实验一1 1位全加器的设计
全加器设计
步骤8:编程下载
(1)下载方式设定。
通信仿真之MAX+plus II应用
39
步骤8:编程下载
通信仿真之MAX+plus II应用
40
步骤8:编程下载
通信仿真之MAX+plus II应用
41
步骤8:编程下载
(2)下载。连接好硬件及下载连接线等。按“Configure”下载 配置文件。成功后通过硬件进行逻辑验证。
通信仿真之MAX+plus II应用
2
3基本设计步骤
步骤1:为本项工程设计建立文件夹 任何一项设计都是一项工程(Project),都 必须首先为此工程建立一个放置与此工程相关的 文件的文件夹,此文件夹将被EDA软件默认为工 作库(Work Library)。一般不同的设计项目最 好放在相应的文件夹中,注意,一个设计项目可 以包含多个设计文件。 假设本项设计的文件夹取名为MY_Project,路径 为D:\ MY_Project, MAX+plus II 软件装在D盘 maxplus2文件夹下。 注意:文件夹名不能用中文,且不可带空格。
通信仿真之MAX+plus II应用 8
步骤2:输入设计项目和存盘
(4)调入元件and2、not、xnor、input和output。
方法一:用鼠标双击元件 库“Symbol Libraries”中 d:\maxplus2\maxplus2\ma x2lib\prim项。在 “Symbol Files”窗口即可 看到基本逻辑元件库prim 中的所有元件,双击需要 的元件即可调入原理图编 辑窗中。
27
步骤5:时序仿真
(7)运行仿真器。
实验一 1位全加器的设计(修改后)
• 步骤三:编辑全加器的原理图: 步骤三:编辑全加器的原理图:
• 由file->new,打开原理图文件Block Diaoram/Schematic File,并存盘为full_adder.bdf
左键双击原理图编辑窗空白处,弹出如下窗口
• 调入 1)半加器:half_adder, 2)二输入或门:2or, 3)输入,输出引脚
实验一 1位全加器的设计 位全加器的设计
一位全加器的原理分析
• 一位全加器可由两个一位半加器与一个或 门构成,其原理图如下图。
该设计利用层次结构描述法, • 首先设计半加器电路,将其打包为半加器 模块; • 然后在顶层调用半加器模块 半加器模块和ALTERA提供 半加器模块 的二输入或门 输入或门组成全加器电路; 输入或门 • 最后将全加器电路编译下载到实验箱,
输入是 两个加数:ain,bin, 一个进位:cin 这三个输入数据是1位(1bit),可由DE2的 SW0,SW1,SW2提供 为了显示更加清楚,可以将ain,bin,cin的输出引 出到DE2上的红色发光二极管显示,可选用 LEDR0,LEDR1,LEDR2. 输出是: 输出是: 和:sum 进位:cout 输出可由DE2的绿色发光二极管显示,可选用 LEDG0,LEDG1
• 步骤一:建立full_adder的工程 (project)
新建立full_adder工程(project)
设置project相关参数
• 设置project放置的位置及其名称,随后按 Next继续
• 添加文件到工程(project)中,在无相关文件需要 添加的情况下,按Next继续
• 选择FPGA目标器件,根据DE2的平台情况,选 择cyclone II系列的EP2C35F672C6,继续
整理实验一-一位二进制全加器设计实验
整理人 尼克 实验一一位二进制全加器设计实验目录实验一Protel DXP 2004认识实验 (1)实验二两级阻容耦合三极管放大电路原理图设计 (1)实验三原理图元件库建立与调用 (3)实验四两级阻容耦合三极管放大电路PCB图设计 (5)实验五集成电路的逻辑功能测试 (7)实验六组合逻辑电路分析与设计 (12)实验七Quartus II 的使用 (17)实验八组合逻辑器件设计 (17)实验九组合电路设计 (25)实验一 Protel DXP 2004 认识实验一、实验目的1.掌握Prot e l DXP 2004 的安装、启动和关闭。
2.了解Protel DXP 2004 主窗口的组成和各部分的作用。
3.掌握Prot e l DXP 2004 工程和文件的新建、保存、打开。
二、实验内容与步骤1、Protel_DXP_2004 的安装(1)用虚拟光驱软件打开Protel_DXP_2004.iso 文件(2)运行setup\Setup.exe 文件,安装Protel DXP 2004(3) 运行破解程序后,点击“导入模版”,先导入一个ini文件模版(如果要生成单机版的License选择Unified Nexar-Protel License.ini;要生成网络版的License选择Unified Nexar-Protel Network License.ini),然后修改里面的参数:TransactorName=Your Name(将“Your Name”替换为你想要注册的用户名);SerialNumber=0000000(如果你只有一台计算机,那么这个可以不用修改,如果有两台以上的计算机且连成局域网,那么请保证每个License文件中的SerialNumber=为不同的值。
修改完成后点击“生成协议文件”,任意输入一个文件名(文件后缀为.alf)保存,程序会在相应目录中生成1个License文件。
点击“替换密钥”,选取DXP.exe (在DXP 2004安装目录里,默认路径为C:\Program Files\Altium2004\),程序会自动替换文件中的公开密钥。
一位全加器的设计
一位全加器的设计全加器的主要作用是将两个二进制数相加,并产生一个结果和一个进位。
在设计全加器时,我们需要考虑以下几个方面:输入信号的处理、逻辑门的选择、进位的传递、和输出结果的计算。
首先,我们需要考虑输入信号的处理。
一个全加器需要接收两个二进制数和一个进位作为输入信号。
每个输入信号都可以用一个二进制位表示,这些位可以通过电路的输入端口进入电路。
在设计全加器时,我们需要确定如何使用这些输入信号。
其次,我们需要选择逻辑门来实现全加器。
逻辑门是数字电路的基本组件,通常用于实现计算和逻辑运算。
在设计全加器时,我们可以使用与门、或门和异或门来完成计算。
接下来,我们需要实现进位的传递。
当两个二进制数相加时,如果它们的和超过了二进制数能够表示的范围,就会产生一个进位。
为了实现进位的传递,我们可以使用逻辑门来判断是否产生了进位,并将进位传递到高位。
最后,我们需要计算输出结果。
一个全加器的输出结果是一个和位和一个进位位。
和位表示两个输入位的和,进位位表示是否产生了进位。
我们可以通过使用逻辑门和输入信号来计算输出结果。
下面是一个典型的全加器电路的设计:首先,我们将输入信号连接到三个输入端口。
一个输入端口用于接收两个输入二进制数,另一个输入端口用于接收进位。
接下来,我们将输入信号与逻辑门连接起来。
我们可以使用两个异或门来实现和位的计算,然后使用一个与门计算进位。
最后,我们将输出信号连接到两个输出端口。
一个输出端口用于输出和位,另一个用于输出进位位。
在实际设计中,我们需要综合考虑多个全加器的连接,以实现更复杂的计算。
这可以通过将多个全加器链接成一个加法器来实现。
加法器是一个包含多个全加器的数字电路,可以将更长的二进制数相加。
总结起来,全加器是一个重要的数字电路组件,用于将两个二进制数相加。
在全加器的设计过程中,我们需要考虑输入信号的处理、逻辑门的选择、进位的传递、和输出结果的计算。
通过合理选择逻辑门和连接输入输出信号,我们可以实现一个高效的全加器。
1位全加器的设计max
实验三1位全加器的设计一、实验目的:熟悉Alter公司的Max+Plus II软件,掌握采用EDA技术进行设计的过程,学会使用原理图和VHDL语言的两种方法进行电路设计。
二、实验内容:1、编写2输入或门的VHDL程序。
2、编写半加法器的VHDL程序。
3、采用原理图方法设计全加器。
4、进行逻辑编译、综合和优化。
5、进行软件仿真。
三、实验步骤:1、建立新目录:如e:\example;2、第一次运行MAX+PLUS II——进入MAX+PLUS II双击MAX+PLUS II 图标:或:开始→程序→Altera→3、创建VHDL源程序A:创建2输入或门的VHDL源程序:ORM2.VHD(1)生成一个新的文本文件:按屏幕上方的按钮,或选择“file”→“new…”,出现对话框:选择Text Editor file(文本编辑方式),然后按下OK按钮,会出现一个无标题的文本编辑窗口——Untitled-Text Editor。
(2)在编文本辑窗口中输入2输入或门的VHDL源程序:ORM2.VHDLIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;ENTITY ORM2 ISPORT (A,B: IN STD_LOGIC;C: OUT STD_LOGIC);END ORM2;ARCHITECTURE ART1 OF ORM2 ISBEGINC<=A OR B;END ARCHITECTURE ART1;(3)保存文件:按工具栏中的按钮,或选择File→Save,出现对话框:在File Name(文件名)栏中输入文件名,如ORM2.vhd在驱动器选择栏选刚刚建立的项目路径所在的驱动器,如e:在路径栏选择所建立的项目路径,如:example在Automatic Extension(自动扩展名)的下拉菜单中选择.vhd按键,就把输入的文件存放在了目录e:\example中了。
此时,所有的标识符都变色。
一位全加器VHDL的设计实验报告
EDA技术及应用实验报告——一位全加器VHDL的设计班级:XXX姓名:XXX学号:XXX一位全加器的VHDL设计一、实验目的:1、学习MAX+PLUSⅡ软件的使用,包括软件安装及基本的使用流程。
2、掌握用VHDL设计简单组合电路的方法和详细设计流程。
3、掌握VHDL的层次化设计方法。
二、实验原理:本实验要用VHDL输入设计方法完成1位全加器的设计。
1位全加器可以用两个半加器及一个或门连接构成,因此需要首先完成半加器的VHDL设计。
采用VHDL层次化的设计方法,用文本编辑器设计一个半加器,并将其封装成模块,然后在顶层调用半加器模块完成1位全加器的VHDL设计。
三、实验内容和步骤:1、打开文本编辑器,完成半加器的设计。
2、完成1位半加器的设计输入、目标器件选择、编译。
3、打开文本编辑器,完成或门的设计。
4、完成或门的设计输入、目标器件选择、编译。
5、打开文本编辑器,完成全加器的设计。
6、完成全加器的设计输入、目标器件选择、编译。
7、全加器仿真8、全加器引脚锁定四、结果及分析:该一位加法器是由两个半加器组成,在半加器的基础上,采用元件的调用和例化语句,将元件连接起来,而实现全加器的VHDL编程和整体功能。
全加器包含两个半加器和一或门,1位半加器的端口a和b分别是两位相加的二进制输入信号,h是相加和输出信号,c是进位输出信号。
构成的全加器中,A,B,C分别是该一位全加器的三个二进制输入端,H是进位端,Ci是相加和输出信号的和,下图是根据试验箱上得出的结果写出的真值表:信号输入端信号输出端Ai Bi Ci Si Ci0 0 0 0 00 0 1 1 00 1 0 1 00 1 1 0 11 0 0 1 01 0 1 0 11 1 0 0 11 1 1 1 1。
EXP01实验一 一位全加器设计
实验一一位全加器电路设计实验目的:1.熟悉EDA软件开发工具(MAX+plus II)的基本操作;2.熟悉KHF-4型CPLD/FPGA实验箱的板上资源分布。
3. 以原理图方式设计一位全加器,进行软件仿真、下载和硬件测试。
实验设备:微型计算机一台、KHF-4型实验箱一个实验原理:全加器原理图和真值表分别如图1和表1所示:图1. 半加器原理图表1. 半加器真值表全加器原理图和真值表分别如图2和表2所示:图2. 全加器原理图表2. 全加器真值表实验步骤:1)打开MAX+plus II设计软件。
2)新建图形编辑文件(File/New/Graphic Edit file),在文件空白处双击鼠标左键(或选择菜单Symbol/Enter Symbol)打开添加符号对话框(Enter Symbol),在“Symbol Libraries”框中双击选择“../maxplus2/max2lib/prim”库,在Symbol Files添加半加器原理图中各元件、输入(input)和输出(output)管脚,修改管脚名称后完成半加器原理图的绘制如图1;保存文件到具体设计目下。
图3.新建文件、添加符号和保存文件3)将半加器文件设为顶层文件(File/Project/Set Project to Current File),打开编译器(MAX+plus II/Complier)进行编译综合。
图4.设为顶层和编译4)创建半加器符号(File/Creat Default Symble)。
5)新建图形编辑文件(File/New/Graphic Edit file),在文件空白处双击鼠标左键打开添加符号对话框(Enter Symbol),从“File Symbol”框中调用半加器符号,完成全加器原理图的绘制如图2,保存文件到具体设计目录。
6)将全加器文件设为顶层文件,打开编译器进行编译综合。
7)新建波形编辑文件(File/New/Waveform Edit file),添加节点信号(在Name下点击鼠标右键选择Enter Nodes from SNF…)并编辑输入信号波形;保存(File/Save)波形文件(按默认文件名点击OK保存)。
实验一--一位全加器的原理图设计【范本模板】
桂林电子科技大学实验报告2015-2016学年第二学期开课单位海洋信息工程学院适用年级、专业13级电子信息工程课程名称EDA技术与应用主讲教师覃琴实验名称一位全加器学号1316030515姓名魏春梅实验一一位全加器的原理图设计一、实验目的①掌握Quartus II原理图输入法的编辑、编译(综合)、仿真和编程下载的操作过程.②用原理图输入法设计全加器电路,并通过电路仿真和硬件验证,进一步了解全加器的功能.③熟悉EDA实训仪的使用方法。
二、实验原理考虑来自低位来的进位的加法运算称为”全加”,能实现全加运算的电路称为全加器.1位全加器的真值表如表1。
1所列,表中的A、B是两个一位二进制加数的输入端。
CI是来自低位来的进位输入端。
SO是和数输出端,CO是向高位的进位输出端。
根据真值表写出电路输出与输入之间的逻辑关系表达式为:A B CI SO CO三、实验设备①EDA实训仪1台.②计算机1台(装有Quartus II软件)。
四、实验内容在Quartus II软件中,采用原理图输入法设计1位的全加器电路,编辑、编译(综合)、仿真,引脚锁定,并下载到EDA实训仪中进行验证。
注:用EDA实训仪上的拨动开关S1、S2、SO分别作为加数A、加数B、低位进位输入端CI,用发光二极管L1、L0分别作为和输出端SO、仅为输出端CO。
五、实验预习要求①查阅资料,复习有关全加器的内容,并认真阅读实验指导书,分析、掌握实验原理.②预习理论课本有关Quartus II软件的使用方法,并简要地写出Quartus II软件的操作步骤。
③复习数字逻辑电路有关全加器的内容,设计1位全加器的逻辑电路图。
1、实验电路图路径:E/1316030515/adder2、实验波形仿真图路径:E/1316030515/adder3、实验结果图六、实验总结①用Quartus II软件的原理图输入法进行数字电路设计的方法及步骤。
1、建立工程项目(文件夹、工程名、芯片选择);2、编辑设计文件(元件、连线、输入输出、检查电路正确性);3、时序仿真(波形验证设计结果);4、引脚锁定(参考文件锁定输入输出引脚);5、编译下载;6、硬件调试。
实验1 1位全加器设计
实验1 一位全加器设计【实验目的】1.掌握数字电路的两种设计方法2.掌握在Cadence中绘制原理图的方法3.掌握芯片外围特性与实现硬件电路4.掌握Verilog HDL设计电路的方法。
【实验内容】1.设计1位全加器2.绘制1位全加器原理图3.在面包板上实现1位全加器设计4.用Verilog HDL行为描述法设计实现1位全加器并仿真【实验器件】1.异或门电路74HC86一片,内含四个异或门,异或门的引脚封装图与内部原理如图1-1所示。
图1-1 异或门74HC86的内部原理图与芯片封装图2.与门电路芯片74HC08一片,内含四个与门,与门的引脚封装图与内部原理如图1-2所示。
图1-2与门74HC08的内部原理图与芯片封装图3.或门电路芯片74HC32一片,内含四个或门,或门的引脚封装图与内部原理如图1-3所示。
图1-3或门74HC32的内部原理图与芯片封装图4.3个1k的电阻和两个发光二极管,一个8路开关,5v电源,面包板一块,导线若干条。
【实验步骤】1.设计1位全加器1)设1位全加器的输入为被加数为A,加数B,低位进位Cin;输出为本位和Sum,对高位的进位为Cout。
2)根据1位加法器的运算{Cout,Sum}=A+B+Cin列真值表如表吗-1所示。
表1-1 1位加法器真值表3)根据真值表列出逻辑表达式CinBACinBACinBACinBABACinABBAABCinCinBACinBACinBASum⊕⊕=⊕+⊕=+++=+++=)()()()(ABCinBAABCinCinABCinBABCinACout+⊕=+++=)(4)手动绘制该原理图,为电路加上开关控制数据输入,用发光二极管显示输出,电路图如图1-4所示。
图1-4 1位全加器原理图2.在实验板上连接实现该电路并分析电路元件构成3.在protel软件中绘制原理图1)绘制元件符号2)绘制原理图4. .在protel软件中绘制pcb1)封装绘制2)pcb绘制。
一位全加器_可编程逻辑器件VHDL实验报告
1.一位全加器实验报告一、实验目的要求学习计数器的设计、仿真和硬件测试,进一步熟悉VHDL设计技术。
设计程序独立完成全加器的仿真。
全加器由两个半加器组合而成,原理类似。
半加器不考虑低位进位,但有高位进位;全加器要考虑低位的进位且该进位和求和的二进制相加,可能获得更高的进位。
二、设计方法与原理图图1是一个一位二进制全加器电路图,由图1所示,由两个半加器和一个或门构成一个一位二进制全加器;ain,bin为全加器的输入端,cin为全加器的低位进位,sum是全加器的全加和,cout是全加器的全加进位端;从而实现一位二进制全加器。
(图1)一位二进制全加器原理图三、实验内容按照教材上的步骤,在max plus II上进行编辑、编译、综合、适配、仿真。
说明例中各语句的作用,详细描述示例的功能特点,给出其所有信号的时序仿真波形。
四、源程序library ieee;use ieee.std_logic_1164.all;entity full_adder isport(a,b,cin:in std_logic;cout,sum:out std_logic);end entity full_adder;architecture fd1 of full_adder iscomponent h_adderport(a,b:in std_logic;co,so:out std_logic);end component;component or2aport(a,b:in std_logic;c:out std_logic);end component;signal d,e,f:std_logic;beginu1:h_adder port map(a=>ain,b=>bin,co=>d,so=>e); u2:h_adder port map(a=>e,b=>cin,co=>f,so=>sum); u3:or2a port map(a=>d,b=>f,c=>cout);end fd1;五过程性截图六、仿真结果(图2)一位二进制全加器仿真结果七、分析结果与总结由图2,本实验的目标已达成,及通过编写VHDL语言实现一个一位二进制全加器。
实验一一位二进制全加器设计实验
大学实验报告学生: 学 号: 专业班级: 中兴101实验类型:■ 验证 □ 综合 □设计 □ 创新 实验日期: 2012 9 28 实验成绩:实验一 一位二进制全加器设计实验一.实验目的(1)掌握Quartus II 的VHDL 文本设计和原理图输入方法设计全过程; (2)熟悉简单组合电路的设计,掌握系统仿真,学会分析硬件测试结果; (3) 熟悉设备和软件,掌握实验操作。
二.实验容与要求(1)在利用VHDL 编辑程序实现半加器和或门,再利用原理图连接半加器和或门完成全加器的设计,熟悉层次设计概念;(2)给出此项设计的仿真波形;(3)参照实验板1K100的引脚号,选定和锁定引脚,编程下载,进行硬件测试。
三.设计思路一个1位全加器可以用两个1位半加器及一个或门连接而成。
而一个1位半加器可由基本门电路组成。
(1) 半加器设计原理能对两个1位二进制数进行相加而求得和及进位的逻辑电路称为半加器。
或:只考虑两个一位二进制数的相加,而不考虑来自低位进位数的运算电路,称为半加器。
图1为半加器原理图。
其中:a 、b 分别为被加数与加数,作为电路的输入端;so 为两数相加产生的本位和,它和两数相加产生的向高位的进位co 一起作为电路的输出。
半加器的真值表为表1 半加器真值表absoco0 0 0 0 0 1 1 0 1 0 1 0 111由真值表可分别写出和数so ,进位数co 的逻辑函数表达式为:b a b a b a so ⊕=+=--(1)ab co = (2)图1半加器原理图(2) 全加器设计原理除本位两个数相加外,还要加上从低位来的进位数,称为全加器。
图2全加器原理图。
全加器的真值表如下:表2全加器真值表c a b co so0 0 0 0 00 0 1 0 10 1 0 0 10 1 1 1 01 0 0 0 11 0 1 1 01 1 0 1 01 1 1 1 1其中a为加数,b为加数,c为低位向本位的进位,co为本位向高位的进位,so为本位和。
数电实验——全加器设计
五、实验验证 A = 0 , B = 0 , ������1 = 0 , S = 0, ������0 = 0 ,红灯灭,绿灯灭
A = 0 , B = 0 , ������1 = 1 , S = 1, ������0 = 0 ,红灯亮,绿灯灭 A = 0 , B = 1 , ������1 = 0 , S = 1, ������0 = 0 ,红灯亮,绿灯灭
������ = ������ ⊕ ������ ⊕ ������1 {
������0 = ������������ ∙ ������������1 ∙ ������������1 ∙ 1
实验原理图:
用红灯的亮灭来表示 S 输出 1/0 用绿灯的亮灭来表示 C0 输出 1/0 二、实验目的 完成 1 位全加器的设计,用逻辑门实现,完成输入输出真值表验证 三、实验器材 1. 实验材料
A = 1 , B = 1 , ������1 = 1 , S = 1, ������0 = 1 ,红灯亮,绿灯亮
实验 3.2
一、实验原理图 由真值表得 S 和 C0 表达式: ������ = ������ ������ ������1 ∙ ������ ������ ������1 ∙ ������ ������ ������1 ∙ ������ ������ ������1 { ������0 = ������ ������ ������ ∙ ������ ������ ������ ∙ ������ ������ ������ ∙ ������ ������ ������
第三次实验报告
第三次实验要求学生完成如下任务: 1 位全加器设计,包括: 1) 完成 1 位全加器的设计,用逻辑门实现,完成输入输出真值表验证 2) 完成 1 位全加器的设计,用中规模逻辑器件(74138)实现,完成输入输出真值表 验证
数字电路实验报告-组合逻辑电路的设计:一位全加器
Si
Ci
0
0
0
0
0
0
0
1
1
0
0
1
0
1
0
0
1
1
0
1
1
0
0
1
0
1
0
1
0
1
1
1
0
0
1
1
1
1
1
1
描述
一位全加器的表达式如下:
Si=Ai⊕Bi⊕Ci-1
实验仪器
1.电子技术综合实验箱
2.芯片74LS86、74LS08、74LS32
实验内容及步骤
各芯片的管脚图如下图所示:
一位全加器逻辑电路图如下所示:
1.按上图连线
电学实验报告模板
电学虚拟仿真实验室
实验名称
组合逻辑电路的设计:一位全加器
实验目的
1.学习组合逻辑电路的设计方法
2.掌握组合逻辑电路的调试方法
实验原理
真值表
一位全加器的真值表如下图,其中Ai为被加数,Bi为加数,相邻低位来的进位数为Ci-1,输出本位和为Si。向相邻高位进位数为Ci
输入
输出
Ci-1
Ai
2.测试其逻辑功能,并记录数据
实验结果及分析
实验数据:
Ci-1
Ai
Bi
Si
Ci
0
0
0
0
0
0
0
1
1
0
0
1
0
1
0
0
1
1
0
1
10010 Nhomakorabea1
0
1
0
1
一位全加器的设计
---------------------------------------------------------------最新资料推荐------------------------------------------------------一位全加器的设计一位全加器的设计 1 引言 1 1.1 发展历史与现状.. 1 1.2 研究目的与意义.. 2 1.3 全加器的发展前景.. 2 2 设计内容 3 2.1 真值表 ... 3 2.2 10 管全加器的电路图4 2.3 导出网表. 5 3 电路仿真及分析.. 6 3.1 10 管全加器仿真波形.. 6 3.2 10 管全加器的功耗和延迟.. 6 4 参考文献 7 1 引言由于运算电路的最基本单元是全加器电路,为了能使高速运算电路功耗更加低,传输速度更快,只能继续研究设计功耗更加低,性能更加优越的全加器。
所以提高高速数字集成运算电路性能最关键是要全面的优化全加器的性能。
在一些全加器设计中,同或门和异或门构成了全加器的基本构建块,优化基础构建块的性能可以显著提高整个全加器的性能。
实践证明,减少晶体管的数量可以有效提高全加器的速度,降低功耗,降低传输延迟。
本文提出了一种新型 3 管同或门和异或门制作的 10 管全加器的新颖设计。
较少的晶体管数量保证了较小的功耗,而且芯片面积也可以大大降低,同时保证了较小的传输延迟。
对其功耗和延迟可以利用 Hspice 软件进行仿真。
1.1 发展历史与现状由于芯片设计以及时代发展的需要,全加1 / 6器电路经历了多种不同结构的发展演变。
由 28 个晶体管组成的是比较传统早期的全加器,虽然在信号输出方面比较稳定,但是由于存在过多的晶体管所以其功耗和延迟还有芯片面积都比较大,因此很快在研究过程中被淘汰。
再后来陆陆续续出现了 20 管的、16 管的、14 管的等等。
并且功耗和延迟也都逐渐控制得较为出色。
由此我们可以看出全加器的发展趋势是晶体管数目在不断减少,芯片的面积也越来越小,并且现在研究的重点是如何降低功耗延迟积。
EDA技术与FPGA应用设计实验报告--1位全加器的设计(可编辑修改word版)
本科实验报告
课程名称:EDA 技术与FPGA 应用设计实验项目: 1 位全加器的设计
实验地点:跨越机房
专业班级:学号:
学生姓名:
指导教师:
2012 年6 月20 日
一、实验目的:
1.熟悉 ispDesignEXPERT System 原理图设计流程的全过程。
2.学习简单组合电路的设计方法、输入步骤。
3.学习层次化设计步骤。
4.学习 EDA 设计的仿真和硬件测试方法。
二、实验原理:
1.位全加器可以用两个半加器及一个或门连接而成。
三、实验任务:
1.用原理图输入方法设计半加器电路。
2.建立顶层原理图电路。
3.对全加器电路进行仿真分析、引脚锁定、硬件测试。
四、实验内容:
1.用原理图输入方法设计半加器电路
2.调用半加器设计全加器:
五、仿真波形:
六、加法器的延时情况:
七、心得体会:
通过本实验让我对原理图方法设计有了一定的认识,让我初步掌握了 ispDesignEXPERT System 软件,在构建原理图时,我们可以使用巧妙的办法搭建出最简便的原理图,初次实验,有些生疏,不过还是很完美的做完了实验,希望今后能有更多的机会去实践,去巩固,去提高。
EDA实验一 1位全加器和四位全加器的设计
实验一1位全加器和四位全加器的设计一、实验目的1、掌握Quartus Ⅱ6.0软件使用流程。
2、初步掌握VHDL的编程方法。
3、掌握图形层次设计方法;4、掌握全加器原理,能进行多位加法器的设计。
二、实验原理(一位全加器的逻辑表达式为:sum=a^b^Cl;Ch= a&b|(a^b)&Cl.(2)四位加法器加法器是数字系统中的基本逻辑器件。
多位加法器的构成有两种方式:并行进位和串行进位方式。
并行进位加法器设有并行进位产生逻辑,运算速度快;串行进位方式是将全加器级联构成多位加法器。
通常,并行加法器比串行级联加法器占用更多的资源,并且随着位数的增加,相同位数的并行加法器比串行加法器的资源占用差距也会越来越大。
三、实验连线(1)一位全加器1、将EP2C5适配板左下角的JTAG用十芯排线和万用下载区左下角的SOPC JTAG 口连接起来,万用下载区右下角的电源开关拨到SOPC下载的一边2、将JPLED1短路帽右插,JPLED的短路帽全部上插。
3、请将JP103的短路帽全部插上,,打开实验箱电源。
( 2 ) 四位加法器1、将EP2C5适配板左下角的JTAG用十芯排线和万用下载区左下角的SOPC JTAG 口连接起来,万用下载区右下角的电源开关拨到SOPC下载的一边2、JPLED1短路帽右插,JPLED的短路帽全部上插。
3、请将JP103的短路帽全部插上,,打开实验箱电源。
四、实验代码LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_ARITH.ALL;ENTITY fulladder ISPORT(A,B,C1 :IN STD_LOGIC;CH,SUM : OUT STD_LOGIC);END ENTITY fulladder;ARCHITECTURE ADO OF fulladder isSIGNAL AB :STD_LOGIC;BEGINSUM<=A XOR B XOR C1;AB<=A XOR B;CH<=(A AND B) OR (AB AND C1);END ARCHITECTURE ADO;一位全加器波形如下:图4-1四位加法器波形如下:图4-2五、实验仿真过程SW1,SW2,SW3对应a,b,Cl;D101,D102分别对应sum和Ch,当结果为0时彩色LED灯熄灭,当结果为1时彩灯点亮,改变SW1,SW2,SW3的输入状态,观察实验结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一1位全加器的设计
一、实验目的
1.熟悉ISE软件的使用;
2.熟悉下载平台的使用;
3.掌握利用层次结构描述法设计电路。
二、实验原理及说明
由数字电路知识可知,一位全加器可由两个一位半加器与一个或门构成,其原理图如图1所示。
该设计利用层次结构描述法,首先设计半加器电路,将其打包为半加器模块;然后在顶层调用半加器模块组成全加器电路;最后将全加器电路编译下载到实验板,其中a,b,cin 信号可采用实验箱上SW0,SW1,SW2键作为输入,输出sum,cout信号采用发光二极管LED3,LED2来显示。
图1 全加器原理图
三、实验步骤
1.在ISE软件下创建一工程,工程名为full_adder,工程路径在E盘,或DATA盘,
并以学号为文件夹,注意不要有中文路径,注意:不可将工程放到默认的软件安装
目录中。
芯片名为Spartan3E系列的XC3S500E-PQG208
2.新建Verilog HDL文件,首先设计半加器,输入如下源程序;
module half_adder(a,b,s,co);
input a,b;
output s,co;
wire s,co;
assign co=a & b;
assign s=a ^ b;
endmodule
3.保存半加器程序为half_adder.v,通过HDL Bench画仿真波形,获得仿真用激励文
件,随后进行功能仿真、时序仿真,验证设计的正确性,观察两种仿真波形的差异。
4.在Design窗口中,选择Design Utilities→Create Schematic Symbol创建半加器模
块;
5.新建一原理图(Schematic)文件,在原理图中调用两个半加器模块、一个或门模块,
按照图1所示连接电路,并连接输入、输出引脚。
完成后另保存full_adder.sch。
6.对设计进行综合,如出现错误请按照错误提示进行修改。
7.HDL Bench画仿真波形,获得仿真用激励文件,分别进行功能与时序仿真,验证全
加器的逻辑功能,观察两类波形的差异。
8.根据下载板的情况锁定引脚
9.下载,采用JATG方式进行下载,通过SW0,SW1,SW2输入,观察的LED2,LED3,
亮灭情况,验证全加器的逻辑功能。
四、思考题
1.为什么在实验步骤3中,将半加器保存为half_adder,可否保存为full_adder?
2.对电路进行功能仿真与时序仿真时,发现二者有什么样的区别?
3.为什么要进行引脚锁定?
4.采用层次结构法描述电路有什么样的优点?。