五种常见小波基函数及其matlab实现

合集下载

收集和总结MATLAB中涉及到的小波函数

收集和总结MATLAB中涉及到的小波函数

一、收集和总结MA TLAB中涉及到的小波函数1.cwt函数功能:实现一维连续小波变换的函数。

cwt函数语法格式:COEFS=cwt(S, SCALES, 'wname')COEFS=cwt(S, SCALES, 'wname', 'plot')COEFS=cwt(S, SCALES, 'wname', 'PLOTMODE') 2.dwt函数功能:单尺度一维离散小波变换函数语法格式:[cA,cD] = dwt(X,'wname')[cA,cD] = dwt(X,'wname','mode',MODE)[cA,cD] = dwt(X,Lo_D,Hi_D)3.meyer函数功能:Meyer小波函数语法格式:[PHI,PSI,T] = meyer(LB,UB,N)[PHI,T] = meyer(LB,UB,N,'phi')[PSI,T] = meyer(LB,UB,N,'psi')4.plot函数功能:绘制向量或矩阵的图形函数语法格式:plot(Y)plot(X1,Y1,...)plot(X1,Y1,LineSpec,...)5.cgauwavf函数功能:Complex Gaussian小波函数语法格式:[PSI,X] = cgauwavf(LB,UB,N,P)6.iswt函数功能:一维逆SWT(Stationary Wavelet Transform)变换函数语法格式:X = iswt(SWC,'wname')X = iswt(SWA,SWD,'wname')X = iswt(SWC,Lo_R,Hi_R)7.mexihat函数功能:墨西哥帽小波函数语法格式:[PSI,X] = mexihat(LB,UB,N)8.morlet函数功能:Morlet小波函数语法格式:[PSI,X] = morlet(LB,UB,N)9.symwavf函数功能:Symlets小波滤波器函数语法格式:F = symwavf(W)10.upcoef函数功能:一维小波分解系数的直接重构函数语法格式:Y = upcoef(O,X,'wname',N)Y = upcoef(O,X,'wname',N,L)Y = upcoef(O,X,Lo_R,Hi_R,N)Y = upcoef(O,X,Lo_R,Hi_R,N,L)Y = upcoef(O,X,'wname')Y = upcoef(O,X,Lo_R,Hi_R) 11.upwlev函数功能:单尺度一维小波分解的重构函数语法格式:[NC,NL,cA] = upwlev(C,L,'wname')[NC,NL,cA] = upwlev(C,L,Lo_R,Hi_R) 12.wavedec函数功能:单尺度一维小波分解函数语法格式:[C,L] = wavedec(X,N,'wname')[C,L] = wavedec(X,N,Lo_D,Hi_D) 13.wavefun函数功能:小波函数和尺度函数函数语法格式:[PHI,PSI,XVAL] = wavefun('wname',ITER) 14.waverec函数功能:多尺度一维小波重构函数语法格式:X = waverec(C,L,'wname')X = waverec(C,L,Lo_R,Hi_R)15.wpcoef函数功能:计算小波包系数函数语法格式:X = wpcoef(T,N)X = wpcoef(T)16.wpdec函数功能:一维小波包的分解函数语法格式:T = wpdec(X,N,'wname',E,P)T = wpdec(X,N,'wname')17.wpfun函数功能:小波包函数[函数语法格式:WPWS,X] = wpfun('wname',NUM,PREC) [WPWS,X] = wpfun('wname',NUM) 18.wprcoef函数功能:小波包分解系数的重构函数语法格式:X = wprcoef(T,N)19.wprec函数功能:一维小波包分解的重构函数语法格式:X = wprec(T)20.wrcoef函数功能:对一维小波系数进行单支重构函数语法格式:X = wrcoef('type',C,L,'wname',N)X = wrcoef('type',C,L,Lo_R,Hi_R,N)X = wrcoef('type',C,L,'wname')X = wrcoef('type',C,L,Lo_R,Hi_R)。

小波变换的matlab实现

小波变换的matlab实现
*
举例: A1=upcoef('a','cA1','db1',1,ls); D1=upcoef('d','cD1','db1',1,ls);
subplot(1,2,1);plot(A1);title('Approximation A1')
subplot(1,2,2);plot(D1);title('Detail D1')
重构原始信号
*
2D图形接口
*
显示
*
小波分析用于信号处理
01
信号的特征提取
信号处理
常用信号的小波分析
GUI进行信号处理
*
正弦波的线性组合
S(t)=sin(2t)+sin(20t)+sin(200t)
*
2019
间断点检测
01
2020
波形未来预测
02
2021
各分信号的频率识别
03
2022
信号从近似到细节的迁移
*
多尺度二维小波
命令:wavedec2
格式: [C, S]=wavedec2(X,N,’wname’) [C, S]=wavedec2(X,N,Lo_D,Hi_D)
*
[C,S] = wavedec2(X,2,'bior3.7'); %图像的多尺度二维小波分解
提取低频系数
命令:appcoef2 格式: 1. A=appcoef2(C,S,’wname’,N) 2. A=appcoef2(C,S,’wname’) 3. A=appcoef2(C,S,Lo_R,Hi_R) 4. A=appcoef2(C,S,Lo_R,Hi_R,N) cA2 = appcoef2(C,S,'bior3.7',2); %从上面的C中提取第二层的低频系数

五种常见小波基函数及其matlab实现

五种常见小波基函数及其matlab实现

五种常见小波基函数及其matlab实现Haar 小波Haar 函数是小波分析中最早用到的一个具有紧支撑的正交小波函数,也是最简单的一个小波函数,它是支撑域在[0,1]∈t 范围内的单个矩形波。

Haar函数的定义如下:1021121(t)-10t t ≤≤≤≤ψ=其他Haar 小波在时域上是不连续的,所以作为基本小波性能不是特别好。

但它也有自己的优点:1. 计算简单。

2.(t)ψ不但与j (t)[j z]2ψ∈正交,而且与自己的整数位移正交,因此,在2j a=的多分辨率系统中,Haar 小波构成一组最简单的正交归一的小波族。

()t ψ的傅里叶变换是:2/24=sin ()j e aψ-ΩΩΩΩ()jHaar 小波的时域和频域波形[phi,g1,xval] = wavefun('haar',20); subplot(2,1,1);plot(xval,g1,'LineWidth',2); xlabel('t') title('haar 时域'); g2=fft(g1); g3=abs(g2); subplot(2,1,2); plot(g3,'LineWidth',2);xlabel('f') title('haar 频域')Daubechies(dbN)小波Daubechies 小波是世界著名的小波分析学者Inrid ·Daubechies 构造的小波函数,简写为dbN ,N 是小波的阶数。

小波(t)ψ和尺度函数(t)φ中的支撑区为12-N ,(t)ψ的消失矩为N 。

除1=N (Harr 小波)外,dbN 不具有对称性(即非线性相位)。

除1=N(Harr 小波)外,dbN 没有明确的表达式,但转换函数h 的平方模是明确的:令kN k kN kyp C∑-=+=11-(y),其中C kN k+1-为二项式的系数,则有)2)p(sin2(cos)(2220ωωω=m其中:e h jk N k kωω-12021)(m ∑-==Daubechies 小波具有以下特点:1. 在时域是有限支撑的,即(t)ψ长度有限。

常用小波函数及Matlab常用指令

常用小波函数及Matlab常用指令
常用小波函数及Matlab常用指令
●一 、常用小波函数
与标准傅立叶变换相比,小波分析中用到的小 波函数没有唯一性,小波函数 ( x) 具有多样性。 由此而带来的问题是使用不同的小波基分析同一 个问题会产生不同的结果,没有一个选择最优小 波基的统一方法。目前主要是通过用小波分析方 法处理信号的结果与g function phi = 1 on [0 1] and 0 otherwise. wavelet function psi = 1 on [0 0.5[, = -1 on [0.5 1] and 0 otherwise.
Family Short name Examples Haar haar haar is the same as db1
Family Short name Order Nr,Nd r for reconstruction d for decomposition
Biorthogonal bior Nr = 1 , Nd = 1, 3, 5 Nr = 2 , Nd = 2, 4, 6, 8 Nr = 3 , Nd = 1, 3, 5, 7, 9 Nr = 4 , Nd = 4 Nr = 5 , Nd = 5 Nr = 6 , Nd = 8
图:
在命令窗口输入waveinfo('haar')
2、db系列小波
DBINFO Information on Daubechies wavelets. Daubechies Wavelets General characteristics: Compactly supported wavelets with extremal phase and highest number of vanishing moments for a given support width. Associated scaling filters are minimum-phase filters. Family Daubechies Short name db Order N N strictly positive integer Examples db1 or haar, db4, db15

Matlab中常用小波函数

Matlab中常用小波函数

matlab小波变换Matlab 1. 离散傅立叶变换的Matlab实现Matlab 函数fft、fft2 和fftn 分别可以实现一维、二维和N 维DFT 算法;而函数ifft、ifft2 和ifftn 则用来计算反DFT 。

这些函数的调用格式如下:A=fft(X,N,DIM)其中,X 表示输入图像;N 表示采样间隔点,如果X 小于该数值,那么Matlab 将会对X 进行零填充,否则将进行截取,使之长度为N ;DIM 表示要进行离散傅立叶变换。

A=fft2(X,MROWS,NCOLS)其中,MROWS 和NCOLS 指定对X 进行零填充后的X 大小。

别可以实现一维、二维和N 维DFTA=fftn(X,SIZE)其中,SIZE 是一个向量,它们每一个元素都将指定X 相应维进行零填充后的长度。

函数ifft、ifft2 和ifftn的调用格式于对应的离散傅立叶变换函数一致。

别可以实现一维、二维和N 维DFT例子:图像的二维傅立叶频谱1. 离散傅立叶变换的Matlab实现% 读入原始图像I=imread('lena.bmp');函数fft、fft2 和fftn 分imshow(I)% 求离散傅立叶频谱J=fftshift(fft2(I));figure;别可以实现一维、二维和N 维DFTimshow(log(abs(J)),[8,10])2. 离散余弦变换的Matlab 实现Matlab2.1. dct2 函数功能:二维DCT 变换Matlab格式:B=dct2(A)B=dct2(A,m,n)B=dct2(A,[m,n])函数fft、fft2 和fftn 分说明:B=dct2(A) 计算A 的DCT 变换B ,A 与B 的大小相同;B=dct2(A,m,n) 和B=dct2(A,[m,n]) 通过对A 补0 或剪裁,使B 的大小为m×n。

2.2. dict2 函数功能:DCT 反变换格式:B=idct2(A)B=idct2(A,m,n)别可以实现一维、二维和N 维DFTB=idct2(A,[m,n])说明:B=idct2(A) 计算A 的DCT 反变换B ,A 与B 的大小相同;B=idct2(A,m,n) 和B=idct2(A,[m,n]) 通过对A 补0 或剪裁,使B 的大小为m×n。

收集和总结MATLAB中涉及到的小波函数

收集和总结MATLAB中涉及到的小波函数

一、收集和总结MA TLAB中涉及到的小波函数1.cwt函数功能:实现一维连续小波变换的函数。

cwt函数语法格式:COEFS=cwt(S, SCALES, 'wname')COEFS=cwt(S, SCALES, 'wname', 'plot')COEFS=cwt(S, SCALES, 'wname', 'PLOTMODE') 2.dwt函数功能:单尺度一维离散小波变换函数语法格式:[cA,cD] = dwt(X,'wname')[cA,cD] = dwt(X,'wname','mode',MODE)[cA,cD] = dwt(X,Lo_D,Hi_D)3.meyer函数功能:Meyer小波函数语法格式:[PHI,PSI,T] = meyer(LB,UB,N)[PHI,T] = meyer(LB,UB,N,'phi')[PSI,T] = meyer(LB,UB,N,'psi')4.plot函数功能:绘制向量或矩阵的图形函数语法格式:plot(Y)plot(X1,Y1,...)plot(X1,Y1,LineSpec,...)5.cgauwavf函数功能:Complex Gaussian小波函数语法格式:[PSI,X] = cgauwavf(LB,UB,N,P)6.iswt函数功能:一维逆SWT(Stationary Wavelet Transform)变换函数语法格式:X = iswt(SWC,'wname')X = iswt(SWA,SWD,'wname')X = iswt(SWC,Lo_R,Hi_R)7.mexihat函数功能:墨西哥帽小波函数语法格式:[PSI,X] = mexihat(LB,UB,N)8.morlet函数功能:Morlet小波函数语法格式:[PSI,X] = morlet(LB,UB,N)9.symwavf函数功能:Symlets小波滤波器函数语法格式:F = symwavf(W)10.upcoef函数功能:一维小波分解系数的直接重构函数语法格式:Y = upcoef(O,X,'wname',N)Y = upcoef(O,X,'wname',N,L)Y = upcoef(O,X,Lo_R,Hi_R,N)Y = upcoef(O,X,Lo_R,Hi_R,N,L)Y = upcoef(O,X,'wname')Y = upcoef(O,X,Lo_R,Hi_R) 11.upwlev函数功能:单尺度一维小波分解的重构函数语法格式:[NC,NL,cA] = upwlev(C,L,'wname')[NC,NL,cA] = upwlev(C,L,Lo_R,Hi_R) 12.wavedec函数功能:单尺度一维小波分解函数语法格式:[C,L] = wavedec(X,N,'wname')[C,L] = wavedec(X,N,Lo_D,Hi_D) 13.wavefun函数功能:小波函数和尺度函数函数语法格式:[PHI,PSI,XVAL] = wavefun('wname',ITER) 14.waverec函数功能:多尺度一维小波重构函数语法格式:X = waverec(C,L,'wname')X = waverec(C,L,Lo_R,Hi_R)15.wpcoef函数功能:计算小波包系数函数语法格式:X = wpcoef(T,N)X = wpcoef(T)16.wpdec函数功能:一维小波包的分解函数语法格式:T = wpdec(X,N,'wname',E,P)T = wpdec(X,N,'wname')17.wpfun函数功能:小波包函数[函数语法格式:WPWS,X] = wpfun('wname',NUM,PREC) [WPWS,X] = wpfun('wname',NUM) 18.wprcoef函数功能:小波包分解系数的重构函数语法格式:X = wprcoef(T,N)19.wprec函数功能:一维小波包分解的重构函数语法格式:X = wprec(T)20.wrcoef函数功能:对一维小波系数进行单支重构函数语法格式:X = wrcoef('type',C,L,'wname',N)X = wrcoef('type',C,L,Lo_R,Hi_R,N)X = wrcoef('type',C,L,'wname')X = wrcoef('type',C,L,Lo_R,Hi_R)。

总结MATLAB中涉及到的小波函数

总结MATLAB中涉及到的小波函数
用法:
X = iswt(SWC,'wname')
X = iswt(SWA,SWD,'wname')
X = iswt(SWC,Lo_R,Hi_R)
X = iswt(SWA,SWD,Lo_R,Hi_R)
(5)upcoef函数:一维小波分解系数的直接重构
用法:
Y = upcoef(O,X,'wname',N)
收集和总结MATLAB中涉及到的小波函数
(1)plot函数:绘制向量或矩阵的图形
用法:
plot(Y)
plot(X1,Y1,...)
plot(X1,Y1,LineSpec,...)
plot(...,'PropertyName',PropertyValue,...)
plot(axes_handle,...)
[XD,TREED,PERF0,PERFL2] =
wpdencmp(TREE,SORH,CRIT,PAR,KEEPAPP)
(11)wpfun函数:小波包函数
[用法:
WPWS,X] = wpfun('wname',NUM,PREC)
[WPWS,X] = wpfun('wname',NUM)
(12)wpjoin函数:重组小波包
(2)cwt函数:实现一维连续小波变换的函数。
用法:
COEFS=cwt(S, SCALES, 'wname')
COEFS=cwt(S, SCALES, 'wname', 'plot')
COEFS=cwt(S, SCALES, 'wname', 'PLOTMODE')

Matlab中常用小波函数

Matlab中常用小波函数

matlab小波变换Matlab 1. 离散傅立叶变换的Matlab实现Matlab 函数fft、fft2 和fftn 分别可以实现一维、二维和N 维DFT 算法;而函数ifft、ifft2 和ifftn 则用来计算反DFT 。

这些函数的调用格式如下:A=fft(X,N,DIM)其中,X 表示输入图像;N 表示采样间隔点,如果X 小于该数值,那么Matlab 将会对X 进行零填充,否则将进行截取,使之长度为N ;DIM 表示要进行离散傅立叶变换。

A=fft2(X,MROWS,NCOLS)其中,MROWS 和NCOLS 指定对X 进行零填充后的X 大小。

别可以实现一维、二维和N 维DFTA=fftn(X,SIZE)其中,SIZE 是一个向量,它们每一个元素都将指定X 相应维进行零填充后的长度。

函数ifft、ifft2 和ifftn的调用格式于对应的离散傅立叶变换函数一致。

别可以实现一维、二维和N 维DFT例子:图像的二维傅立叶频谱1. 离散傅立叶变换的Matlab实现% 读入原始图像I=imread('lena.bmp');函数fft、fft2 和fftn 分imshow(I)% 求离散傅立叶频谱J=fftshift(fft2(I));figure;别可以实现一维、二维和N 维DFTimshow(log(abs(J)),[8,10])2. 离散余弦变换的Matlab 实现Matlab2.1. dct2 函数功能:二维DCT 变换Matlab格式:B=dct2(A)B=dct2(A,m,n)B=dct2(A,[m,n])函数fft、fft2 和fftn 分说明:B=dct2(A) 计算A 的DCT 变换B ,A 与B 的大小相同;B=dct2(A,m,n) 和B=dct2(A,[m,n]) 通过对A 补0 或剪裁,使B 的大小为m×n。

2.2. dict2 函数功能:DCT 反变换格式:B=idct2(A)B=idct2(A,m,n)别可以实现一维、二维和N 维DFTB=idct2(A,[m,n])说明:B=idct2(A) 计算A 的DCT 反变换B ,A 与B 的大小相同;B=idct2(A,m,n) 和B=idct2(A,[m,n]) 通过对A 补0 或剪裁,使B 的大小为m×n。

五种常见小波基函数及其matlab实现

五种常见小波基函数及其matlab实现

五种常见小波基函数及其matlab实现Daubechies(dbN)小波Daubechies 小波是世界著名的小波分析学者Inrid ·Daubechies 构造的小波函数,简写为dbN ,N 是小波的阶数。

小波(t)ψ和尺度函数(t)φ中的支撑区为12-N ,(t)ψ的消失矩为N 。

除1=N(Harr小波)外,dbN 不具有对称性(即非线性相位)。

除1=N (Harr 小波)外,dbN 没有明确的表达式,但转换函数h 的平方模是明确的:令kN k kN ky p C∑-=+=101-(y),其中Ck N k+1-为二项式的系数,则有)2)p(sin2(cos)(2220ωωω=m其中:e h jk N k kωω-12021)(m ∑-== Daubechies 小波具有以下特点:1. 在时域是有限支撑的,即(t)ψ长度有限。

2. 在频域)(ωψ在=0ω处有N 阶零点。

3. (t)ψ和它的整数位移正交归一,即⎰=δψψkk)dt -(t (t)。

4. 小波函数(t)ψ可以由所谓“尺度函数”(t)φ求出来。

尺度函数(t)φ为低通函数,长度有限,支撑域在t=0~2N-1的范围内。

db4的时域和频域波形:[phi,g1,xval] = wavefun('db4',10); subplot(2,1,1);plot(xval,g1,'LineWidth',2); xlabel('t') title('db4 时域'); g2=fft(g1); g3=abs(g2); subplot(2,1,2);plot(g3,'LineWidth',2); xlabel('f') title('db4 频域')Daubechies小波常用来分解和重构信号,作为滤波器使用:[Lo_D,Hi_D,Lo_R,Hi_R] = wfilters('db4'); %计算该小波的4个滤波器subplot(2,2,1); stem(Lo_D,'LineWidth',2);title('分解低通滤波器');subplot(2,2,2); stem(Hi_D,'LineWidth',2);title('分解高通滤波器');subplot(2,2,3); stem(Lo_R,'LineWidth',2);title('重构低通滤波器');subplot(2,2,4); stem(Hi_R,'LineWidth',2);title('重构高通滤波器');Mexican Hat(mexh)小波Mexican Hat 函数为Gauss 函数的二阶导数:222(t)(1t )et ψ=-222()2e ωψωπω=因为它的形状像墨西哥帽的截面,所以也称为墨西哥帽函数。

MATLAB小波分析工具箱常用函数

MATLAB小波分析工具箱常用函数

MATLAB小波分析工具箱常用函数matlab小波分析工具箱常用函数1.Cwt :一维连续小波变换格式:coefs=cwt(s,scales,'wavename')coefs=cwt(s,scales,'wavename','plot')scales:尺度向量,可以为离散值,表示为[a1,a2,a3……],也可为连续值,表示为[amin:step:amax]2.dwt:单尺度一维离散小波变换格式:[ca,cd]=dwt(x,'wavename')[ca,cd]=dwt(x,lo-d,hi-d)先利用小波滤波器指令wfilters求取分解用低通滤波器lo-d和高通滤波器hi-d。

[lo-d,hi-d]=wfilters('haar','d');[ca,cd]=dwt(s,lo-d,hi-d)3.idwt:单尺度一维离散小波逆变换4.wfilters格式:[lo-d,hi-d,lo-r,hi-r]=wfilters('wname')[f1,f2]=wfilters('wname','type')type=d(分解滤波器)、R(重构滤波器)、l(低通滤波器)、h(高通滤波器)5.dwtmode 离散小波变换模式格式:dwtmodedwtmode('mode')mode:zdp补零模式,sym对称延拓模式,spd平滑模式6.wavedec多尺度一维小波分解格式:[c,l]=wavedec(x,n,'wname')[c,l]=wavedec(x,n,lo-d,hi-d)7.appcoef 提取一维小波变换低频系数格式:A=appcoef(c,l,'wavename',N)A=appcoef(c,l,lo-d,hi-d,N) N是尺度,可省略例:load leleccum;s=leleccum(1:2000)subplot(421)plot(s);title('原始信号')[c,l]=wavedec(s,3,'db1');ca1=appcoef(c,l,'db1',1);subplot(445)plot(ca1);ylabel('ca1');ca2=appcoef(c,l,'db1',2);subplot(4,8,17)plot(ca2);ylabel('ca2');8.detcoef 提取一维小波变换高频系数格式:d=detcoef(c,l,N),N尺度的高频系数。

常用小波函数及Matlab常用指令

常用小波函数及Matlab常用指令

Orthogonal yes Biorthogonal yes Compact support yes DWT possible CWT possible Support width 2N-1 Filters length 2N Regularity about 0.2 N for large N Symmetry far from Number of vanishing moments for psi N
常用小波函数及Matlab常用指令
●一 、常用小波函数
与标准傅立叶变换相比,小波分析中用到的小 波函数没有唯一性,小波函数 ( x) 具有多样性。 由此而带来的问题是使用不同的小波基分析同一 个问题会产生不同的结果,没有一个选择最优小 波基的统一方法。目前主要是通过用小波分析方 法处理信号的结果与理论分析结果的误差莱判定 小波基的好坏,并由此选定小波基。
bior 3.1 bior 3.3 bior 3.5 bior 3.7 bior 3.9 bior 4.4 bior 5.5 bior 6.8
4 8 12 16 20 9 9 17
4 4 4 4 4 7 11 11
Regularity for psi rec. Nr-1 and Nr-2 at the knots Symmetry yes Number of vanishing moments for psi dec. Nr Remark: bior 4.4 , 5.5 and 6.8 are such that reconstruction and decomposition functions and filters are close in value.
Orthogonal Biorthogonal Compact support ble

MATLAB小波函数总结

MATLAB小波函数总结

MATLAB小波函数总结在MATLAB中,小波函数是一种弧形函数,广泛应用于信号处理中的压缩,降噪和特征提取等领域。

小波函数具有局部化特性,能够在时频域上同时分析信号的瞬时特征和频率信息。

本文将总结MATLAB中常用的小波函数及其应用。

一、小波函数的基本概念小波变换是一种时间-频率分析方法,通过将信号与一组基函数进行卷积得到小波系数,从而实现信号的时频分析。

小波函数具有紧致性,能够在时域和频域具有局域性。

MATLAB提供了一系列的小波函数,用于不同的应用场景。

1. Haar小波函数Haar小波函数是最简单的一类小波函数,它是一种基于矩阵变换的正交小波函数。

具体而言,Haar小波函数形式如下:ψ(x)=1(0≤x<1/2)-1(1/2≤x<1)0(其他)Haar小波函数的最大优点是构造简单,仅由两个基本函数构成,且可以有效地表示信号的边缘和跳变。

2. Daubechies小波函数Daubechies小波函数是一类紧支小波函数,能够在时域和频域上实现精确的表示。

MATLAB提供了多个Daubechies小波函数,如db1、db2、db3等,其选择取决于所需的时频分析精度。

3. Symlets小波函数Symlets小波函数是Daubechies小波函数的一种变形,它在保持带通特性的基础上增加了支持系数的数量,提高了时频分析的精度。

MATLAB 提供了多个Symlets小波函数,如sym2、sym3、sym4等。

4. Coiflets小波函数Coiflets小波函数是一种具有对称性和紧支特性的小波函数,可用于信号压缩和降噪等应用。

MATLAB提供了多个Coiflets小波函数,如coif1、coif2、coif3等。

二、小波函数的应用小波函数广泛应用于信号处理中的各个领域,包括信号压缩、降噪、图像处理和模式识别等。

下面将重点介绍小波函数在这些领域的应用。

1.信号压缩小波函数可以通过选择合适的小波基函数和阈值策略来实现信号的压缩。

MATLAB小波分析工具箱常用函数

MATLAB小波分析工具箱常用函数

MATLAB小波分析工具箱常用函数1. wfilters 函数:用于生成小波滤波器和尺度函数,可以根据指定的小波和尺度类型生成小波滤波器系数。

2. wavedec 函数:用于将信号进行小波分解,将输入信号分解为多个尺度系数和小波系数。

3. waverec 函数:用于将小波系数和尺度系数进行重构,将小波分解后的系数重构为信号。

4. cwt 函数:用于进行连续小波变换,可以获得信号在不同尺度上的时频信息。

5. icwt 函数:用于进行连续小波反变换,可以将连续小波变换的结果重构为原始信号。

6. cmorlet 函数:用于生成复数 Morlet 小波。

Morlet 小波是一种基于高斯调制正弦波的小波函数。

7. modwt 函数:用于进行无偏快速小波变换,可以获取多个尺度下的小波系数。

8. imodwt 函数:用于进行无偏快速小波反变换,可以将无偏快速小波变换的结果重构为原始信号。

9. wdenoise 函数:用于对信号进行去噪处理,可以去除信号中的噪声。

10. wavethresh 函数:用于对小波系数进行阈值处理,可以实现信号压缩。

11. wenergy 函数:用于计算小波系数的能量,可用于分析小波系数的频谱特性。

12. wscalogram 函数:用于绘制小波系数的时频谱图,可以直观地显示信号的时频信息。

13. wpdec 函数:用于进行小波包分解,可以将输入信号分解为多个尺度系数和小波系数。

14. wprec 函数:用于将小波包系数和尺度系数进行重构,将小波包分解后的系数重构为信号。

15. wptree 函数:用于提取小波包树的信息,可以获得小波包树的结构和节点信息。

这些函数可以实现小波分析中主要的操作和功能。

通过使用这些函数,你可以进行小波分析、信号去噪、信号压缩等应用。

同时,你也可以根据具体的需求使用这些函数进行函数的扩展和自定义。

小波函数及Matlab常用指令

小波函数及Matlab常用指令
小波包分析的优势
小波包分析能够更全面地揭示信号的细节特征,对于非平稳信号的处理效果尤为突出。此 外,小波包分析还可以根据实际需求选择合适的小波基函数,从而更好地满足信号处理的 需求。
小波包分析的应用
小波包分析在信号处理、图像处理、语音识别等领域有着广泛的应用。例如,在信号处理 中,小波包分析可以用于信号去噪、特征提取、故障诊断等;在图像处理中,小波包分析 可以用于图像压缩、图像增强、图像恢复等。
信号的小波重构是将小波分解后的系数重新组合成原始信号的 过程。
02
在Matlab中,可以使用`waverec`函数对小波系数进行重构,该
函数可以根据小波分解的层次和系数重建原始信号。
小波重构的结果可以用于验证小波分解的正确性和完整性,以
03
及评估去噪等处理的效果。
信号的小波去噪
信号的小波去噪是一种利用小波 变换去除信号中噪声的方法。
小波函数及Matlab常用指 令
• 小波函数简介 • Matlab中小波函数的常用指令 • Matlab中信号的小波分析 • Matlab中小波变换的应用实例 • Matlab中小波函数的进阶使用
01
小波函数简介
小波函数的定义
小波函数是一种特殊的函数,其时间频率窗口均有限,具有良好的局部化 特性。
金融数据分类与聚类
利用小波变换的特征提取能力,可以对金融数据进行分类或聚类, 用于市场趋势预测等。
05
Matlab中小波函数的进阶使用
小波包分析
小波包分析
小波包分析是一种更为精细的信号分析方法,它不仅对信号进行频域分析,还对信号进行 时频分析。通过小波包分析,可以更准确地提取信号中的特征信息,为信号处理提供更全 面的数据支持。
THANKS

Matlab中的小波分析工具箱

Matlab中的小波分析工具箱
其中:cA :低频分量, cH:水平高频分量 cV:垂直高频分量 cD:对角高频分量 X:输入信号。 wname:小波基名称 H:低通滤波器 G:高通滤波器
15
二维信号的多层小波分解:
[A,L]=wavedec2(X,N,’wname’) [A,L]=wavedec2(X,N,H,G) 其中:A :各层分量, L:各层分量长度
Regularity
indefinitely derivable
Symmetry
yes
Reference: I. Daubechies, Ten lectures on wavelets, CBMS, SIAM, 61, 1994, 117-119, 137, 152.
5
计算小波滤波器系数的函数:
29
多小波变换还需要解决的问题:
多小波变换是和矢值滤波器组对应的。因此,需要对“好的”矢 值滤波器组和多小波给出合理的解释并提出更好的多小波及多滤 波器组设计准则。
不平衡多小波的实现中,预滤波器的设计是一个关键。针对不同 多小波的特性,采取怎样的预滤波器设计方案及怎样评价这些设 计方案是需要继续深入研究的课题。
30
线调频小波变换:
寻求Fourier变换,加窗Fourier变换和小 波变换的统一。
寻求对信号的时间-频率-尺度的完美 表达。
31
仿射时频变换的合成算子:
设g (t )是窗函数,则五种仿射变换为:
(1)时间平移算子:g(t t0 ) (2)频率平移算子:e j2f0t g(t)
(3)时频拉伸算子:ea/2 g(ea (t a))
j 1 t 2
(4)时间倾斜算子:(-jp)1/2 e p g(t)
(5)

关于小波分析的matlab程序

关于小波分析的matlab程序

关于小波分析的matlab程序小波分析是一种在信号处理和数据分析领域中广泛应用的方法。

它可以匡助我们更好地理解信号的时域和频域特性,并提供一种有效的信号处理工具。

在本文中,我将介绍小波分析的基本原理和如何使用MATLAB编写小波分析程序。

一、小波分析的基本原理小波分析是一种基于窗口函数的信号分析方法。

它使用一组称为小波函数的基函数,将信号分解成不同频率和不同时间尺度的成份。

与傅里叶分析相比,小波分析具有更好的时频局部化性质,可以更好地捕捉信号的瞬时特征。

小波函数是一种具有局部化特性的函数,它在时域上具有有限长度,并且在频域上具有有限带宽。

常用的小波函数有Morlet小波、Haar小波、Daubechies小波等。

这些小波函数可以通过数学运算得到,也可以通过MATLAB的小波函数库直接调用。

小波分析的基本步骤如下:1. 选择合适的小波函数作为基函数。

2. 将信号与小波函数进行卷积运算,得到小波系数。

3. 根据小波系数的大小和位置,可以分析信号的时频特性。

4. 根据需要,可以对小波系数进行阈值处理,实现信号的去噪和压缩。

二、MATLAB中的小波分析工具MATLAB提供了丰富的小波分析工具箱,可以方便地进行小波分析的计算和可视化。

下面介绍几个常用的MATLAB函数和工具箱:1. `waveinfo`函数:用于查看和了解MATLAB中可用的小波函数的信息,如小波函数的名称、支持的尺度范围等。

2. `wavedec`函数:用于对信号进行小波分解,得到小波系数。

3. `waverec`函数:用于根据小波系数重构原始信号。

4. `wdenoise`函数:用于对小波系数进行阈值处理,实现信号的去噪。

5. 小波分析工具箱(Wavelet Toolbox):提供了更多的小波分析函数和工具,如小波变换、小波包分析、小波阈值处理等。

可以通过`help wavelet`命令查看工具箱中的函数列表。

三、编写小波分析程序在MATLAB中编写小波分析程序可以按照以下步骤进行:1. 导入信号数据:首先需要导入待分析的信号数据。

五种常见小波基函数及其maab实现

五种常见小波基函数及其maab实现

与标准的傅里叶变换相比,小波分析中使用到的小波函数具有不唯一性,即小波函数具有多样性。

小波分析在工程应用中,一个十分重要的问题就是最优小波基的选择问题,因为用不同的小波基分析同一个问题会产生不同的结果。

目前我们主要是通过用小波分析方法处理信号的结果与理论结果的误差来判定小波基的好坏,由此决定小波基。

常用小波基有Haar 小波、Daubechies(dbN)小波、MexicanHat(mexh)小波、Morlet 小波、Meyer 小波等。

Haar 小波Haar 函数是小波分析中最早用到的一个具有紧支撑的正交小波函数,也是最简单的一个小波函数,它是支撑域在[0,1]∈t 范围内的单个矩形波。

Haar 函数的定义如下:Haar 小波在时域上是不连续的,所以作为基本小波性能不是特别好。

但它也有自己的优点:1. 计算简单。

2. (t)ψ不但与j (t)[j z]2ψ∈正交,而且与自己的整数位移正交,因此,在2j a =的多分辨率系统中,Haar小波构成一组最简单的正交归一的小波族。

()t ψ的傅里叶变换是:Haar 小波的时域和频域波形Daubechies(dbN)小波Daubechies 小波是世界着名的小波分析学者Inrid ·Daubechies 构造的小波函数,简写为dbN ,N 是小波的阶数。

小波(t)ψ和尺度函数(t)φ中的支撑区为12-N ,(t)ψ的消失矩为N 。

除1=N (Harr 小波)外,dbN 不具有对称性(即非线性相位)。

除1=N (Harr 小波)外,dbN 没有明确的表达式,但转换函数h 的平方模是明确的:令k N k k N k y p C ∑-=+=101-(y),其中C k N k +1-为二项式的系数,则有其中:Daubechies 小波具有以下特点:1. 在时域是有限支撑的,即(t)ψ长度有限。

2. 在频域)(ωψ在=0ω处有N 阶零点。

3. (t)ψ和它的整数位移正交归一,即⎰=δψψkk)dt -(t (t)。

五种常见小波基函数及其matlab实现

五种常见小波基函数及其matlab实现

与标准的傅里叶变换相比,小波分析中使用到的小波函数具有不唯一性,即小波函数 具有多样性。

小波分析在工程应用中,一个十分重要的问题就是最优小波基的选择问题,因为用不同的小波基分析同一个问题会产生不同的结果。

目前我们主要是通过用小波分析方法处理信号的结果与理论结果的误差来判定小波基的好坏,由此决定小波基。

常用小波基有Haar 小波、Daubechies(dbN)小波、Mexican Hat(mexh)小波、Morlet 小波、Meyer 小波等。

Haar 小波Haar 函数是小波分析中最早用到的一个具有紧支撑的正交小波函数,也是最简单的一个小波函数,它是支撑域在[0,1]∈t 范围内的单个矩形波。

Haar 函数的定义如下:1021121(t)-1t t ≤≤≤≤ψ=⎧⎪⎨⎪⎩其他Haar 小波在时域上是不连续的,所以作为基本小波性能不是特别好。

但它也有自己的优点:1. 计算简单。

2.(t)ψ不但与j (t)[j z]2ψ∈正交,而且与自己的整数位移正交,因此,在2j a=的多分辨率系统中,Haar 小波构成一组最简单的正交归一的小波族。

()t ψ的傅里叶变换是:2/24=sin ()j e aψ-ΩΩΩΩ()jHaar 小波的时域和频域波形Daubechies(dbN)小波Daubechies 小波是世界著名的小波分析学者Inrid ·Daubechies 构造的小波函数,简写为dbN ,N 是小波的阶数。

小波(t)ψ和尺度函数(t)φ中的支撑区为12-N,(t)ψ的消失矩为N 。

除1=N (Harr小波)外,dbN 不具有对称性(即非线性相位)。

除1=N (Harr 小波)外,dbN 没有明确的表达式,但转换函数h 的平方模是明确的:令kN k kN kyp C∑-=+=101-(y),其中C kN k+1-为二项式的系数,则有)2)p(sin2(cos)(2220ωωω=m其中:e h jk N k kωω-12021)(m ∑-==Daubechies 小波具有以下特点:1. 在时域是有限支撑的,即(t)ψ长度有限。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

与标准的傅里叶变换相比,小波分析中使用到的小波函数具有不唯一性,即小波函数 具有多样性。

小波分析在工程应用中,一个十分重要的问题就是最优小波基的选择问题,因为用不同的小波基分析同一个问题会产生不同的结果。

目前我们主要是通过用小波分析方法处理信号的结果与理论结果的误差来判定小波基的好坏,由此决定小波基。

常用小波基有Haar 小波、Daubechies(dbN)小波、Mexican Hat(mexh)小波、Morlet 小波、Meyer 小波等。

Haar 小波
Haar 函数是小波分析中最早用到的一个具有紧支撑的正交小波函数,也是最简单的一个小波函数,它是支撑域在[0,1]∈t 范围内的单个矩形波。

Haar 函数
的定义如下:
1
021121(t)-1
t t ≤≤≤≤ψ=⎧⎪⎨⎪⎩其他
Haar 小波在时域上是不连续的,所以作为基本小波性能不是特别好。

但它也有自己的优点:
1. 计算简单。

2.
(t)ψ不但与j (t)[j z]2ψ∈正交,而且与自己的整数位移正交,因此,
在2j a
=的多分辨率系统中,Haar 小波构成一组最简单的正交归一的
小波族。

()t ψ的傅里叶变换是:
2/24=sin ()j e a
ψ-ΩΩ
ΩΩ()j
Haar 小波的时域和频域波形
Daubechies(dbN)小波
Daubechies 小波是世界著名的小波分析学者Inrid ·Daubechies 构造的小波函数,简写为dbN ,N 是小波的阶数。

小波(t)ψ和尺度函数(t)φ中的支撑
区为12-N
,(t)ψ的消失矩为N 。

除1=N (Harr
小波)外,dbN 不具有
对称性(即非线性相位)。

除1=N (Harr 小波)外,dbN 没有明确的表达式,
但转换函数h 的平方模是明确的:
令k
N k k
N k
y
p C
∑-=+=1
01-(y),其中C k
N k
+1-为二项式的系数,则有
)2
)p(sin
2
(cos
)
(2
2
2

ω
ω=m
其中:
e h jk N k k
ω
ω-120
2
1
)(m ∑-==
Daubechies 小波具有以下特点:
1. 在时域是有限支撑的,即(t)ψ长度有限。

2. 在频域)(ωψ在=0ω处有N 阶零点。

3.
(t)ψ和它的整数位移正交归一,即⎰=δ
ψψk
k)dt
-(t (t)。

4. 小波函数(t)ψ可以由所谓“尺度函数”
(t)φ求出来。

尺度函数(t)
φ为低通函数,长度有限,支撑域在t=0~2N-1的范围内。

db4的时域和频域波形:
Daubechies小波常用来分解和重构信号,作为滤波器使用:
Mexican Hat(mexh)小波
Mexican Hat 函数为Gauss 函数的二阶导数:
222
(t)(1t )e t ψ=-
2
22()e ωψω=
因为它的形状像墨西哥帽的截面,所以也称为墨西哥帽函数。

Mexihat 小波的时域和频域波形:
Mexihat 小波的特点:
1. 在时间域与频率域都有很好的局部化,并且满足
(t)dt 0R
ψ=⎰。

2. 不存在尺度函数,所以Mexihat 小波函数不具有正交性。

Morlet 小波
它是高斯包络下的单频率副正弦函数:
22
(t)Ce
cos(5)t t ψ=
其中C 是重构时的归一化常数。

Morlet 小波没有尺度函数,而且是非正交分解。

Morlet小波的时域和频域波形图:
Meyer小波
1.Meyer小波不是紧支撑的,但它收敛的速度很快
无限可微
2.(t)
Meyer小波的时域和频域波形图:
THANKS !!!
致力为企业和个人提供合同协议,策划案计划书,学习课件等等
打造全网一站式需求
欢迎您的下载,资料仅供参考。

相关文档
最新文档