含参数的二元一次方程组的解法
第二节 二元一次方程组的解法(含答案)...七年级数学 学而思
第二节二元一次方程组的解法1.二元一次方程组的解法基本思路是消元,即通过运用代入法或加减法把二元一次方程组转化为一元一次方程,从而求出方程组的解. (1)代入消元法:通过等量代换,消去方程组中的一个未知数,使二元一次方程组转化为一元一次方程,从而求得一个未知数的值,然后再求出被消去未知数的值,从而确定原方程组的解的方法.代入消元法解二元一次方程组的一般步骤:①从方程组中选一个系数比较简单的方程,将这个方程组中的一个未知数例如y,用含另一个未知数如x的代数式表示出来;②将变形后的关系式代入另一个方程,消去一个未知数,得到一个一元一次方程;③解这个一元一次方程,求出x(或y)的值;④将求得的未知数的值代入变形后的关系式中,求出另一个未知数的值;⑤把求得的x、y的值用“{”联立起来,就是方程组的解.(2)加减消元法:加减法是消元法的一种,也是解二元一次方程组的基本方法之一.加减法不仅在解二元一次方程组中适用,也是今后解其它方程(组)经常用到的方法.加减消元法解二元一次方程组的一般步骤:①变换系数:方程组的两个方程中,如果同一个未知数的系数既不相等又不互为相反数,就用适当的数去乘方程的两边,使某一个未知数的系数相等或互为相反数;②加减消元:把两个方程的两边分别相减或相加,消去一个未知数,得到一个一元一次方程;③解这个一元一次方程,求得未知数的值;④回代:将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数的值;⑤把所求得的两个未知数的值写在一起,就得到原方程组的解,需要把求得的x,y的值用“{”联立起来.2.特殊方程组的解法对于具有某些特点的二元一次方程组,如果仍按常规方法不仅运算量大,而且容易出错,则可根据题目的特点,利用整体思想来采用特殊方法简化方程组,接着再采用代入或加减消元法解出相应x,y的值即可.(1)系数轮换法:适用方程组类型:如果把方程组中的每一个未知数依次轮换后,虽然每个方程都变了,但是整个方程组仍不变,步骤:解题时,把各方程相加,即可得到x+ y=常数的形式,把各方程相减,即可得到x- y=常数的形式,这两个新的方程组成的方程组就是原方程组化简后的结果,便可以采用加减或代入消元法求得未知数的值.(2)换元法:适用方程组类型:方程组项数较多、系数较为复杂,而且会有相同的部分或者是互为相反数的部分多次出现;步骤:解题时,把方程中相同的部分或者是互为相反数的部分看成是一个整体,用另一个字母来替换,从而简化原先项数多、系数复杂的方程组,再采用常规的加减或者代入消元法来求得未知数的值.(3)倒数法:适合方程组类型:方程中出现分母是和的形式,分子是积的形式⋅+yx xy步骤:解题时,采用倒数法变换成分子是和、分母是积的形式,xyyx +然后进行拆分,利用加减或者代入或者换元法来解出x ,y 的值.1.代入消元方法的选择①运用代入法时,将一个方程变形后,必须代入另一个 方程,否则就会 得出“0=0”的形式,求不出未知数的值;②当方程组中有一个方程的一个未知数的系数是1或一1时,用代入法较简便. 2.加减消元方法的选择①一般选择系数绝对值最小的未知数消元;②当某一未知数的系数互为相反数时,用加法消元;当某一未知数的系数相 等时,用减法消元;③某一未知数系数成倍数关系时,直接使其系数互为相反数或相等,再用 加减消元求解;④当相同的未知数的系数都不相同时,找出某一个未知数的系数的最小公倍数,同时对两个方程进行变形,转化为系数的绝对值相同的方程,再用加减消元求解,例1.如果关于x ,y 的方程组⎩⎨⎧-=-=+223a y x y x 的解是负数,则a 的取值范围是( )54.<<-a A 5.>a B 4.-<a C D .无解检测1.(浙江绍兴期末)已知关于x ,y 的方程组⎩⎨⎧-=-=-,52253a y x ay x 若x ,y 的值互为相反数,则a 的值为( )5.-A 5.B 20.-C 20.D例2.(四川南江县期末)已知,0)112(|32|2=+++--y x y x 则( )⎩⎨⎧==12.y x A ⎩⎨⎧-==30.y x B ⎩⎨⎧-=-=51.y x C ⎩⎨⎧-=-=72.y x D检测2.(山东滨州期末)已知,0|72|)12(2=-++--y x y x 则=-y x 3( )3.A 1.B 6.-C 8.D例3.(湖北黄冈期末)若y x h y xb a ba -+--332243是同类项,则b a -的值是( )0.A 1.B 2.C 3.D检测3.若y x nm +243与n m y x -5是同类项,则m .n 的值分别是( ) 3,2.A 1,2.B 0,2.C 2,1.D例4.(湖南衡阳县一模)解方程组:⎩⎨⎧=+=+,604320122016604120162012y x y x 则yx yx -+值是3.A 3.-B 6.C 6.-D检测4.(1)(江苏海门市期末)如果实数x ,y 满足方程组⎩⎨⎧=+=+,4222y x y x 那么=+y x(2)(安徽泗县校级模拟)关于x ,y 的二元一次方程组⎩⎨⎧-=+-=+22132y x k y x 的解满足y x +,1=则k=例5.(河北古冶区一模)已知a ,b 满足方程组⎩⎨⎧=-=+,283b a b a 则=+b a2.A3.B4.C5.D检测5.(1)(河北模拟)已知e 、f 满足方程组⎩⎨⎧=-=--,6223e f f e 则f e +2的值为( )2.A 4.B 6.C 8.D(2)(广东广州中考)已知a .b 满足方程组⎩⎨⎧=-=+,43125b a b a 则b a +的值为第二节 二元一次方程组的解法(建议用时:35分钟)实战演练1.用加减法解方程组⎩⎨⎧-=-=+15y x y x 中,消x 用 法,消y 用 法( )A.加,加 B .加,减 C .减,加 D .减,减2.若用代入法解方程组⎩⎨⎧+==,12332y x yx 以下各式代入正确的是( )1)32(23.+=x x A 1)32(23.+=y x B1)23(23.+=x x C 1623.+⋅=x x x D3.若,0|52||12|=--+--y x y x 则x+y 的值为( )4.A5.B6.C7.D4.已知:|32|++y x 与2)2(y x +互为相反数,则=-y x ( )7.A 5.B 3.C 1.D5.(山东临清市期末)已知方程组⎩⎨⎧=+=-my x y x 24中x ,y 相加为0,则m 的值为( )2.A 2.-B 0.C 4.D6.(河北石家庄校级模拟)若方程组⎩⎨⎧=++=+my x m y x 32253的解x 与y 互为相反数,则m 的值为( )2.-A 0.B 2.C 4.D7.若方程组⎩⎨⎧=+=+16156653y x y x &的解也是方程103=+ky x 的解,则( )6.=k A 10.=k B 9.=k C 101.=k D 8.若3243y x b a +与ba y x -634的和是单项式,则=+b a ( ) 3.-A 0.B 3.C 6.D9.按如图8 -2—1所示的运算程序,能使输出结果为3的x ,y 的值是( )128--2,5.-==y x A ⋅-==3,3.y x B 2,.4.=-=y x C 9,3.-=-=y x D10.(山东临沂中考)已知x ,y 满足方程组⎩⎨⎧=+=+,4252y x y x 则y x -的值为( )⎩⎨⎧==12.11y x 是方程组⎩⎨⎧=-=+04by ax by ax 的解,那么=+-))((b a b a 12.已知方程组⎩⎨⎧-=+=-123225m y x my x 的解x ,y 互为相反数,则m=13.(江苏常州期末)若关于x ,y ,的二元一次方程组⎩⎨⎧=+-=+22132y x a y x 的解满足x+ y=l ,则a 的值为14.三个同学对问题“若方程组⎪⎩⎪⎨⎧=+=+222111c y b x a c y b x a 的解是⎩⎨⎧==,43y x 求方程组⎪⎩⎪⎨⎧=+=+222111523523c y b x a c y b x a 的解.”提出各自的想法.甲说:“这个题目好像条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替换的方法来解决”,参考他们的讨论,你认为这个题目的解应该是 .15.(“信利杯”竞赛题)已知:a ,b ,c 三个数满足,31=+b a ab ,41=+c b bc ,51=+a c ca 则ca bc ab abc++的值为 16.(重庆校级自主招生)解方程组:⎩⎨⎧=+=+200320042005200620052004y x y x17.解方程组:⎪⎩⎪⎨⎧-=-=-+-421621y x y x18.已知方程组⎩⎨⎧+=---=+ay x ay x 317的解中,x 为非正数,y 为负数.(1)求a 的取值范围; (2)化简.|2||3|++-a a19.(江苏张家港市期末)已知关于x ,y 的方程组⎩⎨⎧+=+=+12242m y x my x (实数m 是常数).(1)若x+y=1,求实数m 的值;(2)若,51≤-≤-y x 求m 的取值范围; (3)在(2)的条件下,化简:.|32||2|-++m m20.(黑龙江讷河市校级期末)已知二元一次方程组⎩⎨⎧+=-+=+1593a y x a y x 的解x ,y 均是正数.(1)求a 的取值范围; (2)化简.|4||54|--+a a拓展创新21.解方程组:⎩⎨⎧==+44y -3x 23y x 2拓展1.解方程组:⎪⎪⎩⎪⎪⎨⎧=-=+443232y x y x 拓展2.解方程组:⎪⎪⎩⎪⎪⎨⎧=-=+41432132x y xy x y xy极限挑战22.(全国初中数学竞赛)若,0634=--z y x ),0(072=/=-+xyz z y x 则式子222222103225z y x z y x ---+的值等于( )21.-A219.-B 15.-C 13.-D课堂答案培优答案。
人教版初中数学七年级下册 数学活动-全国一等奖
目 方法 用数学解决生活中问题的过程。
标 情感
让学生感受到数学学习的乐趣和数学知识的应用价值;品尝成功的喜悦,激发
态度 学生应用数学的热情。
价值
观
重 点
含参数的二元一次方程组的解法。
难 点
含参数的二元一次方程组的解法。
采用任务学习与小组合作学习相结合。运用小组合作学习,独立思考与小组合
教学方法 作相结合,发挥小组互帮的优势。
其中 x+y=10,求 m 的值.
调动学生 的兴趣,激发 学生的求知 学生 欲。 在已经学 过的二元 一次方程 组的解法 的基础上 思考本题。
探究 1
{ 例 1:关于 x、y 的方程组
2x+3y=3m x+2y=3
讨论探究
其中 x+y=2,求 m 的值。
学生甲:分别解出 x、y 的值,用含 m 的式子分别
方法。 练习
学生主动 探索,合作交 流,达到互相 帮助互相学习 的目的。
题学生独
其中 x 与 y 的差是 7,求 k 的值。
立完成。
探究 2
{ 例 2:关于 x、y 的方程组
4x+y=5 3x-2y=1
{ 的解和
mx+ny=3 mx-ny=1
的解相同,求 m、n。
{ 变式:关于 x、y 的方程组
小结 体会
通过本节课的学习你有什么收获
学生归纳 小结,培养学 生总结表达的 能力。
{ (1)关于 x、y 的方程组
x+2y=4k 2x+y=2k+1
其中 x-y=13,求 k 的值.
{ (2)解方程组
ax+by=2 cx-7y=8 时,
(完整版)二元一次方程组的同解错解参数等问题(最新整理)
请解答:已知关于
x、y
的方程组
y y
kx b
3k 1
x
2
分别求出 k,b 为何值时, 方程组的解为:
⑴有唯一解; ⑵有无数多个解; ⑶无解?
5x y 7 ① 例 2. 选择一组 a,c 值使方程组 ax 2 y c
1.有无数多解, 2.无解, 3.有唯一的解
与
x 2y 5 5x by 1
(3) (4)
。
有相同的解,
2、错解 由方程组的错解问题,求参数的值。
ax by 2
x 3
x 2
例:解方程组 cx 7 y 8
时,本应解出
y
2
由于看错了系数
c,从而得到解
y
2
试求 a+b+c 的值。
方法:是正确的解代入任何一个方程当中都对,再把看错的解代入没有看错的方程中去从而求出参数的 值。
4. 已知方程组
4
x
by
2
① ②
x 3
由于甲看错了方程①中的
a
得到方程组的解为
y
1
;
x 5
乙看错了方程②中的
b
得到方程组的解为
y
4
,若按正确的
a、b
计算,求原方程组的解.
5..关于
x、y
的二元一次方程组
x x
y y
5k 9k
的解也是二元一次方程
2x
3y
6
的解,则
k
的值?
6.
若
4x
3y
6z
0,
x
2y
7z0 xyz来自0,求代数式5x2 2y2 z2 2x2 3y2 10z2
第五章二元一次方程(组)及其解法(解析版)
第五章二元一次方程组考点类型大总结【知识点及考点类型梳理】知识点一、二元一次方程(组)考点类型一、二元一次方程(组)考点类型二、用字母表示数考点类型三、二元一次方程(组)的解知识点二、二元一次方程组的求解考点类型一、代入法考点类型二、消元法考点类型三、含参数类型考点类型四、整体思想、换元思想考点类型五、新定义风向知识点一、二元一次方程(组)考点类型一、二元一次方程(组)1.已知关于x ,y 的方程22146m n m n x y --+++=是二元一次方程,则m ,n 的值为()A .,11m n ==-B .1,1m n =-=C .14,33m n ==-D .14,33m n =-=【答案】A根据二元一次方程的定义,得出关于m ,n 的方程组,求出答案.【详解】∵关于x 、y 的方程x 2m﹣n ﹣2+y m +n +1=6是二元一次方程,∴22111m n m n --=⎧⎨++=⎩,解得11m n =⎧⎨=-⎩.故选:A .【点睛】此题考查了二元一次方程的定义和二元一次方程组的解法,熟练掌握二元一次方程的定义是解本题的关键.2.若1335m n m x y --+=是二元一次方程,那么m 、n 的值分别为()A .2m =,3n =B .2m =,1n =C .1m =-,2n =D .3m =,4n =【答案】B【分析】利用二元一次方程的定义:含有两个未知数,并且含有未知数的项的次数都是1的整式方程判断即可.【详解】解:∵1335m n m x y --+=是二元一次方程,∴m -1=1,3n -m =1,解得:m =2,n =1,故选:B .此题考查了二元一次方程的定义,熟练掌握二元一次方程的定义是解本题的关键.3.方程23235,3,3,320,6x y xy x x y z x y y -==+=-+=+=中是二元一次方程的有___个.【答案】1【分析】二元一次方程满足的条件:整式方程;含有2个未知数;未知数的最高次项的次数是1.【详解】解:符合二元一次方程的定义的方程只有2x −3y =5;xy =3,x 2+y =6的未知数的最高次项的次数为2,不符合二元一次方程的定义;x +3y=1不是整式方程,不符合二元一次方程的定义;3x −y +2z =0含有3个未知数,不符合二元一次方程的定义;由上可知是二元一次方程的有1个.故答案为:1.【点睛】主要考查二元一次方程的概念.要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的最高次项的次数是1的整式方程.4.如果2120a b x y -++=是二元一次方程,则a =____,b =_____.【答案】3【分析】根据二元一次方程的定义可知21a -=,11b +=,据此可解出a 、b .解:依题意,得:2111a b -=⎧⎨+=⎩,解得:30a b =⎧⎨=⎩.故答案为:3,0.【点睛】此题考查的是对二元一次方程的定义理解,根据未知数的次数为1,可以列出方程组求解.5.下列方程组中,是二元一次方程组的是()A .35233x y x z +=⎧⎨-=⎩B .12163m n m n +=⎧⎪⎨+=⎪⎩C .56m n mn n +=⎧⎨+=⎩D .321026x y x y +=⎧⎪⎨+=⎪⎩【答案】B【分析】本题根据二元一次方程组的基本形式及特点进行求解即可,即①含有两个二元一次方程,②方程都为整式方程,③未知数的最高次数都为一次.【详解】解:A :含有三个未知数,不是;B :符合条件,是;C :mn 项的次数为2,不是;D :存在不是整式的式子,不是.故选:B .本题主要考查二元一次方程组的判定,解题的关键是熟练掌握二元一次方程组的基本形式及特点.6.下列方程组中是二元一次方程组的是()A .141y x x v ⎧+=⎪⎨⎪-=⎩B .43624x y y z +=⎧⎨+=⎩C .41x y x y +=⎧⎨-=⎩D .22513x y x y +=⎧⎨+=⎩【答案】C【分析】二元一次方程组是由两个未知数且未知数最高次数为一次的两个方程组成;根据二元一次方程组的定义逐项判断即得答案.【详解】解:A 、方程组141y x x v ⎧+=⎪⎨⎪-=⎩中第一个方程不是整式方程,不是二元一次方程组,所以本选项不符合题意;B 、方程组中有三个未知数,不是二元一次方程组,所以本选项不符合题意;C 、该方程组是二元一次方程组,所以本选项符合题意;D 、方程组中第二个方程未知数x 、y 的次数是2,不是二元一次方程组,所以本选项不符合题意.故选:C .【点睛】本题考查了二元一次方程组的定义,属于基础概念题型,熟知二元一次方程组的概念是关键.7.已知方程组2(2)13(3)40m m x x m y -+=⎧⎪⎨--+=⎪⎩是关于x ,y 的二元一次方程组,则()A .2m ≠±B .3m =C .3m =-D .3m ≠【分析】二元一次方程组:由两个整式方程组成,两个方程一共含有两个未知数,且含未知数的项的最高次数是1,这样的方程组是二元一次方程组,根据定义列方程或不等式,从而可得答案.【详解】解: 方程组2(2)13(3)40m m x x m y -+=⎧⎪⎨--+=⎪⎩是关于x ,y 的二元一次方程组,203021m m m ⎧+≠⎪∴-≠⎨⎪-=⎩解得:233m m m ≠-⎧⎪≠⎨⎪=±⎩3.m ∴=-故选:.C 【点睛】本题考查的是二元一次方程组的定义,掌握二元一次方程组的定义是解题的关键.考点类型二、用字母表示数8.由132x y -=可以得到用x 表示y 的式子为()A .223x y -=B .223x y =-C .2133x y =-D .223x y =-【分析】先移项,后系数化为1,即可得.【详解】解:132x y -=移项,得123y x =-,系数化为1,得223x y =-,故选B .【点睛】本题考查了方程的基本运算技能,解题的关键是熟练掌握方程的基本运算技能.9.在二元一次方程142653x y -=中,用含x 的代数式表示y ,则下面结论正确的是()A .20524xy -=B .52024x y -=C .52024x y +=D .52024x y +=-【答案】B【分析】先把二元一次方程142653x y -=去分母得:52420x y -=,再通过移项合并同类项可得结果.【详解】解:由二元一次方程142653x y -=去分母,得:52420x y -=,移项合并同类项得:52024x y -=,系数化为1得:52024x y -=,故选:B .【点睛】本题考查了二元一次方程的变形,解题的关键是熟练掌握解二元一次方程的基本步骤.10.把方程635x y -=改成用含x 的代数式表示y 为y =__________.【答案】2x -53【分析】把x 看作已知数求出y 即可.【详解】解:6x -3y =5,3y =6x -5,解得:y =2x -53故答案为:y =2x -53【点睛】此题考查了解二元一次方程,解题的关键是将x 看作已知数求出y .考点类型三、二元一次方程(组)的解11.已知14x y =-⎧⎨=⎩是方程mx ﹣y =3的解,则m 的值是()A .﹣1B .1C .﹣7D .7【答案】C【分析】把14xy=-⎧⎨=⎩代入mx﹣y=3,得到关于m的方程,进而即可求解.【详解】解:14xy=-⎧⎨=⎩是方程mx﹣y=3的解,∴-m﹣4=3,解得:m=-7,故选C.【点睛】本题主要考查二元一次方程的解,掌握方程的解的定义,是解题的关键.12.如果方程组23759x yx y+=⎧⎨-=⎩的解是方程716x my+=的一个解,则m的值为()A.0B.1C.2D.3【答案】C【分析】求出方程组的解得到x与y的值,代入方程计算即可求出m的值.【详解】解:23759x yx y+=⎧⎨-=⎩①②{,①+②×3得:17x=34,即x=2,把x=2代入①得:y=1,把x=2,y=1代入方程7x+my=16得:14+m=16,解得:m =2,故选:C .【点睛】此题考查了解二元一次方程组和二元一次方程解的概念,解出二元一次方程组的解代入另一个方程是解决此题的关键.13.二元一次方程210x y +=有______个解,有________个正整数解,它们是___________.【答案】无穷多412348642x x x x y y y y ====⎧⎧⎧⎧⎨⎨⎨⎨====⎩⎩⎩⎩;;;【分析】将x 看做已知数求出y ,即可确定出正整数解的个数.【详解】解:由方程210x y +=,得到102y x =-,当x =1时,y =8;当x =2时,y =6;当x =3时,y =4;当x =4时,y =2.则正整数解有4个,故答案为:无穷多;4;12348642x x x x y y y y ====⎧⎧⎧⎧⎨⎨⎨⎨====⎩⎩⎩⎩;;;.【点睛】本题考查了解二元一次方程,解题的关键是将x 看做已知数求出y .14.若二元一次方程组51cx ay x y -=⎧⎨+=⎩和23151x y ax by -=⎧⎨+=⎩解相同,则可通过解方程组()求得这个解.A .151cx ay x y -=⎧⎨+=⎩B .51cx ay ax by -=⎧⎨+=⎩C .23151x y x y -=⎧⎨+=⎩D .23151x y ax by -=⎧⎨+=⎩【答案】C【分析】根据方程组同解,可知方程组的解同时满足四个方程,将两个已知方程组成方程组即可.【详解】解:∵二元一次方程组51cx ayx y-=⎧⎨+=⎩和23151x yax by-=⎧⎨+=⎩解相同,方程组的解同时满足这四个方程;∴解方程组23151x yx y-=⎧⎨+=⎩即可求出方程组的解,故选:C.【点睛】本题考查了方程组同解问题,解题关键是明确方程组的解的意义,把已知方程组成方程组.15.若关于x,y的方程组48ax byax by-=-⎧⎨+=⎩的解是23xy=⎧⎨=⎩,则方程组(3)(1)4(3)(1)8a xb ya xb y+--=-⎧⎨++-=⎩的解是()A.14xy=-⎧⎨=⎩B.23xy=⎧⎨=⎩C.14xy=⎧⎨=-⎩D.52xy=⎧⎨=⎩【答案】A 【分析】通过观察所给方程组的关系可得3213xy+=⎧⎨-=⎩,求出x、y即可.【详解】解:∵关于x,y的方程组48ax byax by-=-⎧⎨+=⎩的解是23xy=⎧⎨=⎩,∴234 238a ba b-=-⎧⎨+=⎩,又∵(3)(1)4(3)(1)8a x b y a x b y +--=-⎧⎨++-=⎩,∴3213x y +=⎧⎨-=⎩,解得14x y =-⎧⎨=⎩,∴方程组(3)(1)4(3)(1)8a x b y a x b y +--=-⎧⎨++-=⎩的解为14x y =-⎧⎨=⎩,故选:A .【点睛】本题考查二元一次方程组的解,解题的关键是要知道两个方程组之间的关系.16.已知关于x 、y 的方程组242x y a x y a -=-⎧⎨-=⎩的解x 与y 互为相反数,则a =__________.【答案】2【分析】直接①-②可得42x y a +=-,由题意可得0x y +=,进而可得420a -=,再解即可.【详解】242x y a x y a-=-⎧⎨-=⎩①②,①-②得:42x y a +=-,x y 、互为相反数,0x y ∴+=,420a∴-=,解得:2a=故答案为:2.【点睛】本题主要考查了加减消元法解二元一次方程组,解题的关键是挖掘出内含在题干中的已知条件x=−y.知识点二、二元一次方程组的求解考点类型一、代入法17.用代入法解下列方程组:(1)3 759 y xx y=+⎧⎨+=⎩;(2)35 5215 s ts t-=⎧⎨+=⎩;(3)3416 5633 x yx y+=⎧⎨-=⎩;(4)4(1)3(1)2223x y yx y--=--⎧⎪⎨+=⎪⎩.【答案】(1)1252xy⎧=-⎪⎪⎨⎪=⎪⎩;(2)25112011st⎧=⎪⎪⎨⎪=⎪⎩;(3)612xy=⎧⎪⎨=-⎪⎩;(4)23xy=⎧⎨=⎩.【分析】根据代入法解二元一次方程组即可,代入消元法是将方程组中的一个方程的未知数用含有另一个未知数的代数式表示,并代入到另一个方程中去,这就消去了一个未知数,代入消元法简称代入法.【详解】(1)3759y x x y =+⎧⎨+=⎩①②将①代入②得:75(3)9x x ++=,解得12x =-,将12x =-代入①得,52y =,∴原方程组的解为:1252x y ⎧=-⎪⎪⎨⎪=⎪⎩;(2)355215s t s t -=⎧⎨+=⎩①②由①得,35t s =-③,将③代入②得,52(35)15s s +-=,解得2511s =,将2511s =代入③,得,2011t =,∴原方程组的解为:25112011s t ⎧=⎪⎪⎨⎪=⎪⎩;(3)34165633x y x y +=⎧⎨-=⎩①②由①得344y x =-③,将③代入②得,56(4)334x x 3--=,解得6x =,将6x =代入③,得,12y =-,∴原方程组的解为:612x y =⎧⎪⎨=-⎪⎩;(4)4(1)3(1)2223x y y x y --=--⎧⎪⎨+=⎪⎩①②由①得444332x y y --=--,即45y x =-③,由②可得3212x y +=④,将③代入④得32(45)12x x +-=,解得2x =,将2x =代入③,得,3y =,∴原方程组的解为:23x y =⎧⎨=⎩;【点睛】本题考查了代入法解二元一次方程组,掌握代入法是解题的关键.考点类型二、消元法18.用加减法解下列方程组:(1)29321x y x y +=⎧⎨-=-⎩;(2)52253415x y x y +=⎧⎨+=⎩;(3)258325x y x y +=⎧⎨+=⎩;(4)236322x y x y +=⎧⎨-=-⎩.【答案】(1)272x y =⎧⎪⎨=⎪⎩;(2)50x y =⎧⎨=⎩;(3)9111411x y ⎧=⎪⎪⎨⎪=⎪⎩;(4)6132213x y ⎧=⎪⎪⎨⎪=⎪⎩.【分析】(1)根据加减消元可直接进行求解方程组;(2)根据加减消元法可直接进行求解方程组;(3)根据加减消元法可直接进行求解方程组;(4)根据加减消元法可直接进行求解方程组.【详解】解:(1)29321x y x y +=⎧⎨-=-⎩①②①+②得:48x =,解得:2x =,把2x =代入①式得:229y +=,解得:72y =,∴原方程组的解为272x y =⎧⎪⎨=⎪⎩;(2)52253415x y x y +=⎧⎨+=⎩①②①×2-②得:735x =,解得:5x =,把5x =代入①得:55225y ⨯+=,解得:0y =,∴原方程组的解为50x y =⎧⎨=⎩;(3)258325x y x y +=⎧⎨+=⎩①②①×3-②×2得:1114=y ,解得:1411y =,把1411y =代入①得:1425811x +⨯=,解得:911x =;∴原方程组的解为9111411x y ⎧=⎪⎪⎨⎪=⎪⎩;(4)236322x y x y +=⎧⎨-=-⎩①②①×2+②×3得:136x =,解得:613x =,把613x =代入①得:623613y ⨯+=,解得:2213y =,∴原方程组的解为6132213x y ⎧=⎪⎪⎨⎪=⎪⎩.【点睛】本题主要考查二元一次方程组的解法,熟练掌握加减消元法是解题的关键.考点类型三、含参数类型19.甲、乙两人同解方程组515411ax y x by +=⎧⎨-=-⎩①②时,甲看错了方程①中的a ,解得31x y =-⎧⎨=-⎩,乙看错了②中的b ,解得54x y =⎧⎨=⎩,试求20202021()a b +-的值.【答案】0【分析】将31x y =-⎧⎨=-⎩代入第二个方程可得b 的值,将54x y =⎧⎨=⎩代入第一个方程得a 的值,即可求出所求式子的值.【详解】解:将31x y =-⎧⎨=-⎩代入411x by -=-得:1211-+=-b ,解得1b =将54x y =⎧⎨=⎩代入方程组中的515ax y +=得:52015a +=,即1a =-20202021()ab ∴+-20202021(1)(1)110=-+-=-=.【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.20.若关于x 、y 的二元一次方程组13x y x y -=⎧⎨+=⎩与方程组4213mx ny ny mx ⎧+=⎪⎪⎨⎪-=⎪⎩有相同的解.求m 、n 的值.【答案】m =1,n =3【分析】根据题意列不含m 、n 的方程组求解,求出x ,y 值,代入4213mx ny ny mx ⎧+=⎪⎪⎨⎪-=⎪⎩中即可解得m ,n .【详解】解:解方程组13x y x y -=⎧⎨+=⎩得:21x y =⎧⎨=⎩,代入4213mx ny ny mx ⎧+=⎪⎪⎨⎪-=⎪⎩中得:21314m n m n +=⎧⎪⎨-=⎪⎩,解得:13m n =⎧⎨=⎩.【点睛】本题考查了二元一次方程组的解,解决本题的关键是根据题意重新联立方程组.21.已知关于x 、y 的方程组2331x y ax by -=⎧⎨+=-⎩的解和2333211ax by x y +=⎧⎨+=⎩的解相同,求代数式2a +b 的平方根.【答案】代数式2a +b 的平方根是±1.【分析】由已知解方程组2333211x y x y -=⎧⎨+=⎩,解得31x y =⎧⎨=⎩,将31x y =⎧⎨=⎩代入233ax by +=中,得21a b +=,即可求解.【详解】解: 方程组2331x y ax by -=⎧⎨+=-⎩的解和2333211ax by x y +=⎧⎨+=⎩的解相同,∴2333211x y x y -=⎧⎨+=⎩与2331ax by ax by +=⎧⎨+=-⎩的解相同,∴2333211x y x y -=⎧⎨+=⎩①②,①2⨯得,466x y -=③,②3⨯得,9633x y +=④,③+④得,3x =,将3x =代入①得,1y =,∴方程组的解为31x y =⎧⎨=⎩,将31x y =⎧⎨=⎩代入233ax by +=中,得21a b +=,2a b ∴+的平方根为±1.【点睛】本题考查二元一次方程组的解,理解同解二元一次方程组的含义,将所给方程组重新组合新的方程组,灵活运用加减消元法和代入消元法求方程组的解是解题的关键,也考查了平方根的性质.考点类型四、整体思想、换元思想22.材料:解方程组()1045x y x y y --=⎧⎨--=⎩时,可由①得1x y -=③,然后再将③代入②得415y ⨯-=,求得1y =-,从而进一步求得01x y =⎧⎨=-⎩这种方法被称为“整体代入法”请用这样的方法解方程组()()423324x y x y x y -=⎧⎨--=⎩【答案】7656x y ⎧=⎪⎪⎨⎪=⎪⎩【分析】观察方程组的特点,把2x y -看作一个整体,得到322x y -=,将之代入②,进行消元,得到33422x ⎛⎫+= ⎪⎝⎭,解得76x =,进一步解得56y =,从而得解.【详解】解:()()423324x y x y x y -=⎧⎪⎨--=⎪⎩①②由①得322x y -=③,把③代入②得33422x ⎛⎫+⨯= ⎪⎝⎭,解得76x =,把76x =代入③,得73262y ⨯-=,解得56y =,故原方程组的解为7656x y ⎧=⎪⎪⎨⎪=⎪⎩.【点睛】本题考查了二元一次方程组的特殊解法:整体代入法.解方程(组)要根据方程组的特点灵活运用选择合适的解法.23.阅读材料在解方程组253 4115 x y x y +=⎧⎨+=⎩①②时,明明采用了一种“整体代换”的解法.解:将方程②变形:4x +10y +y =5,即2(2x +5y )+y =5③;把方程①代入③得2×3+y =5,∴y =﹣1,把y =﹣1代入①,得x =4,∴方程组的解为41x y =⎧⎨=-⎩.请你解决以下问题;模仿明明的“整体代换”法解方程组436 8718 x y x y -=⎧⎨-=⎩①②.【答案】36x y =-⎧⎨=-⎩【分析】将方程②变形为()24318x y y --=,再将436x y -=整体代入即可求方程组.【详解】解:4368718x yx y-=⎧⎨-=⎩①②中将②变形,得()24318x y y--=③,将①代入③得,2×6﹣y=18,∴y=﹣6,将y=﹣6代入①得,x=﹣3,∴方程组的解为36 xy=-⎧⎨=-⎩.【点睛】本题考查了整体代换法解二元一次方程组的解法,解题的关键是读懂题意,明确整体思想.24.阅读下列材料:小明同学遇到下列问题:解方程组23237432323832x y x yx y x y+-⎧+=⎪⎪⎨+-⎪+=⎪⎩小明发现如果用代入消元法或加减消元法求解,运算量比较大,容易出错.如果把方程组中的(2x+3y)看成一个整体,把(2x﹣3y)看成一个整体,通过换元,可以解决问题.以下是他的解题过程:令m=2x+3y,n=2x﹣3y.原方程组化为743832m nm n⎧+=⎪⎪⎨⎪+=⎪⎩,解的6024mn=⎧⎨=-⎩,把6024mn=⎧⎨=-⎩代入m=2x+3y,n=2x﹣3y,得23602324x yx y+=⎧⎨-=-⎩解得914xy=⎧⎨=⎩所以,原方程组的解为914xy=⎧⎨=⎩.请你参考小明同学的做法解方程组:(1)3 6101 610x y x yx y x y+-⎧+=⎪⎪⎨+-⎪-=-⎪⎩;(2)52113213x y x y⎧+=⎪⎪⎨⎪-=⎪⎩.【答案】(1)137x y =⎧⎨=-⎩;(2)1312x y ⎧=⎪⎪⎨⎪=-⎪⎩【分析】认真理解题目中给定的整体代换思路,按照所给的方法求出方程组的解即可.【详解】解:(1)令6x y m +=,10x y n -=,原方程组化为31m n m n +=⎧⎨-=-⎩,解得:12m n =⎧⎨=⎩,∴16210x y x y +⎧=⎪⎪⎨-⎪=⎪⎩,解得:137x y =⎧⎨=-⎩.∴原方程组的解为137x y =⎧⎨=-⎩.(2)令1m x =,1n y=,原方程组可化为:52113213m n m n +=⎧⎨-=⎩,解得:32m n =⎧⎨=-⎩,∴1312x y ⎧=⎪⎪⎨⎪=-⎪⎩,经检验,1312x y ⎧=⎪⎪⎨⎪=-⎪⎩是原方程的解.∴原方程组的解为1312x y ⎧=⎪⎪⎨⎪=-⎪⎩.【点睛】本题考查了解二元一次方程组,整体代换是解题的关键.考点类型五、新定义风向25.在平面直角坐标系中,已知点(),A x y ,点()2,2B x my mx y --(其中m 为常数,且0m ≠),则称B 是点A 的“m 系置换点”.例如:点()1,2A 的“3系置换点”B 的坐标为()1232,2312-⨯⨯⨯⨯-,即()11,4B -.(1)点(2,0)的“2系置换点”的坐标为________;(2)若点A 的“3系置换点”B 的坐标是(-4,11),求点A 的坐标.(3)若点(),0A x (其中0x ≠),点A 的“m 系置换点”为点B ,且2AB OA =,求m 的值;【答案】(1)()28,;(2)()21,;(3)1m =±.【分析】(1)根据题中新定义直接将m 的值代入即可得出答案;(2)根据题中新定义列出关于x 、y 的二元一次方程组求解即可得出答案;(3)根据题中新定义可得出点B 的坐标,再根据2AB OA =列方程求解即可得出答案.【详解】解:(1)点(2,0)的“2系置换点”的坐标为()22202220-⨯⨯⨯⨯-,,即()28,;(2)由题意得:2342311x y x y -⨯⨯=-⎧⎨⨯⨯-=⎩解得:21x y =⎧⎨=⎩∴点A 的坐标为:()21,;(3) (),0A x ∴点()2,2B x my mx y --为()20,20x m mx -⨯-即点B 坐标为(),2x mx ∴2AB mx =,OA x= 2AB OA =22mx x∴= m 为常数,且0m ≠∴1m =±.【点睛】本题考查了二元一次方程组的解法、绝对值方程,理解“m 系置换点”的定义并能运用是本题的关键.26.对x ,y 定义一种新的运算A ,规定:()()(),ax by x y A x y ay bx x y ⎧+≥⎪=⎨+<⎪⎩(其中0ab ≠).(1)若已知1a =,2b =-,则()4,3A =_________.(2)已知()1,13A =,()1,20A -=.求a ,b 的值;(3)在(2)问的基础上,若关于正数p 的不等式组()()3,21413,2A p p A p p m ⎧->⎪⎨---≥⎪⎩恰好有2个整数解,求m 的取值范围.【答案】(1)2-;(2)12a b =⎧⎨=⎩;(3)2618m -<-≤【分析】(1)根据新定义就是即可;(2)根据题中的新定义列出方程组,求出方程组的解即可得到a 与b 的值;(3)由(2)化简得A (x ,y )的关系式,先判断括号内数的大小,再转化成不等式求解即可.【详解】解:(1)根据题中的新定义得:1×4+3×(-2)=-2,故答案为-2;(2)根据题中的新定义得:320a b a b +=⎧⎨-=⎩,解得:12a b =⎧⎨=⎩;(3)由(2)化简得:A (x ,y )=()()22x y x y y x x y ⎧+≥⎪⎨+<⎪⎩,∴在关于正数p 的不等式组()()3214132A p p A p p m ⎧->⎪⎨---≥⎪⎩,,中,∴A (3p ,2p -1)=7p -2>4,A (-1-3p ,-2p )=-2p +2(-1-3p )=-8p -2≥m ,∴p >67,p ≤m 28+-∵恰好有2个整数解,∴2个整数解为1,2.∴2≤m28+-<3,∴-26<m≤-18.【点睛】本题主要考查新定义的运算,解决本题的关键是要按照定义式子中列出算式进行解方程和不等式组.。
掌握带有参数的二元一次方程组的解法
掌握带有参数的二元一次方程组的解法带有参数的二元一次方程组是指方程组中含有参数的二元一次方程。
解决这类方程组的关键在于求出参数的取值范围,并找到满足方程组的解。
下面将详细介绍带有参数的二元一次方程组的解法。
一、带有参数的二元一次方程组的表示形式带有参数的二元一次方程组一般可以表示为:方程组1:$a_1x + b_1y = c_1$$a_2x + b_2y = c_2$其中,$a_1, b_1, c_1, a_2, b_2, c_2$为已知系数,$x, y$为未知数。
二、参数的取值范围为了求解方程组,首先需要确定参数的取值范围。
通常可以通过观察方程来判断参数取值的范围。
例如,如果方程组中含有分母,并要求分母不等于零,那么就需要确定参数不能为使分母为零的值。
三、带有参数的二元一次方程组的解法带有参数的二元一次方程组的解法可以分为以下几种情况:情况一:参数取某个特定值当参数取某个特定值时,方程组就变成了具有确定解的普通二元一次方程组。
根据二元一次方程的解法,解出该方程组,得到解的具体数值。
情况二:参数存在范围当参数存在范围时,需要根据参数的取值范围进行分类讨论。
具体步骤如下:1. 将方程组化简为标准形式,即求出每个方程的标准形式表达式;2. 根据参数的取值范围,将方程组分为不同的情况;3. 分别针对每种情况,解决方程组,并得到解的范围或具体解。
情况三:参数无限制当参数没有明确的取值范围时,需要利用一些性质和技巧,通过代数运算推导出解的性质。
常用的技巧包括代入法、消元法、矩阵法等。
根据具体问题和方程组的特点,选择合适的方法求解。
总之,掌握带有参数的二元一次方程组的解法,首先要明确参数的取值范围,然后根据具体情况选择合适的解法进行求解。
通过逐步分析和计算,可以得出解的范围或具体解。
在实际问题中,带有参数的二元一次方程组的解法能够帮助我们解决更为复杂的数学和实际应用问题。
二元一次方程组,掌握下面四种方法,类似题目解答无困难.doc
二元一次方程组,掌握下面四种方法,类似题目解答无困难二元一次方程组的解:使二元一次方程组的两个方程都成立的一对未知数的值,叫做方程组的解,即其解是一对数。
一般地,使二元一次方程组的两个方程左、右两边的值都相等的两个未知数的值,叫做二元一次方程组的解。
求方程组的解的过程,叫做解方程组。
一般来说,一个二元一次方程有无数个解,而二元一次方程组的解有以下三种情况,下面就为大家说说:1、有一组解。
如方程组:x+y=5①6x+13y=89②x=-24/7y=59/7 为方程组的解2、有无数组解。
如方程组:x+y=6①2x+2y=12②因为这两个方程实际上是一个方程(亦称作“方程有两个相等的实数根”),所以此类方程组有无数组解。
3、无解。
如方程组:x+y=4①2x+2y=10②,因为方程②化简后为x+y=5这与方程①相矛盾,所以此类方程组无解。
可以通过系数之比来判断二元一次方程组的解的情况,如下列关于x,y的二元一次方程组:ax+by=cdx+ey=f当a/d≠b/e 时,该方程组有一组解。
当a/d=b/e=c/f 时,该方程组有无数组解。
当a/d=b/e≠c/f 时,该方程组无解。
下面为大家介绍二元一次方程组的解法:解方程的依据—等式性质1.a=b←→a+c=b+c2.a=b←→ac=bc (c0)一、消元法1)代入消元法用代入消元法的一般步骤是:①选一个系数比较简单的方程进行变形,变成y = ax +b 或x = ay + b的形式;②将y = ax + b 或x = ay + b代入另一个方程,消去一个未知数,从而将另一个方程变成一元一次方程;③解这个一元一次方程,求出x 或y 值;④将已求出的x 或y 值代入方程组中的任意一个方程(y = ax +b 或x = ay + b),求出另一个未知数;⑤把求得的两个未知数的值用大括号联立起来,这就是二元一次方程的解。
例:解方程组:x+y=5①6x+13y=89②解:由①得x=5-y③把③代入②,得6(5-y)+13y=89即y=59/7把y=59/7代入③,得x=5-59/7即x=-24/7∴x=-24/7,y=59/7 为方程组的解我们把这种通过“代入”消去一个未知数,从而求出方程组的解的方法叫做代入消元法,简称代入法。
七年级下-二元一次方程组的定义及解法
二元一次方程组的定义及解法知识集结知识元二元一次方程(组)的定义知识讲解1. 二元一次方程的定义:含有两个未知数,且含有未知数的项的次数为1的整式方程叫二元一次方程。
所以满足三个条件:①方程中有且只有两个未知数;②方程中含有未知数的项的次数为1;③方程为整式方程,就是二元一次方程。
注意:主要考查未知数的项的次数为1,方程必须为整式,不能为分式。
例:x=2y.2.二元一次方程组的定义:由几个一次方程组成并且含有两个未知数的方程组,叫二元一次方程组。
注意三条:①方程组中有且只有两个未知数。
②方程组中含有未知数的项的次数为1。
③方程组中每个方程均为整式方程。
注意:二元一次方程组不一定由两个二元一次方程合在一起:①方程可以超过两个;②有的方程可以只有一元。
例题精讲二元一次方程(组)的定义例1.下列方程中,是二元一次方程的是().A.8x2+1=y B.y=8x+1C.y=D.xy=1例2.下列方程组中,是二元一次方程组的是().C.D.A.B.例3.有下列方程组:(1)(2)(3)(4),其中说法正确的是().A.只有(1)、(3)是二元一次方程组B.只有(3)、(4)是二元一次方程组C.只有(4)是二元一次方程组D.只有(2)不是二元一次方程组根据定义求字母的值知识讲解含有参数的二元一次方程组,根据二元一次方程的定义:1.二元的系数不为零。
2.未知数的次数为1。
注意:出现在选择填空题时,可以不用解出方程,可以直接将m,n的值代入验证即可。
例题精讲根据定义求字母的值例1.已知3 =y是二元一次方程,那么k的值是().A.2B.3C.1D.0例2.若﹣8 =10是关于x,y的二元一次方程,则m+n=.例3.'若(a-3)x+=9是关于x,y的二元一次方程,求a的值。
'由实际问题抽象出二元一次方程组知识讲解分析实际问题,找出等量关系,列出实际问题.例题精讲由实际问题抽象出二元一次方程组例1.4辆板车和5辆卡车一次能运27吨货,10辆板车和3车卡车一次能运货20吨,设每辆板车每次可运x吨货,每辆卡车每次能运y吨货,则可列方程组().A.B.C.D.例2.元旦期间,某服装商场按标价打折销售,小王去该商场买了两件衣服,第一件打6折,第二件打5折,共记230元,付款后,收银员发现两件衣服的标价牌换错了,又找给小王20元,请问两件衣服的原标价各是多少?解:设第一件衣服的原标价为x元,第二件衣服的原标价为y元;由题意可得方程组__________。
二元一次方程的解法(代入消元法+加减消元法)
二元一次方程的解法(代入消元法+加减消元法)二元一次方程的解法有哪些1、代入消元法通过代入消去一个未知数,将方程组转化为一个一元一次方程来解,这种解法叫做代入消元法。
求解步骤:1) 从方程组中选取一个系数比较简单的方程,把其中的某一个未知数用含另一个未知数的式子表示出来;2) 把1)中所得的新方程代入另一个方程,消去一个未知数;3) 解所得到的一元一次方程,求得一个未知数的值4) 把所求得的一个未知数的值代入1)中求得的方程,求出另一个未知数的值,从而确定方程组的解。
2、加减消元法两个二元一次方程中同一未知数的系数相反或相等时,把这两个方程的两边分别相加减,就能消去这个未知数,得到一个一元一次方程,这种求解方法叫做加减消元法。
求解步骤:1) 方程组的两个方程中,如果同一个未知数的系数既不互为相反数,又不相等,就用适当的整数乘方程两边,使相乘后一个未知数的系数与另一方程中该未知数的系数互为相反数或相等;2) 把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;3) 解这个一元一次方程;4) 将求出的未知数的值代入原方程组中的任意一个方程中,求出另一个未知数的值,从而得到方程组的解。
二元一次方程的定义是什么二元一次方程的定义为:如果一个方程含有两个未知数,并且所含未知项都为1次方,那么这个整式方程就叫做二元一次方程,有无穷个解,若加条件限定有有限个解。
二元一次方程组,则一般有一个解,有时没有解,有时有无数个解。
如一次函数中的平行。
二元一次方程的一般形式:ax+by+c=0其中a、b 不为零。
这就是二元一次方程的定义。
二元一次方程求根公式:ax^2+bx+c=0。
含有两个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程。
所有二元一次方程都可化为ax+by+c=0(a、b≠0)的一般式与ax+by=c(a、b≠0)的标准式,否则不为二元一次方程。
二元一次方程的实际应用二元一次方程组实际应用题中行程问题的种类较多,比如相遇问题、追及问题、流水行船问题、顺风逆风问题、火车过桥问题等,解这类问题抓住路程、时间、速度三者之间的关系:路程=速度×时间。
人教版初中数学中考复习 一轮复习-一次方程及其解法(含参)(2)
x y 3的解,求a的值。
考点二:二元一次方程含参问题
已知方程组2mxx5nyy246, 与n3xx m5 yy
8 ,
36
有相同的解,求m,
n的值。
考点二:二元一次方程含参问题
类型二:解的性质
1.如果关于x、y的二元一次方程组2ax3x
2y 5 (a 2) y
的x与y的值相等, 4
那么a
D.无法判断
追问:m的值是多少?
考点三:二元一次方程与一次函数
2.在二元一次方程组
2x 3y 1 0 6x my 3 0
中,当m=
无数组解。
追问:请你讨论该方程解的情况。
时,这个方程有
考点三:二元一次方程与一次函数
3.已知方程组
2x ky 4
x
2
y
0
有正数解,则k的取值范围是
。
考点三:二元一次方程与一次函数
练习1.
已知xy
21是二元一次方程组mmxx nnyy
7的解,则m 1
n
考点二:二元一次方程含参问题
练习2.
已知xy
25和
x 1 是方程ax y 10
by
15的两个解,则a
考点二:二元一次方程含参问题
类型二:方程同解
1.已知关于x、y的二元一次方程组4xxayy
1 的解也是二元一次方程 3
x2 y 1
考点一:二元一次方程(组)及其解法
例2. 用代入法解方程组2xxyy1106
① ②
解:由①得x=10-y ③ 把③代入②,得2(10-y)+y=16 y=4 把y=4代入③,得x=6
所以这个方程的解为 xy
6 4
人教版含参数的二元一次方程组的解法
例2:
{ 关于x、y的方程组
4x+y=5 3x-2y=1
的解和
{ mx+ny=3 mx-ny=1
的解相同,求m、n.
变式:
{ 3x-5y=16 nx+my=-8
{ 2x+5y=-6 mx-ny=-4
例3:
{ 甲、乙两人同时解方程组
mx+ny=1 mx-ny=5
x+2y=3
其中x+by=2 cx-7y=8 时,
{ 本应解出 x=3 y=-2
,由于看错了系数c,从而
{ 得到解
x=-2 y=2
,试求a+b+c.
专题训练
含参数的二元一次方程组的解 法
参数:在方程中除了未知数以外的其他字母
新课导入
{ 关于x、y的方程组
x=m y=3m+2
其中x+y=10,求m的值.
例1:
{ 关于x、y的方程组
2x+3y=3m x+2y=3
其中x+y=2,求m的值.
练习:
{ x+2y=k
关于x、y的方程组 3x+5y=k-1
由于
{x=3
甲看错了方程①中的m,得到的解是, y=2
{x=2
乙看错了方程②的n,得到的解是 y=1 ,
试求正确m、n的值。
小结:通过本节课你有什么收获?
作业:
{ 1 关于x、y的方程组
x+2y=4k 2x+y=2k+1
其中x-y=13,求k的值.
{ 2 关于x、y的方组
2mx-y=4m +3
3.3(2)二元一次方程组的解法(加减消元)及典型例题
m = 1 +2n
1 2 2 5
所以原方程组的解:
m =5 n=2
即m 的值是5,n 的值是4.
7、如果∣y + 3x - 2∣+∣5x + 2y -2∣= 0,求 x 、y 的值. 解:由题意知, y + 3x – 2 = 0 ① 5x + 2y – 2 = 0 ② 由①得:y = 2 – 3x ③ 把③代入② 得: 5x + 2(2 – 3x)- 2 = 0 5x + 4 – 6x – 2 = 0 5x – 6x = 2 - 4 -x = -2 即x 的值是2,y 的值是-4. 把x = 2 代入③,得: y= 2 - 3×2 y= -4 所以原方程组的解: ∴ x=2 y = -4
1 3y 2 3y 6
把(3)代人(2)得
5
解法二:由(1)得:3 y=1-2x (3) 把(3)代人(2)得5x-(1-2x)=6 解法三:(1)+(2)得 : 7x=7 x=1
y 1 3
把x=1代入(1)得 2+3y=1
x 1 1 y 3
试 一 试 , 有 谁 能 用 三 种 方 法 解 ?
有相
这样可以通过第一个方程组求出x和y的值,再将 这两个值代入第二个方程,求关于a和b的二元 一次方程组。
9、 关于x、y的方程组 解满足3x+2y=19,求原方程组的解。
解:
的
分别把m=1代入到 x=7m、y=-m中, 得: x=7 ,y=-1 ∴原方程组的解为:
①+②,得: 2x=14m x=7m
6、若方程5x 求m 、n 的值.
m-2n+4y 3n-m =
专训4 二元一次方程组的五种特殊解法
2.
解方程组:ìïïíïïî
2 2
015 016
x+2 x+2
016 017
y=2 y=2
017,① 018.②
解:②-①,得x+y=1.③
由③,得x=1-y.④
把④代入方程①,得2 015(1-y)+2 016y=2 017.
解这个方程,得y=2.
把y=2代入方程③,得x=-1.
所以原方程组的解为
- 24 y2 6
=
-
44 y2
=
. 11
本题不能直接求出x,y,z的值,这时可以把其 中一个未知数当成一个常数,然后用含这个未知 数的式子去表示另外两个未知数.
1. 用代入法解方程组:
ìïïïíïïïî
x + y =0,① 34 (2 x+y)-(3 2
y-x)=62.②
解:由①,得 x = 3
y 4.
设 x = - y =k,则x=3k,y=-4k. 34
将x=3k,y=-4k代入方程②,
得2(3k-4k)-3[2×(-4k)-3k]=62.
解这个方程,得k=2.所以x=6,y=-8.
ìïïíïïî
x=-1, y=2.
观察方程①和②的系数特点,数值都比较大,如 果用常规的代入法或加减法来解,不仅计算量大, 而且容易出现计算错误.根据方程组中的两个未 知数的对应系数之差的绝对值相等,先化简,再 用代入法或加减法求解,更为简便.
类型2 方程组中两未知数系数之和的绝对值相等
3.
解方程组:ìïïíïïî
018的值.
解:依题意有(1)
ìïïíïïî
3 x-y=5, 4x-7 y=1,(2)
ìïïíïïî
ax-by=4, ax+by=16.
7.2.2二元一次方程组的解法(2)
解:由(1)得2x﹣3y=2 (3), 把(3)代入(2),得 y=4 把y=4代入(3)得: x=7
例4.
2x 7 x
6y 2 18 y 1
① ②
解: ①×3得 6x+18y=-6 ③
② - ③得: x=5 把x=5代入①得:
2×5+6y=-2
y=-2
∴
x
y
5 2
特点: 方程组中没有未知数的系数的 绝对值相等
办法:选一个未知数,用方程变形 的规则⑵,变其系数为绝对 值相等,从而为加减消元法 解方程组创造条件.
87y
3( 2 ) -8y= 10
把 y 4 代入(3)得:
5
x
8
7
4 5
8
28 5
12 5
6
2
2 25
24+21y-16y=20
5y=-4
y4 5
x6
∴
5
y4
5
选一个方程变形为y=?x或x=?y,代入另一个方程,实现消元,进而求得二 元一次方程组的解的方法叫代入消元法, 简称代入法
用加减法解方程组
(5)写解 写出方程组的解
解二元一次方程组的方法选择
x 2y 0 3x 4y 6
5x 3y 2 2x 3y 10
代入法还是加减法
选择的标准: 若有未知数的系数为±1, 用代入法. 否则用加减法.
⑴ 中x的系数为1
例1. 解方程组 x-y=3 3x-8y=14
解:将方程⑴变形,得
选择用代入法.
ቤተ መጻሕፍቲ ባይዱ
6
2
2 25
24+21y-16y=20
5y=-4
y4 5
(完整版)二元一次方程组的常见解法
二元一次方程组的常见解法二元一次方程组中含有两个未知数,所以解二元一次方程组的主要思路就是消元,即消去一个未知数,使其转化为一元一次方程,这样就可以先解出一个未知数,然后设法求另一个未知数.常见的消元方法有两种:代入消元法和加减消元法.一、代入法即由二元一次方程中的一个方程变形,将一个未知数用含另一个未知数的式子表示出来,再代入另一个方程中,实现消元,进而求解.一般情况下用代入法解方程组时,选择变形的方程要尽可能的简单,表示的代数式也要尽可能的简单,以利于计算.2x+5y=-21①例1、解方程组x+3y=8 ②解由②得:x=8-3y ③把③代入①得2(8-3y)+5y=-21解得:y=37把y=37代入③得:x=8-3×37=-103x=-103所以这个方程组的解是y=37二、整体代入法当方程组中的两个方程存在整数倍数关系时,用代入法解可将整数倍数关系数中较小的一个变形,用另一个字母代数式表示它后代入另一个方程.3x-4y=9①例2、解方程组9x-10y=3②解由①得3x=4y+9 ③把③代入②得3(4y+9)-10y=3解得y=-12把y=-12代入③得3x=4×(-12)+9解得x=-13x=-13所以方程组的解是y=-12三、加减消元法即方程组中两个二元一次方程中的同一个未知数的系数相等时,让两个方程相减.如果方程组中两个二元一次方程中的同一个未知数的系数互为相反数时则让两个方程相减.消去一个未知数,得到一个一元一次方程,这种方法叫加减消元法.2x+3y=14 ①例3、解方程组4x-5y=6②解由①×2得4x+6y=28 ③③-②得:11y=22解得y=2把y=2代入②得4x-5×2=6解得x=4x=4所以方程组的解为y=2四、整体运用加减法即当两个二元一次方程中的某一部分完全相同或符号相反时,可以把这两个方程两边相加或相减,把相同的部分整体消去.3(x+2)+(y-1)=4 ①例4 解方程组3(x+2)+(1-y)=2 ②解①-②得(y-1)-(1-y)=4-2整理得2y=4解得y=2把y=2 代入①得3(x+2)+(2-1)=4整理得3x+7=4解得x=-1x=-1所以方程组的解为y=2解二元一次方程组的主要方法有代入法和消元法,因为方程的形式是多种多样的.所以在解方程中一定要仔细观察方程中各部分以及各个未知数和它们的系数之间的关系的找到最简便的解题方法.。
含参数的二元一次方程组的解法
1 /2 含参数二元一次方程组解法二元一次方程组是方程组基础,是学习一次函数基础,是中考和竞赛常见题目,所以这一部分知识非常重要。
现选取几道题略作讲解,供同学们参考。
一、两个二元一次方程组有相同解,求参数值。
例:已知方程 及 有相同解,则a 、b 值为 。
略解:由(1)和(3)组成方程组 解是 把它代入(2)得 a=14;把它代入(4)得b=2。
方法:是找每个方程组中都是已知数方程组成新方程组,得到解,即是相同解,再代入另一个方程,从而求出参数解。
二、根据方程组解性质,求参数值。
例2:m 取什么整数时,方程组解是正整数?略解:由②得x=3y2×3y-my=6 y= 因为y 是正整数,x 也是正整数所以6-m 值为1、2、3、6;m 值为0、3、4、5。
方法:是把参数当作已知数求出方程解,再根据已知条件求出参数值。
三、由方程组错解问题,示参数值。
例3:解方程组 时,本应解出 由于看错了系数c,从而得到解 试求a+b+c 值。
方法:是正确解代入任何一个方程当中都对,再把看错解代入没有看错方程中去从而,求出参数值。
8273=-⨯-⨯)(c 2-=c把和代入到ax+by=2中,得到一个关于a 、b 方程组。
,解得所以7254=-+=++c b a四、根据所给不定方程组,求比值。
例4:求适合方程组 求 值。
略解:把z 看作已知数。
解之得所以 132528528==--=+-++z z z y x z y x 方法:把某个未知数,看做已知数,其它未知数都用这个字母表示,代入所求关(1) (2)(3)(4) ① ②2 / 2 系式,从而达到求解目。
五、据所给作件,求方程组解。
例5:已知解方程组略解:因为所以 03=-b 2=a 3=b 原方程组 解得 方法:根据所给予条件,求得参数值,从而求出参数方程组解。
人教版七年级下册第八章含参二元一次方程组解法、同解、错解问题专题
含参二元一次方程组解法、同解、错解问题含参问题类型类型题1:含参问题构建二元一次方程组解方程例题1.若0)532(54=-++-+n m n m ,求()2n m -的值。
2.已知方程3)5()2()24(12=+----b a y b x a 是关于x、y的二元一次方程,求a与b的值。
3.已知与互为相反数,则=______,=________.4.已知2a y+5b 3x 与b 2-4y a 2x 是同类项,那么x,y的值是().学生/课程年级学科授课教师日期时段核心内容含参二元一次方程组解法、同解、错解问题教学目标1.掌握含参的二元一次方程组的同解、错解的解题方法2.掌握复杂的二元一次方程组的解法2.了解二元一次方程组的解有无数组解、唯一解与无解,会进行简单的求解二元一次方程组的灵活应用针对练习1.若|x-2|+(3y+2x)2=0,则的值是.2.若x a+1y-2b与-x2-b y2的和是单项式,则a、b的值分别的()A.a=2,b=-1B.a=2,b=1C.a=-2,b=1D.a=-2,b=-13.若单项式与是同类项,则,的值分别是多少4..若|x-y-1|+(2x-3y+4)2=0,则x=,y=.5.若是关于,的二元一次方程,则()A.,B.,C.,D.,类型题2:恒成立问题构建二元一次方程组解方程例题1.在方程(x+2y-8)+m(4x+3y-7)=0中,找出一对x,y值,使得m无论取何值,方程恒成立.2.在方程(a+6)x-6+(2a-3)y=0中,找出一对x,y值,使得a无论取何值,方程恒成立.类型题3:(新题型)含有三个未知数的方程组求比例例题1.已知满足方程组,求【学有所获】1)口述:2个未知数需要几个方程,3个未知数需要几个方程,n个未知数需要几个方程2)整体思想一般运用在哪些方面,试着自己归类总结。
针对练习1.已知4x-3y-6z=0,x+2y-7z=0,且xyz≠0.(1)请用含z的代数式表示x、y,并求出x:y:z的值(2)你能求出的值。
初中数学 二元一次方程组及其解法
二元一次方程组及其解法一、二元一次方程的概念1.二元一次方程:含有两个未知数,并且含未知数的项的最高次数是1的整式方程,叫做二元一次方程.二元一次方程的一般形式为:ax by c ++=0(,)a b ≠0≠0.【例】x y +2=5,x y 2=3,x y 3=-2,x y 2+3+6=0等都是二元一次方程. 2.二元一次方程的判定: 必须同时满足四个条件:(1)含有两个未知数——“二元”;(2)未知数项的最高次数为1——“一次”; (3)方程两边都是整式——整式方程; (4)未知数的系数不能为0.【例】x y +=1,()y x 1=+82,x y 3-1=2-5,x y 4=3等都是二元一次方程;y x 4+=5,x y z 2+3=,x y 21+=02,x x 2+3=-5等都不是二元一次方程. 3.二元一次方程的解:使二元一次方程左、右两边的值相等的两个未知数的值,叫做二元一次方程的解.【注】任何一个二元一次方程都有无数个解.【例】x y =1⎧⎨=2⎩和x y =3⎧⎨=1⎩是方程x y +2=5的解,可以看出x y +2=5有无数个解.二、二元一次方程组的概念和解法1.二元一次方程组:由几个一次方程组成并含有两个未知数的方程组,叫做二元一次方程组.【注意】(1)二元一次方程组不一定由几个二元一次方程合在一起.(2)方程可以超过两个.【例】x x y 2=6⎧⎨3-=1⎩,x x y 2=6⎧⎨3-=1⎩,x y x y =2⎧⎪=3⎨⎪+=4⎩等都是二元一次方程组.2.二元一次方程组的解:使二元一次方程组的几个方程左、右两边都相等的两个未知数的值(即几个方程的公共解),叫做二元一次方程组的解.【例】x x y 2=6⎧⎨3-=1⎩的解是x y =3⎧⎨=8⎩.3.二元一次方程组解的情况:一般情况下,一个二元一次方程组只有唯一一组解;但在特殊情况下,二元一次方程组也可能无解或有无数组解.【例】方程组x y x y +=1⎧⎨2+2=2⎩有无数组解,方程组x y x y +=2⎧⎨2+2=2⎩和x y x y =2⎧⎪=3⎨⎪+=4⎩无解.4.二元一次方程组的基本解法(1)代入消元法:①从方程组中选一个系数比较简单的方程,将该方程中的一个未知数用含另一未知数的式子表示出来,例如y ax b =+;②把y ax b =+代入另一个方程中,消去y ,得到一个关于x 的一元一次方程;③解这个一元一次方程,求出x 的值; ④把求得的x 的值代回y ax b =+中,求出y 的值,从而得出方程组的解;⑤把这个方程组的解写成x my n =⎧⎨=⎩的形式.解方程组:19,x y x y 3+4=⎧⎨-=4.⎩解:19,x y x y 3+4=⎧⎨-=4.⎩①②由②,得x y =4+,③ 把③代入①,()y y 34++4=19, ∴y y 12+3+4=19,得y =1. 把y =1代入③,得x =4+1=5.∴方程组的解为5x y =⎧⎨=1.⎩,(2)加减消元法:①把一个方程或者两个方程的两边都乘以适当的数,使两个方程里的某一个未知数的系数相反或相等;②把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;③解这个一元一次方程,求出一个未知数的值;④把求得的未知数的值代入原方程组中,求出另一个未知数的值,从而得出方程组的解;⑤把这个方程组的解写成x my n=⎧⎨=⎩的形式.解方程组:x y x y +2=1⎧⎨3-2=11⎩解:x y x y +2=1⎧⎨3-2=11⎩①②①+②,得x 4=12,解得:x =3.将x =3代入①,得y 3+2=1, 解得y =-1.∴方程组的解是x y =3⎧⎨=-1⎩.5.解方程组的三大解题思想(1)消元思想;(2)整体思想;(3)换元思想.(1)在下列方程中,①x 4+5=1;②x y 3-2=1;③x y1+=1;④xy y +=14;⑤x y =;⑥()y x 1=+82,其中是二元一次方程的是__________.(填序号)(2)已知方程||n m x y m -1-1+2=是关于x 、y 的二元一次方程,则m =_____,n =______.(3)若已知方程()()()k x k x k y k 22-1++1+-7=+2,当k =______时,方程为一元一次方程,当k =_______时,方程为二元一次方程.【解析】(1)②⑤⑥;(2)m =0或2,n =2.(3)-1,1.模块一 二元一次方程的概念例题1(1)已知x y =1⎧⎨=-1⎩是方程x ay 2-=3的一个解,那么a 的值是_________.(2)若x ky k =2⎧⎨=-3⎩是二元一次方程x y 2-=14的解,则k 的值是_________.【解析】(1)1;(2)2.(1)下列方程组中,是二元一次方程组的是( )A .x y y 2+=1⎧⎪1⎨=-1⎪⎩ B .x xy 2=1⎧⎨=-1⎩ C .x y y z 2+=1⎧⎨-=-1⎩D .x y =1⎧⎨=-1⎩(2)已知x y =-4⎧⎨=3⎩是方程组ax y x by +=-1⎧⎨-=2⎩的解,则()a b 6+=______.(3)已知x y =2⎧⎨=1⎩是二元一次方程组ax by bx ay +=1⎧⎨+=2⎩的解,则a b -的值为______.【解析】(1)D ;(2)由题意得a =1,b =-2,a b +=1,∴()a b 6+=1.(3)把解代入方程组得a b b a 2+=1⎧⎨2+=2⎩①②,①-②得a b -=-1.(1)用代入消元法解方程组:x y x y 3+4=2⎧⎨2-=5⎩.(2)用加减消元法解方程组:x y x y 4+3=5⎧⎨-2=4⎩.例题2模块二二元一次方程组的概念和解法例题3例题4【解析】(1)由题意得,x yx y3+4=2⎧⎨2-=5⎩①②由②,得y x=2-5,③把③代入①,得()x x3+42-5=2,∴x x3+8-20=2,得x11=22,解得x=2.把x=2代入③,得y=-1.∴方程组的解为xy=2,⎧⎨=-1.⎩(2)由题意得,x yx y4+3=5⎧⎨-2=4⎩①②①×2+②×3,得x x8+3=10+12,∴x11=22,解得x=2.将x=2代入①,得y8+3=5,解得y=-1.∴方程组的解为xy=2,⎧⎨=-1.⎩【提示】展示解二元一次方程组的基本解法.用合适的方法解下列二元一次方程组:(1)()()()x yy x3-1=+5⎧⎨5-1=3+5⎩(2)()()()x yx y+1=5+2⎧⎨32-5-43+4=5⎩(3)()()x y yx y4--1=31--2⎧⎪⎨+=2⎪23⎩(4)m n n mnm+-⎧-=2⎪⎪34⎨⎪4+=14⎪3⎩(5)x yx y3-22-1⎧+=2⎪⎪45⎨3+23+1⎪-=0⎪45⎩(6)...x yx y112⎧+=⎪535⎨⎪05-03=02⎩【解析】(1)由题意得,x yx y3-=8⎧⎨3-5=-20⎩①②①-②,得y4=28,解得y=7.将y=7代入①,得x3-7=8,解得x=5.∴方程组的解为xy=5⎧⎨=7⎩.(2)由题意得,x yx y-5=9⎧⎨-2=6⎩①②②-①,得y3=-3,解得y=-1.将y=-1代入①,得x+5=9,解得x=4.∴方程组的解为xy=4⎧⎨=-1⎩.(3)xy=2⎧⎨=3⎩.(4)mn18⎧=⎪⎪5⎨6⎪=-⎪5⎩.(5)xy=2⎧⎨=3⎩.(6)xy14⎧=⎪⎪17⎨12⎪=⎪17⎩.例题5【提示】练习解二元一次方程组的一般步骤:(1)去分母,去括号,最好转化为各项系数为整数的二元一次方程组; (2)多观察,系数为1±时优先使用代入消元法,其次才是加减消元法.解方程组:(1)x y x y 23+17=63⎧⎨17+23=57⎩(2)x y x y 2011-2013=4023⎧⎨2013-2011=4025⎩【解析】(1)两方程相加,得:x y 40+40=120,即x y +=3 ①两方程相减,得:x y 6-6=6,即x y -=1 ② ①+②得:x 2=4,解得x =2,①-②得:y 2=2,解得y =1,∴方程组的解为:x y =2⎧⎨=1⎩.(2)x y 3⎧=⎪⎪2⎨1⎪=-⎪⎩2.【提示】系数对称的二元一次方程组的特殊解法.(1)若方程组.a b a b 2-3=13⎧⎨3+5=309⎩的解是..a b =83⎧⎨=12⎩,则方程组()()()().x y x y 2+2-3-1=13⎧⎨3+2+5-1=309⎩的解是( )A ...x y =63⎧⎨=22⎩B ...x y =83⎧⎨=12⎩C ...x y =103⎧⎨=22⎩D ...x y =103⎧⎨=02⎩(2)用适当的方法解下列方程组:()()x y x y x y x y 3+-2-=-1⎧⎪⎨+-+=1⎪⎩24.【解析】(1)A .比较两个方程组可知..x a y b +2==83⎧⎨-1==12⎩,解得..x y =63⎧⎨=22⎩.(2)令x y u +=,x y v -=,则u v u v 3-2=-1⎧⎪⎨+=1⎪⎩24,解得u v =1⎧⎨=2⎩,即x y x y +=1⎧⎨-=2⎩,解得x y 3⎧=⎪⎪2⎨1⎪=-⎪⎩2.【提示】整体换元法.例题6例题7解方程组:(1)x y z x y z x y z +-=0⎧⎪2-3+2=5⎨⎪+2+=13⎩ (2)x y z x y z x y z 2+3+=16⎧⎪-+2=-1⎨⎪+2-=5⎩【解析】(1)由题意得,x y z x y z x y z +-=0⎧⎪2-3+2=5⎨⎪+2+=13⎩①②③由①,得y z x =-,④把④代入②和③, 得x z x z 5-=5⎧⎨-+3=13⎩,解得x z =2⎧⎨=5⎩. 把x z =2⎧⎨=5⎩代入④得,y =3.∴方程组的解为x y z =2⎧⎪=3⎨⎪=5⎩.(2)由题意得,x y z x y z x y z 2+3+=16⎧⎪-+2=-1⎨⎪+2-=5⎩①②③③①+得,④x y 3+5=21, 2③②⨯+得,⑤x y 3+3=9,④﹣⑤得y 2=12,y =6,将y =6代入⑤得,x 3=-9,x =-3,将x =-3,y =6代入①得,()z =16-2⨯-3-3⨯6=4, ∴方程组的解为x y z =-3⎧⎪=6⎨⎪=4⎩.【提示】三元一次方程组的基本解法:(1)通过消元把三元一次方程组转化为二元一次方程组; (2)解二元一次方程组.模块三 多元一次方程组的解法例题8(1) x y zx y z ⎧==⎪234⎨⎪5+2-3=8⎩ (2) x y z x y z x y z 2++=2⎧⎪+2+=4⎨⎪++2=6⎩【解析】(1)令x y zk ===234,即x k =2,y k =3,z k =4, 代入②可求得k =2,所以x y z =4⎧⎪=6⎨⎪=8⎩.(2)①+②+③得x y z ++=3,用①、②、③分别减去此式得x y z =-1⎧⎪=1⎨⎪=3⎩.【提示】三元一次方程组的特殊解法:(1)连比设k 型;(2)对称轮换型,整体相加.解方程组:(1)pq p q pq p q1⎧=⎪+5⎪⎨1⎪=⎪-3⎩ (2)xyx y yz y z zx z x ⎧=1⎪+⎪⎪=2⎨+⎪⎪=3⎪+⎩【解析】(1)原方程组可化为p q q p 11⎧+=5⎪⎪⎨11⎪-=3⎪⎩,解得q p 1⎧=4⎪⎪⎨1⎪=1⎪⎩,∴q p 1⎧=⎪4⎨⎪=1⎩.(2)原方程组可化为,解得,∴.【提示】均为可以转化为二元一次方程组或者三元一次方程组的分式方程.11111121113x y y z z x ⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩151217121112x y z ⎧=⎪⎪⎪=⎨⎪⎪=-⎪⎩12512712x y z ⎧=⎪⎪⎪=⎨⎪⎪⎪=-⎩例题9非常挑战(1)已知二元一次方程x y--1=023,下列用含x 的代数式表示y 正确的是( ). A .y x 3=-12 B .y x 3=+12 C .y x 3=-32 D .y x 3=+32(2)下列方程属于二元一次方程的是( )A .x y +=1B .xy +5=4C .y x 23-8=D .x y1+=2(3)已知方程||||()()a b a x b y -1-4-2-+5=3是关于x 、y 的二元一次方程,则a =________,b =__________.【解析】(1)C ;(2)A ;(3)根据题意可得:a -2≠0,b +5≠0,||a -1=1,||b -4=1,所以a =-2,b =5.(1)下列不是二元一次方程组的是( )A .x y =2⎧⎨=-1⎩B .m n n m =2+3⎧⎨3-=4⎩C .x y y z +=2⎧⎨+=3⎩D .(())a a b a b 4+2=5⎧⎨2-+1=2+-3⎩(2)二元一次方程ax by +=6有两组解是x y =2⎧⎨=-2⎩与x y =-1⎧⎨=-8⎩,求a 、b 的值.【解析】(1)C .(2)将两组解分别代入ax by +=6,可得a b a b 2-2=6⎧⎨--8=6⎩,解得a b =2⎧⎨=-1⎩.复习巩固演练1演练2解方程组:(1)m n m n 3+2=2⎧⎨5-4=7⎩(2)()()()()y x x y 3-1=4-4⎧⎨5-1=3+5⎩(3)()()y x x y y x -1⎧-=3⎪2⎨⎪2-+32-=-6⎩ (4)x y x y +1+2⎧=⎪⎪34⎨-3-31⎪-=⎪4312⎩【解析】(1)m n =1⎧⎪⎨1=-⎪⎩2. (2)x y =7⎧⎨=5⎩. (3)x y =2⎧⎨=-1⎩. (4)x y =2⎧⎨=2⎩.解下列方程组:(1)x y x y 21+23=243⎧⎨23+21=241⎩ (2)x y x y 2014+2013=2012⎧⎨2012+2011=2010⎩(3)x y x yx y x y 2+32-3⎧+=7⎪⎪43⎨2+32-3⎪+=8⎪32⎩【解析】(1)x y =5⎧⎨=6⎩.(2)x y =-1⎧⎨=2⎩.(3)设x y a 2+3=,x y b 2-3=,则原方程组可变为,,a ba b ⎧+=7⎪⎪43⎨⎪+=8⎪32⎩整理,得,,a b a b 3+4=84⎧⎨2+3=48⎩解得,.a b =60⎧⎨=-24⎩∴,,x y x y 2+3=60⎧⎨2-3=-24⎩解得,,x y =9⎧⎨=14⎩ ∴原方程组的解为,.x y =9⎧⎨=14⎩演练3演练4解方程组:(1)x z z y x y z -=4⎧⎪-2=-1⎨⎪+-=-1⎩(2)::::::x y z u x y z u =1234⎧⎨9+7+3+2=200⎩(3) x y z y z x z x y +-=11⎧⎪+-=3⎨⎪+-=1⎩(4)mn m n mn m n 1⎧=⎪⎪3+213⎨1⎪=⎪2+312⎩【解析】(1)x y z =-7⎧⎪=-5⎨⎪=-11⎩.(2)设x k =,y k =2,z k =3,u k =4,所以有k k k k 9+14+9+8=200, 即k =5,故x y z u =5⎧⎪=10⎪⎨=15⎪⎪=20⎩.(3)①+②+③得:x y z ++=15,分别去减①、②、③式可得:x y z =6⎧⎪=7⎨⎪=2⎩.(4)m n 1⎧=⎪⎪2⎨1⎪=⎪3⎩.演练5。
二元一次方程组的概念及解法
二元一次方程组的概念及解法二元一次方程组是含有两个未知数,且未知数的指数都是1的方程。
当把两个二元一次方程合在一起时,就组成了一个二元一次方程组。
方程组的解是使得两个方程的未知数相等的值。
公共解是指两个方程的解都相同的值。
例如,在方程组中,是一个二元一次方程组的例子。
另外,已知二元一次方程2x-y=1,当x=2时,y=3;当y=1时,x=3.消元解法是解二元一次方程组的一种方法。
代入消元法是将一个方程中的一个未知数表示为另一个未知数的函数,然后代入另一个方程中进行消元。
加减消元法是将两个方程相加或相减,消去一个未知数,然后解出另一个未知数。
例如,方程2x-y-5=0可以表示为x=(y+5)/2,y=2x-5.另外,方程组可以用消元解法来解,例如,方程组(2x+3y=40.x-y=-5)可以用加减消元法解出x=11,y=6.举例来说,如果有一个两位数,其个位和十位数字之和为11,将其个位数字和十位数字对调后得到的数比原数大63,那么可以用代数式表示原数为(10y+x),对调后的数为(10x+y),则可以列出方程组(10y+x+63=10x+y。
x+y=11)。
解方程组可以得到x=8,y=3,因此原数为83.鸡兔同笼”问题是另一个例子,可以用二元一次方程组表示。
题目中给出了总共30个头和94只脚,因此可以列出方程组(2x+4y=30.2x+2y=94),其中x表示鸡的数量,y表示兔的数量。
解方程组可以得到x=12,y=9,因此鸡的数量为12,兔的数量为9.综上所述,二元一次方程组是含有两个未知数和未知数的指数都是1的方程组。
解二元一次方程组可以使用消元解法,包括代入消元法和加减消元法。
实际问题可以用二元一次方程组来表示,然后解方程组得出答案。
1.在方程y=-3x-2中,若x=2,则y=-8.若y=2,则x=-4.2.若方程2x-y=3写成用含x的式子表示y的形式:y=2x-3;写成用含y的式子表示x的形式:x=(y+3)/2.3.已知43=2x-3y+1,4x-15y-17=0,6x-25y-23=0,则x=3,y=-2.4.二元一次方程3x-my=4和mx+ny=3有一个公共解,则m=-4,n=3.5.已知|a-b+2|+(b-3)^2=1,那么ab=-1.6.对于方程组(1){xy= -10.x+y=-2},是二次方程组;(2){x-y=1.x/y=3/4},是一次方程组;(3){x+y=5.xy=3},是二次方程组;(4){x+y=3.x=2y},是一次方程组。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
含参数的二元一次方程组的解法
二元一次方程组是方程组的基础,是学习一次函数的基础,是中考和竞赛的常见的题目,所以这一部分知识非常重要。
现选取几道题略作讲解,供同学们参考。
一、两个二元一次方程组有相同的解,求参数值。
例:已知方程 与 有相同的解,
则a 、b 的值为 。
二、根据方程组解的性质,求参数的值。
例2:m 取什么整数时,方程组的解是正整数?
三、由方程组的错解问题,示参数的值。
例3:解方程组⎩⎨⎧=-=+872y cx by ax 时,本应解出⎩⎨⎧-==2
3y x 由于看错了系数c,
从而得到解⎩⎨⎧=-=2
2y x 试求a+b+c 的值。
四、根据所给的不定方程组,求比值。
例4:求适合方程组⎩
⎨⎧=++=-+05430432z y x z y x 求 z y x z y x +-++ 的值。
(1) (2) ⎩⎨⎧=+=+4535y ax y x (3) (4) ⎩⎨⎧=+=-1552by x y x ①
② ⎩⎨
⎧=-=-0362y x my x
五、据所给的作件,求方程组的解。
例5:已知 0)3(12
12=-+-b a。