大学物理2-2总复习.
大学物理2考试复习重点(问答题)-图文
大学物理2考试复习重点(问答题)-图文1位移电流的实质是什么?谈谈你对位移电流的理解。
答:位移电流的本质是变化的电场。
Id=SdDdD1dDdD位移电流密度jd===dtdtSdtdt位移电流是电位移通量对时间的变化率。
位移电流只对应于变化的电场,无自由电荷的定向移动,无焦耳热。
在导体、电介质、真空中均存在,只要有变化的电场就有位移电流。
2行波在传播过程中,质元的动能和势能的时间关系式是相同的。
就此谈谈你的理解?答:在介质中任取体积为△V,质量为△m的质元。
当波传播到这个质元时,将具有动能△1△EK=△Ep=A22(V)in2Ek和△Ep。
可以证明2某tu0在波传播的媒质中,任一体积元的动能和势能还有总机械能均随某,t作周期性变化,且变化是同相位的。
体积元在平衡位置时,动能势能和机械能均最大。
体积远的位移最大时,三者均为零。
3什么是波的衍射?举出生活中关于波的衍射的例子。
什么是波的干涉?相干光的获得方法有哪些?答:衍射:当波在传播过程中遇到障碍物时,其传播方向绕过障碍物发生偏折的现象,称为波的衍射。
例如站在高墙后面的人能听到别人说话的声音,隔了山岭或者建筑物能收听无线电广播。
干涉:频率相同的两列波叠加,使某些区域的振动加强,某些区域的振动减弱,而且振动加强的区域和振动减弱的区域相互隔开。
这种现象叫做波的干涉。
产生干涉的一个必要条件是,两列波的频率必须相同并且有固定的相位差。
获得相干光的方法的基本原理是把由光源上同一点发出的光设法一分为二,然后再使这两部分叠加起来。
1分波阵面法(例如杨氏双缝干涉)2分振幅法(例如薄膜干涉)。
4杨氏双缝实验中,屏上的干涉条纹有怎样的特点,明暗条纹的级次和间距由哪些因素决定?答:屏上将出现一系列稳定的明暗相间的条纹。
这些条纹都与狭缝平行,条纹间的距离彼此相等。
如果,P点处为明纹,即各级明纹中心离O 点的距离为某=kDdk=0,1,2,3,相应于k=0的称为零级明纹或中央明纹。
大学物理:2-2 动量守恒定律
y P
rP
F
O
地球
r
C
Q
rQ x
7
3、保守力 (conservation force)
物体在某种力的作用下, 沿任意闭合路径绕行一周所 作的功恒等于零,即
Q
CD
E
F
P
F dl 0
具有这种特性的力,称为保守力;不具有这种特 性的力称为非保守力。
8
四、 机械能守恒定律
1、功能原理 由 n 个相互作用着的质点所组成的质点系。系统中
Q
A
Q Q
AaPdFv,d
r
P
dr
ma d r
vdt
F
Q
m
d
vdtv
d
t
P dt
Q P
mv
d
v
1 2
mvQ2
1 2
P
mvP2
vdPr
质点的动能(kinetic energy)定义:质点的质量与
其运动速率平方的乘积的一半。
用Ek表示,即
Ek
1 2
mv2
5
所以有 A Ek Q Ek P 动能定理:作用于质点的合力所作的功,等于质点
0
mivi 恒矢量
i 1
在外力的矢量和为零的情况下,质点系的总动量
不随时间变化——动量守恒定律。
其分量式
n
mi vix 恒量
i 1 n
mi viy 恒量
i 1 n
mi viz 恒量
i 1
n
(当 Fix 0 时)
i 1
n
(当 Fiy 0 时)
i 1
n
(当 Fiz 0 时)
i 1
大学物理2-2总复习
√
[分析] B
0 I
2R
B
0 I (cos 1 cos 2 ) 4a
B
0 I
2R
0 I 2R
2、一无限长载流直导线,通有电流 I,弯成如图形状。设 各线段皆在纸面内,则P 点磁感应强度B 的大小为 3 0 I 8a I
[分析] B
4a
0
。
(cos 1 cos 2 )
0 I B (cos 1 cos 2 ) 4a
B
0 I
2R
1、无限长直导线在P 处弯成半径为R 的圆,当通以电流 I R 时,则在圆心O点的磁感应强度大小等于 I I I O A) 0 B) 0 C )0 1 0 1 2 R 4R 2 P 2 2 0 I 0 I 1 1 2 D) (1 ) E) (1 ) 2R 4R
合面上场强E处处为零. (3) 通过闭合面上任一面元的电场强度通量等于零.
E d S 0故闭
S
答 (1) 正确.
(2) 错误,虽然有 E d S 0 ,
Sቤተ መጻሕፍቲ ባይዱ
-q +q S
但本题中闭合面上各点场强均不为零。
(3)错误,通过整个闭合面的电场强度通量为零,而通 过任一面元的电场强度通量不一定为零(本题中任一面元 上都不为零)。
上底 下底
2 0 ③电荷分布是球对称
E
S
Φ E d S E 4r 2
E
E
Q 4 r 2
图示闭合面包围了两个等量异号点电荷±q.下列说法是 否正确?如有错误请改正. (1) 高斯定理 E d S q / 0 成立. S (2) 因闭合面内包围净电荷∑q i=0,得到
大学物理力学复习(二)
大学物理力学复习(二)引言概述:大学物理力学是物理学的基础课程之一,主要研究物体在力的作用下的运动规律。
本文旨在对大学物理力学的复习进行总结,以助于学生们更好地掌握该领域知识。
一、牛顿定律1.第一定律:惯性定律a.物体的运动状态b.参考系的选择c.示例分析2.第二定律:加速度定律a.牛顿第二定律的表达式b.加速度和力的关系c.示例问题解析3.第三定律:作用-反作用定律a.作用力和反作用力的特点b.力的合成与分解c.实例分析二、运动学1.直线运动a.位移与路程的区别b.速度与加速度的定义c.匀速直线运动和加速直线运动2.曲线运动a.弧长和弧度制b.速度和加速度的分解c.圆周运动的周期和频率3.二维运动a.平抛运动b.斜抛运动c.相对运动三、力学能量1.功与能量a.功的定义和计算b.功与能量的转换c.势能与动能2.机械能守恒a.机械能的概念b.弹性势能和引力势能c.应用实例3.动能定理a.动能定理的表达式b.动能定理的应用c.动能定理与保守力四、角动量和力矩1.角动量的概念a.角动量的定义b.角动量守恒定律c.角动量与力的关系2.力矩的概念a.力矩的定义b.力矩的计算c.力矩的性质3.角动量和力矩的应用a.刚体的转动b.矢量运算c.角动量守恒实例五、万有引力和运动学补充1.万有引力定律a.万有引力定律的表达式b.质点系统的引力c.行星运动的描述2.运动学补充a.相对运动的概念b.相对速度的求解c.相对加速度的求解总结:通过本文对大学物理力学复习的总结,我们深入探讨了牛顿定律、运动学、力学能量、角动量和力矩以及万有引力等关键概念和理论。
掌握这些知识对于理解物体运动规律以及解决相关问题十分重要。
希望通过本文的复习,读者能够进一步提高对大学物理力学的理解和应用能力。
大学物理A2期末总复习题及答案
大学物理A2期末总复习题及答案一、大学物理期末选择题复习1.一个质点在做圆周运动时,则有()(A) 切向加速度一定改变,法向加速度也改变(B) 切向加速度可能不变,法向加速度一定改变(C) 切向加速度可能不变,法向加速度不变(D) 切向加速度一定改变,法向加速度不变答案B2.如图所示,质量为m 的物体用平行于斜面的细线联结置于光滑的斜面上,若斜面向左方作加速运动,当物体刚脱离斜面时,它的加速度的大小为()(A) g sin θ(B) g cos θ(C) g tan θ(D) g cot θ答案D3.对质点组有以下几种说法:(1) 质点组总动量的改变与内力无关;(2) 质点组总动能的改变与内力无关;(3) 质点组机械能的改变与保守内力无关.下列对上述说法判断正确的是()(A) 只有(1)是正确的(B) (1) (2)是正确的(C) (1) (3)是正确的 (D) (2) (3)是正确的答案C4.一带电粒子垂直射入均匀磁场中,如果粒子的质量增加为原来的2倍,入射速度也增加为原来的2倍,而磁场的磁感应强度增大为原来的4倍,则通过粒子运动轨道所围面积的磁通量增大为原来的:()(A) 2倍 (B) 4倍 (C) 0.5倍 (D) 1倍答案B5.一个电流元Idl 位于直角坐标系原点 ,电流沿z 轴方向,点P (x ,y ,z )的磁感强度沿x 轴的分量是: ( )(A) 0(B) ()()2/32220/4/z y x Ixdl ++-πμ(C) ()()2/12220/4/z y x Ixdl ++-πμ(D)()()2220/4/z y x Ixdl ++-πμ答案B6.图为四个带电粒子在O点沿相同方向垂直于磁力线射入均匀磁场后的偏转轨迹的照片. 磁场方向垂直纸面向外,轨迹所对应的四个粒子的质量相等,电量大小也相等,则其中动能最大的带负电的粒子的轨迹是( )(A) Oa (B) Ob(C) Oc (D) Od答案C7.下列说法正确的是( )(A ) 闭合回路上各点磁感强度都为零时,回路内一定没有电流穿过(B ) 闭合回路上各点磁感强度都为零时,回路内穿过电流的代数和必定为零(C ) 磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度必定为零(D ) 磁感强度沿闭合回路的积分不为零时,回路上任意一点的磁感强度都不可能为零答案B8.在图(a)和(b)中各有一半径相同的圆形回路L 1 、L 2 ,圆周内有电流I 1 、I 2 ,其分布相同,且均在真空中,但在(b)图中L 2 回路外有电流I 3 ,P 1 、P 2 为两圆形回路上的对应点,则( )(A ) ⎰⎰⋅=⋅21L L d d l B l B ,21P P B B = (B ) ⎰⎰⋅≠⋅21L L d d l B l B ,21P P B B = (C ) ⎰⎰⋅=⋅21L L d d l B l B ,21P P B B ≠ (D ) ⎰⎰⋅≠⋅21L L d d l B l B ,21P P B B ≠ 答案C9. 用水平力N F 把一个物体压着靠在粗糙的竖直墙面上保持静止。
大学物理总复习 ppt课件
x Px 2
[ D]
该式说明,对微观粒子的坐标和动量不可能同时进行 准确的测量。如果坐标测量得越准确,则动量测定的偏 差就越大,反之亦然。
ppt课件
16
14. 波长=5000 Å的光沿x轴正向传播,若光的波长的不确定 量=10-3 Å,则利用不确定关系式 Pxx≥ h 可得光子的x坐 标的不确定量至少为__________.
本题相当于通有变化电流的螺线管,管内无 自由电荷,且沿轴线方向均匀地分布着变化 磁场,当然有任意时刻通过圆筒内假想的任 一球面的电通量和磁通量均为零。
i(t)
答案:( B )
S D d S q
在任何电场中,通过任意闭合曲面的电位移 通量等于闭合面内自由电荷的代数和。
S B d S 0
=____________________,
nˆ
=____________________,
C
=____________________.
P 、 -P、 0
Pn P nˆ
nˆ
B
nˆ
A
P
p
P
A P nˆ P B P nˆ P
C P nˆ 0
B2
0I , 2r
则 B B1 B2.
0r I 0I 0I , 2r 2r 2r
I (r 1)I.
ppt课件
8
8.如图,两个线圈 P 和 Q 并联地接到一电动势恒定的电源 上,线圈 P 的自感和电阻分别是线圈 Q 的两倍。当达到稳 定状态后,线圈 P 的磁场能量与 Q 的磁场能量的比值是:
大学物理2复习
y Acos(t x) tt x
u
u
代入A=0.040m ,ω=2.5πrad·s-1,u=100m·s-1
可得波动方程为
y 0.040cos 2.5π(t x ) m 100
2)在x=20m处质点的振动方程为 y 0.040cos 2.5π(t 20 ) 0.040cos(2.5πt 0.50π) m
9
632.8nm
光源S的移动引起条纹移动,条纹间距不变
s1 s • s2
r1 0
r1 r2
0
r2
二 薄膜干涉 1.会分析光程差,注意半波损失; 2.只讨论垂直入射;
14-12.白光垂直照射到空气中一厚度为380nm的
肥皂膜上。设肥皂膜折射率为1.32,问:该膜的
正面呈现何颜色。
解:为薄膜干涉问题。求膜正面的颜色即求反射
旋转矢量图,写出运动方程。设 已知。
解:画出旋转矢量图
由矢量图,可知初相位为
=π
A
3
3
o A2 A x
则运动方程为
x Acos(t )
3
第六章
机械波
一 平面简谐波的波函数
y Acos[(t x) ]
1.波长
u
波传播方向上两相邻的振动状态完全相同
(或相位差为2 )的质点间的距离(即一完
化而产生的感应电动势;
动生电动势的计算公式
i (v B) dl
掌握: 1.产生动生电动势的非静电力为洛伦兹力; 2.会计算动生电动势; 3.涡电流:当大块导体处于变化的磁场中时,导 体内部会产生感应电流,这种电流在导体内自成 闭合回路,称为涡电流。
四 电磁波 电磁波的能流密度(坡印廷)矢量
S EH
大学物理总复习2
[
B
]
B 0 r nI
12
14. 在感应电场中电磁感应定律可写成
d L E k dl , dt
L E静 dl 0
式中 Ek 为感应电场的电场强度,此式表明:
1.42 10 - 9 S
2m T qB
B H
27
10. 如图,在一固定的无限长载流直导线的旁边放置 一个可以自由移动和转动的圆型的刚性线圈,线圈中 通有电流,若线圈与直导线在同一平面,见图(a), 则圆线圈将 ,若线圈平面与直导线 垂直,见图(b),则圆线圈将 。 发生平移,靠 近直导线,
L 2L 2M
I I
dI dI dI 1 ( L M ) ( L M ) dt dt dt dI dI dI 2 ( L M ) ( L M ) dt dt dt
L’< L / 2
dI 1 2 ( 2 L 2 M ) dt
26
9. 电子在磁场强度 H =2 10 4 A· - 1 匀强磁场中沿着 m 圆周运动,它的回转周期 T = ,(真空中磁导率 - 7 N · - 2 ,电子质量 m =9.11 10-31kg, 0 = 4 10 A e -19 基本电荷 e = 1.60 10 C )。
0, r I1 I2 R 扩大
21
6. 半径分别为为 R1,R2 的两个半圆弧与直径的两小 段构成的通电线圈 abcd (如图所示),放在磁感应 强度为 B 的均匀磁场中,B 平行线圈所在平面,则线 圈的磁矩为 ,线圈所受的磁力矩为 。
大学物理2期末考试复习,试卷原题与答案
L L0 1 (v / c)2 54m
则
t1 L / 2.25 107 s
3分
L (2) 宇航员测得飞船船身的长度为 0 ,则
t2 L0 / 3.75 10 7 s
2分
习题7:假定在实验室中测得静止在实验室中的 子(不稳定的粒子)的寿命为
2.2 106 s , 而 当 它 相 对 于 实 验 室 运 动 时 实 验 室 中 测 得 它 的 寿 命 为
1eV 1.61019 J
E0
81.9 10 15 1.6 10 19
51.19 104 eV
0.51MeV
习题3:某核电站年发电量为100 亿度,它等于 36 1015 J 的能量,如果这是由核材料
的全部静止能转化产生的,则需要消耗的核材料的质量为
(A) 0.4 kg.
(B) 0.8 kg.
(C) (1/12)×107 kg. (D) 12×107 kg.
12 3
例题3 一质点作简谐振动.其运动速度与时间的曲线如图所示.若质点的振动规律用余弦函 数描述,则其初相应为 (A) /6. (B) 5/6. (C) -5/6. (D) -/6. (E) -2/3.
答案:(C) -5/6
x Acost ; m cos t '
' 5
(C) 1 s 4
解:公式 ; 2
3
t 题意
2t
t 1s 2
ห้องสมุดไป่ตู้
(E)
例题2 一简谐振动的振动曲线如图所示.求振动方程.
解:由图 A 0.1m ; t 2s
由图 旋转矢量 2
26 3
旋转矢量 t 5
6
5
12
x A cost 0.1cos 5 t 2 (SI )
最新大学物理2(上)总复习1--选择题70题
大学物理2(上)总复习---选择题选择题(1) 1.用水平压力F 把一个物体压着靠在粗糙的竖直墙面上保持静止.当F 逐渐增大时,物体所受的静摩擦力f ( b )。
A .恒为零;B .不为零,但保持不变;C . 随F 成正比地增大;D .开始随F 增大,达到某一最大值后,就保持不变。
2.如图所示,两个同频率、同振幅的简谐振动曲线和 ,它们的相位关系是(a )。
A .a 比b 滞后 2 ; B .a 比b 超前2 ; C .b比a 超前4 ; D .b 比a 滞后4 。
3.有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动, 转动惯量为J, 开始时转台以匀角速度0 转动,此时有一质量为m 的人站住转台中心, 随后人沿半径向外跑去,当人到达转台边缘时, 转台的角速度为( a )。
A .02 mR J J ;B . 02 R m J J ;C .0 ;D .02mR J 。
4.一台工作于温度为327C 0和27 C 0的高温和低温热源之间的卡诺热机,每经历一个循环吸热2000J ,则对外做功为 ( b )。
A .2000J ;B .1000J ;C .800J ;D .500J 。
5.在同一媒质中两列相干的平面简谐波强度之比是12:4:1I I ,则两列波的振幅之比21:A A 为 ( b )。
A .4;B .2;C .16;D .1/4。
6.一运动质点在某瞬时位于位矢),(y x r的端点处,对其速度的大小有四种意见,即(1)dt dr ; (2)dt r d ; (3)dt ds ; (4)22 dt dy dt dx 。
下述判断正确的是 ( d )。
A . 只有(1)(2)正确;B .只有(2)正确;C .只有(2)(3)正确;D . 只有(3)(4)正确。
7.一质点沿y 方向振动,振幅为A ,周期为T ,0t s 时,位于平衡位置 0y 处,向y 轴正方向运动。
由该质点引起的平面简谐波的波长为 ,沿Ox 轴正向传播。
大学物理2(上)总复习2--填空题60题 (1)
大学物理2(上)总复习---填空题填空题(1)1.当气体的温度为300K 时,分子的平均平动动能为 。
(已知K J k /1038.123-⨯=)2.一质点作简谐振动,振幅为10cm ,频率为40Hz ,初相为2π,则其振动方程为 ,在t=0 s 时刻,质点的速度为 ,加速度为 。
3.产生机械波的必要条件是 和 。
4.一质点沿半径为m 2.0的圆周运动, 其角位置随时间的变化规律是256t +=θ(SI 制)。
在s t 2=时,它的法向加速度n a =___________;切向加速度t a =___________。
5.2mol 理想氦气的内能的理论值为 。
6.一质量为0.01 kg 的物体作简谐运动,其振幅为 0.08 m , 周期为4 s ,起始时刻物体在 x= 0.04 m 处,向Ox 轴负方向运动,则简谐运动方程为 。
填空题(1)参考答案1. 6.21J 2110-⨯ ;2. x 0.10cos 80t m 2ππ⎛⎫=+ ⎪⎝⎭, 18m s π--, -20m s ; 3. 波源, 弹性介质 ; 4. 280/m s , 210/m s ;5. 3RT ;6. ⎪⎭⎫ ⎝⎛+=32c o s 08.0ππt x ;填空题(2) 1.驻波中两个相邻的波节间各质点的振动振幅 ,相位 。
2.一质点沿半径为m 2.0的圆周运动, 其角位置随时间的变化规律是256t +=θ(SI 制)。
在s t 2=时,它的法向加速度n a =___________;切向加速度t a =___________。
3.2mol 理想氦气的内能的理论值为 。
4.已知平面简谐波方程为()cos y A bt cx ϕ=-+,式中A 、b 、c 、ϕ均为常量,则平面简谐波的振幅为 ,频率为 ,波速为 ,波长为 。
5. 质量为m 的小球,在合外力kx F -=作用下运动,已知t A x ωcos =,其中k 、ω、A均为正常量,在0=t 到ωπ2时间内小球动量的增量为___________。
大学物理B2复习资料
大学物理A2复习资料电磁感应1. 如图所示,一矩形金属线框,以恒定速度v从无场空间进入一均匀磁场中,然后又从磁场中出来,到无场空间中.不计线圈的自感,下面哪一条图线正确地表示了线圈中的感应电流对时间的函数关系?(从线圈刚进入磁场时刻开始计时,I 以顺时针方向为正)2. 两根无限长平行直导线载有大小相等方向相反的电流I ,并各以d I /d t 的变化率增长,一矩形线圈位于导线平面内(如图),则:(A) 线圈中无感应电流.(B) 线圈中感应电流为顺时针方向.(C) 线圈中感应电流为逆时针方向.(D) 线圈中感应电流方向不确定.3. 一块铜板垂直于磁场方向放在磁感强度正在增大的磁场中时,铜板中出现的涡流(感应电流)将 (A) 加速铜板中磁场的增加. (B) 减缓铜板中磁场的增加.(C) 对磁场不起作用. (D) 使铜板中磁场反向.4. 一导体圆线圈在均匀磁场中运动,能使其中产生感应电流的一种情况是 (A) 线圈绕自身直径轴转动,轴与磁场方向平行. (B) 线圈绕自身直径轴转动,轴与磁场方向垂直. (C) 线圈平面垂直于磁场并沿垂直磁场方向平移.(D) 线圈平面平行于磁场并沿垂直磁场方向平移. 5. 半径为a 的圆线圈置于磁感强度为B的均匀磁场中,线圈平面与磁场方向垂直,线圈电阻为R ;当把线圈转动使其法向与B的夹角 =60°时,线圈中通过的电荷与线圈面积及转动所用的时间的关系是(A) 与线圈面积成正比,与时间无关. (B) 与线圈面积成正比,与时间成正比. (C) 与线圈面积成反比,与时间成正比.(D) 与线圈面积成反比,与时间无关.BI O(D)I O(C)O (B)I6. 将形状完全相同的铜环和木环静止放置,并使通过两环面的磁通量随时间的变化率相等,则不计自感时(A) 铜环中有感应电动势,木环中无感应电动势. (B) 铜环中感应电动势大,木环中感应电动势小. (C) 铜环中感应电动势小,木环中感应电动势大.(D) 两环中感应电动势相等.7. 在无限长的载流直导线附近放置一矩形闭合线圈,开始时线圈与导线在同一平面内,且线圈中两条边与导线平行,当线圈以相同的速率作如图所示的三种不同方向的平动时,线圈中的感应电流(A) 以情况Ⅰ中为最大. (B) 以情况Ⅱ中为最大.(C) 以情况Ⅲ中为最大. (D) 在情况Ⅰ和Ⅱ中相同.8. 在两个永久磁极中间放置一圆形线圈,线圈的大小和磁极大小约相等,线圈平面和磁场方向垂直.今欲使线圈中产生逆时针方向(俯视)的瞬时感应电流i (如图),可选择下列哪一个方法?(A) 把线圈在自身平面内绕圆心旋转一个小角度.(B) 把线圈绕通过其直径的OO ′轴转一个小角度. (C) 把线圈向上平移.(D) 把线圈向右平移.9. 一个圆形线环,它的一半放在一分布在方形区域的匀强磁场B 中,另一半位于磁场之外,如图所示.磁场B的方向垂直指向纸内.欲使圆线环中产生逆时针方向的感应电流,应使 (A) 线环向右平移. (B) 线环向上平移. (C) 线环向左平移. (D) 磁场强度减弱.10. 如图所示,一载流螺线管的旁边有一圆形线圈,欲使线圈产生图示方向的感应电流i ,下列哪一种情况可以做到?(A) 载流螺线管向线圈靠近.(B) 载流螺线管离开线圈.(C) 载流螺线管中电流增大. (D) 载流螺线管中插入铁芯.11. 一矩形线框长为a 宽为b ,置于均匀磁场中,线框绕OO ′轴,以匀角速度ω旋转(如图所示).设t =0时,线框平面处于纸面内,则任一时刻感应电动势的大小为 (A) 2abB | cos ω t |. (B) ω abB (C)t abB ωωcos 21. (D) ω abB | cos ω t |. (E) ω abB | sin ω t |.b c d b c d bc d v v ⅠⅢⅡ I12. 如图所示,导体棒AB 在均匀磁场B 中 绕通过C 点的垂直于棒长且沿磁场方向的轴OO ' 转动(角速度ω 与B 同方向),BC 的长度为棒长的31,则 (A) A 点比B 点电势高. (B) A 点与B 点电势相等.(B) A 点比B 点电势低. (D) 有稳恒电流从A 点流向B 点.13. 如图,长度为l 的直导线ab 在均匀磁场B 中以速度v移动,直导线ab 中的电动势为(A) Bl v . (B) Bl v sin α.(C) Bl v cos α. (D) 0.14. 如图所示,直角三角形金属框架abc 放在均匀磁场中,磁场B平行于ab 边,bc 的长度为l .当金属框架绕ab 边以匀角速度ω转动时,abc 回路中的感应电动势 和a 、c 两点间的电势差U a – U c 为(A) =0,U a – U c =221l B ω.(B) =0,U a – U c =221l B ω-.(C) =2l B ω,U a – U c =221l B ω.(D) =2l B ω,U a – U c =221l B ω-.15.圆铜盘水平放置在均匀磁场中,B的方向垂直盘面向上.当铜盘绕通过中心垂直于盘面的轴沿图示方向转动时, (A) 铜盘上有感应电流产生,沿着铜盘转动的相反方向流动. (B) 铜盘上有感应电流产生,沿着铜盘转动的方向流动. (C) 铜盘上产生涡流. (D) 铜盘上有感应电动势产生,铜盘边缘处电势最高.(E) 铜盘上有感应电动势产生,铜盘中心处电势最高.16. 一根长度为L 的铜棒,在均匀磁场 B中以匀角速度ω绕通过其一端O 的定轴旋转着,B的方向垂直铜棒转动的平面,如图所示.设t =0时,铜棒与Ob 成θ 角(b 为铜棒转动的平面上的一个固定点),则在任一时刻t 这根铜棒两端之间的感应电动势是:(A) )cos(2θωω+t B L . (B) t B L ωωcos 212.(C) )cos(22θωω+t B L . (D) B L 2ω.(F)B L 221ω.17. 两个通有电流的平面圆线圈相距不远,如果要使其互感系数近似为零,则应调整线圈的取向使Bab clωB(A) 两线圈平面都平行于两圆心连线. (B) 两线圈平面都垂直于两圆心连线.(C) 一个线圈平面平行于两圆心连线,另一个线圈平面垂直于两圆心连线.(C) 两线圈中电流方向相反. 18. 用线圈的自感系数L 来表示载流线圈磁场能量的公式221LI W m =(A) 只适用于无限长密绕螺线管. (B) 只适用于单匝圆线圈. (C) 只适用于一个匝数很多,且密绕的螺绕环.(D) 适用于自感系数L一定的任意线圈.19. 两根很长的平行直导线,其间距离d 、与电源组成回路如图.已知导线上的电流为I ,两根导线的横截面的半径均为r 0.设用L 表示两导线回路单位长度的自感系数,则沿导线单位长度的空间内的总磁能W m 为(A)221LI .(B) 221LI ⎰∞+π-+0d π2])(2π2[2002r r r r d I r I I μμ(C) ∞. (D)221LI 020ln 2r dI π+μ20. 真空中一根无限长直细导线上通电流I ,则距导线垂直距离为a 的空间某点处的磁能密度为 (A)200)2(21aI πμμ (B)200)2(21a I πμμ (C) 20)2(21Ia μπ (D) 200)2(21a I μμ1C 2B 3B 4B 5A 6D 7B 8C 9C 10B11D 12 A 13D 14 B 15 D 16 E 17C 18D 19A 20B振动与波1. 一轻弹簧,上端固定,下端挂有质量为m 的重物,其自由振动的周期为T .今已知振子离开平衡位置为x 时,其振动速度为v ,加速度为a .则下列计算该振子劲度系数的公式中,错误的是:(A) 2max 2max /x m k v =. (B) x mg k /=.(C) 22/4T m k π=. (D) x ma k /=.C2. 一长为l 的均匀细棒悬于通过其一端的光滑水平固定轴上,(如图所示),作成一复摆.已知细棒绕通过其一端的轴的转动惯量231ml J =,此摆作微小振动的周期为 (A) g l π2. (B) gl 22π. (C) g l 322π. (D) gl 3π.3. 把单摆摆球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度θ ,然后由静止放手任其振动,从放手时开始计时.若用余弦函数表示其运动方程,则该单摆振动的初相为(A) π. (B) π/2. (C) 0 . (D) θ.4. 两个质点各自作简谐振动,它们的振幅相同、周期相同.第一个质点的振动方程为x 1 = A cos(ωt + α).当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处.则第二个质点的振动方程为(A) )π21cos(2++=αωt A x . (B) )π21c o s (2-+=αωt A x .(C) )π23cos(2-+=αωt A x . (D) )cos(2π++=αωt A x .5. 轻弹簧上端固定,下系一质量为m 1的物体,稳定后在m 1下边又系一质量为m 2的物体,于是弹簧又伸长了∆x .若将m 2移去,并令其振动,则振动周期为(A) g m x m T 122∆π= . (B) gm xm T 212∆π=. (C) g m xm T 2121∆π=. (D) gm m x m T )(2212+π=∆.6. 一质点作简谐振动.其运动速度与时间的曲线如图所示.若质点的振动规律用余弦函数描述,则其初相应为(A) π/6. (B) 5π/6. (C) -5π/6. (D) -π/6. (E) -2π/3.v 217. 一质点沿x 轴作简谐振动,振动方程为 )312cos(1042π+π⨯=-t x (SI).从t = 0时刻起,到质点位置在x = -2 cm 处,且向x 轴正方向运动的最短时间间隔为(A) s 81(B) s 61 (C) s 41(D) s 31(E)s 218. 一物体作简谐振动,振动方程为)41cos(π+=t A x ω.在 t = T /4(T 为周期)时刻,物体的加速度为(A) 2221ωA -. (B) 2221ωA . (C) 2321ωA -. (D)2321ωA .9. 一质点作简谐振动,振动方程为)cos(φω+=t A x ,当时间t = T /2(T 为周期)时,质点的速度为(A) φωsin A -. (B) φωsin A . (C) φωcos A -. (D) φωcos A .10. 两个同周期简谐振动曲线如图所示.x 1的相位比x 2的相位(A) 落后π/2. (B) 超前π/2. (C) 落后π . (D) 超前π.11. 已知一质点沿y轴作简谐振动.其振动方程为)4/3cos(π+=t A y ω.与之对应的振动曲线是12. 一个质点作简谐振动,振幅为A ,在起始时刻质点的位移为A 21,且向x 轴的正方向运动,代表此简谐振动的旋转矢量图为13. 一质点作简谐振动,周期为T .当它由平衡位置向x 轴正方向运动时,从二分之一最大位移处到最大位移处这段路程所需要的时间为(A) T /12. (B) T /8. (C) T /6. (D) T /4.14. 一弹簧振子作简谐振动,总能量为E 1,如果简谐振动振幅增加为原来的两倍,重物的质量增为原来的四倍,则它的总能量E 2变为(A) E 1/4. (B) E 1/2.(C) 2E 1. (D) 4 E 1 .15. 当质点以频率ν 作简谐振动时,它的动能的变化频率为 (A) 4 ν. (B) 2 ν . (C) ν. (D)ν21.16. 一弹簧振子作简谐振动,当位移为振幅的一半时,其动能为总能量的 (A) 1/4. (B) 1/2. (C) 2/1. (D) 3/4. (E) 2/3.17. 一物体作简谐振动,振动方程为)21cos(π+=t A x ω.则该物体在t = 0时刻的动能与t = T /8(T 为振动周期)时刻的动能之比为:(A) 1:4. (B) 1:2. (C) 1:1. (D) 2:1. (E) 4:1.18.机械波的表达式为y = 0.03cos6π(t + 0.01x ) (SI) ,则(A) 其振幅为3 m . (B) 其周期为s 31.(C) 其波速为10 m/s . (D) 波沿x 轴正向传播.19.一平面简谐波的表达式为 )3cos(1.0π+π-π=x t y (SI) ,t = 0时的波形曲线如图所示,则 (A) O 点的振幅为-0.1 m .(B) 波长为3 m . (C) a 、b 两点间相位差为π21.(D) 波速为9 m/s .. -20. 已知一平面简谐波的表达式为 )cos(bx at A y -=(a 、b 为正值常量),则 (A) 波的频率为a . (B) 波的传播速度为 b/a . (C) 波长为 π / b . (D) 波的周期为2π / a .21. 横波以波速u 沿x 轴负方向传播.t 时刻波形曲线如图.则该时刻(A) A 点振动速度大于零. (B) B 点静止不动.(C) C 点向下运动. (D)D 点振动速度小于零.22. 若一平面简谐波的表达式为 )cos(Cx Bt A y -=,式中A 、B 、C 为正值常量,则 (A) 波速为C . (B) 周期为1/B . (C) 波长为 2π /C . (D) 角频率为2π /B .23. 在简谐波传播过程中,沿传播方向相距为λ21(λ 为波长)的两点的振动速度必定(A) 大小相同,而方向相反. (B) 大小和方向均相同.(C) 大小不同,方向相同. (D) 大小不同,而方向相反.24. 一横波沿绳子传播时, 波的表达式为 )104cos(05.0t x y π-π= (SI),则 (A) 其波长为0.5 m . (B) 波速为5 m/s . (C) 波速为25 m/s . (D) 频率为2 Hz .25.频率为 100 Hz ,传播速度为300 m/s 的平面简谐波,波线上距离小于波长的两点振动的相位差为π31,则此两点相距(A) 2.86 m . (B) 2.19 m . (C) 0.5 m . (D) 0.25 m .26. 如图所示,一平面简谐波沿x 轴正向传播,已知P 点的振动方程为)cos(0φω+=t A y ,则波的表达式为(A) }]/)([c o s {0φω+--=u l x t A y . (B) })]/([cos{0φω+-=u x t A y . (C) )/(cos u x t A y -=ω.(D) }]/)([cos{0φω+-+=u l x t A y .27. 图示一简谐波在t = 0时刻的波形图,波速 u = 200m/s ,则P 处质点的振动速度表达式为(A) )2cos(2.0π-ππ-=t v (SI). (B) )cos(2.0π-ππ-=t v (SI). (C) )2/2cos(2.0π-ππ=t v (SI). (D) )2/3cos(2.0π-ππ=t v (SI).28. 一平面简谐波的表达式为 )/(2c o s λνx t A y -π=.在t = 1 /ν 时刻,x 1 = 3λ /4与x 2 = λ /4二点处质元速度之比是(A) -1. (B)31. (C) 1. (D) 3C29.一平面简谐波在弹性媒质中传播,在某一瞬时,媒质中某质元正处于平衡位置,此时它的能量是(A) 动能为零,势能最大. (B) 动能为零,势能为零. (C) 动能最大,势能最大. (D) 动能最大,势能为零.B30. 一平面简谐波在弹性媒质中传播时,某一时刻媒质中某质元在负的最大位移处,则它的能量是(A) 动能为零,势能最大. (B) 动能为零,势能为零. (C) 动能最大,势能最大. (D) 动能最大,势能为零.D31. 一平面简谐波在弹性媒质中传播,在媒质质元从平衡位置运动到最大位移处的过程中:(A) 它的动能转换成势能. (B) 它的势能转换成动能. (C) 它从相邻的一段质元获得能量其能量逐渐增大. (D) 它把自己的能量传给相邻的一段质元,其能量逐渐减小.32. 图示一平面简谐机械波在t 时刻的波形曲线.若此时A 点处媒质质元的振动动能在增大,则(A) A 点处质元的弹性势能在减小. (B) 波沿x 轴负方向传播.(C) B 点处质元的振动动能在减小.(D) 各点的波的能量密度都不随时间变化.D33. 如图所示,两列波长为λ 的相干波在P 点相遇.波在S 1点振动的初相是φ 1,S 1到P 点的距离是r 1;波在S 2点的初相是φ 2,S 2到P 点的距离是r 2,以k 代表零或正、负整数,则P 点是干涉极大的条件为:(A) λk r r =-12.(B) π=-k 212φφ.(C) π=-π+-k r r 2/)(21212λφφ.(D) π=-π+-k r r 2/)(22112λφφ.35. 在波长为λ 的驻波中两个相邻波节之间的距离为 (A) λ . (B) 3λ /4. (C) λ /2. (D) λ /4.1B 2C 3C 4B 5B 6C 7E 8B 9B 10B11B 12B 13C 14D 15B 16D 17D 18B 19C 20D21D 22C 23A 24A 25C 26A 27A 28A 29C 30B31D 32B 33D 34B 35C波动光学1. 在真空中波长为λ的单色光,在折射率为n 的透明介质中从A 沿某路径传播到B ,若A 、B 两点相位差为3π,则此路径AB 的光程为 (A) 1.5 λ. (B) 1.5 λ/ n .(C) 1.5 n λ. (D) 3 λ.C2. 单色平行光垂直照射在薄膜上,经上下两表面反射的两束光发生干涉,如图所示,若薄膜的厚度为e ,且n 1<n 2>n 3,λ1为入射光在n 1中的波长,则两束反射光的光程差为 (A) 2n 2e . (B) 2n 2 e - λ1 / (2n 1).(C) 2n 2 e - n 1 λ1 / 2. (D) 2n 2 e - n 2 λ1 / 2.3. 在相同的时间内,一束波长为λ的单色光在空气中和在玻璃中(A) 传播的路程相等,走过的光程相等. (B) 传播的路程相等,走过的光程不相等. (C) 传播的路程不相等,走过的光程相等.(D) 传播的路程不相等,走过的光程不相等.4. 在双缝干涉实验中,入射光的波长为λ,用玻璃纸遮住双缝中的一个缝,若玻璃纸中光程比相同厚度的空气的光程大2.5 λ,则屏上原来的明纹处(A) 仍为明条纹; (B) 变为暗条纹;(C) 既非明纹也非暗纹; (D) 无法确定是明纹,还是暗纹.5. 在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是(A) 使屏靠近双缝.(B) 使两缝的间距变小. (C) 把两个缝的宽度稍微调窄.(D) 改用波长较小的单色光源.6. 在双缝干涉实验中,屏幕E 上的P 点处是明条纹.若将缝S 2盖住,并在S 1 S 2连线的垂直平分面处放一高折射率介质反射面M ,如图所示,则此时(A) P 点处仍为明条纹. (B) P 点处为暗条纹. (C) 不能确定P 点处是明条纹还是暗条纹. (D) 无干涉条纹.7. 在双缝干涉实验中,光的波长为600 nm (1 nm =10-9 m ),双缝间距为2 mm ,双缝与屏的间距为300 cm .在屏上形成的干涉图样的明条纹间距为 (A) 0.45 mm . (B) 0.9 mm .(C) 1.2 mm (D) 3.1 mm .38. 在双缝干涉实验中,入射光的波长为λ,用玻璃纸遮住双缝中的一个缝,若玻璃纸中光程比相同厚度的空气的光程大2.5 λ,则屏上原来的明纹处(A) 仍为明条纹; (B) 变为暗条纹;(C) 既非明纹也非暗纹; (D) 无法确定是明纹,还是暗纹.D9. 在图示三种透明材料构成的牛顿环装置中,用单色光垂直照射,在反射光中看到干涉条纹,则在接触点P 处形成的圆斑为(A) 全明. (B) 全暗. (C) 右半部明,左半部暗. (D) 右半部暗,左半部明.10.一束波长为λ的单色光由空气垂直入射到折射率为n 的透明薄膜上,透明薄膜放在空气中,要使反射光得到干涉加强,则薄膜最小的厚度为(A) λ / 4 . (B) λ / (4n ).(C) λ / 2 . (D) λ / (2n ).C11. 若把牛顿环装置(都是用折射率为1.52的玻璃制成的)由空气搬入折射率为1.33的水中,则干涉条纹(A) 中心暗斑变成亮斑. (B) 变疏.(C) 变密. (D) 间距不变.12. 用劈尖干涉法可检测工件表面缺陷,当波长为λ的单色平行光垂直入射时,若观察到的干涉条纹如图所示,每一条纹弯曲部分的顶点恰好与其左边条纹的直线部分的连线相切,则工件表面与条纹弯曲处对应的部分(A) 凸起,且高度为λ / 4.(B) 凸起,且高度为λ / 2. (C) 凹陷,且深度为λ / 2. (D) 凹陷,且深度为λ / 4.13. 如图,用单色光垂直照射在观察牛顿环的装置上.当平凸透镜垂直向上缓慢平移而远离平面玻璃时,可以观察到这些环状干涉条纹(A) 向右平移. (B) 向中心收缩. (C) 向外扩张. (D) 静止不动. (E) 向左平移.14. 在迈克耳孙干涉仪的一条光路中,放入一折射率为n ,厚度为d 的透明薄片,放入后,这条光路的光程改变了(A) 2 ( n -1 ) d . (B) 2nd .(C) 2 ( n -1 ) d +λ / 2. (D) nd .(F) ( n -1 ) d .15. 在单缝夫琅禾费衍射实验中,波长为λ的单色光垂直入射在宽度为a =4 λ的单缝上,图中数字为各处的折射对应于衍射角为30°的方向,单缝处波阵面可分成的半波带数目为(A) 2 个. (B) 4 个.(C) 6 个. (D) 8 个.16. 一束波长为λ的平行单色光垂直入射到一单缝AB 上,装置如图.在屏幕D 上形成衍射图样,如果P 是中央亮纹一侧第一个暗纹所在的位置,则BC 的长度为 (A) λ / 2.(B) λ.(C) 3λ / 2 . (D) 2λ .D17. 根据惠更斯-菲涅耳原理,若已知光在某时刻的波阵面为S ,则S 的前方某点P 的光强度决定于波阵面S 上所有面积元发出的子波各自传到P 点的(A) 振动振幅之和. (B) 光强之和.(C) 振动振幅之和的平方. (D) 振动的相干叠加.18. 波长为λ的单色平行光垂直入射到一狭缝上,若第一级暗纹的位置对应的衍射角为θ=±π / 6,则缝宽的大小为(A) λ / 2. (B) λ.(C) 2λ. (D) 3 λ .19. 在夫琅禾费单缝衍射实验中,对于给定的入射单色光,当缝宽度变小时,除中央亮纹的中心位置不变外,各级衍射条纹(A) 对应的衍射角变小. (B) 对应的衍射角变大.(B) 对应的衍射角也不变. (D) 光强也不变.20.在单缝夫琅禾费衍射实验中,若减小缝宽,其他条件不变,则中央明条纹(A) 宽度变小;(B) 宽度变大;(C) 宽度不变,且中心强度也不变;(D )宽度不变,但中心强度变小. C21. 在如图所示的单缝夫琅禾费衍射实验装置中,S为单缝,L 为透镜,C 为放在L 的焦面处的屏幕,当把单缝S 垂直于透镜光轴稍微向上平移时,屏幕上的衍射图样(A)向上平移. (B)向下平移.(C)不动. (D)消失.22. 测量单色光的波长时,下列方法中哪一种方法最为准确?(A) 双缝干涉. (B) 牛顿环 .(C) 单缝衍射. (D) 光栅衍射.23. 一束白光垂直照射在一光栅上,在形成的同一级光栅光谱中,偏离中央明纹最远的是(A) 紫光. (B) 绿光. (C) 黄光. (D) 红光.24. 对某一定波长的垂直入射光,衍射光栅的屏幕上只能出现零级和一级主极大,欲使屏幕上出现更高级次的主极大,应该(A) 换一个光栅常数较小的光栅.(B) 换一个光栅常数较大的光栅.(C) 将光栅向靠近屏幕的方向移动.(C)将光栅向远离屏幕的方向移动.25.一束光是自然光和线偏振光的混合光,让它垂直通过一偏振片.若以此入射光束为轴旋转偏振片,测得透射光强度最大值是最小值的5倍,那么入射光束中自然光与线偏振光的光强比值为(A) 1 / 2.(B) 1 / 3.(C) 1 / 4.(D) 1 / 5.B26.一束光强为I0的自然光,相继通过三个偏振片P1、P2、P3后,出射光的光强为I=I0 / 8.已知P1和P2的偏振化方向相互垂直,若以入射光线为轴,旋转P2,要使出射光的光强为零,P2最少要转过的角度是(A) 30°.(B) 45°.(C) 60°.(D) 90°.27.一束光强为I0的自然光垂直穿过两个偏振片,且此两偏振片的偏振化方向成45°角,则穿过两个偏振片后的光强I为(A) 4/0I2.(B) I0 / 4.(C) I0 / 2.(D) 2I0 / 2.28.三个偏振片P1,P2与P3堆叠在一起,P1与P3的偏振化方向相互垂直,P2与P1的偏振化方向间的夹角为30°.强度为I0的自然光垂直入射于偏振片P1,并依次透过偏振片P1、P2与P3,则通过三个偏振片后的光强为(A) I0 / 4.(B) 3 I0 / 8.(C) 3I0 / 32.(D) I0 / 16.29.两偏振片堆叠在一起,一束自然光垂直入射其上时没有光线通过.当其中一偏振片慢慢转动180°时透射光强度发生的变化为:(A) 光强单调增加.(B)光强先增加,后又减小至零.(C) 光强先增加,后减小,再增加.(D)光强先增加,然后减小,再增加,再减小至零.30.如果两个偏振片堆叠在一起,且偏振化方向之间夹角为60°,光强为I0的自然光垂直入射在偏振片上,则出射光强为(A) I0 / 8.(B) I0 / 4.(C) 3 I0 / 8.(D) 3 I0 / 4.斯特角i0,则在界面2的反射光(A) 是自然光.(B) 是线偏振光且光矢量的振动方向垂直于入射面.(C) 是线偏振光且光矢量的振动方向平行于入射面.(E)是部分偏振光.32.自然光以60°的入射角照射到某两介质交界面时,反射光为完全线偏振光,则知折射光为(A) 完全线偏振光且折射角是30°.(B) 部分偏振光且只是在该光由真空入射到折射率为3的介质时,折射角是30°.(C) 部分偏振光,但须知两种介质的折射率才能确定折射角.(D) 部分偏振光且折射角是30°.33.自然光以布儒斯特角由空气入射到一玻璃表面上,反射光是(A) 在入射面内振动的完全线偏振光.(B) 平行于入射面的振动占优势的部分偏振光.(C) 垂直于入射面振动的完全线偏振光.(D) 垂直于入射面的振动占优势的部分偏振光.1A 2 C 3 C 4B 5B 6B 7B 8B 9D 10B 11C 12C 13B 14A 15B 16B 17D 18C 19B 20B 21C 22D 23D 24B 25A 26B 27B 28C 29B 30A 31B 32D 33C。
100102大学物理(二)
《大学物理(二)》课程综合复习资料一、单选题1.如图所示,两个“无限长”的共轴圆柱面,半径分别为R 1和R 2,其上均匀带电,沿轴线方向单位长度上的带电量分别为1λ和2λ,则在两圆柱面之间,距离轴线为r 的P 点处的场强大小E 为()。
A.r012πελ B.r0212πελλ+C.)(2202r R -πελD.)(2101R r -πελ答案:A2.在图a 和b 中各有一半径相同的圆形回路1L 、2L ,圆周内有电流1I 、2I ,其分布相同,且均在真空中,但在b 图中2L 回路外有电流3I ,P 1、P 2为两圆形回路上的对应点,则()。
A.2121,d d P P L L B B l B l B =⋅=⋅⎰⎰B.2121,d d P P L L B B l B l B =⋅≠⋅⎰⎰C.2121,d d P P L L B B l B l B ≠⋅=⋅⎰⎰D.2121,d d P P L L B B l B l B ≠⋅≠⋅⎰⎰答案:C3.在点电荷+q 的电场中,若取图中P 点处为电势零点,则M 点的电势为()。
A.a q 04πεB.aq 08πεC.a q 04πε-D.aq 08πε-答案:D4.电荷面密度为σ+和σ-的两块“无限大”均匀带电平行平面,放在与平面相垂直的Ox 轴上的a (,)0和a -(,)0位置,如图所示。
设坐标原点O 处电势为零,在-a <x <+a 区域的电势分布曲线为()。
答案:C5.边长为l 的正方形线圈,分别用图示两种方式通以电流I (其中ab 、cd 与正方形共面),在这两种情况下,线圈在其中心产生的磁感应强度的大小分别为()。
A.0,021==B BB.lI22B ,0B 021πμ==C.0,22201==B lIB πμD.lIB lIB πμπμ020122,22== 答案:C6.一空气平行板电容器,极板间距为d ,电容为C ,若在两板中间平行地插入一块厚度为d /3的金属板,则其电容值变为()。
大学物理2(上)总复习1--选择题70题
大学物理2(上)总复习---选择题选择题(1) 1.用水平压力F 把一个物体压着靠在粗糙的竖直墙面上保持静止.当F 逐渐增大时,物体所受的静摩擦力f ( b )。
A .恒为零;B .不为零,但保持不变;C . 随F 成正比地增大;D .开始随F 增大,达到某一最大值后,就保持不变。
2.如图所示,两个同频率、同振幅的简谐振动曲线和,它们的相位关系是(a )。
A .a 比b 滞后 2π;B .a 比b 超前2π; C .b 比a 超前4π; D .b 比a 滞后4π。
3.有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动, 转动惯量为J, 开始时转台以匀角速度0ω转动,此时有一质量为m 的人站住转台中心, 随后人沿半径向外跑去,当人到达转台边缘时, 转台的角速度为( a )。
A .02ωmR J J +;B .()02ωR m J J +;C .0ω;D .02ωmR J 。
4.一台工作于温度为327C 0和27 C 0的高温和低温热源之间的卡诺热机,每经历一个循环吸热2000J ,则对外做功为 ( b )。
A .2000J ;B .1000J ;C .800J ;D .500J 。
5.在同一媒质中两列相干的平面简谐波强度之比是12:4:1I I =,则两列波的振幅之比21:A A 为 ( b )。
A .4;B .2;C .16;D .1/4。
6.一运动质点在某瞬时位于位矢),(y x r的端点处,对其速度的大小有四种意见,即(1)dt dr ; (2)dt r d ; (3)dt ds ; (4)22⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛dt dy dt dx 。
下述判断正确的是 ( d )。
A . 只有(1)(2)正确;B .只有(2)正确;C .只有(2)(3)正确;D . 只有(3)(4)正确。
7.一质点沿y 方向振动,振幅为A ,周期为T ,0t s =时,位于平衡位置 0y =处,向y 轴正方向运动。
大学物理2知识点总结.ppt
主极大强度受单缝衍射调制
缺级:k d k (k 1,2,3 )
注:kmax
d
a
对斜入射:将dsinθ改为d(sinθ-sini)即可。
(2)光栅光谱
光谱的重叠: k11
k22
k1 k2
2 1
三、光的偏振:
1、线偏振光、自然光、部分偏振光:
2、偏振片的起偏和检偏 ((12) )马自吕然斯光定⊥律通:过线偏振偏片振后光光通强过减偏半振:片I后1 : 12 I0
2——µr 略>1,顺磁质 3——µr 略<1,抗磁质
3
H 0 3、H的环路定理:
r
0
H d l Ic
B
B0
1 m
非稳恒
L
H d l Ic Id (全电流定律)
L
4、铁磁质的特性:μr;磁化饱和;剩磁;磁滞;居里点
5、磁滞回线:
BS
0
BS ——饱和磁感应强度 Br ——剩余磁感应强度 Hc——矫顽力
(1)试验线圈:线度小、电流小
((23))磁磁矩力:矩:Mm
NISnˆ mB
NIS
(
nˆ
B
)
6、带电粒子在电场或磁场中的运动:F
qE
qv
B
v0 均匀E
均匀 B
∥ 匀变直运动
匀直运动
⊥
类平抛运动
匀速圆周 运动
R
mv 0 qB
T 2m
qB
等螺距螺旋运动
v0
θ
类斜抛运动 螺旋半径
R mv
7、迈克耳孙干涉仪(⊥入射) :
移动可动反射镜:
2d 2d
插入透明薄介质:
N
二、光的衍射 1、惠更斯-菲涅耳原理:
大学物理C2--总复习剖析
是使它自己所激发的磁场反抗任何引发电磁感应的原因.
17. 感应电动势分为
(1) 动生电动势 (2) 感生电动势
Ei
(v B) dl
OP
E i
L
Ek
dl
S
dB dt
ds
电磁学
毕奥—萨伐尔定律 dB
0 Idl r 4π r3
运动电荷在磁场中所受的洛仑兹力 F
qv B
磁场对电流元的作用力-安培力 dF Idl B
-13.6 eV
相对论和量子物理
17、德布罗意波
h h E mc2
p mv h h
统计解释:德布罗意波是概率波 .
18、不确定关系 xpx h
习题
(4185)已知一单色光照射在钠表面上,测得光电子
的最大动能是 1.2 eV,而钠的红限波长是5400 Å,那
么入射光的波长是
(A) 5350 Å. (B) 5000 Å.
0I
4π
dl r
r3
P * r Idl
I
m
4. 磁矩的定义 m ISen
S en
电磁学
5. 磁通量 Φ s B dS
磁场高斯定理 S B d S 0
6. 安培环路定理
n
B dl 0 Ii
i 1
注:若积分回路l与电流I流向呈右螺旋关系,则电流 取正值;否则电流取负值.
电磁学
7. 运动电荷在磁场中所受的洛仑兹力
F
qv
B
8. 回旋半径、回旋周期
R
mv0 qB
T 2π R 2π m v0 qB
9. 霍耳效应
IB UH RH d
EH vd B
10. 磁场对电流元的作用力-安培力 dF Idl B
大学物理II期末复习
大学物理II 期末复习1、图示为一个均匀带电的球层,其电荷体密度为ρ,球层内表面半径为1R ,外表面半径为2R .设无穷远处为电势零点,求空腔内任一点的电势.解法1: 由高斯定理可知空腔内E =0,故带电球层的空腔是等势区,各点电势均 为U . 在球层内取半径为r r dr →+的薄球层.其电荷为24dq r dr ρπ=该薄层电荷在球心处产生的电势为()00/d 4/d d ερεr r r q U =π= 整个带电球层在球心处产生的电势为()21220002d d 21R R r r U U R R -===⎰⎰ερερ 因为空腔内为等势区所以空腔内任一点的电势U 为()2122002R R U U -==ερ 解法2:由高斯定理可知1r R <,10E =, 2分12R r R <<,331220()r R E r ρε-=, 2r R >,3321320()R R E rρε-= 若根据电势定义⎰⋅=l E Ud空腔内任一点电势为:12121230R R R R U E dr E dr E dr ∞=++⎰⎰⎰()222102R R ρε=- 2、如图所示,两个共面的平面带电圆环,其内外半径分别为1R 、2R 和2R 、3R ,外面的圆环以每秒钟2n 转的转速顺时针转动,里面的圆环以每秒钟1n 转的转速反时针转动.若电荷面密度都是σ,求1n 和2n 的比值多大时,圆心处的磁感强度为零.解:(1) 在内圆环上取半径为r 宽度为dr 的细圆环,其电荷为σr r q d 2d π= 由于转动而形成的电流 r rn q n i d 2d d 11σπ==di 在O 点产生的磁感强度为r n r i B d )2/(d d 1001σμμπ==其方向垂直纸面向外.(2) 整个内圆环在O 点产生的磁感强度为==⎰11d B B ⎰π21d 10R R r n σμ)(121R R n -π=0σμ其方向垂直纸面向外.(3) 同理得外圆环在O 点产生的磁感强度)(23203R R n B -π=σμ 其方向垂直纸面向里. (4) 为使O 点的磁感应强度为零,B 1和B 2的量值必须相等, 即 )(121R R n -π0σμ)(232R R n -π=0σμ于是求得n 1和n 2之比122312R R R R n n --=3、一电子以0.99v c =(c 为真空中光速)的速率运动.试求: (1) 电子的总能量是多少焦耳?(2) 电子的相对论动能是多少焦耳?(电子静止质量319.1110kg e m -=⨯)解:(1) 222)/(1/c c m mc E e v -===5.8×10-13 J(2) 22k e E mc m c =-= 4.99×10-13 J4、两根平行无限长直导线相距为d ,载有大小相等方向相反的电流I ,电流变化率0dI dt a =>.一个边长为d 的正方形线圈位于导线平面内与一根导线相距d ,如图所示.求线圈中的感应电动势ε,并指出线圈中的感应电流是顺时针还是逆时针方向.解:(1) 载流为I 的无限长直导线在与其相距为r 处产生的磁感强度为:)2/(0r I B π=μ以顺时针绕向为线圈回路的正方向,与线圈相距较远的导线在线圈中产生的磁通量为:300123d ln222ddIIdd r rμμφ=⋅=⎰ππ与线圈相距较近的导线对线圈的磁通量为:2002d ln 222ddIIdd r r μμφ=-⋅=-ππ⎰总磁通量 0124ln 23Id μφφφ=+=-π 2分感应电动势为: 00d 4d 4(ln )ln d 23d 23d d I a t t μμφε=-==ππ (2) 线圈中的感应电流是顺时针方向.5、用波长00.1nm λ=的光子做康普顿散射实验.(1) 散射角o 90ϕ=的康普顿散射波长是多少? (2) 反冲电子获得的动能是多少焦耳? (普朗克常量346.6310h -=⨯J ·s ,电子静止质量319.1110kg e m -=⨯)解:(1) 康普顿散射光子波长改变: ()(1cos )e hm cλϕ∆=-=0.024×10-10 m =+=∆λλλ0 1.024×10-10 m(2)根据能量守恒: 220e h m c h mc νν+=+即 220k e E mc m c h h νν=-=-0//k E hc hc λλ=-故k E =4.66×10-17 J =291 eV6、电荷Q (Q >0)均匀分布在长为L 的细棒上,在细棒的延长线上距细棒中心O 距离为a 的P 点处放一电荷为q (q >0 )的点电荷,求带电细棒对该点电荷的静电力.解:沿棒方向取坐标Ox ,原点O 在棒中心处.求P 点场强:()()20204d 4d d x a xx a q E -π=-π=ελε ()⎰--π=2/2/204d L L x a xE ελ()2202/2/0414L a Qx a L L -π=-⋅π=-εελ 方向沿x 轴正向. 点电荷受力:==qE F ()2204πL a qQ-ε方向沿x 轴正方向.7、图所示为两条穿过y 轴且垂直于x -y 平面的平行长直导线的正视图,两条导线皆通有电流I ,但方向相反,它们到x 轴的距离皆为a .(1) 推导出x 轴上P 点处的磁感强度)(x B 的表达式.(2) 求P 点在x 轴上何处时,该点的B 取得最大值.解:(1) 利用安培环路定理可求得1导线在P 点产生的磁感强度的大小为:r I B π=201μ2/1220)(12x a I +⋅π=μ 2导线在P 点产生的磁感强度的大小为: r I B π=202μ2/1220)(12x a I +⋅π=μ 1B 、2B 的方向如图所示. P 点总场 θθcos cos 2121B B B B B x x x +=+= 021=+=y y y B B B )()(220x a Iax B +π=μ,i x a Iax B)()(220+π=μ(2) 当 0d )(d =x x B ,0d )(d 22=<xx B 时,B (x )最大. 由此可得:x = 0处,B 有最大值.8、如图所示,一电荷线密度为λ的长直带电线(与一正方形线圈共面并与其一对边平行)以变速率v =v (t )沿着其长度方向运动,正方形线圈中的总电阻为R ,求t 时刻方形线圈中感应电流i (t )的大小(不计线圈自身的自感).解:长直带电线运动相当于电流λ⋅=)(t I v . 正方形线圈内的磁通量可如下求出d d 2Ia x a x μφ=⋅π+000d ln 222ax Ia Ia a x μμφ==⋅π+π⎰0d d ln 2d 2d i a It tμφε=-=π2ln d )(d 20t t a v λμπ=d ()()ln 22d it i t aRRtεμλ==πv9、一艘宇宙飞船的船身固有长度为L 0 =90 m ,相对于地面以=v 0.8 c (c 为真空中光速)的匀速度在地面观测站的上空飞过.(1) 观测站测得飞船的船身通过观测站的时间间隔是多少?(2) 宇航员测得船身通过观测站的时间间隔是多少?解:(1) 观测站测得飞船船身的长度为=-=20)/(1c L L v 54 m则 ∆t 1 = L /v =2.25×10-7 s(2) 宇航员测得飞船船身的长度为L 0,则∆t 2 = L 0/v =3.75×10-7s10、已知粒子在无限深势阱中运动,其波函数为)/sin(/2)(a x a x π=ψ (0 ≤x ≤a )求发现粒子的概率为最大的位置.解:先求粒子的位置概率密度)/(sin )/2()(22a x a x π=ψ)]/2cos(1)[2/2(a x a π-=当 1)/2c o s(-=πa x 时, 2)(x ψ有最大值.在0≤x ≤a 范围内可得 π=πa x /2 ∴ a x 21=.a。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
静电学
重点:两个基本概念,两个基本定律,两个基本定理
1、两个基本概念
F E ① 电场强度矢量: q0 单位正电荷在该点受到的电场力。
1、下列几个说法中哪一个是正确的? A)电场中某点场强的方向,就是将点电荷放在该点所受电场力 的方向。 B)在以点电荷为中心的球面上,由该点电荷所产生的场强处处 相同。 C)场强方向可由 E F / q0 定出,其中q0为试探电荷的电量,q0 可正、可负, F 为试探电荷所受电场力。 D)以上说法都不正确.
L
q
S内
静电场是有源无旋场
8、已知一高斯面所包围的体积内电荷代数和 ∑q=0,则可肯定: A) 高斯面上各点场强均为零。 B) 穿过高斯面上每一面元的电场强度通量均为零。 C) 穿过整个高斯面的电场强度通量为零。 D) 以上说法都不对。
√
[分析]
穿过任一闭合曲面的电通量等于该曲面所包围的电荷的 代数和除以ε0。
√
计算:①叠加法 ②高斯定理
点电荷E
1 点电荷系E= 4 0
i
q er 2 4 0 r qi eri 2 ri
1
2、在 (a,0) 处放置一点电荷+ q,在( - a,0 )处放置另一点电荷 - q。P点 是 x 轴上的一点,坐标为 ( x,0)。当x >>a 时,该点场强的大小为:
2 0
0 ( x a ) 由叠加原理得: E (a x a ) 0 a a 1 2 o ( x a) 0 a 0 0 U1 E d l 0 d x dx a 对于1点: x x a 0 0 a 0 x 对于2点: U 2 d x x 0 x 0 0 a a 0
上底 下底
2 0 ③电荷分布是球对称
E
S
Φ E d S E 4r 2
E
E
Q 4 r 2
图示闭合面包围了两个等量异号点电荷±q.下列说法是 否正确?如有错误请改正. (1) 高斯定理 E d S q / 0 成立. S (2) 因闭合面内包围净电荷∑q i=0,得到
x
面电荷
dq d x
x
d q r d d r
d q 2r d r
d q R d R sin d
体电荷
r dr
d q 4r 2 d r
xd r d q 2rh
静电学中有下面几个常见的场强公式: E F /q (1) 问:1.式(1)、(2)中的q意义是否相同? E q /(40 r 2 ) (2) 2.各式的适用范围如何? E (U A U B ) / l (3) 答 : 1 两式中的q 意义不同.(1) 中的q 是置于静电场中受到电 场力作用的试验电荷;(2) 中的q是产生电场的场源电荷。 2(1)是场强的定义式,普遍适用; (2)适用于真空中点电荷的电场 (或均匀带电球面外或均匀带电球体外的电场); (3)仅适用于均匀电场,(且A点和B点的连线与场强平行。)
导体内部 E 0
静磁学
重点:一个基本概念,两个基本定律,两个基本定理
1、基本概念 磁感应强度
B
F qv s i n
方向 : 规定磁场中某点小磁针 N 极所指的方向。
计算:①叠加法 ②环路定理
叠加法 常用结论
0 I d l er dB 4 r2 0 I d l er B 4 L r2
0S
对各向同性介质 D 0 r E E
1 1 E 2 DE 2 2
⑥静电场的能量: w
W
w dV
V
1 1 W QU CU 2 2 2
2、两个基本规律
高斯定理 E d S 1 e
S
环路定理
0 E dl 0
√
C)
q 4 0 a
p0
[分析] U M M
8 0 a p0 a q q q d r d r E dl M 4 r 2 2 a 4 r 2 8 0 a 0 0
√
D)
q
a
a
计算:①叠加法 ②定义法
点电荷U
电荷连续分布 U dU
0 I B (cos 1 cos 2 ) 4a
B
0 I
2R
1、无限长直导线在P 处弯成半径为R 的圆,当通以电流 I R 时,则在圆心O点的磁感应强度大小等于 I I I O A) 0 B) 0 C )0 0 1 1 2 R 4R 2 P 2 2 0 I 0 I 1 1 2 D) (1 ) E) (1 ) 2R 4R
11、在静电场中,场强沿任意闭合路径的线积分等于零,即
E d l 0 ,这表明静电场中的电场线 不可能闭合 。
L
在静电场中,单位正电荷沿任一闭合路径移动电场力所作的功 [分析] 恒为零。
计算:应用高斯定理求场强 常见高斯面的选取 ①电荷分布的轴对称性
电荷分布必须具有一定的对称性
② 磁通量: 通过某曲面的磁场线的条数。
d m B d S
B ③磁场强度: H M
m B d S
S
0
B H
F I dl B
LLeabharlann ④安培力: d F I d l B
⑤磁矩:
m IS
答 (1) 否,由 0 I d l er 0 I d lsin dB 2 4r 4r 2
a d
b I dl
c
当 0, 时,
即电流元的磁场在它的延长线上的各点磁感强度均为零.
(2) a⊙,b⊙,c ,d
.
其他基本概念 ①洛伦兹力:
f qv B
3
x
0
对于3点: U 3
a
x
0d x
0
a
dx a 0 0
x
a 0
其他基本概念
③ 电通量: 通过某曲面的电场线的条数。 d e E d S e E d S
S
④ 电容:
q C U
Q C U1 U 2
孤立导体球 C 4 0 R 平行板电容器 C d D 0E P ⑤ 电位移矢量:
l
r
I
0
变
4、取一闭合积分回路 L,使三根载流导线穿过它所围成的面,现改
B ) 回路L内的 I不变,L上各点的B 改变。 √ C ) 回路L内的 I改变,L上各点的B 不变。 D ) 回路L内的 I改变,L上各点的B 改变。
√
[分析] B
0 I
2R
B
0 I (cos 1 cos 2 ) 4a
B
0 I
2R
0 I 2R
2、一无限长载流直导线,通有电流 I,弯成如图形状。设 各线段皆在纸面内,则P 点磁感应强度B 的大小为 3 0 I 8a I
[分析] B
4a
0
。
(cos 1 cos 2 )
合面上场强E处处为零. (3) 通过闭合面上任一面元的电场强度通量等于零.
E d S 0故闭
S
答 (1) 正确.
(2) 错误,虽然有 E d S 0 ,
S
-q +q S
但本题中闭合面上各点场强均不为零。
(3)错误,通过整个闭合面的电场强度通量为零,而通 过任一面元的电场强度通量不一定为零(本题中任一面元 上都不为零)。
=0
=0
Φ E dS E d S E d S E d S
s 侧 上底 下底
E
2 r
②电荷分布的面对称性
s 侧
=0
Φ E dS E d S E d S E d S
q 4 0 r 1 dq 4 0 r
1
6、电量q 均匀分布在长为2l 的细杆上,求在杆外延长线上与杆 端距离为 a 的 P 点的电势(设无穷远处为电势零点)。 x dx O P 解 设坐标原点位于杆中心O点,x 2 l a x 轴沿杆的方向。 在 x 处取电荷元
d q d x q d x /(2l )
dq qd x dU p 40 ( l a x ) 80 l (l a x )
它在 P 点产生的电势为
整个杆上电荷对 P 点产生的电势
dx q l q 2l Up ln( l a x ) | l ln( 1 ) 80 l l (l a x ) 80 l 8 0 l a q
其他基本规律
① 库仑定律
F
q1q2 en 2 4 0 r
1
②场强、电势叠加原理 ③ 电荷守恒定律
E Ei
i
U Ui
i
在一个孤立系统内发生的任何的变化过程中,系统 电荷总数 (正、负电荷的代数和)保持不变。
④ 静电平衡条件
导体表面附近 E 表面 E 0 导体是等势体,导体外表面为等势面。体内无净电荷。
l
UP
P0
P
E dl
7 、电荷面密度分别为+σ和-σ的两块无限大均匀带电平面,处于与平面 垂直的 x 轴上的- a 和+ a 的位置上。设坐标原点O处的电势为零,试求空间的 电势分布并画出其曲线。 解 建立坐标轴,分别在三个区域选取1、2、3点。 由高斯定理得,无限大均匀带电平面的电场强度为:E