分式知识点总复习
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分式知识点总复习
一、选择题
1.计算 的结果为()
A. B. C. D.
【答案】B
【解析】
【分析】
利用幂次方计算公式即可解答.
【详解】
解:原式= .
答案选B.
【点睛】
本题考查幂次方计算,较为简单.
2.若(x﹣1)0=1成立,则x的取值范围是( )
A.x=﹣1B.x=1C.x≠0D.x≠1
【答案】D
【解析】
【解析】
分析:根据有理数的乘方,合并同类项法则,负整数指数次幂等于正整数指数幂的倒数,积的乘方的性质对各小题分析判断即可得解.
详解:①-22=-4,故本小题错误;
②a3+a3=2a3,故本小题错误;
③4m-4= ,故本小题错误;
④(xy2)3=x3y6,故本小题正确;
综上所述,做对的个数是1.
故选A.
【答案】D
【解析】
【分析】
根据被开方式大于且等于零,分母不等于零列式求解即可.
【详解】
解:∵式子 有意义
∴
∴x<2
故选:D
【点睛】
本题考查了代数式有意义时字母的取值范围,代数式有意义时字母的取值范围一般从几个方面考虑:①当代数式是整式时,字母可取全体实数;②当代数式是分式时,考虑分式的分母不能为0;③当代数式是二次根式时,被开方数为非负数.
【详解】
0.00002=2×10﹣5.
故选D.
【点睛】
本题考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
14.下面是一名学生所做的4道练习题:① ;② ;③ ;④ 。他做对的个数是()
A.1B.2C.3D.4
【答案】A
试题解析:由题意可知:x-1≠0,
x≠1
故选D.
3.若 满足 ,则分式 的值是()
A. B. C. D.
【答案】A
【解析】
【分析】
首先将式子 按照分式的运算法则进一步化简,然后通过 得出 ,最后将其代入之前化简所得的式子中进一步计算即可.
【详解】
由题意得: ,
又∵ ,
∴ ,
∴原式 ,
故选:A.
【点睛】
【分析】
先将已知条件变形为 ,再将其整体代入所求式子求值即可得解.
【详解】
解:∵
∴
∴
∴ .
故选:D
【点睛】
本题考查了分式的化简求值,此题涉及到的是整体代入法,能将已知式子整理变形为 的形式是解题的关键.
12. 的相反数是()
A.9B.-9C. D.
【答案】B
【解析】
【分析】
先根据负指数幂的运算法则求出 的值,然后再根据相反数的定义进行求解即可.
【详解】
解: , , ,
,
最小的数是 ,
故选: .
【点睛】
本题考查了实数的大小比较法则,能熟记实数的大小比较法则的内容是解此题的关键.
则分式的值缩小成原来的 ,即缩小3倍.
故选:B.
【点睛】
解题的关键是抓住分子、分母变化的倍数,解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论.
20.下列各数中最小的是()
A. B. C. D.
【答案】A
【解析】
【分析】
先根据有理数的乘方、算术平方根、立方根、负整数指数幂进行计算,再比较数的大小,即可得出选项.
16.已知 ,则 的值是
A. B.- C.2D.-2
【答案】D
【解析】
分析:观察已知和所求的关系,容易发现把已知通分后,再求倒数即可.
解答:解:∵ ,
∴ - = ,
∴ = ,
∴ =-2.
故选D.
17.500米口径球面射电望远镜,简称 ,是世界上最大的单口径球面射电望远镜,被誉为“中国天眼”.2018年4月18日, 望远镜首次发现的毫秒脉冲星得到国际认证,新发现的脉冲星自转周期为0.00519秒,是至今发现的射电流量最弱的高能毫秒脉冲星之一.将0.00519用科学记数法表示应为( )
【答案】B
【解析】
【分析】
原式分子分母提取公因式变形后,约分即可得到结果.
【详解】
原式= =
故答案选B.
【点睛】
本题考查的知识点是约分,解题的关键是熟练的掌握约分.
9.已知 ,则 的值是
A.49B.48C.47D.51
【答案】D
【解析】
【分析】
将已知等式两边平方,利用完全平方公式展开即可得到所求式子的值.
【详解】
=9,
9的相反数为-9,
故 的相反数是-9,
故选B.
【点睛】
本题考查了负整数指数幂、求一个数的相反数,熟练掌握负整数指数幂的运算法则是解题的关键.
13.一次抽奖活动特等奖的中奖率为 ,把 用科学记数法表示为( )
A. B. C. D.
【答案】D
【解析】
【分析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
∵a=-0.22=-0.04,b=-2-2= ,c=(- )-2=4,d=(- )0=1,
-0.25<-0.04<1<4
∴b<a<d<c
故选B.
【点睛】
此题主要考查了负整数指数幂,正整数指数幂、零次幂,熟练掌握它们的运算意义是解题的关键.
5.某微生物的直径为0.000 005 035m,用科学记数法表示该数为( )
【详解】
已知等式 两边平方得: ,
则 =51.
故选D.
【点睛】
此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.
10.下列各分式中,是最简分式的是().
A. B. C. D.
【答案】A
【解析】
【分析】
根据定义进行判断即可.
【详解】
解:A、 分子、分母不含公因式,是最简分式;
B、 = =x-y,能约分,不是最简分式;
A.5.035×10﹣6B.50.35×10﹣5C.5.035×106D.5.035×10﹣5
【答案】A
【解析】
试题分析:0.000 005 035m,用科学记数法表示该数为5.035×10﹣6,故选A.
考点:科学记数法—表示较小பைடு நூலகம்数.
6.若式子 有意义,则x的取值范围为().
A.x≥2B.x≠2C.x≤2D.x<2
C、 = = ,能约分,不是最简分式;
D、 = ,能约分,不是最简分式.
故选A.
【点睛】
本题考查分式的化简,最简分式的标准是分子,分母中不含有公因式,不能再约分,判断的方法是把分子、分母分解因式,然后对每一选项进行整理,即可得出答案.
11.已知 ,则 的值为()
A. B.2C. D.
【答案】D
【解析】
7.要使分式 有意义, 应满足的条件是()
A. B. C. D.
【答案】C
【解析】
【分析】
直接利用分式有意义的条件得出答案.
【详解】
要使分式 有意义,
则x-1≠0,
解得:x≠1.
故选:C.
【点睛】
此题考查分式有意义的条件,正确把握分式的定义是解题关键.
8.化简 的结果是( )
A. B. C.a﹣bD.b﹣a
19.若把分式 中的x和y都扩大3倍,那么分式的值()
A.扩大3倍;B.缩小3倍;C.缩小6倍;D.不变;
【答案】B
【解析】
【分析】
x,y都扩大3倍就是分别变成原来的3倍,变成3x和3y.用3x和3y代替式子中的x和y,看得到的式子与原来的式子的关系.
【详解】
解:用3x和3y代替式子中的x和y得: = = × ,
A. B. C. D.
【答案】B
【解析】
【分析】
绝对值小于1的负数也可以利用科学记数法表示,一般形式为a×10﹣n,其中1≤ <10,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
18.把分式 中的 的值同时扩大为原来的10倍,则分式的值()
A.不变B.缩小为原来的
C.扩大为原来的10倍D.扩大为原来的100倍
【答案】A
【解析】
【分析】
根据分式的基本性质,把分式 中的x、y的值同时扩大为原来的10倍得: ,即可得到答案.
【详解】
把分式 中的x、y的值同时扩大为原来的10倍得:
,
即分式 的值不变,
故选:A.
【点睛】
本题考查了分式的基本性质,正确掌握分式的基本性质是解题的关键.
点睛:本题考查了有理数的乘方,合并同类项法则,负整数指数次幂的运算,积的乘方的性质,是基础题,熟记各性质是解题的关键.
15.化简 =()
A.﹣xB.y﹣xC.x﹣yD.﹣x﹣y
【答案】A
【解析】
【分析】
根据分式的运算法则即可求出答案.
【详解】
原式= ,
故选A.
【点睛】
本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.
本题主要考查了分式的化简求值,熟练掌握相关运算法则是解题关键.
4.若a=-0.22,b=-2-2,c=(- )-2,d=(- )0,则它们的大小关系是()
A.a<c<b<dB.b<a<d<cC.a<b<d<cD.b<a<c<d
【答案】B
【解析】
【分析】
根据正整数指数幂、负整数指数幂以及零次幂的意义分别计算出a,b,c,d的值,再比较大小即可.
一、选择题
1.计算 的结果为()
A. B. C. D.
【答案】B
【解析】
【分析】
利用幂次方计算公式即可解答.
【详解】
解:原式= .
答案选B.
【点睛】
本题考查幂次方计算,较为简单.
2.若(x﹣1)0=1成立,则x的取值范围是( )
A.x=﹣1B.x=1C.x≠0D.x≠1
【答案】D
【解析】
【解析】
分析:根据有理数的乘方,合并同类项法则,负整数指数次幂等于正整数指数幂的倒数,积的乘方的性质对各小题分析判断即可得解.
详解:①-22=-4,故本小题错误;
②a3+a3=2a3,故本小题错误;
③4m-4= ,故本小题错误;
④(xy2)3=x3y6,故本小题正确;
综上所述,做对的个数是1.
故选A.
【答案】D
【解析】
【分析】
根据被开方式大于且等于零,分母不等于零列式求解即可.
【详解】
解:∵式子 有意义
∴
∴x<2
故选:D
【点睛】
本题考查了代数式有意义时字母的取值范围,代数式有意义时字母的取值范围一般从几个方面考虑:①当代数式是整式时,字母可取全体实数;②当代数式是分式时,考虑分式的分母不能为0;③当代数式是二次根式时,被开方数为非负数.
【详解】
0.00002=2×10﹣5.
故选D.
【点睛】
本题考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
14.下面是一名学生所做的4道练习题:① ;② ;③ ;④ 。他做对的个数是()
A.1B.2C.3D.4
【答案】A
试题解析:由题意可知:x-1≠0,
x≠1
故选D.
3.若 满足 ,则分式 的值是()
A. B. C. D.
【答案】A
【解析】
【分析】
首先将式子 按照分式的运算法则进一步化简,然后通过 得出 ,最后将其代入之前化简所得的式子中进一步计算即可.
【详解】
由题意得: ,
又∵ ,
∴ ,
∴原式 ,
故选:A.
【点睛】
【分析】
先将已知条件变形为 ,再将其整体代入所求式子求值即可得解.
【详解】
解:∵
∴
∴
∴ .
故选:D
【点睛】
本题考查了分式的化简求值,此题涉及到的是整体代入法,能将已知式子整理变形为 的形式是解题的关键.
12. 的相反数是()
A.9B.-9C. D.
【答案】B
【解析】
【分析】
先根据负指数幂的运算法则求出 的值,然后再根据相反数的定义进行求解即可.
【详解】
解: , , ,
,
最小的数是 ,
故选: .
【点睛】
本题考查了实数的大小比较法则,能熟记实数的大小比较法则的内容是解此题的关键.
则分式的值缩小成原来的 ,即缩小3倍.
故选:B.
【点睛】
解题的关键是抓住分子、分母变化的倍数,解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论.
20.下列各数中最小的是()
A. B. C. D.
【答案】A
【解析】
【分析】
先根据有理数的乘方、算术平方根、立方根、负整数指数幂进行计算,再比较数的大小,即可得出选项.
16.已知 ,则 的值是
A. B.- C.2D.-2
【答案】D
【解析】
分析:观察已知和所求的关系,容易发现把已知通分后,再求倒数即可.
解答:解:∵ ,
∴ - = ,
∴ = ,
∴ =-2.
故选D.
17.500米口径球面射电望远镜,简称 ,是世界上最大的单口径球面射电望远镜,被誉为“中国天眼”.2018年4月18日, 望远镜首次发现的毫秒脉冲星得到国际认证,新发现的脉冲星自转周期为0.00519秒,是至今发现的射电流量最弱的高能毫秒脉冲星之一.将0.00519用科学记数法表示应为( )
【答案】B
【解析】
【分析】
原式分子分母提取公因式变形后,约分即可得到结果.
【详解】
原式= =
故答案选B.
【点睛】
本题考查的知识点是约分,解题的关键是熟练的掌握约分.
9.已知 ,则 的值是
A.49B.48C.47D.51
【答案】D
【解析】
【分析】
将已知等式两边平方,利用完全平方公式展开即可得到所求式子的值.
【详解】
=9,
9的相反数为-9,
故 的相反数是-9,
故选B.
【点睛】
本题考查了负整数指数幂、求一个数的相反数,熟练掌握负整数指数幂的运算法则是解题的关键.
13.一次抽奖活动特等奖的中奖率为 ,把 用科学记数法表示为( )
A. B. C. D.
【答案】D
【解析】
【分析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
∵a=-0.22=-0.04,b=-2-2= ,c=(- )-2=4,d=(- )0=1,
-0.25<-0.04<1<4
∴b<a<d<c
故选B.
【点睛】
此题主要考查了负整数指数幂,正整数指数幂、零次幂,熟练掌握它们的运算意义是解题的关键.
5.某微生物的直径为0.000 005 035m,用科学记数法表示该数为( )
【详解】
已知等式 两边平方得: ,
则 =51.
故选D.
【点睛】
此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.
10.下列各分式中,是最简分式的是().
A. B. C. D.
【答案】A
【解析】
【分析】
根据定义进行判断即可.
【详解】
解:A、 分子、分母不含公因式,是最简分式;
B、 = =x-y,能约分,不是最简分式;
A.5.035×10﹣6B.50.35×10﹣5C.5.035×106D.5.035×10﹣5
【答案】A
【解析】
试题分析:0.000 005 035m,用科学记数法表示该数为5.035×10﹣6,故选A.
考点:科学记数法—表示较小பைடு நூலகம்数.
6.若式子 有意义,则x的取值范围为().
A.x≥2B.x≠2C.x≤2D.x<2
C、 = = ,能约分,不是最简分式;
D、 = ,能约分,不是最简分式.
故选A.
【点睛】
本题考查分式的化简,最简分式的标准是分子,分母中不含有公因式,不能再约分,判断的方法是把分子、分母分解因式,然后对每一选项进行整理,即可得出答案.
11.已知 ,则 的值为()
A. B.2C. D.
【答案】D
【解析】
7.要使分式 有意义, 应满足的条件是()
A. B. C. D.
【答案】C
【解析】
【分析】
直接利用分式有意义的条件得出答案.
【详解】
要使分式 有意义,
则x-1≠0,
解得:x≠1.
故选:C.
【点睛】
此题考查分式有意义的条件,正确把握分式的定义是解题关键.
8.化简 的结果是( )
A. B. C.a﹣bD.b﹣a
19.若把分式 中的x和y都扩大3倍,那么分式的值()
A.扩大3倍;B.缩小3倍;C.缩小6倍;D.不变;
【答案】B
【解析】
【分析】
x,y都扩大3倍就是分别变成原来的3倍,变成3x和3y.用3x和3y代替式子中的x和y,看得到的式子与原来的式子的关系.
【详解】
解:用3x和3y代替式子中的x和y得: = = × ,
A. B. C. D.
【答案】B
【解析】
【分析】
绝对值小于1的负数也可以利用科学记数法表示,一般形式为a×10﹣n,其中1≤ <10,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
18.把分式 中的 的值同时扩大为原来的10倍,则分式的值()
A.不变B.缩小为原来的
C.扩大为原来的10倍D.扩大为原来的100倍
【答案】A
【解析】
【分析】
根据分式的基本性质,把分式 中的x、y的值同时扩大为原来的10倍得: ,即可得到答案.
【详解】
把分式 中的x、y的值同时扩大为原来的10倍得:
,
即分式 的值不变,
故选:A.
【点睛】
本题考查了分式的基本性质,正确掌握分式的基本性质是解题的关键.
点睛:本题考查了有理数的乘方,合并同类项法则,负整数指数次幂的运算,积的乘方的性质,是基础题,熟记各性质是解题的关键.
15.化简 =()
A.﹣xB.y﹣xC.x﹣yD.﹣x﹣y
【答案】A
【解析】
【分析】
根据分式的运算法则即可求出答案.
【详解】
原式= ,
故选A.
【点睛】
本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.
本题主要考查了分式的化简求值,熟练掌握相关运算法则是解题关键.
4.若a=-0.22,b=-2-2,c=(- )-2,d=(- )0,则它们的大小关系是()
A.a<c<b<dB.b<a<d<cC.a<b<d<cD.b<a<c<d
【答案】B
【解析】
【分析】
根据正整数指数幂、负整数指数幂以及零次幂的意义分别计算出a,b,c,d的值,再比较大小即可.