
1 D
7.DCM MODE
当电感L较小,或电阻R较大,或开关颇率fS较低时, BUCK变换器也将工作在不连续导电模式下,如下图: ①晶体管导通,二极管截止。运行的时间长度为D1Ts; ②晶体管截止,二极管导通。运行的时间长度为D2Ts; ③晶体管和二极管都截止,运行的时间长度为Ts-(D1+D2)Ts
当K>Kcrit时为连续导电模式,当K<Kcrit时为不连续导电模式。
13.Kcrit与M(D1)关系的图解
14.Buck變換器的优缺点
优点: 1 电路简单。 2 动态特性好。 缺点: 1 输入电流是脉动的,这将会引起对输入电源的电磁干扰,所 以在实际应用中常在电源与变换器之间增加一个输入滤波网络 2 稳态电压比永远小于1,只能降压不能升压; 3 开关晶体管发射极不接地.这将使其驱动电路复杂.
IL n
nTsVout L
IL n
18.ON時的集极峰值電流公式
由﹐Vin
LI p Dm a xTs
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图二 :TL494时序 图
四、TL494 的内部结构 与功能
2.TL494的时序
当锯齿波电平<死区时间控制电平时,死区时间比较器输出高电平。 当锯齿波电平<反馈/PWM输入电平时,PWM比较器输出高电平。 死区时间控制电压和反馈/PWM输入电压,二者中较高的电平控制触发器时钟宽度。
CT
闭环输出电压调整系数
记输出电压反馈系数为: F R16(R16 R17) TL494 误差放大器 1 的差模电压放大倍数为: k R12 R10 则 TL494 反馈/PWM 比较器输入端电压为
VPWM (k 1)FDVin kVREF
VPWM Vsm
若 TL494 锯齿波电压的幅度为Vsm ,则有
图五:电流连续、临界连续、断续状态
七、参数选择
9. 续流二极管:FR307 • 快恢复二极管 • 反向偏压=(VIN)max-VSTA • 峰值电流= (IO)max+ΔI FR307~3A/1kV满足要求。 10.软启时间:~100mS。
续流管阴极电位VK 、 电感电流IL、负载电流IO
2ΔI
VIN-VSTA IO>IOC
0 Ae
la
Ae
Li m NBm
, AW
NI kC j
,其中 im
C7 C8
5 CT 6 RT
GND 7
I N2+ 16
I N215
10u/16V
C2
332 R3
R8
120
10K
R9
图三:由TL494组成降压型开关稳压电源
0.1
+12
104 C9
5K1 R17
R16 3K6
稳压原理--输出电压负反馈。
若某因致输出电压过高,则误差放大器1同向端电位升高,反馈/PWM端电位 上升,Q1管导通时间减少,占空比减少,输出电压减少。负反馈使输出电压 保持稳定,R17和R16中点电压为5V。R12/R10为误差放大器1的静态放大倍 数,影响控制精度。C3和R6、C4、C5和R13补偿网络,提高静、动态性能。
-VF
t
(tON)min (tOFF)max
电流连续状态CCM
续流管阴极电位VK 、 电感电流IL、负载电流IO
2IOC
VIN-VSTA
IOC
(tON)min (tOFF)max
-VF
t
临界连续状态
续流管阴极电位VK 、 电感电流IL、负载电流IO VIN-VSTA
VO
IO<IOC
-VF
t
(tON)min (tOFF)max
2. TL494的时
序(续)
触发 器
时钟
当输出控制电压 =H时, Q和时钟 Q
信号均为0时, Q
Q1基极高电平导
通, /Q和时钟信 Q1射极
号均为0时, Q2
基极高电平导通, Q2射极
两管轮流导通,
称为推挽工作方 输出控制
式。
当输出控制电压 =L时,时钟信号 为0时, Q1和Q2 基极获高电平导
2L0
8L0
L0
~
VINT 8I
I (10% ~ 20%)IOmax
续流管阴极电位VK 、 电感电流IL、负载电流IO
2ΔI
VIN-VSTA IO>IOC
-VF
t
(tON)min (tOFF)max
电流连续状态CCM
续流管阴极电位VK 、 电感电流IL、负载电流IO
2IOC
VIN-VSTA
IOC
5K1 R17
R16 3K6
过载保护--过载时,降低输出电压使负载电流保持在保护值。
不论开关管T2是否导通,流过负载的电流都经过R9(由上向下),R9的下端 电位为负,当负载电流达一定值时,误差放大器2的反相端电位为负,误差 放大器2的输出(即反馈/PWM端)为正,Q1管不导通,输出电压降低。
六、原理图
CONT +5V
C4 682
3
2 R12 1M
1
R11 3K
13
14
R10 3K
C6
DEAD
4
R7
R4 R5
3K
10K 2K
100u/25V
C7 C8
5 CT 6 RT
GND 7
I N2+ 16
I N215
10u/16V
C2
332 R3
R8
120
10K
R9
图三:由TL494组成降压型开关稳压电源
0.1
C4 682
3
2 R12 1M
1
R11 3K
13
14
R10 3K
C6
DEAD
4
R7
R4 R5
3K
10K 2K
100u/25V
C7 C8
5 CT 6 RT
GND 7
I N2+ 16
I N215
10u/16V
C2
332 R3
R8
120
10K
R9
图三:由TL494组成降压型开关稳压电源
0.1
+12
104 C9
+12
104 C9
5K1 R17
R16 3K6
软启动--上电时输出电压由低到高建立,需要一定时间。 上电时,C6充电需要一定时间,死区电压由高逐渐变低,Q1管的导通 时间逐渐增大,输出电压逐渐升高。
七、参数选择
1.整流管:桥式整流,整流管工作电流=0.5负载电流,大反向电 压=输入交流电压峰值,IN5399(1.5A/1kV)可以满足要求。 2.滤波电容:RLC=(3~5)T。 整流滤波后电压VIN=18~28.8V,P=UoIo~(V2IN/RL)*η, η=0.9, RL~12Ω,T=10mS,3300uF/35V电解电容可满足要求。 最常用电解电容:1.0、2.2、3.3、4.7、6.8及相应十百千uF, 耐压有6、16、25、35、50、63、100、120、250、400V。 3.工作频率:音频上限~20kHz,Fosc~33kHz,TOSC=30uS, tON=TOSCVO/(VIN-Vsta)=13.0~21.4uS(Vsta~1.2V)。
二. 课题的意义
1. 具有实用性:几乎所有的电子设备都涉及电源设计,容量 较大时多采用开关电源。
2. 掌握一种共性技术:脉冲宽度调制技术-PWM是一项共性 技术,应用面广,各种电源设计、恒温控制、电机调速等。
3. 学习集成电路应用方法:TL494、SG3525A是常用的、典 型的固定频率的PWM控制电路,有一定代表性。
通,两管同时导
通,称为单端工 作方式。
死区 时间控 制
反馈 /PWM比较 器输入
图二 :TL494时序 图
3.功能描述
▪ 含有控制开关式电源所需的主要功能块。 ▪ 线性锯齿波振荡器(3V),频率Fosc = 1.1/ (RT* CT ) ▪ 输出开关管导通时间由“死区时间控制”和“反馈/PWM比
较器输入”两个信号中电平较高的一个控制,控制信号电 平与电容器CT 上的锯齿波进行比较,实现脉冲宽度的调整。 ▪ 控制信号电平线性增加时,Q1 和Q2 的导通时间线性减少。 ▪ “输出控制”=5V为推挽输出,最小死区2%,最大占空比 48%; “输出控制” =0为单端输出,最小死区4%。
典型 15 30 ----30 0.01 40
最大 单位
40
V
40
V
200
mA
VCC-2 V
0.3
mA
10
mA
500
kΩ
10
μF
200
kHz
六、原理图 3A/400 IN5399*4
3300u/35V C1
L1 270uH/2.0A
11
VCC 12
T2
TIP1 27 (100V/ 5A/Darl-L)
电流连续状态CCM
续流管阴极电位VK 、 电感电流IL、负载电流IO
2IOC
VIN-VSTA
IOC
(tON)min (tOFF)max
-VF
t
临界连续状态
续流管阴极电位VK 、 电感电流IL、负载电流IO VIN-VSTA
VO
IO<IOC
-VF
t
(tON)min (tOFF)max
电流断续状态DCM
3A/400 IN5399*4
3300u/35V C1
L1 270uH/2.0A
11
VCC 12
T2
TIP1 27 (100V/ 5A/Darl-L)
R1 10K
R2
104 3K C3 R6
FR307 D4
1K
103 570
C5 R13
220u/25V
10 E2 E1 9
C1 8
C2
IC2 494
PWM IN1 IN1 +
纹波0.5 ΔVP-P= ΔQ/CO, CO=(3~5)(ΔI) T/(2ΔVP-P) 产生纹波的两个因素:1.输出电容容 量有限;2.开关过程产生的过冲,这 部分较难滤除。
续流管阴极电位VK 、 电感电流IL、负载电流OC
-VF
t
(tON)min (tOFF)max
(tON)min (tOFF)max
-VF
t
临界连续状态
续流管阴极电位VK 、 电感电流IL、负载电流IO VIN-VSTA
VO
IO<IOC
-VF
t
(tON)min (tOFF)max
电流断续状态DCM
图五:电流连续、临界连续、断续状态