振动传感器的原理及应用.ppt
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
近来发展了一种采用压电激励、压电拾 振的新方案,见下图压电陶瓷元件直接贴 于圆柱壳的波节处,筒内完全形成真空。
压电激励方案
(2)振动膜式传感器
这种传感器的Q值很高,一般约为104, 因此,输出信号的通频带很窄。膜片是振 荡器中的谐振元件,振荡器的输出是频率 变化的正弦波信号,经放大、整形、限幅 后,作为高分辨力计数器的门控信号。这 样,就提供了正比于加在膜片上压力的计 数输出。使用的数字线性化电路与振筒式 压力传感器相类似,不再赘述。
(3)振弦夹紧装置 传感器工作时振弦处于拉紧的状态,振
弦两端必须与支架和运动部分固接,一般采 用专门的夹紧装置。对它的要求是:
① 抗滑能力好,振弦在长期受拉或反复 振动的情况下,夹头不松动;
② 加工简单,安装振弦方便,易拆卸, 能反复使用,能任意调整弦的初始频率。
2.工作原理
要测量振弦固有频率f0的变化,必须先激发振弦起振, 其激发方法有两种:
(3)振动弦式传感器
1. 结构特点 振弦式压力传感器的主要结构如下图所示
(1)振弦 振弦是把待测压力值的变化转变为频率
变化的敏感元件,对传感器的精度、灵敏 度、稳定性起决定的作用。对振弦材料的 要求是:
① 抗拉强度高。 ② 弹性模量大。
③ 磁性和导电性能好。 ④ 线膨胀系数小,尺寸随时间的稳定性好。
机械隔离系统与振动梁的材料都是石英 晶体,用特殊低温切割法把整块石英体切 成AT型晶片,这可以使传感器工作在较宽 的温度范围。石英晶体的温度稳定性好,Q 值高、弹性好,不易受四周环境的影响, 而且,重复性好,迟滞最小。
3、压电激励电极
在振动梁的上下两面蒸发沉积着四个电极, 利用了压电效应的可逆原理。当四个电极 加上电场后,梁在一阶弯曲振动状态下起 振,未输入压力时,其自然谐振频率主要 决定于梁的几何形状和结构。
(1)间歇激发法 图所示为间歇激发 的振弦压力传感器 的示意图。 (2)连续激发法
连续激发时,振弦也是置于电磁铁的磁 场中,同时,振弦通以交变电流,由于电磁 感应,振弦受到一个垂直于磁力线的作用力, 从而激发振弦作频率等于其自振频率的周期 运动。然而,同间歇激发一样,由于阻力作 用,振弦的自振也将逐渐衰减,因此必须补 给能量以维持振弦稳定的等幅振荡。
对运行中机械设备的工作状态有无异常, 设备运行故障原因在哪里进行监测的各种 振动测量仪器。设备管理人员与维修人员 能利用这些振动测量仪方便地检测运行中 电机、泵、风机、压缩机等一切机械设备 的振动值,从中得到许多设备运行的重要 信息。
来自百度文库
VIB-10b便携式智能振动测量仪
但大多数便携式振动测量仪只有测量、 显示及少量的存储等功能,测量人员通 过检测运行设备的振动值后,还需根据 被测设备的类型、功率及允许的振动限 值来判断该设备的工况(良好、正常、
下面扼要叙述差压传感器的主要组件及其作 用。
1、 振动梁谐振器
振动梁是压力传感器的敏感元件,横 跨在传感中央。石英晶体振动梁不直接固 定在产生输出力的构件上,以防止反作用 力和力矩造成基座上的能量损失,从而使 品质因素Q值降低。同时外界的有害干扰 也会
传递进来,降低稳定性,直接影响谐振器 的性能。梁的形状选择得使其成为一种以 弯曲方式振动的两端固定梁,这种形状的 感受力的灵敏度高,即施加单位应力引起 的频率变化大。
位移
加速度
频率范围 速 度
位移
精 度 显 示 电 源 自动关断功 能 体 积 质 量
技术参数 0.1--199.9m/s2(峰值)
0.1--199.9mm/s(真有效值) 0.001--1.999mm(峰峰值) LO档10Hz~1KHz Hi档1KHz~10KHz
10Hz--1000Hz 10Hz--1000Hz (读数值的±5%) ±2个字 3位半液晶显示 电池(6F22)9V 松开按键约60秒种电源自动断 186 x 70 x 32(mm) 约300克
谐振式传感器大体分为两类:一类是基 于机械谐振结构谐振式传感器;另一类是 MOS环振式谐振传感器。这里主要介绍基 于机械谐振结构的谐振式传感器。它们可 利用振动频率、相位和幅值作为敏感信息 的参数。由于谐振式传感器有许多优点,也
适于多种参数测量,如压力、力、转角、 流量、温度、湿度、液位、粘度、密度和 气体成分等,所以这类传感器已迅速发展 成为一个新的传感器家族。
VIB-10b便携式智能振动测量仪内置 ISO10816-1:2019,GB/T6075.1-2019标准 (该标准把机器分为四类I、II、III、IV)
测量前先根据标准的机器类型注释决定被 测量设备的机器类型,然后输入机器类型 号,通过测量,仪器就会自动把测量值与 ISO10816-1:2019标准比较,然后
给出一个运行状态好坏的评价。仪器这一功 能的增加给给使用人员带来了很大的方便, 也符合国际上开发便携式振动测量仪的潮流。
VIB-5振动测量仪
——上海嘉仪信息科技有限公司
VIB-5振动测量仪具有操作简单,携 带方便等特点,可测量振动的加速度, 速度和位移,并且全部使用触摸式按键 操作。
加速度
测量范围 速 度
异常),这在设备品种繁杂、测量点较多 的情况下,使用就不太方便。基于上述原 因,本公司又开发出一种既能测量、显示, 又能马上把测量值与振动标准对比给出设 备状态结果的智能振动测量仪——VIB-10b 便携式智能振动测量仪。
该仪器是在本公司的VIB-10a振动测量仪基础 上增加了速度档的宽带振动评价标准,使检测 人员在现场就能根据测试量值对设备运行好坏 作出评价。
YGH型振弦式压力传感器
一、用途
测量
高压液体压力。特别适用于持续高压、急速加压、
急速卸压场合,具有良好稳定性。还可用于压力
试验机的数字化改造。
二、结构原理
为竖式弦振弦压力传感器,与GSJ-2检测仪 配套使用,事先输入传感器常数,可直接显示压 力值。
三、性能特点
性能稳定,准确度高,抗液压冲击,寿命长。抗
(1)基本结构
由ERD组成的电— 机— 电谐振子环节, 是谐振式传感器的核心。适当地选择激励 和拾振手段,构成一个理想的ERD,对设 计谐振式传感器至关重要。
由ERDA组成的闭环自激环节,是构成 谐振式传感器的条件。
由RDO(C)组成的信号检测、输出环节, 是实现检测被测量的手段。
(2) 谐振式传感器的本质特征与独特 优势是:
物理指标:
外形尺寸:φ35×72mm 安装方式:双头螺钉固定 重 量:0.3Kg
选型说明
形式选择A□:2—— 一体化; 3*——航空 插座
引线长度B□:1*——0.5米; 2——3米; 3——5米
CA-YZ-123VC(A)-20型水密三轴低频振 动传感器
(1)工作原理
该传感器室内封装信号调节器的压阻式振动传感器。 压阻式振动敏感元件设计为整体硅结构,有带多根梁 的硅框架支撑一块京味戏加工而成的硅质量块。大硅 框架受到震动作用时。由于惯性力硅块相对于
灵敏度电气指标:
20mV/mm/S±5% 频率电气指标: 灵敏度:20mV/mm/S±5% 响应:12~300Hz±8% 固有频率:约12Hz 振幅极限:2mm(峰-峰值) 最大加速度:10g 安装方式:垂直或水平
环境指标:
温度范围: -30℃~120℃ 相对湿度:至95%不冷凝,且周围无强电 磁场干扰
框架运动时造成梁内的应力变化,从而使梁内 的压敏电阻阻值发生变化,通过电桥转化为电 压输出。 (2) 特点
4、波纹管
波纹管的作用是把输入压力差转换为振 动梁的测量力,使用高纯度材料经特殊加 工制成。这是因为石英振动梁相当坚硬, 要使梁在力作用下发生即使仅几十微米的 挠曲,没有足够大的力是不行的。此外, 还要求波纹管的迟滞小。
5、配重
当石英晶体谐振器的形状、尺寸、位置 决定后,配重可以调节运动组件的重心与 支点重合。在受到外界加速度干扰时,配 重还有补偿加速度的效应,因其力臂几乎 是零,使得谐振器仅仅对压力造成的力矩 起反应而不感受外力。
① 输出信号是周期的,被测量能够通过 检测周期信号而解算出来。这一特征决定 了谐振式传感器便于与计算机连接,便于 远距离传输;
② 传感器系统是一个闭环结构,处于谐 振状态。这一特征决定了传感器系统的输 出自动跟踪输入;
③ 谐振式传感器的敏感元件即谐振子固 有的谐振特性,决定其具有高的灵敏度和 分辨率;
2、机械隔离器
为了避免振梁与产生力的机械系统直 接连接,在振动梁两端固定着机械隔离系 统,它包括隔离器弹性体,隔离器质量块 以及弯曲去载区。隔离系统的自振频率要 选择得比振动梁的低得多(约低几个数 级),从而能有效地消除固定件对振动梁 的影
响,振动梁端部的反作用力和反作用力矩 将迫使隔离器的质量块和弹性体振动,由 于隔离系统的自振频率很低,从而可以消 除对振动梁频率的影响,也就是把梁隔离 起来了。
④ 相对与谐振子的振动能量,系统的功 耗是极小量。这一特征决定了传感器系统 的抗干扰性强,稳定性好。
一、概述
二、原理 1、振动筒传感器 2、振动膜式传感器 3、振动弦式传感器 4、振动梁式传感器
三、应用及产品
(1)振动筒传感器
振动筒传感器是一种典型的敏感频率的 振动传感器,于60年代末实用。下图给出 了一种用于绝压测量的振动筒压力传感器 最早使用的原理结构。其测量敏感元件是 一个恒弹合金(如3J53)制成的带有顶盖 的薄壁圆柱壳。
振动梁式传感器
下图所示为由石英晶体谐振器构成的振 梁式差压传感器。两个相对的波纹管用来接 收输入压力P1与P2,作用在波纹管有效面 积上的压力差产生一个合力,造成了一个绕 支点的力矩,该力矩由石英晶体的拉伸力或 压缩力来平衡,这样就改变了晶体的谐振频 率。频率的变化是被测压力的单值函数,从 而达到了测量目的。
震动、抗电磁干扰,温度影响系数小。
四、主要技术参数
量 程:30,60,
100Mpa
准确性:0.2%FS,0.5%FS
重复性:0.2%FS,0.4%FS 稳定性:准确度的年漂移一般不大于准确度
ST系列振动速度传感器
ST系列振动速度传感器
ST系列磁电式速度传感器与振动,烈 度表配接后,可以测量各种位移、速度等。 由滚动轴承支承的转子,其振动会足够大 的传到轴承座上,安装在轴承座上或者很 靠近轴承外壳上的速度传感器,由内部运 动线圈切割磁力线而输出电压,提供信号 输送给监测仪表,用来对机械故障进行预 测和报警。
振动传感器的 原理及应用
一、概述
二、原理 1、振动筒传感器 2、振动膜式传感器 3、振动弦式传感器 4、振动梁式传感器
三、应用及产品
一、概述
基于谐振技术的谐振式传感器,自身 为周期信号输出(准数字信号),只用简 单的数字电路即可转换为微处理器容易接 受的数字信号。谐振式传感器的重复性、 分辨率和稳定性等非常优良,又便于和微 处理器直接结合组成数字控制系统,自然 成为当今人们研究的重点。
(2)磁铁 根据振弦振动的激发方式不同,可以只用
一块磁铁,或者用两块性能相同的磁铁,见 图5-14。磁场可以由永久磁铁或直流电磁铁 产生,永久磁铁一般用AlNiCo-5硬磁合金制 造。在采用电磁铁的场合,常把磁铁做成U 形,电磁线圈安置在U形磁铁的一臂,这时, 磁力线的通路是磁铁-纯铁片-振弦-磁铁,形 成一个封闭的磁回路。
一、概述
二、原理 1、振动筒传感器 2、振动膜式传感器 3、振动弦式传感器 4、振动梁式传感器
三、应用及产品
VIB-10b便携式智能振动测量仪 ——上海胜利测试技术有限公司
机械运行振动中包含着从低频到高频各 种频率成分,而不同的频率与振幅所对应 的设备工作状况及故障原因都是不同的, 因此,该领域的专家们利用这一结论开发 出了不少
振动与激励元件均由铁芯和线圈组成, 为尽可能减小它们之间的电磁耦合,在空 间呈正交安置,由环氧树脂骨架固定。圆 柱壳与外壳之间形成真空腔,被测压力引 入圆柱壳内腔。为减小温度引起的测量误 差,在圆柱壳内安置了一个起补偿作用的 温度敏感元件。
电磁激励振动筒压力传感器原理结构
采用电磁方式作为激励、拾振手段最突 出的优点是与壳体无接触,但也有一些不 足。如电磁转换效率低,激励信号中需引 入较大的直流分量,磁性材料的长期稳定 性差,易于产生电磁耦合等。
压电激励方案
(2)振动膜式传感器
这种传感器的Q值很高,一般约为104, 因此,输出信号的通频带很窄。膜片是振 荡器中的谐振元件,振荡器的输出是频率 变化的正弦波信号,经放大、整形、限幅 后,作为高分辨力计数器的门控信号。这 样,就提供了正比于加在膜片上压力的计 数输出。使用的数字线性化电路与振筒式 压力传感器相类似,不再赘述。
(3)振弦夹紧装置 传感器工作时振弦处于拉紧的状态,振
弦两端必须与支架和运动部分固接,一般采 用专门的夹紧装置。对它的要求是:
① 抗滑能力好,振弦在长期受拉或反复 振动的情况下,夹头不松动;
② 加工简单,安装振弦方便,易拆卸, 能反复使用,能任意调整弦的初始频率。
2.工作原理
要测量振弦固有频率f0的变化,必须先激发振弦起振, 其激发方法有两种:
(3)振动弦式传感器
1. 结构特点 振弦式压力传感器的主要结构如下图所示
(1)振弦 振弦是把待测压力值的变化转变为频率
变化的敏感元件,对传感器的精度、灵敏 度、稳定性起决定的作用。对振弦材料的 要求是:
① 抗拉强度高。 ② 弹性模量大。
③ 磁性和导电性能好。 ④ 线膨胀系数小,尺寸随时间的稳定性好。
机械隔离系统与振动梁的材料都是石英 晶体,用特殊低温切割法把整块石英体切 成AT型晶片,这可以使传感器工作在较宽 的温度范围。石英晶体的温度稳定性好,Q 值高、弹性好,不易受四周环境的影响, 而且,重复性好,迟滞最小。
3、压电激励电极
在振动梁的上下两面蒸发沉积着四个电极, 利用了压电效应的可逆原理。当四个电极 加上电场后,梁在一阶弯曲振动状态下起 振,未输入压力时,其自然谐振频率主要 决定于梁的几何形状和结构。
(1)间歇激发法 图所示为间歇激发 的振弦压力传感器 的示意图。 (2)连续激发法
连续激发时,振弦也是置于电磁铁的磁 场中,同时,振弦通以交变电流,由于电磁 感应,振弦受到一个垂直于磁力线的作用力, 从而激发振弦作频率等于其自振频率的周期 运动。然而,同间歇激发一样,由于阻力作 用,振弦的自振也将逐渐衰减,因此必须补 给能量以维持振弦稳定的等幅振荡。
对运行中机械设备的工作状态有无异常, 设备运行故障原因在哪里进行监测的各种 振动测量仪器。设备管理人员与维修人员 能利用这些振动测量仪方便地检测运行中 电机、泵、风机、压缩机等一切机械设备 的振动值,从中得到许多设备运行的重要 信息。
来自百度文库
VIB-10b便携式智能振动测量仪
但大多数便携式振动测量仪只有测量、 显示及少量的存储等功能,测量人员通 过检测运行设备的振动值后,还需根据 被测设备的类型、功率及允许的振动限 值来判断该设备的工况(良好、正常、
下面扼要叙述差压传感器的主要组件及其作 用。
1、 振动梁谐振器
振动梁是压力传感器的敏感元件,横 跨在传感中央。石英晶体振动梁不直接固 定在产生输出力的构件上,以防止反作用 力和力矩造成基座上的能量损失,从而使 品质因素Q值降低。同时外界的有害干扰 也会
传递进来,降低稳定性,直接影响谐振器 的性能。梁的形状选择得使其成为一种以 弯曲方式振动的两端固定梁,这种形状的 感受力的灵敏度高,即施加单位应力引起 的频率变化大。
位移
加速度
频率范围 速 度
位移
精 度 显 示 电 源 自动关断功 能 体 积 质 量
技术参数 0.1--199.9m/s2(峰值)
0.1--199.9mm/s(真有效值) 0.001--1.999mm(峰峰值) LO档10Hz~1KHz Hi档1KHz~10KHz
10Hz--1000Hz 10Hz--1000Hz (读数值的±5%) ±2个字 3位半液晶显示 电池(6F22)9V 松开按键约60秒种电源自动断 186 x 70 x 32(mm) 约300克
谐振式传感器大体分为两类:一类是基 于机械谐振结构谐振式传感器;另一类是 MOS环振式谐振传感器。这里主要介绍基 于机械谐振结构的谐振式传感器。它们可 利用振动频率、相位和幅值作为敏感信息 的参数。由于谐振式传感器有许多优点,也
适于多种参数测量,如压力、力、转角、 流量、温度、湿度、液位、粘度、密度和 气体成分等,所以这类传感器已迅速发展 成为一个新的传感器家族。
VIB-10b便携式智能振动测量仪内置 ISO10816-1:2019,GB/T6075.1-2019标准 (该标准把机器分为四类I、II、III、IV)
测量前先根据标准的机器类型注释决定被 测量设备的机器类型,然后输入机器类型 号,通过测量,仪器就会自动把测量值与 ISO10816-1:2019标准比较,然后
给出一个运行状态好坏的评价。仪器这一功 能的增加给给使用人员带来了很大的方便, 也符合国际上开发便携式振动测量仪的潮流。
VIB-5振动测量仪
——上海嘉仪信息科技有限公司
VIB-5振动测量仪具有操作简单,携 带方便等特点,可测量振动的加速度, 速度和位移,并且全部使用触摸式按键 操作。
加速度
测量范围 速 度
异常),这在设备品种繁杂、测量点较多 的情况下,使用就不太方便。基于上述原 因,本公司又开发出一种既能测量、显示, 又能马上把测量值与振动标准对比给出设 备状态结果的智能振动测量仪——VIB-10b 便携式智能振动测量仪。
该仪器是在本公司的VIB-10a振动测量仪基础 上增加了速度档的宽带振动评价标准,使检测 人员在现场就能根据测试量值对设备运行好坏 作出评价。
YGH型振弦式压力传感器
一、用途
测量
高压液体压力。特别适用于持续高压、急速加压、
急速卸压场合,具有良好稳定性。还可用于压力
试验机的数字化改造。
二、结构原理
为竖式弦振弦压力传感器,与GSJ-2检测仪 配套使用,事先输入传感器常数,可直接显示压 力值。
三、性能特点
性能稳定,准确度高,抗液压冲击,寿命长。抗
(1)基本结构
由ERD组成的电— 机— 电谐振子环节, 是谐振式传感器的核心。适当地选择激励 和拾振手段,构成一个理想的ERD,对设 计谐振式传感器至关重要。
由ERDA组成的闭环自激环节,是构成 谐振式传感器的条件。
由RDO(C)组成的信号检测、输出环节, 是实现检测被测量的手段。
(2) 谐振式传感器的本质特征与独特 优势是:
物理指标:
外形尺寸:φ35×72mm 安装方式:双头螺钉固定 重 量:0.3Kg
选型说明
形式选择A□:2—— 一体化; 3*——航空 插座
引线长度B□:1*——0.5米; 2——3米; 3——5米
CA-YZ-123VC(A)-20型水密三轴低频振 动传感器
(1)工作原理
该传感器室内封装信号调节器的压阻式振动传感器。 压阻式振动敏感元件设计为整体硅结构,有带多根梁 的硅框架支撑一块京味戏加工而成的硅质量块。大硅 框架受到震动作用时。由于惯性力硅块相对于
灵敏度电气指标:
20mV/mm/S±5% 频率电气指标: 灵敏度:20mV/mm/S±5% 响应:12~300Hz±8% 固有频率:约12Hz 振幅极限:2mm(峰-峰值) 最大加速度:10g 安装方式:垂直或水平
环境指标:
温度范围: -30℃~120℃ 相对湿度:至95%不冷凝,且周围无强电 磁场干扰
框架运动时造成梁内的应力变化,从而使梁内 的压敏电阻阻值发生变化,通过电桥转化为电 压输出。 (2) 特点
4、波纹管
波纹管的作用是把输入压力差转换为振 动梁的测量力,使用高纯度材料经特殊加 工制成。这是因为石英振动梁相当坚硬, 要使梁在力作用下发生即使仅几十微米的 挠曲,没有足够大的力是不行的。此外, 还要求波纹管的迟滞小。
5、配重
当石英晶体谐振器的形状、尺寸、位置 决定后,配重可以调节运动组件的重心与 支点重合。在受到外界加速度干扰时,配 重还有补偿加速度的效应,因其力臂几乎 是零,使得谐振器仅仅对压力造成的力矩 起反应而不感受外力。
① 输出信号是周期的,被测量能够通过 检测周期信号而解算出来。这一特征决定 了谐振式传感器便于与计算机连接,便于 远距离传输;
② 传感器系统是一个闭环结构,处于谐 振状态。这一特征决定了传感器系统的输 出自动跟踪输入;
③ 谐振式传感器的敏感元件即谐振子固 有的谐振特性,决定其具有高的灵敏度和 分辨率;
2、机械隔离器
为了避免振梁与产生力的机械系统直 接连接,在振动梁两端固定着机械隔离系 统,它包括隔离器弹性体,隔离器质量块 以及弯曲去载区。隔离系统的自振频率要 选择得比振动梁的低得多(约低几个数 级),从而能有效地消除固定件对振动梁 的影
响,振动梁端部的反作用力和反作用力矩 将迫使隔离器的质量块和弹性体振动,由 于隔离系统的自振频率很低,从而可以消 除对振动梁频率的影响,也就是把梁隔离 起来了。
④ 相对与谐振子的振动能量,系统的功 耗是极小量。这一特征决定了传感器系统 的抗干扰性强,稳定性好。
一、概述
二、原理 1、振动筒传感器 2、振动膜式传感器 3、振动弦式传感器 4、振动梁式传感器
三、应用及产品
(1)振动筒传感器
振动筒传感器是一种典型的敏感频率的 振动传感器,于60年代末实用。下图给出 了一种用于绝压测量的振动筒压力传感器 最早使用的原理结构。其测量敏感元件是 一个恒弹合金(如3J53)制成的带有顶盖 的薄壁圆柱壳。
振动梁式传感器
下图所示为由石英晶体谐振器构成的振 梁式差压传感器。两个相对的波纹管用来接 收输入压力P1与P2,作用在波纹管有效面 积上的压力差产生一个合力,造成了一个绕 支点的力矩,该力矩由石英晶体的拉伸力或 压缩力来平衡,这样就改变了晶体的谐振频 率。频率的变化是被测压力的单值函数,从 而达到了测量目的。
震动、抗电磁干扰,温度影响系数小。
四、主要技术参数
量 程:30,60,
100Mpa
准确性:0.2%FS,0.5%FS
重复性:0.2%FS,0.4%FS 稳定性:准确度的年漂移一般不大于准确度
ST系列振动速度传感器
ST系列振动速度传感器
ST系列磁电式速度传感器与振动,烈 度表配接后,可以测量各种位移、速度等。 由滚动轴承支承的转子,其振动会足够大 的传到轴承座上,安装在轴承座上或者很 靠近轴承外壳上的速度传感器,由内部运 动线圈切割磁力线而输出电压,提供信号 输送给监测仪表,用来对机械故障进行预 测和报警。
振动传感器的 原理及应用
一、概述
二、原理 1、振动筒传感器 2、振动膜式传感器 3、振动弦式传感器 4、振动梁式传感器
三、应用及产品
一、概述
基于谐振技术的谐振式传感器,自身 为周期信号输出(准数字信号),只用简 单的数字电路即可转换为微处理器容易接 受的数字信号。谐振式传感器的重复性、 分辨率和稳定性等非常优良,又便于和微 处理器直接结合组成数字控制系统,自然 成为当今人们研究的重点。
(2)磁铁 根据振弦振动的激发方式不同,可以只用
一块磁铁,或者用两块性能相同的磁铁,见 图5-14。磁场可以由永久磁铁或直流电磁铁 产生,永久磁铁一般用AlNiCo-5硬磁合金制 造。在采用电磁铁的场合,常把磁铁做成U 形,电磁线圈安置在U形磁铁的一臂,这时, 磁力线的通路是磁铁-纯铁片-振弦-磁铁,形 成一个封闭的磁回路。
一、概述
二、原理 1、振动筒传感器 2、振动膜式传感器 3、振动弦式传感器 4、振动梁式传感器
三、应用及产品
VIB-10b便携式智能振动测量仪 ——上海胜利测试技术有限公司
机械运行振动中包含着从低频到高频各 种频率成分,而不同的频率与振幅所对应 的设备工作状况及故障原因都是不同的, 因此,该领域的专家们利用这一结论开发 出了不少
振动与激励元件均由铁芯和线圈组成, 为尽可能减小它们之间的电磁耦合,在空 间呈正交安置,由环氧树脂骨架固定。圆 柱壳与外壳之间形成真空腔,被测压力引 入圆柱壳内腔。为减小温度引起的测量误 差,在圆柱壳内安置了一个起补偿作用的 温度敏感元件。
电磁激励振动筒压力传感器原理结构
采用电磁方式作为激励、拾振手段最突 出的优点是与壳体无接触,但也有一些不 足。如电磁转换效率低,激励信号中需引 入较大的直流分量,磁性材料的长期稳定 性差,易于产生电磁耦合等。