开关电源变压器参数设计步骤详解

合集下载

单端反激式开关电源中变压器的设计

单端反激式开关电源中变压器的设计

单端反激式开关电源中变压器的设计变压器作为单端反激式开关电源中的关键部件,在一定时间内具有不变的变换特性,因此具有较强的可靠性。

变压器的设计方案的选择对单端反激式开关电源的工作稳定性和效率都有很大的影响,因此变压器的设计步骤和要求都需要非常精细地考虑。

一、变压器设计步骤1、选择基本参数:在变压器设计中,首先要根据单端反激式开关电源的功率、输入电压、输出电压、铁芯材料、匝数及其他参数等,确定变压器的基本参数。

2、磁材和匝组设计:根据变压器的基本参数,确定变压器的磁芯材料,以及计算求出的空心铁芯的尺寸,以此作为变压器的磁材和匝组设计的参考。

3、选择变压器结构形式:根据变压器的功率大小,以及其应用环境的实际情况,选择工作最稳定的变压器结构形式。

4、绕组设计:针对上述选择的变压器结构形式,根据变压器的基本参数,选择合适的绕组几何参数,并根据电流要求以及其他条件,采用不同的工艺技术完成绕组的设计。

5、振荡线圈设计:由于单端反激式开关电源较复杂,为了实现对电压幅值、相位和线性度的控制,可能要设计振荡线圈。

因此,在实际的设计中,需要根据电路的实际要求,进行振荡线圈的合理设计。

1、电气特性要求:变压器的电气特性包括变换率、耐压要求、绝缘耐压要求、额定功率、工频噪声。

变压器应能满足额定电压比、额定电流、绝缘耐压、额定功率等要求,而且应保持满足所需的线性度要求,并具有良好的耐辐射和抗干扰能力。

2、机械特性要求:机械特性包括尺寸、外形和结构特性。

变压器的结构特性要求包括安装大小、安装方式、绝缘要求、电正性要求等,并要求可以长时间稳定的运行,在正常工作情况下,满足高强度,无变形。

3、热效应要求:在变压器设计中还应考虑高效率、低损耗要求,其中尤其需要考虑到热效应。

热效应要求变压器的绝缘材料具有高的热稳定性;并且磁芯的结构设计要考虑到磁芯材料的热导性和热抗性;另外,还要考虑到电磁绕组材料的空气隙、绕组物理结构等造成的损耗,以确保变压器的热效应稳定可靠。

反激式开关电源变压器设计步骤(重要)

反激式开关电源变压器设计步骤(重要)

反激式开关电源变压器设计反激式变压器是反激式开关电源的核心,它决定了反激式变换器一系列的重要参数,如占空比D ,最大峰值电流,设计反激式变压器,就是要让反激式开关电源工作在一个合理的工作点上。

这样可以让其发热量尽量小,对器件的磨损也尽量小。

同样的芯片,同样的磁芯,若是变压器设计不合理,则整个开关电源性能会有很大的下降,如损耗会加大,最大输出功率会下降.设计变压器,就是要先选定一个工作点,在这个点就是最低的交流输入电压,对应于最大的输出功率。

第一步,选定原边感应电压V OR 。

这个值是有自己来设定的,这个值就决定了电源的占空比.可能朋友们不理解什么是原边感应电压。

我们分析一个工作原理图。

当开关管开通的时候,原边相当于一个电感,电感两端加上电压,其电流值不会突变,而线性上升:I 升=Vs*Ton/L 。

这三项分别是原边输入电压,开关开通时间和原边电感量。

在开关管关断的时候,原边电感放电,电感电流会下降,此时有下降了的电流:I 降=V OR *T OFF /L 。

这三项分别是原边感应电压(即放电电压)、开关管管段时间和电感量。

经过一个周期后,原边电感电流会回到原来的值,不可能会变,所以有:Vs *T ON /L=V OR *T OFF /L 。

即上升了的等于下降了的。

上式中用D 来代替T ON ,用(1-D )来代替T OFF .移项可得:D=V OR /(V OR +Vs)。

这就是最大占空比了.比如说我设计的这个变压器,我选定电感电压V OR =20V ,则Vs 为24V ,D=20/(20+24)=0。

455。

第二步,确定原边电流波形的参数原边电流波形有三个参数,平均电流,有效值电流,峰值电流,首先要知道原边电流的波形,原边电流的波形如下。

这是一个梯形波横向表示时间,总想表示电流大小,这个波形有三个值,一个是平均值I 平均,二是有效值I ,三是峰值Ip 。

首先要确定平均值I 平均:I 平均=Po/(η*Vs )。

开关电源中变压器及电感设计1

开关电源中变压器及电感设计1

开关电源中变压器及电感设计1开关电源中变压器及电感设计1一、变压器设计1.根据电源输出需求确定变压器的额定功率和工作频率。

2.计算变压器的变比。

变压器的变比决定了输入电压和输出电压之间的关系。

通常变压器的变比为输入和输出电压之比的倒数,即输出电压/输入电压。

3.根据变比计算次级匝数。

变压器的次级匝数等于输入匝数乘以变比。

4.根据次级匝数计算主绕组匝数。

主绕组匝数等于次级匝数除以变比。

5.计算主绕组和次级绕组的截面积。

主绕组的截面积一般比次级绕组大,以满足输送更大电流。

6.计算铁芯截面积。

铁芯截面积的大小关系到变压器的能量传输效率,一般选择铁芯截面积略大于主绕组的截面积。

7.选择合适的铁芯材料和线材材料。

铁芯材料的导磁性能和线材材料的电阻等参数会影响变压器的损耗和效率。

8.进行变压器的相关参数计算和模拟。

可以使用相关软件进行变压器参数的计算和仿真,以评估变压器的性能。

9.制作变压器的绕组和组装。

根据计算结果进行绕线并组装变压器。

10.进行变压器的测试和调整。

使用仪器测试变压器的性能,并根据测试结果调整变压器的参数,以满足设计要求。

二、电感设计1.根据电源输出需求确定电感的额定电流和工作频率。

2.根据电感的额定电流和工作频率计算电感的感值。

电感的感值和额定电流和工作频率之间有一定的关系,可以根据公式进行计算。

3.根据感值计算电感的绕组数。

电感的绕组数决定了电感的电流走向和电感的大小。

4.选择合适的磁芯和线材材料。

合适的磁芯材料和线材材料会影响电感的损耗和效率。

5.进行电感的相关参数计算和模拟。

可以使用相关软件进行电感参数的计算和仿真,以评估电感的性能。

6.制作电感的绕组和组装。

根据计算结果进行绕线并组装电感。

7.进行电感的测试和调整。

使用仪器测试电感的性能,并根据测试结果调整电感的参数,以满足设计要求。

总结:变压器和电感的设计是开关电源设计中关键的一环,直接影响到电源的性能和稳定性。

在设计过程中,需根据电源输出需求确定额定功率和工作频率,并计算变压器和电感的相关参数。

反激式开关电源变压器设计参看详解

反激式开关电源变压器设计参看详解

Npri(V01+VD1)(1-Dmax)
NS1 =
(匝)
Vin(min) Dmax
8. 计算二次其它绕组所需匝数Nsn
Nsn =
(Von+VDn) Ns1 V01 + VD1
(匝)
技术部培训教材
反激式开关电源变压器设计(2)
1.9 检查相应输出端的电压误差
Vsn
δVsn%=(( =
N’sn-Vsn)/Vsn)x100%
0.65(16)
0.5(11)
0.80(20)
1.1(30)
1.1(30)
1.4(35)
1.5(38)
1.8(47)
2.0(51)
2.4(60)
技术部培训教材
反激式开关电源变压器设计(2)
第二种是计算方式,首先假定变压器是单绕组,每增加一个绕组并考 虑安规要求,就需增加绕组面积和磁芯尺寸,用“窗口利用因数”来修整 单绕组电感磁芯尺寸按下式计算:
A’p=Knet.Ap
按照上计算A’P值,加一定裕度,选取相适应的磁芯.
技术部培训教材
反激式开关电源变压器设计(2)
4. 计算一次电感最小值Lpri
Vin(min).Dmax
Lpri =
(H)
Ipk f
式中:f单位为Hz
5. 计算磁芯气隙Lgap
0.4 πLpriIpk . 108
Lgap =
cm2
Iin(MIN)=PINxVIN (MAX) Iin(MAX)=PINxVIN (MIN) 5 估算峰值电流:
K POUT IPK =
VIN (MIN) 其中:K=1.4(Buck 、推挽和全桥电路)
K=2.8(半桥和正激电路) K=5.5(Boost,

单管正激式开关电源变压器设计

单管正激式开关电源变压器设计

单管正激式开关电源变压器设计设计一个单管正激式开关电源变压器的主要目标是将输入电压转换为所需的输出电压,并提供适当的电流输出。

这种类型的电源变压器由一个开关管、一个变压器、一个整流电路和一个滤波电路组成。

以下是一个设计单管正激式开关电源变压器的基本步骤:1.确定功率需求:首先,确定所需的输出功率,这将指导变压器的尺寸和开关管的容量选择。

输出功率通常以所需的输出电压和电流来计算,即P=V*I。

2.选择变压器参数:根据所需的输出功率和输入电压范围,选择适当的变压器参数。

变压器一般由工作频率、变比(输出电压与输入电压之比)和功率容量来定义。

变压器的变比可以通过变压器的匝数比来实现,即N2/N1,其中N2是次级(输出)匝数,N1是主级(输入)匝数。

3.选择开关管:选择能够承受所需输出功率的开关管。

开关管的选择与其导通电阻、封装、耐压和工作频率相关。

常用的开关管有晶体管和功率MOSFET。

4.设计整流电路:整流电路用于将开关管的高频交流输出转换为直流输出。

常见的整流电路包括单相桥式整流器和满桥式整流器。

整流电路的设计需要考虑所需的输出电压、电流和纹波功率因素。

5.设计滤波电路:滤波电路用于去除整流电路输出的高频纹波,并提供平滑的直流输出。

常见的滤波电路包括电容滤波器和电感滤波器。

滤波电路的设计需要考虑所需的输出电压纹波和效率。

6.进行模拟和数字仿真:使用计算机软件进行电路的模拟和数字仿真,以验证设计的正确性和性能。

7.制作原型并测试:根据设计的电路图和布局,制作原型并进行测试。

测试包括输出电压和电流的测量、纹波和效率的评估。

8.进行优化:根据测试结果进行设计的优化。

优化的目标包括提高效率、减小纹波和噪声,以及改进稳定性和可靠性。

上述步骤提供了一个基本的单管正激式开关电源变压器设计的框架。

具体的设计细节和参数将取决于所需的输出功率和输出电压等要求。

为了确保电路的稳定性和可靠性,建议在设计过程中仔细考虑电源的保护和故障检测机制。

反激式开关电源变压器设计步骤及公式

反激式开关电源变压器设计步骤及公式

反激式开关电源变压器设计步骤及公式(4种计算方法比较)1.确定已知参数: (主要PWM方式)确定已知参数:(主要RCC方式)来自现代高频开关电源实用技术1,确定系统规格输出功率:输入功率: P୧=୔౥஗输入平均电流: Iୟ୴୥ൌ୔౟୚౟౤ሺౣ౟౤ሻ同左边占空比D୫ୟ୶=୲౥౤୘=0.5 f୫୧୬:25KHz输入直流电压Vୈେ=√2Vୟୡ在了解输出功率后确定所需磁芯A p=A e*A w(cm4)Ae:磁芯中心柱横截面积(cm2);A w:磁芯窗口面积(cm2)最小AC输入电压:V ACMIN,单位:V最大AC输入电压:V ACMAX,单位:V输入电压频率:f L,50Hz or 60Hz输出电压:V O,最大负载电流:I O输出功率:P O,单位:WIo:Po=Vo*Ioη:0.85P୧ൌP୭η2.峰值电流1T=10000G s输入峰值电流:I୔୏ൌ୏כ୔౥୚౟౤ሺౣ౟౤ሻ对于BUCK(降压),推挽,全桥电路K=1.4对于半桥和正激K=2.8对于Boost,BUCK-Boost和反激K=5.5 I୮ൌ2כP୭כTηכV୧୬ሺ୫୧୬ሻכt୭୬A e*A w>୔౥כଵ଴లଶכ஗כ୤౩כ୆ౣכஔכ୏ౣכ୏ౙ(cmସ) ;Ae是磁芯截面积(cm2),Aw是磁芯窗口面积(cm2);f的单位为Hz,Bm的单位为Gs,取(1500)不大于3000Gs,δ导线电流密度取:2~3A/mmଶ ,K୫窗口填充系数取0.2~0.4,Kc磁芯填充系数,对于铁氧体该值取1I୅୚ୋൌP୧V୧୬୫୧୬I୔୏ൌIୟ୴୥D୫ୟ୶כ2T୭୬ൌଵ୤D୫ୟ୶(uint:µs)1S=106µsL୔ൌ୚౟౤ౣ౟౤כ୘౥౤୍ౌే(µH)3.计算初级电感因所以t୭୬ൌDכTൌଵଶכ୤若f取25KHz,则t୭୬为20μS选磁芯也可用公式Fosc<50KHz S=1.15*√Po(cmଶሻFosc<60KHz S=0.09*√Po(cmଶሻFosc>=60KHz S=0.075*√Po(cmଶሻNPൌ୐ౌכ୍ౌే୼୆כ୅౛כ10଺L P:mH; ΔB:260mT;A e:mm2NsൌሺV୭൅Vୈሻכሺ1െD୫ୟ୶ሻכN୔V୧୬୫୧୬כD୫ୟ୶NaൌሺVୟ൅Vୟୈሻכሺ1െD୫ୟ୶ሻכN୔V୧୬୫୧୬כD୫ୟ୶L ୔=୚౟౤ሺౣ౟౤ሻכୈ୍ౌేכ୤౥౩ౙ其中L 单位:H f:Hz 电压:V, 电流:A匝比:n=୚౥୚౟౤ሺౣ౟౤ሻ=୒౩୒౦4. 计算初级匝数初级电感:L ୮ൌ୚౟౤ሺౣ౟౤ሻכ୲౥౤୍౦检验磁芯正规名牌磁性材料的Bm 不得大于3000Gs ,国产杂牌不大于2500Gs 更保险A ୐值是在磁芯上绕1000匝测得(美国)则N ୔ൌ1000ට୐ౌ୅ై此式中L ୔单位为mH变压器次级圈数:Ns>୬כ୍౦כ୐౦ୗכ୆ౣ*10଻其中S 为磁芯截面积,B୫值为3000Gs若A ୐值是用100匝测得且单位是nH/N ଶ,则N ୔ൌ100ට୐ౌ୅ై此式中L ୔单位为mH,A ୐单位为mH/N ଶ,在计算时要将A ୐的值由nH 转换为mH 后再代入式中计算;例如:某A ୐值为1300 nH/N ଶ, L ୔值为2.3mH,则A ୐=1300nH/N ଶ=1.3 mH/N ଶ代入中计算得N ୔为133T 初级匝数为:Np=୒౩୬B(max) = 铁心饱合的磁通密度(Gauss)Lp = 一次侧电感值(uH) Ip = 一次侧峰值电流(A) Np = 一次侧(主线圈)圈数 Ae = 铁心截面积(cm2 )B(max) 依铁心的材质及本身的温度来决定,以TDK Ferrite Core PC40为例,100℃时的B(max)为3900 Gauss ,设计时应考虑零件误差,所以一般取3000~3500Gauss 之间,若所设计的power 为Adapter(有外壳)则应取3000 Gauss 左右,以避免铁心因高温而饱合,一般而言铁心的尺寸越大,Ae 越高,所以可以5. 匝比n=୒౩୒ౌ=୚౥୚౟౤ሺౣ౟౤ሻ晶体管的基极电流I ୆=୍౦୦ూు6. 次级绕组匝数N ୱ=N ୔*n N ୱଵ=୒౦כሺ୚౥ା୚ౚሻכሺଵିୈౣ౗౮ሻ୚౟౤ሺౣ౟౤ሻכୈౣ౗౮多路输出时N ୱ୶=ሺ୚౥౮ା୚ౚ౮ሻכ୒౩భ୚౥భା୚ౚభ其中x 代表几路I ୆୰୫ୱൌI ୆√27. 原边供电绕组N ୟ=N ୱכ୚౗୚౥在多路输出时Vo 为主输出电压计算线径(包括初级次级)同左边8. 选择磁芯型号要满足,磁芯中心柱截面积S=0.09*√Po (cm ଶሻ或满足公式A୔=A ୣכA ୵ൌ୔౥כଵ଴లଶכ஗כ୤౩כ୆ౣכஔכ୏ౣכ୏ౙ(cm ସ ) ;Ae 是磁芯截面积(cm 2),Aw 是磁芯窗口面积(cm 2);f 的单位为Hz ,Bm 的单位为Gs ,取(1500)不大于3000Gs ,δ导线电流密度取:2~3A /mm ଶ ,K ୫窗口填充系数取0.2~0.4,Kc 磁芯填充系数,对于铁氧体该值取1做较大瓦数的 Power 。

几种开关电源变压器设计计算方法

几种开关电源变压器设计计算方法

几种开关电源变压器设计计算方法
开关电源变压器设计计算方法有多种,根据输入和输出电压、电流、效率等参数的不同,可以选择不同的设计方法。

下面介绍几种常见的开关电源变压器设计计算方法。

1.均压系数法:
均压系数法是一种常见的设计方法,适用于输出电压稳定、负载变化较小的情况。

计算步骤如下:
1)确定输入和输出电压、电流;
2)选择变压器的变压比和绕组匝数;
3)根据电流传输比,计算输入和输出绕组的截面积和电流;
4)根据磁通密度,计算变压器的磁芯截面积;
5)计算变压器的工作频率和磁通密度。

2.欧姆法:
欧姆法是一种比较精确的设计方法,适用于需求较高的应用场景。

计算步骤如下:
1)确定输入和输出电压、电流,以及允许的电压降;
2)根据欧姆定律和功率关系,计算输入和输出绕组的电阻;
3)根据电流传输比,计算输入和输出绕组的导线截面积;
4)根据磁通密度,计算变压器的磁芯截面积;
5)计算变压器的工作频率和磁通密度。

3.饱和系数法:
饱和系数法是一种适用于高频开关电源设计的方法,可以有效降低开
关电源的损耗和杂散辐射。

计算步骤如下:
1)确定输入和输出电压、电流,以及允许的饱和电流;
2)根据输入和输出电流计算变压器的有效电流;
3)根据输入电流和变压比,计算输入和输出绕组的有效导线截面积;
4)根据磁通密度,计算变压器的磁芯截面积;
5)计算变压器的工作频率和磁通密度。

以上是几种常见的开关电源变压器设计计算方法。

在实际设计中,还
需要考虑变压器的损耗、绝缘、温升等因素,并结合具体的应用要求进行
优化和调整。

单端反激式DC-DC开关电源变压器的设计全过程

单端反激式DC-DC开关电源变压器的设计全过程

单端反激式DC/DC 开关电源变压器的设计全过程,xuguoping 分享与世纪电源网的网友 变压器的参数计算:(1) 变压器的设计要求:输出电压:10V ~3KV ,8mA (变压器输出之后三倍压)输入电压:24 1V±工作频率:50KHZ最大占空比:45%变换效率:80%(2) 基本参数计算:输入最小电压:min IN V =-IN V V =24-1-0.5=22.5V输出功率:OUT OUT OUT P U I =30000.00824()W =×=输入功率:OUT IN P P η=2430()0.8W == (3) 选择磁芯:由于输出功率为24W ,需要留有一定的余量,选择磁芯的型号为:EI-28。

其具体参数如下:材料:PC40;尺寸:28.0*16.75*10.6(mm);P A :0.6005();:86 4cm e A 2mm W A :69.83; :4300;2mm L A 2/nH N S B :500mT () 390mT (10) 25o C 0o C 使用时为防止出现磁饱和,实取磁通密度m B = 250 mT(4) 粗略估计匝数比以及最大占空比(通过实际计算)min (1)OUT MAX IN MAX V D N V D −= 30000.5522.50.45×=× 162.9=(求出结果后然后取整为Nm )因为匝数比可以根据设计理念修正为M N =165,从而可以产生新的MAX Dmin OUT MAX M IN OUT V D N V V =+ 300022.51653000=×+44.7%=(5) 计算初级平均电流,峰值电流和电流的有效值由于输出功率为24W ,用电流连续模式(CCM )比较适合。

这里取为0.6RP K .min min IN OUT P AVG IN IN P P I V V η== 240.822.5=×1.333A =.1[1]2P AVG P RP MAX I I K D =− 1.333(10.50.6)0.447=−××4.26A=.P RMS P I I ==2.054A =.P RMS I -电流有效值,P I -峰值电流,.P AVG I -平均电流,(RP K R RP PI K I =)电流比例因数,MAX D -最大占空比; 利用Krp 的值可以定量描述开关电源的工作模式,若Krp=1.0,即峰值电流和脉动电流相等,开关电源工作在断续模式;若Krp<1.0,峰值电流大于脉动电流,开关电源工作在连续模式。

开关电源变压器设计资料完整版.

开关电源变压器设计资料完整版.

开关电源变压器设计开关变压器是将DC 电压﹐通过自激励震荡或者IC 它激励间歇震荡形成高频方波﹐通过变压器耦合到次级,整流后达到各种所需DC 电压﹒变压器在电路中电磁感应的耦合作用﹐达到初﹒次级绝缘隔离﹐输出实现各种高频电压﹒ 目的﹕减小变压器体积﹐降低成本﹐使设备小形化﹐节约能源﹐提高稳压精度﹒ N工频变压器与高频变压器的比较﹕工频 高频E =4.4f N Ae Bm f=50HZE =4.0f N Ae Bm f=50KHZ N Ae Bm 效率﹕ η=60-80 % (P2/P2+Pm+ P C ) η>90% ((P2/P2+Pm )功率因素﹕ Cosψ=0.6-0.7 (系统100W 供电142W) Cosψ>0.90 (系统100W 供电111W) 稳压精度﹕ ΔU%=1% (U20-U2/U20*100) ΔU<0.2% 适配.控制性能﹕ 差 好 体积.重量 大 小开关变压器主要工作方式一.隔离方式: 有隔离; 非隔离 (TV&TVM11) 二.激励方式: 自激励; 它激励 (F + & IC) 三.反馈方式: 自反馈; 它反馈 (F- & IC) 四.控制方式: PWM: PFM (T & T ON ) 五.常用电路形式: FLYBACK & FORWARD一.隔离方式:二.开关变压器主要设计参数静态测试参数:R DC. L. L K. L DC. TR. IR. HI-POT. IV O-P.Cp. Z. Q.………动态测试参数:Vi. Io. V o. Ta. U. F D max………….材料选择参数CORE: P. Pc. u i. A L. Ae. Bs…….WIRE: Φ℃. ΦI max. HI-POT……..BOBBIN: UL94 V--O.( PBT. PHENOLIC. NYLON)……….TAPE: ℃. δh. HI-POT……..制程设置要求P N…(SOL.SPC).PN//PN.PN-PN. S N(SOL.SPC).Φn. M tape:δ&w TAPE:δ&w. V℃……..三.反馈方式:四.控制方式: PWM: PFM脉冲宽度调制 脉冲频率调制五.常用电路形式:单端正激励FORWARD开关变压器主要设计参数静态测试参数:R DC. L. L K. L DC. TR. IR. HI-POT. IV O-P.Cp. Z. Q.………动态测试参数:Vi. Io. V o. Ta. U. F D max………….材料选择参数CORE: P. Pc. u i. A L. Ae. Bs…….WIRE: Φ℃. ΦI max. HI-POT……..BOBBIN: UL94 V--O.( PBT. PHENOLIC. NYLON)……….TAPE: ℃. δh. HI-POT……..制程设置要求..单端反激励FLYBACK 调节TON 使能量守恒定1/2*L P *I PK 2=1/2*L S *I SK 2加GAP 曲線Br 下降﹐ΔB 傳遞能力增大﹒傳遞磁能區間增加单端反激励(Flyback)波形分为:临界状态,非连续状态, 连续状态(常用状态).Po=1/2LI pk2*f (η)Vi min=I pk*Lp/TonPo/Vi min I pk=2Po/D max Vi min ( Po=VoIo)Vi min*Ton=I pk*Lp Lp=Vi min*D max/I pk*fNp=Lp*I pk/Ae*ΔB Np= ΔB*Ig/0.4π*I pkIg=0.4πL p I pk2/Ae*ΔB2Vo+VD=Vimin*(Dmax/1-Dmax)*Ns/NpNs=(V O+V D)*(1-Dmax)*Np/Vi min*D maxDmin=Dmax/(1-Dmax)K+Dmax K=Vi max/Vimin单端反激励(Flyback)设计例题一条件﹕V i =170V-270V ﹐f= 30K HZ V o= 5V, Io=20A, D max=0.45(设计取值)设计﹕1) Vi min=170*1.4--20=218V, Vi max=270*1.4-20=358VVi min=170*√2-(V D.ΔU) Vi max=270*√2-(V D.ΔU)Vi min=(V iACMIN)2-2Po(1/2fL -tc)2) I pk=2*5*20/218*0.45=2.04A ηCIN Ipk=2Po/DmaxVimin ( Po=V oIo) Po=1/2LI pk2*f (η)3) Lp=218*0.45/2.04*30000=1.6mHLp=Vimin*Dmax /Ipk*f4) K=358/218=1.64K=Vimax/Vimin5) Dmin=0.45/(1-0.45)*1.64+0.45=0.332Dmin=Dmax/(1-Dmax)K+Dmax6) CORE查表100W 选择EER42/15 Ae=183mm2(1.83cm2) Bs=390mT(3900Gs)Core=g/w(f=20k Hz REF)7) WIRE查表或SΦ=√I/3=√20/3=2.58mm 选"铜箔"为佳.PΦ=√2.04/3=0.82,选0.60X2r2*π(2.58/2)2*3.14=5.225 选择19#,Φ=0.98*7 (0.98/2)2*3.14*7=5.277(4Pin并绕)8) Ig=(0.4*3.14*1.6*10-3*2.042/1.83*19502 )*108=0.12cmIg=0.4πLpIpk2/Ae* ΔB29) Np=1950*0.12/0.4*3.14*2.04=91.32T . Np=(0.0016*2.04/1.83*1950)*108=91.46TNp=ΔB*Ig/0.4π*Ipk Np=Lp*Ipk /Ae*ΔB10) Ns=(5+1)*(1-0.45)*91/218*0.45=3.06T 11)P=1/2*1.6*2.042*30=96WNs=(V O+V D)*(1-Dmax)*Np/Vimin* Dmax P=1/2LI2*f单端正激励(FORWARD)设计例题一输入电压﹒Vi= 48V (36~60V), 额定输出电压﹒电流﹒V o=5.0V﹒Io=11A 额定输出功率55W. 最大输出功率65Wf=470kHz (450~500 kHz) δmax=0.42 η=82设计步骤: 选择PC50. 3F3. N49等材质选PC50. EPC25.Ae: 46.4mm2. Le: 59.2mm. B S: 3800G S1): Ipk= Ic= 2POUT / Vinmin= 2*65 / 36= 3.6A2): Np= Vinmax*108 / (4FBmax*Ae) 取Bmax=2000G= 60*108 / (4*450K*2000G*0.464)= 4TS, 调整为6TS3): Ns= Np *(Vo+V D) / (Vi*δmax)= 4* (5.5+1)/(36*0.42)= 1.7TS 调整为2TS4): 反馈绕组. N= Np*(15+1) / (36*0.42)= 6*16/(36*0.42)= 6TS5): 选择绕组线径Np: Φ0.1*120CNs: Φ0.1*200CN: Φ0.256): 由于为安全电压.故不须包MARGIN TAPE.单端正激励(FORWARD)设计例题二输入电压﹒Vi= 100V (85V~135V),额定输出电压﹒电流﹒V o=5.0V(4.5-5.5)﹒Io=20Af=200kHz δmax=0.42设计步骤: 选择PC40..TP4等材质选TP4. EE28C.Ae: 87.4mm2. B S: 3800G S 取Bmax=2000G1): T=1/fo=1/200K=5us2): Tonmax=T*Dmax=5*0.42=2.1us3): V2min=(Vo+VL+VF)*T/Tonmax=(5.5+0.2+0.5)*5/2.1=14.8V4): n=V2min/V1min=14.8/100=0.1485): N2=(V2min*Tonmax/Bs*Ae)*104 =(14.8*2.1/2000*87.4)* 104=1.83T︽2T6): N1 =N2/ n=2/0.148=13.5T ︽14TTonmax=(Vo+VL+VF)*T/ V2min=2.09 Dmax= Tonmax/T=2.09/5=0.418︽0.42优化设计举例1)绕线空间设计: 变压器绕线空间设计得好﹐使其耦合传递最佳﹐发挥功率更佳﹐干扰更小﹐例一﹐ETD44A V 音响主功率变压器1-2Φ0﹒35 X725T1-2 Φ0﹒21 X10X2 25T 7-9 Φ0﹒35 X9 5T 7-9 Φ0﹒35 X9 5T2-3 Φ0﹒21 X10X2 25T2-3 Φ0﹒35 X7 25T减小绕线高度﹐对理线较合理﹒例二﹐EI22 DVD 辅助变压器1-X Φ0﹒30 8T1-2 Φ0﹒25 16T 6--8-------------------- 6--8-------------------- 6--9--------------------6--9--------------------X -2 Φ0﹒30 8T1-2 Φ0﹒25 16T 增强耦合性能﹐采用并联绕线﹐合理安排接线工艺﹐减小漏感﹒例三﹐EER28 DVD 主功率变压器 3--4 Φ 0.40 25T 17--15 Φ0.40X2 4T 4--2 Φ 0.40 25T 14--13----------------------2--1 Φ 0.40 25T3--4 Φ 0.40 25T 17--15 Φ0.40X5 4T 4--2 Φ 0.40 25T 14--13----------------------2--1 Φ 0.40 25T加大耦合﹐减小漏感﹐提高负载能力﹒17--15 Φ0.40X2 4T随着变压器的小形化﹐可以根据爬电距离来实现安全性能要求﹐设计产品的目的﹐主要满足用户要求﹐符合安全性能规定﹒1﹒干燥空气爬电耐压距离﹕经验距离为1mm /1000V ﹒2﹒TAPE (0﹒025/0﹒065)P -S 三层规定﹕ 1层>4000V 延伸变形后>1500V ﹒ 3﹒S 线圈-S 线圈之间爬电耐压距离﹕>1500V>1.5mm ﹒4﹒边缘胶带MARGINTAPE 爬电耐压距离﹕ 边缘安胶W=3mm 可根据Vi 电压W1.5-2.mm ﹒ 5﹒采用TEX -E 线解决耐压距离﹕ 三重绝缘线 层>6000V 延伸变形后耐压下降﹒6﹒胶带绝缘层解决耐压距离﹕ 胶带村垫SOL 一层SPC 二层﹐反贴胶带等﹒ 7﹒规格耐压条件(3.0KV/60’ 2mA) 制程条件UL3.0KV *1.2倍/2’ 2mA ﹒ 8﹒层间耐压要求﹕3)开关变压器的参数分析1.关于集肤效应可选用多股线(满足b>a a=r2πb= r2π*x x= x股线)满足高频负载电流﹐降低变压器温升﹒2. 关于L k与Cp是一对矛盾﹐一般要求变压器平衡L k与Cp参数﹐L k不要追求愈小愈好﹐Cp 的增加会引起噪声的增加﹒开关变压器GAP&L K1﹒气隙GAP 设计大小与所需要的传递能量有关﹐GAP 大气隙长度增加也就是气隙体积增加﹐电感下降﹒GAP 小容易引起电感饱和﹒2﹒气隙GAP传递能量大小与使用的工作频率有关﹐高频时(>60KHZ )磁芯损耗加大﹒ 3﹒LEAKAGE 漏感﹕初级绕组P&S 次级主绕组相邻紧密﹐耦合面积大﹐(P ﹒S 夹绕)漏感量小﹒S 次级主绕组如果匝数少﹐疏绕或者增加匝数﹐也可减小漏感量﹒。

最实用的开关电源变压器计算方法与步骤

最实用的开关电源变压器计算方法与步骤

最实用的开关电源变压器计算方法与步骤
一、计算步骤
1.输入电压等级、额定功率
首先,计算开关电源变压器需要的额定功率,一般选择为负载额定功率的115%到125%的范围,以适应负载的变化,计算出额定电压等级,并明确负载类型和开关电源变压器的工作模式(单相,两相,三相)。

2.明确变压器的分布系统
根据用户的负载性质,及时的调整负载的分布,改变和优化负载的分布,减少开关电源变压器的变压率,并考虑开关电源变压器的效率。

3.变压器的台数计算
根据负载的分布,计算每个变压器的台数,通常认为,变压器的负载总量应该是用额定负载的100%至115%范围内,以满足用户要求的负载状态,选择合适的开关电源变压器,以满足用户的要求。

4.确定电压比
根据计算的变压器台数,以及电压等级,确定电压变比,理想的情况下,电压变比应尽量小于或等于6:1
5.确定绕组接线结构
根据计算出来的电压变比以及绕组参数,确定绕组的接线结构,一般情况下,开关电源变压器的绕组的接线结构主要有双Y结构、三Y结构、U结构和T结构,选择最合适的绕组接线结构。

开关电源变压器参数设计步骤详解(精)

开关电源变压器参数设计步骤详解(精)
u(V P O (W比例系数(μF/W C IN (μF
V Imin (V
固定输
入:100/115
已知
2~3
(2~3×P O

90通用输入:85~265已知
2~3 (2~3×P O ≥
90固定输入:230±35已知
1
P O

240
步骤5根据Vimin和V OR来确定最大占空比
Dmax
V OR
D m a x = ×100% V OR +V I m i n -V D S (O N
0.6
1
步骤7确定初级波形的参数

输入电流的平均值I A VG P O
I A VG=
ηV Imin

初级峰值电流I P I A VG
I P =
(1-0.5K RP ×Dmax

初级脉动电流I R ④
初级有效值流I RMS u(V
初级感应电压V OR (V
钳位二极管反向击穿电压V B (V
固定输入:100/115 60 90通用输入:85~265 135 200固定输入:230±35

设定MOSFET的导通电压V DS(ON ②
应在u=umin时确定Dmax值,Dmax随u升高而减小步骤6确定初级纹波电流I R与初级峰值电流I P的比值K RP ,K RP =I R /I P
u(V
K RP
最小值(连续模式最大值(不连续模式
固定输入:100/115 0.4 1通用输入:85~265 0.44 1固定输入:230±35
步骤2根据输出要求,选择反馈电路的类型以及反馈电压V FB
步骤3根据u ,P O值确定输入滤波电容C IN、直流输入电压最小值V Imin

开关电源中变压器的设计

开关电源中变压器的设计

开关电源中变压器的设计开关电源为电子设备提供稳定的功率输出,它的性能好坏直接决定了电子产品的质量,而这种电源性能乂与变压器设计优劣密切相关。

可以说变压器在开关电源中占据着关键作用,决定着电路的关键技术参数指标及工作状态,因此对于大多数电源而言,电源的设计归根结底就是变压器的设计。

开关电源属于一种高频供电系统,频率高必然使变压器体积降低,传递的能量密度升高,温升变大; 同时在高频环境下,变压器绕线中的寄生电容很容易与电路中的电感发生谐振, 产生噪音,恶化电源的电磁兼容性能。

但是在磁性元件没有重大的技术突破之前, 这些问题始终会存在,因此我们只能通过其它的方式来对变压器进行优化,从而提高开关电源的整体性能。

1开关电源变压器的设计步骤变压器是开关电源的核心,它直接决定了一个电源的技术指标,因此变压器的设计至关重要。

本文以反激式开关电源为例对变压器进行分析。

在设计一个开关变压器之前,要通过理论分析计算出原副边匝数、反馈绕组匝数、原边电感量、磁芯的Ap值、绕组线径大小,要注意的是计算出来的数据仅仅是参考,不能脱离实际。

当这些关键参数都被大致确定后,就可以进行变压器的实际设计了。

本论文就第4. 3章节中的基于SE8510的LED电源进行变压器设计,通过计算得出原边匝数为54,原边绕组线径为0. 5mm,副边匝数为50, 副边线圈线径为0.4mm,原边电感量为0. 58mH0磁芯Ap值为0. 2593cm4,1.1.磁芯选择开关变压器的磁芯体积大小与功率成正比,因此功率越大变压器体积越大。

在用Ap法选择磁芯时要同时兼顾电路的工作频率、PCB的布线形状、环境温度和允许的温升等应用情况,AP法公式如下:(450x0.3 xBgx )根据公式(1. 1)计算出Ap值为0. 2593cm1,查表选择EFD25磁芯,EFD25 的Ap 值为0.3938cm,,这样可以保证一定的裕量,降低电路损耗。

1.2骨架线圈绕制磁芯选择好以后,根据相应的骨架幅宽及绕组线径大小确定合适的匝数,遵循的原则就是让每一层的绕线占满整个幅宽,如图6.1为变压器骨架侧视图。

开关电源变压器设计方法及流程

开关电源变压器设计方法及流程

开关电源变压器设计方法及流程我们以输出功率为5瓦以下的开关电源为例,讲解一下开关电源变压器的设计。

1 电气要求:1.输入电压:AC 90-264V/50-60HZ2.输出电压:5±0.2 V3.输出电流:1A2 设计流程介绍:2.1 线路图如下:说明:W1,W3是做屏蔽用的,对EMI有作用;Np是初级线圈(主线圈);Nb是辅助线圈;Ns次级线圈(二次侧圈数)。

2.2 变压器计算:2.2.1 变压器的参数说明:依据变压器计算公式B(max) = 铁心饱合的磁通密度(Gauss)⌝Lp = 一次侧电感值(uH)⌝Ip = 一次侧峰值电流(A)⌝Np = 一次侧(主线圈)圈数⌝Ae = 铁心截面积(cm2)⌝B(max)⌝依铁心的材质及本身的温度来决定,以浙江东磁公司的DMR40为例,100℃时的B(max)为4000 Gauss,设计时应考虑零件误差,所以一般取3000~3600 Gauss之间,若所设计的power为Adapter(有外壳)则应取3000 Gauss左右,以避免铁心因高温而饱合,一般而言铁心的尺寸越大,Ae越高,所以可以做较大瓦数的Power。

2.2.2 决定占空比:由以下公式可决定占空比,占空比的设计一般以50%为基准,占空比若超过50%易导致振荡的发生。

NS = 二次侧圈数⌝NP = 一次侧圈数⌝Vo = 输出电压⌝VD=⌝二极管顺向电压Vin(min) = 滤波电容上的最小电压值⌝D⌝ =占空比2.2.3 决定Pout,Ip,Lp,Nps,Np,Ns值:Pout=V2 x Iout x 120%V2=Vout + Vd + Vt因为I1p是峰峰值,如下图:所以Lp=简化后Lp=Nps=Ip = 一次侧峰值电流⌝I1p = 一次侧尖峰电流值⌝Pout =⌝输出瓦数Vd=开关二级关的正向压降一般为0.55V⌝Vt=输出滤波线圈的压降,一般取0.2V⌝开关变压器的转换效率⌝⌝ PWM震荡频率Nps次级与初级的匝比⌝Np初级线圈圈数,Ns次级线圈圈数⌝2.2.4 决定变压器线径及线数:当变压器决定后,变压器的Bobbin即可决定,依据Bobbin的槽宽,可决定变压器的线径及线数,亦可计算出线径的电流密度,电流密度一般以6A/mm2为参考,电流密度对变压器的设计而言,只能当做参考值,最终应以温升记录为准。

开关电源功率变压器设计方法讲解

开关电源功率变压器设计方法讲解

开关电源功率变压器的设计方法1、开关电源功率变压器的特性功率变压器是开关电源中非常重要的部件,它和普通电源变压器一样也是通过磁耦合来传输能量的。

不过在这种功率变压器中实现磁耦合的磁路不是普通变压器中的硅钢片,而是在高频情况下工作的磁导率较高的铁氧体磁心或铍莫合金等磁性材料,其目的是为了获得较大的励磁电感、减小磁路中的功率损耗,使之能以最小的损耗和相位失真传输具有宽频带的脉冲能量。

图1(a)为加在脉冲变压器输入端的矩形脉冲波,图1(b)为输出端得到的输出波形,可以看出脉冲变压器带来的波形失真主要有以下几个方面:(a)输入波形(b)输出波形图1脉冲变压器输入、输出波形(1)上升沿和下降沿变得倾斜,即存在上升时间和下降时间;(2)上升过程的末了时刻,有上冲,甚至出现振荡现象;(3)下降过程的末了时刻,有下冲,也可能出现振荡波形;(4)平顶部分是逐渐降落的。

这些失真反映了实际脉冲变压器和理想变压器的差别,考虑到各种因素对波形的影响,可以得到如图2所示的脉冲变压器等效电路。

图中:Rsi——信号源Ui的内阻Rp——一次绕组的电阻Rm——磁心损耗(对铁氧体磁心,可以忽略)T——理想变压器Rso——二次绕组的电阻RL——负载电阻C1、C2——一次和二次绕组的等效分布电容Lin、Lis——一次和二次绕组的漏感Lm1——一次绕组电感,也叫励磁电感n——理想变压器的匝数比,n=N1/N2图2脉冲变压器的等效电路将图2所示电路的二次回路折合到一次,做近似处理,合并某些参数,可得图3所示电路,漏感Li包括Lin和Lis,总分布电容C包括C1和C2;总电阻RS包括Rsi、RP和Rso;Lm1是励磁电感,和前述的Lm1相同;RL′是RL等效到一次侧的阻值,RL′=RL/n2,折合后的输出电压U′o=Uo/n。

经过这样处理后,等效电路中只有5个元件,但在脉冲作用的各段时间内,每个元件并不都是同时起主要作用,我们知道任何一个脉冲波形可以分解成基波与许多谐波的叠加。

反激式开关电源变压器设计的详细步骤

反激式开关电源变压器设计的详细步骤

反激式开关电源变压器设计的详细步骤85W反激变压器设计的详细步骤1. 确定电源规格.1).输入电压范围Vin=90—265Vac;2).输出电压/负载电流:Vout1=42V/2A, Pout=84W3).转换的效率?=0.80 Pin=84/0.8=105W2. 工作频率,匝比, 最低输入电压和最大占空比确定.Vmos*0.8>Vinmax+n(Vo+Vf)600*0.8>373+n(42+1)得n<2.5Vd*0.8>Vinmax/n+Vo400*0.8>373/n+42得n>1.34所以n取1.6最低输入电压Vinmin=√[(Vacmin√2)* (Vacmin√2)-2Pin(T/2-tc)/Cin=(90√2*90√2-2*105*(20/2-3)/0.00015=80V取:工作频率fosc=60KHz,最大占空比Dmax=n(Vo+Vf)/[n(Vo+Vf)+Vinmin]= 1.6(42+1)/[1.6(42+1)+80]=0.45Ton(max)=1/f*Dmax=0.45/60000=7.5us3. 变压器初级峰值电流的计算.Iin-avg=1/3Pin/Vinmin=1/3*105/80=0.4AΔIp1=2Iin-avg/D=2*0.4/0.45=1.78AIpk1=Pout/?/Vinmin*D+ΔIp1=84/0.8/80/0.45=2.79A4. 变压器初级电感量的计算.由式子Vdc=Lp*dip/dt,得:Lp= Vinmi n*Ton(max)/ΔIp1=80*0.0000075/1.78=337uH 取Lp=337 uH5.变压器铁芯的选择.根据式子Aw*Ae=Pt*1000000/[2*ko*kc*fosc*Bm*j*?],其中: Pt(标称输出功率)= Pout=84WKo(窗口的铜填充系数)=0.4Kc(磁芯填充系数)=1(对于铁氧体),变压器磁通密度Bm=1500 Gsj(电流密度): j=4A/mm2;Aw*Ae=84*1000000/[2*0.4*1*60*103*1500Gs*4*0.80]=0.7cm4考虑到绕线空间,选择窗口面积大的磁芯,查表:ER40/45铁氧体磁芯的有效截面积Ae=1.51cm2ER40/45的功率容量乘积为Ap = 3.7cm4 >0.7cm4故选择ER40/45铁氧体磁芯.6.变压器初级匝数1).由Np=Vinmin*T on/[Ae*Bm],得:Np=80*7.5*10n-6/[1.52*10n-4*0.15] =26.31 取 Np =27T7. 变压器次级匝数的计算.Ns1(42v)=Np/n=27/1.6=16.875 取Ns1 = 17TNs2(15v)=(15+1)* Ns1/(42+1)=6.3T 取Ns2 = 7T。

开关电源变压器参数设计步骤详解

开关电源变压器参数设计步骤详解

开关电源高频变压器设计步骤步骤1确定开关电源的基本参数1交流输入电压最小值u min2交流输入电压最大值u max3电网频率F l开关频率f4输出电压V O(V):已知5输出功率P O(W):已知6电源效率η:一般取80%7损耗分配系数Z:Z表示次级损耗与总损耗的比值,Z=0表示全部损耗发生在初级,Z=1表示发生在次级。

一般取Z=0.5步骤2根据输出要求,选择反馈电路的类型以及反馈电压V FB步骤3根据u,P O值确定输入滤波电容C IN、直流输入电压最小值V Imin1令整流桥的响应时间tc=3ms2根据u,查处C IN值3得到V imin确定C IN,V Imin值u(V)P O(W)比例系数(μF/W)C IN(μF)V Imin(V)固定输已知2~3(2~3)×P O≥90入:100/115步骤4根据u,确通用输入:85~265已知2~3(2~3)×P O≥90定V OR、V B 固定输入:230±35已知1P O≥2401根据u由表查出V OR、V B值2由V B 值来选择TVS步骤5根据Vimin 和V OR 来确定最大占空比DmaxV ORDmax= ×100% V OR +V Imin -V DS(ON)1设定MOSFET 的导通电压V DS(ON)2应在u=umin 时确定Dmax 值,Dmax 随u 升高而减小步骤6确定初级纹波电流I R 与初级峰值电流I P 的比值K RP ,K RP =I R /I Pu(V)K RP最小值(连续模式)最大值(不连续模式)固定输入:100/1150.41通用输入:85~2650.441固定输入:230±350.61步骤7确定初级波形的参数①输入电流的平均值I AVGP OI A VG=ηV Imin②初级峰值电流I PI A VG I P =(1-0.5K RP )×Dmax③初级脉动电流I Ru(V)初级感应电压V OR (V)钳位二极管反向击穿电压V B (V)固定输入:100/1156090通用输入:85~265135200固定输入:230±35135200④初级有效值电流I RMSI RMS=I P√D max×(K RP2/3-K RP+1)步骤8根据电子数据表和所需I P值选择TOPSwitch芯片①考虑电流热效应会使25℃下定义的极限电流降低10%,所选芯片的极限电流最小值I LIMIT(min)应满足:0.9I LIMIT(min)≥I P步骤9和10计算芯片结温Tj①按下式结算:Tj=[I2RMS×R DS(ON)+1/2×C XT×(V Imax+V OR)2f]×Rθ+25℃式中C XT是漏极电路结点的等效电容,即高频变压器初级绕组分布电容②如果Tj>100℃,应选功率较大的芯片步骤11验算I P IP=0.9I LIMIT(min)1输入新的K RP且从最小值开始迭代,直到K RP=12检查I P值是否符合要求3迭代K RP=1或I P=0.9I LIMIT(min)步骤12计算高频变压器初级电感量L P,L P单位为μH106P O Z(1-η)+ ηL P= ×I2P×K RP(1-K RP/2)f η步骤13选择变压器所使用的磁芯和骨架,查出以下参数:1磁芯有效横截面积Sj(cm2),即有效磁通面积。

PD66W快充开关电源变压器设计步骤

PD66W快充开关电源变压器设计步骤

PD66W快充变压器设计步骤输入:85VAC-265VAC 50HZ输出:3.5V/500MA 5V/2A 10V/4A 11V/6A电源芯片工作频率:75KHZ左右第一步,选择变压器规格,利用AP法,VE法,客供,本例变压器为客供。

关键参数如下:AE=108mm~2,槽宽M=8.76mm,槽深Md=3.5 mm。

第二步,匝比的计算,假设输出整流二极管的反向耐压为Vd,导通压降Vf,初级MOS管反向耐压为Vmos,匝比为N ,输入最大直流电压Vinmax=375V。

由于输出存在多档位电压参数,在计算匝比的时候需要采用几档输出电压的平均值来计算即:Vo=(3.5+5+10+11)/4=7.375V当初级MOS管导通时,输出整流处于关断状态,那么加载在二极管的反向电压满足下面关系,预留20%余量。

0.8Vd>Vinmax/N+Vo 初步采用100V耐压的整流二极管,得出下列式子:0.8*100V>375/N+7.375V得出:N>5.181当初级MOS管关闭时候,加载在MOS两端的电压满足一下关系,预留20%余量。

0.8Vmos>(Vo+Vf)*N+Vinmax+Vpk Vpk为漏感尖峰,取Vpk=50V,MOS管耐压650V,得出下列式子:0.8*650>(7.375+0.6)*N+375V+50V得出:N<11.9122N取最大和最小值得平均值N=9。

N的取值会影响初级和次级的最大反向峰电压值,N太大,初级峰值就会变高,对MOS管不利,N太小,输出整流管反向峰值就会变高,对二极管不利。

第三步,初级线径的计算,我们假设初级为Dp,电流密度取4A/mm~2,Iavr为初级平均电流,Iapk为初级峰值电流,Vinmin为最小输入直流电压=85*1.414=120.19V,电源效率为η(关于效率的取值,本人热衷于向USA的能效等级看齐,以11V6A的参数,按照6级能效标准,效率为88%)。

反激式开关电源变压器设计步骤及公式

反激式开关电源变压器设计步骤及公式

反激式开关电源变压器设计步骤及公式(4种计算方法比较)1.确定已知参数: (主要PWM方式)确定已知参数:(主要RCC方式)来自现代高频开关电源实用技术1,确定系统规格输出功率:输入功率: P୧=୔౥஗输入平均电流: Iୟ୴୥ൌ୔౟୚౟౤ሺౣ౟౤ሻ同左边占空比D୫ୟ୶=୲౥౤୘=0.5 f୫୧୬:25KHz输入直流电压Vୈେ=√2Vୟୡ在了解输出功率后确定所需磁芯A p=A e*A w(cm4)Ae:磁芯中心柱横截面积(cm2);A w:磁芯窗口面积(cm2)最小AC输入电压:V ACMIN,单位:V最大AC输入电压:V ACMAX,单位:V输入电压频率:f L,50Hz or 60Hz输出电压:V O,最大负载电流:I O输出功率:P O,单位:WIo:Po=Vo*Ioη:0.85P୧ൌP୭η2.峰值电流1T=10000G s输入峰值电流:I୔୏ൌ୏כ୔౥୚౟౤ሺౣ౟౤ሻ对于BUCK(降压),推挽,全桥电路K=1.4对于半桥和正激K=2.8对于Boost,BUCK-Boost和反激K=5.5 I୮ൌ2כP୭כTηכV୧୬ሺ୫୧୬ሻכt୭୬A e*A w>୔౥כଵ଴లଶכ஗כ୤౩כ୆ౣכஔכ୏ౣכ୏ౙ(cmସ) ;Ae是磁芯截面积(cm2),Aw是磁芯窗口面积(cm2);f的单位为Hz,Bm的单位为Gs,取(1500)不大于3000Gs,δ导线电流密度取:2~3A/mmଶ ,K୫窗口填充系数取0.2~0.4,Kc磁芯填充系数,对于铁氧体该值取1I୅୚ୋൌP୧V୧୬୫୧୬I୔୏ൌIୟ୴୥D୫ୟ୶כ2T୭୬ൌଵ୤D୫ୟ୶(uint:µs)1S=106µsL୔ൌ୚౟౤ౣ౟౤כ୘౥౤୍ౌే(µH)3.计算初级电感因所以t୭୬ൌDכTൌଵଶכ୤若f取25KHz,则t୭୬为20μS选磁芯也可用公式Fosc<50KHz S=1.15*√Po(cmଶሻFosc<60KHz S=0.09*√Po(cmଶሻFosc>=60KHz S=0.075*√Po(cmଶሻNPൌ୐ౌכ୍ౌే୼୆כ୅౛כ10଺L P:mH; ΔB:260mT;A e:mm2NsൌሺV୭൅Vୈሻכሺ1െD୫ୟ୶ሻכN୔V୧୬୫୧୬כD୫ୟ୶NaൌሺVୟ൅Vୟୈሻכሺ1െD୫ୟ୶ሻכN୔V୧୬୫୧୬כD୫ୟ୶L ୔=୚౟౤ሺౣ౟౤ሻכୈ୍ౌేכ୤౥౩ౙ其中L 单位:H f:Hz 电压:V, 电流:A匝比:n=୚౥୚౟౤ሺౣ౟౤ሻ=୒౩୒౦4. 计算初级匝数初级电感:L ୮ൌ୚౟౤ሺౣ౟౤ሻכ୲౥౤୍౦检验磁芯正规名牌磁性材料的Bm 不得大于3000Gs ,国产杂牌不大于2500Gs 更保险A ୐值是在磁芯上绕1000匝测得(美国)则N ୔ൌ1000ට୐ౌ୅ై此式中L ୔单位为mH变压器次级圈数:Ns>୬כ୍౦כ୐౦ୗכ୆ౣ*10଻其中S 为磁芯截面积,B୫值为3000Gs若A ୐值是用100匝测得且单位是nH/N ଶ,则N ୔ൌ100ට୐ౌ୅ై此式中L ୔单位为mH,A ୐单位为mH/N ଶ,在计算时要将A ୐的值由nH 转换为mH 后再代入式中计算;例如:某A ୐值为1300 nH/N ଶ, L ୔值为2.3mH,则A ୐=1300nH/N ଶ=1.3 mH/N ଶ代入中计算得N ୔为133T 初级匝数为:Np=୒౩୬B(max) = 铁心饱合的磁通密度(Gauss)Lp = 一次侧电感值(uH) Ip = 一次侧峰值电流(A) Np = 一次侧(主线圈)圈数 Ae = 铁心截面积(cm2 )B(max) 依铁心的材质及本身的温度来决定,以TDK Ferrite Core PC40为例,100℃时的B(max)为3900 Gauss ,设计时应考虑零件误差,所以一般取3000~3500Gauss 之间,若所设计的power 为Adapter(有外壳)则应取3000 Gauss 左右,以避免铁心因高温而饱合,一般而言铁心的尺寸越大,Ae 越高,所以可以5. 匝比n=୒౩୒ౌ=୚౥୚౟౤ሺౣ౟౤ሻ晶体管的基极电流I ୆=୍౦୦ూు6. 次级绕组匝数N ୱ=N ୔*n N ୱଵ=୒౦כሺ୚౥ା୚ౚሻכሺଵିୈౣ౗౮ሻ୚౟౤ሺౣ౟౤ሻכୈౣ౗౮多路输出时N ୱ୶=ሺ୚౥౮ା୚ౚ౮ሻכ୒౩భ୚౥భା୚ౚభ其中x 代表几路I ୆୰୫ୱൌI ୆√27. 原边供电绕组N ୟ=N ୱכ୚౗୚౥在多路输出时Vo 为主输出电压计算线径(包括初级次级)同左边8. 选择磁芯型号要满足,磁芯中心柱截面积S=0.09*√Po (cm ଶሻ或满足公式A୔=A ୣכA ୵ൌ୔౥כଵ଴లଶכ஗כ୤౩כ୆ౣכஔכ୏ౣכ୏ౙ(cm ସ ) ;Ae 是磁芯截面积(cm 2),Aw 是磁芯窗口面积(cm 2);f 的单位为Hz ,Bm 的单位为Gs ,取(1500)不大于3000Gs ,δ导线电流密度取:2~3A /mm ଶ ,K ୫窗口填充系数取0.2~0.4,Kc 磁芯填充系数,对于铁氧体该值取1做较大瓦数的 Power 。

开关电源变压器设计说明

开关电源变压器设计说明

开关电源变压器设计1.前言2.变压器设计原则3.系统输入规格4.变压器设计步骤4.1选择开关管和输出整流二极管4.2计算变压器匝比4.3确定最低输入电压和最大占空比4.4反激变换器的工作过程分析4.5计算初级临界电流均值和峰值4.6计算变压器初级电感量4.7选择变压器磁芯4.8计算变压器初级匝数、次级匝数和气隙长度4.9满载时峰值电流4.10 最大工作磁芯密度Bmax4.11 计算变压器初级电流、副边电流的有效值4.12 计算原边绕组、副边绕组的线径,估算窗口占有率4.13 计算绕组的铜损4.14变压器绕线结构及工艺5.实例设计—12WFlyback变压器设计1. 前言◆反激变换器优点:电路结构简单成本低廉容易得到多路输出应用广泛,比较适合100W以下的小功率电源◆设计难点变压器的工作模式随着输入电压及负载的变化而变化低输入电压,满载条件下变压器工作在连续电流模式( CCM )高输入电压,轻载条件下变压器工作在非连续电流模式( DCM )2. 变压器设计原则◆温升安规对变压器温升有严格的规定。

Class A的绝对温度不超过90°C;Class B不能超过110°C。

因此,温升在规定X围内,是我们设计变压器必须遵循的准则。

◆成本开关电源设计中,成本是主要的考虑因素,而变压器又是电源系统的重要组成部分,因此如何将变压器的价格,体积和品质最优化,是开关电源设计者努力的方向。

3. 系统输入规格输入电压:Vacmin~ Vacmax输入频率:f L输出电压:Vo输出电流:Io工作频率:fS输出功率:Po预估效率:η最大温升:40℃4.0变压器设计步骤4.1选择开关管和输出整流二极管开关管MOSFET:耐压值为Vmos输出二极管:肖特基二极管最大反向电压VD正向导通压降为VF4.2计算变压器匝比考虑开关器件电压应力的余量(Typ.=20%)开关ON :0.8·V D > V in max / N + V o开关OFF :0.8·V MOS > N·( V o+ V F) + V in max匝比:N min < N < N max4.3 确定最低输入电压和最大占空比最低输入电压( 假设tc=3ms )V in min =最低输入电压,最大功率时,占空比最大DmaxD max =4.4 反激变换器的工作过程分析低输入电压时,负载从轻载到重载,变压器经历从DCM→BCM →CCM的过程高输入电压时,负载从轻载到重载,变压器一直工作在DCM4.5 计算初级临界电流均值和峰值按照最小输入电压,最大输出功率(Pomax)的条件计算P o =1/3Pomax时,变换器工作在BCMP o <1/3Pomax时,变换器工作在DCMP o >1/3Pomax时,变换器工作在CCMBCM模式下,最小输入电压时的平均输入电流I in-avg =变压器初级临界电流峰值I p1 = I pk1 =4.6 计算变压器初级电感量最低输入电压,BCM条件下,最大通时间T on max = D max变压器初级电感量Lp =4.7 选择变压器磁芯基于输出功率和开关频率计算面积乘积,根据面积乘积来选择磁芯AP p =K o 是窗口的铜填充系数:取Ko=0.4K c 是磁芯填充系数;对于铁氧体磁芯取Kc=1Bm是变压器工作磁通密度,取B mj是电流密度,取j = 4.2A/mm2考虑绕线空间,尽量选择窗口面积大的磁芯,查表选择Aw和Ae4.8 计算变压器初级、次级匝数、辅助绕组匝数和气隙长度初级绕组的匝数N p =增加或者减小匝数只会分别引起磁芯损耗减小或增加在100kHz条件下,损耗与B2.86成正比,匝数减小5%会使磁芯损耗增加15%次级绕组匝数N s = N p / N辅助绕组匝数N cc = ( V cc + 1 ) N s / ( V o+ V F )气隙长度: l g =4.9 满载时峰值电流CCM时,Tonmax固定不变输入电压不变,BCM的Tonmax 等于CCM的TonmaxTonmax内,电感电流线形上升增量I p1 = = I p2低输入电压,满载条件下P o = ηL p(I2pk2– I2pk0 ) f s 变压器初级峰值电流I pk2 =4.10 最大工作磁芯密度B maxB max = < B sat如果Bmax <Bsat,则证明所选择的磁芯通过,否则应重新选择4.11 计算变压器初级电流、副边电流的有效值梯形波电流的中值 :I a = I pk -电流直流分量 :I dc = D maxI a电流有效值 : I prms = I a电流交流分量 :I ac = I a4.12 计算原边绕组、副边绕组的线径,估算窗口占有率 导线的横截面积自然冷却时,一般取电流密度 j=4A/mm 2初级绕组:S p =I prms (A)/4(A/mm 2)副边绕组:S s =I srms (A)/4(A/mm 2)线径及根数集肤深度 δ= 6.61 / cm导线线径不超过集肤深度的2倍,若超过集肤深度,则需多股并绕 根据安规要求考虑加一定宽度的挡墙窗口占有率K 0A wN p + N s + N cc4.13计算绕组的铜损根据导线的电阻和集肤深度,确定每个绕组的铜损耗总损耗一定要小于预算损耗,温升经验公式T4.14变压器绕线结构及工艺骨架的选取 :累计高度、宽度绕法 : 初级和次级交错式(XX 治)绕法:漏感小5. 设计实例—12W 开关电源变压器设计5.1 系统输入规格输入电压:90Vac~265Vac输入频率:50Hz输出电压:12V输出电流:1.0A输出功率:Po=12W开关频率:50kHz预估效率:0.75输入最大功率:Pin=16W变压器最大温升:40℃5.2 开关管MOSFET 和输出整流二极管开关管MOSFET 耐压: V mos =600V输出二极管:反向压降V D =100V ( 正向导通压降V F =0.5V )5.3计算变压器匝比0.8 V D > V in max / N + V o0.8 100 > 375 / N +120.8 V mos > N ( V o + V F ) + V in max0.8 600 > N ( 12 + 0.5 ) +375 5.5 < N < 8.4取N = 65.4最低输入电压和最大占空比选择Cin=22µF最低输入电压:Vin min= =最大占空比:Dmax = = = 0.495.5计算初级临界电流均值和峰值Iin-avg= = = 0.07 AI p1 = Ipk1= = = 0.285 A5.6最大导通时间和初级电感量最大导通时间 : T on max = D max = 9.8变压器初级电感量 : L p = = 2.7mH5.7 变压器磁芯面积AP p = = 0.066 cm 2( 铁氧体磁芯 B sat = 3900G , 取 B m = 1600G )查表EF20 A e = 0.335 cm 2,A w = 0.6048 cm 2AP=A w *A e =0.202cm 2>0.066cm 25.8 变压器初级匝数、次级匝数、辅助绕组匝数和气隙长度N p = = 140.7 取 N p = 140 TsN s = 140 / 6 = 23.3 Ts 取 N s = 23 TsN cc = 19 23 / 12.5 35 Tsl g = = 0.2 mm5.9 满载时峰值电流、最大工作磁通密度I pk2 = + = + 0.14 = 0.56 ABmax = = = 3100G < 3900G 5.10 变压器初级电流、副边电流的有效值原边各电流:电流中值I pa = 0.42A 电流有效值I prms = 0.29A电流直流值I pdc = 0.20A 电流交流值I pac = 0.208A副边各电流:电流直流值I sdc = 1A 电流有效值I srms = 1.38A电流中值I sa = 1.92A 电流交流值I ac = 0.959A5.11 计算原边、副边绕组的线径,估算窗口占有率线径及根数集肤深度δ= 6.61 / = 6.61 / = 0.29 cm导线的横截面积:电流密度j=4.2~5A/mm2初级绕组:S p=0.068mm2→Φ0.25mm×1P→R DC=4.523mΩ/cm(100℃)副边绕组:S s=0.328mm2→Φ0.40mm×2P→R DC=0.892mΩ/cm (100℃) Vcc绕组:S cc=0.1/4.2=0.024mm2→Φ0.1mm×2P窗口占有率:0.4 60.48 140 0.1252 + 23 0.22 + 35 0.08224.2 13.6 OK5.12 计算绕组的铜损平均匝长l=23.5mmav各绕组绕线长度:原边l=140×23.5=329cmNp=23×23.5=54.0cm副边lNs各绕组直、交流电阻:原边R pdc=1.45ΩR pac=2.38Ω副边R sdc=0.024ΩR sac=0.038ΩVcc绕组电流过小,忽略绕组损耗各绕组损耗:= 0.30WPu5.13 计算绕组的铁损计算铁损:查磁芯损耗曲线,PC40在ΔB=0.15T时为80mW/cm3铁损P Fe = 80 1.5 = 0.12 W估算温升总损耗P loss = 0.12 + 0.30 = 0.42 W经验公式T = 22℃< 40℃设计OK5.14 变压器绕线结构及工艺绕线宽度高度累计查EF20 Bobbin 绕线宽度W=12.1mm,高度H=2.9mm0.25mm,最大外径0.275mm 每层35T,W1=9.62mm0.40mm,最大外径0.52mm 每层23T,W2=11.9mm0.10mm,最大外径0.13mm 每层35T,W3=9.1mm(0.1mm×2P) 总高度=0.275×4+0.52×2+0.13×3+0.03×7=2.74mm绕线结构次级→初级→次级。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

开关电源高频变压器设计步骤
步骤1确定开关电源的基本参数
1交流输入电压最小值u min
2交流输入电压最大值u max
3电网频率F l开关频率f
4输出电压V O(V):已知
5输出功率P O(W):已知
6电源效率η:一般取80%
7损耗分配系数Z:Z表示次级损耗与总损耗的比值,Z=0表示全部损耗发生在初级,Z=1表示发生在次级。

一般取Z=0.5
步骤2根据输出要求,选择反馈电路的类型以及反馈电压V FB
步骤3根据u,P O值确定输入滤波电容C IN、直流输入电压最小值V Imin
1令整流桥的响应时间tc=3ms
2根据u,查处C IN值
3得到V imin
确定C IN,V Imin值
u(V)P O(W)比例系数(μF/W)C IN(μF)V Imin(V)
固定输
已知2~3(2~3)×P O≥90
入:100/115
步骤4根据u,确通用输入:85~265已知2~3(2~3)×P O≥90
定V OR、V B 固定输入:230±35已知1P O≥240
1根据u由表查出V OR、V B值
2
由V B 值来选择TVS
步骤5根据Vimin 和V OR 来确定最大占空比
Dmax
V OR
Dmax= ×100% V OR +V Imin -V DS(ON)
1设定MOSFET 的导通电压V DS(ON)
2
应在u=umin 时确定Dmax 值,Dmax 随u 升高而减小
步骤6确定初级纹波电流I R 与初级峰值电流I P 的比值K RP ,K RP =I R /I P
u(V)
K RP
最小值(连续模式)最大值(不连续模式)
固定输入:100/1150.41通用输入:85~2650.441固定输入:230±35
0.6
1
步骤7确定初级波形的参数
①输入电流的平均值I AVG
P O
I A VG=
ηV Imin
②初级峰值电流I P
I A VG I P =
(1-0.5K RP )×Dmax
③初级脉动电流I R
u(V)
初级感应电压V OR (V)钳位二极管反向击穿电压V B (V)
固定输入:100/115
6090通用输入:85~265135200固定输入:230±35
135
200
④初级有效值电流I RMS
I RMS=I P√D max×(K RP2/3-K RP+1)
步骤8根据电子数据表和所需I P值选择TOPSwitch芯片
①考虑电流热效应会使25℃下定义的极限电流降低10%,所选芯片的极限电流最小值
I LIMIT(min)应满足:0.9I LIMIT(min)≥I P
步骤9和10计算芯片结温Tj
①按下式结算:
Tj=[I2RMS×R DS(ON)+1/2×C XT×(V Imax+V OR)2f]×Rθ+25℃
式中C XT是漏极电路结点的等效电容,即高频变压器初级绕组分布电容
②如果Tj>100℃,应选功率较大的芯片
步骤11验算I P IP=0.9I LIMIT(min)
1输入新的K RP且从最小值开始迭代,直到K RP=1
2检查I P值是否符合要求
3迭代K RP=1或I P=0.9I LIMIT(min)
步骤12计算高频变压器初级电感量L P,L P单位为μH
106P O Z(1-η)+ η
L P= ×
I2P×K RP(1-K RP/2)f η
步骤13选择变压器所使用的磁芯和骨架,查出以下参数:
1磁芯有效横截面积Sj(cm2),即有效磁通面积。

2磁芯的有效磁路长度l(cm)
3磁芯在不留间隙时与匝数相关的等效电感AL(μH/匝2)
4骨架宽带b(mm)
步骤14为初级层数d和次级绕组匝数Ns赋值
1开始时取d=2(在整个迭代中使1≤d≤2)
2取Ns=1(100V/115V交流输入),或Ns=0.6(220V或宽范围交流输入)
3Ns=0.6×(V O+V F1)
4在使用公式计算时可能需要迭代
步骤15计算初级绕组匝数Np和反馈绕组匝数N F
1设定输出整流管正向压降V F1
2设定反馈电路整流管正向压降V F2
3计算N P
V OR
N P=N S×
V O+V F1
4计算N F
V FB+V F2
N F=N S×
V O+V F1
步骤16~步骤22设定最大磁通密度B M、初级绕组电流密度J、磁芯的气隙宽度δ,进行迭代。

1设置安全边距M,在230V交流输入或宽范围输入时M=3mm,在110V/115V交流输入时M=1.5mm。

使用三重绝缘线时M=0
2最大磁通密度B M=0.2~0.3T
100I P L P
B M=
N P S J
若B M>0.3T,需增加磁芯的横截面积或增加初级匝数N P,使B M在0.2~0.3T范围之内。

如B M<0.2T,就应选择尺寸较小的磁芯或减小N P值。

3磁芯气隙宽度δ≥0.051mm
δ=40πS J(N P2/1000L P-1/1000A L)
要求δ≥0.051mm,若小于此值,需增大磁芯尺寸或增加N P值。

4初级绕组的电流密度J=(4~10)A/mm2
1980
J=
1.27πD2PM×(1000 /25.4)2
4I RMS
若J>10A/mm2,应选较粗的导线并配以较大尺寸的磁芯和骨架,使J<10A/mm2。

若J<4A/mm2,宜选较细的导线和较小的磁芯骨架,使J>4A/mm2;也可适当增加NP 的匝数。

5确定初级绕组最小直径(裸线)D Pm(mm)
6确定初级绕组最大外径(带绝缘层)D PM(mm)
⑦根据初级层数d、骨架宽带b和安全边距M计算有效骨架宽带be(mm)
be=d(b-2M)
然后计算初级导线外径(带绝缘层)D PM:D PM=be/NP
步骤23确定次级参数I SP、I SRMS、I RI、D SM、D Sm
1次级峰值电流I SP(A)
I SP=I P×(N P/N S)
②次级有效值电流I SRMS(A)
I SRMS=I SP×√(1-D max)×(K2RP/3-K RP+1)
③输出滤波电容上的纹波电流I RI(A)
I RI=√I2SRMS-I2O
5次级导线最小直径(裸线)D Sm(mm)
D Sm=1.13√I SRMS/J
6次级导线最大外径(带绝缘层)D SM(mm)
b-2M
D SM=
N S
步骤24确定V(BR)S、V(BR)FB
1次级整流管最大反向峰值电压V(BR)S
V(BR)S=V O+V Imax×N S/N P
2反馈级整流管最大反向峰值电压V(BR)FB
V(BR)FB=VFB+V Imax×N F/N P
步骤25选择钳位二极管和阻塞二极管
步骤26选择输出整流管
步骤27利用步骤23得到的I RI,选择输出滤波电容C OUT
1滤波电容C OUT在105℃、100KHZ时的纹波电流应≥I RI
2要选择等效串连电阻r0很低的电解电容
3为减少大电流输出时的纹波电流I RI,可将几只滤波电容并联使用,以降低电容的r0值和等效电感L0
4C OUT的容量与最大输出电流I OM有关
步骤28~29当输出端的纹波电压超过规定值时,应再增加一级LC滤波器1滤波电感L=2.2~4.7μH。

当I OM<1A时可采用非晶合金磁性材料制成的磁珠;大电流时应选用磁环绕制成的扼流圈。

2为减小L上的压降,宜选较大的滤波电感或增大线径。

通常L=3.3μH
3滤波电容C取120μF/35V,要求r0很小
步骤30选择反馈电路中的整流管
步骤31选择反馈滤波电容
反馈滤波电容应取0.1μF/50V陶瓷电容器
步骤32选择控制端电容及串连电阻
控制端电容一般取47μF/10V,采用普通电解电容即可。

与之相串连的电阻可选
6.2Ω、1/4W,在不连续模式下可省掉此电阻。

步骤33选定反馈电路
步骤34选择输入整流桥
①整流桥的反向击穿电压V BR≥1.25√2u max
3设输入有效值电流为I RMS,整流桥额定有效值电流为I BR,使I BR≥2I RMS。

计算I RMS
公式如下:
P O
I RMS=
ηu min cosθ
cosθ为开关电源功率因数,一般为0.5~0.7,可取cosθ=0.5
步骤35设计完毕
在所有的相关参数中,只有3个参数需要在设计过程中进行检查并核对是否在允许的范围之内。

它们是最大磁通密度BM(要求BM=0.2T~0.3T)、磁芯的气隙宽度δ(要求δ≥0.051mm)、初级电流密度J(规定J=4~10A/mm2)。

这3个参数在设计的每一步都要检查,确保其在允许的范围之内。

相关文档
最新文档