配电网电力电子变压器技术综述
电力电子变压器理论研究综述
te dof we lcr ni r n f r r. rn po ree to cta s o me s
Ke r s p w e l c r n c ta s o m e ; o re e t o i e h l y u l y of we u p y ywo d : o re e t o i r n f r r p we l c r n ct c no og ;q a i t po r s p l
g .Vi n lsst her lv n h o y a t p ia in o o re e to ct c noog n p we lcr i r n f r rfed hi Y a a ay i o t ee a tt e r nd i a pl to fp we lcr ni e h l y i o ree tonc ta so me l,t s s c i
控式 电力 电子变 压器 、交 一 一 型 电力 电子变 压器 、反激 型 电力 电子 变压 器、双 P M变 换型 电力 电 交 交 W
子变压 器几种 典型 的设计 构想进行 了梳理 ,并且给 出了相应 的主 电路 拓扑 。通 过分析 电力 电子技术在 电力 电子变 压器研 究领域 的相关理 论及其 应用 ,阐述各 种拓 扑的优缺 点 ,并给 出了主要的研 究方 向和
发展趋 势 。 关 键 词 : 电力 电子 变 压 器 ; 电力 电子 技 术 ; 电能 质 量
中图分类号:T 4 1 1 M 0 .
文献标识 码:A
文章编号:
Re e r h Sum m a y 0 we e t o i a f r e sa c r fP0 rElc r n cTr nsl m rThe r 0 oy
电力电子变压器简要介绍
电力电子变压器介绍0、前言电力电子变压器(PowerElectronicTransformer简称PET)作为一种新型的能量转换设备,与传统的变压器相比,具有体积小、重量轻、空载损耗小、不需要尽缘油等优点。
它是集电力电子、电力系统、计算机、数字信号处理以及自动操纵理论等领域为一体的电力系统前沿研究课题,通过电力电子器件和电力电子变流技术,对能量进行转换与操纵,以替代传统的电力变压器。
1、全然原理PET的设计思路源于具有高频连接的AC/AC变换电路,其全然原理见图1,即通过电力电子变换技术将变压器原边的工频交流输进信号变换为高频信号,经高频变压器耦合到副边后,再经电力电子变换复原成工频交流输出。
因高频变压器起隔离和变压作用,因铁心式变压器的体积与频率成反比,因此高频变的体积远小于工频变压器,其整体效率高。
图1电力电子变压器全然原理框图PET的具体实现方案分两种形式:一是在变换中不含直流环节,即直截了当AC/AC变换,其原理是:在高频变压器原边进行高频调制,在副边同步解调;二是在变换中存在直流环节,通常在变压器原边进行AC/AC变换,再将直流调制为高频信号经高频变压器耦合到副边后,在副边进行DC/AC变换。
对比两种方案,后种操纵特性良好,通过PWM调制技术可实现变压器原副边电压、电流和功率的灵活操纵,有看成为今后的开展方向。
2、研究现状自1970年美国GE公司首先制造了具有高频连接的AC/AC变换电路后,许多科研工作者对各种不同结构的具有高频连接的AC/AC变换器进行了深进的探讨和研究,并提出了PET的概念。
美国海军和美国电力科学研究院(EPRI)的研究小组先后提出了一种固态变压器结构,KoosukeHarada等人也提出了一种智能变压器,他们通过对高频技术的使用,使变压器体积减小,实现恒压、恒流、功率因数校正等功能。
早期的PET的理论和实现研究由于受当时电力电子器件和功率变换技术开展水平的限制,所提出的各种设计方案均未能有用化,特殊是在可用于实际输配电系统(10kV以上)的PET的研究方面进展不大。
电力系统中的电力电子变压器技术研究
电力系统中的电力电子变压器技术研究引言:近年来,随着电力需求的不断增长,电力系统的稳定性和效率成为了重要关注的领域。
在电力系统中,变压器是一个不可或缺的核心组件。
传统的变压器在能量传递和调节方面存在一些限制,于是电力电子变压器技术应运而生,为电力系统的进一步发展提供了新的解决方案。
本文将重点研究电力电子变压器技术在电力系统中的应用与发展。
一、电力电子变压器的概述电力电子变压器(Power Electronic Transformer,PET)是一种依靠电力电子器件进行功率变换和调节的新型变压器。
与传统变压器相比,PET具有更大的灵活性和可控性。
不仅能够实现电力系统中的能量传递和电压调节,还能够对电流进行精确控制。
PET的主要组成部分包括变压器核心、电力电子开关和控制器等。
二、电力电子变压器的工作原理电力电子变压器的工作原理基于电力电子开关的控制和调节。
电力电子开关根据输入信号实现对电压和电流的精确控制,从而改变了能量传递和调节方式。
PET通过改变开关器件的通断状态和导电周期,可以实现电流的高频调制和升降变换,从而改变输出电压的倍数和频率。
三、电力电子变压器在电力系统中的应用1. 新能源接入和分布式发电随着新能源技术的快速发展,如风能和太阳能等,电力系统中新能源的接入始终是一个挑战。
传统变压器往往无法适应新能源的动态变化和多样化输出特性,而电力电子变压器则可以通过其精确的控制能力实现对新能源的有效管理和平稳接入。
2. 智能电网和能量存储电力电子变压器在智能电网中的应用也日益增多。
智能电网需要对多种能源进行管理和优化调度,而PET可以通过其可调节的电流输出和高效能量变换能力,实现对能量的高效存储和传输。
此外,PET还能通过电力电子开关的频率变换,将直流储能系统转换为交流输出,实现了不同储能系统之间的互联互通。
3. 电动汽车充电设备随着电动汽车的普及,电动汽车充电设备也成为电力系统中的关键环节。
传统的充电设备对电压的调节和电流的稳定性要求较高,而电力电子变压器可以通过高频调制和变换实现对电动汽车的精确充电,提高充电效率和充电速度。
配电系统电力电子变压器拓扑结构综述
图2 A C / A C单 级 型 P E T
Fi g . 2 AC/AC s i n g l e— s t a g e PET
A C / A C单级 型 P E T结 构优点 突 出 , 其 电路 拓扑
单 级型 P E T的工 作原 理 为 : 输入 的工 频 交 流 电
扑 结构 进行 分析 和 比较 , 并 对 拓 扑 结 构 实用 化 的可
行 性 和亟待 解决 的 问题加 以探讨 。
收 稿 日期 :2 0 1 4 - 0 5 - 2 3
基 金 项 目 :科 技 部 国 际合 作 项 目 ( 2 0 1 0 D F R 7 0 6 0 0 ) 作 者 简 介 :陈 启 超 ( 1 9 8 3 . ) , 男 ,黑 龙 江 籍 , 博 士研 究 生 , 研 究 方 向 为 电力 电 子 变 压 器 、电 能 质 量 分 析 与 控 制 ;
于 B u c k电路 的 A C / A C变 换 器 作 为 P E T的拓 扑 结
构 , 实现 了降压 的功 能 。之 后 的 1 9 9 5年 , 美 国 电
力科 学 研究 院 ( E P R I ) 对此 结 构进 行 了深 入 研究 , 研
原成 工频 正 弦波 电压 , 原 边 和副 边 的 变 换 器在 进 行 波形 变换 时必 须保 持 同步 。针对 此拓 扑在 感性 负载
图 2所示 的 是文献 [ 5 ] 提 出的一 种 典 型 的 A C / A C单 级 型 P E T结 构 。 为 了达 到减 小 尺 寸 、 减 轻 重
数校 正 功能 , 且 对 原边 与副 边 开 关 信 号 的 同步 性 要
电力电子变压器技术研究综述 张磊
电力电子变压器技术研究综述张磊发表时间:2018-11-13T16:55:11.147Z 来源:《建筑学研究前沿》2018年第21期作者:张磊[导读] 但是,从总体而言,PET的大规模推广应用还有诸多问题需要解决。
本文对电力电子变压器技术的应用进行了研究综述。
特变电工股份有限公司新疆变压器厂新疆昌吉 831100摘要:在能源互联网、智能电网等高科技电网技术飞快发展的基础上,实现电气隔离、变压、功率调节与控制、可再生能源接入等多种功能的电力电子变压器显得尤为重要,相关理论和技术的研究备受社会人士关注。
但是,从总体而言,PET的大规模推广应用还有诸多问题需要解决。
本文对电力电子变压器技术的应用进行了研究综述。
关键词:电力;电子;变压器前言电力电子变压器PET又称为固态变压器SST或智能通用变压器IUT,是一种把电压变换、频率变换、动态无功补偿、电能质量控制和不间断电源等功能集于一身的智能配电设备。
1.PET的控制保护技术PET的高性能控制及保护涉及调制及软开关技术、电压/电流/功率等电气量的控制策略以及故障保护技术等,对PET的电气特性、损耗、可靠性有着极其重要的影响,也是PET的研究热点之一。
2.PET的调制及软开关技术PET的调制主要是指控制PET主电路中各类功率半导体器件,使其按一定规律导通或关断的技术。
通过不同的调制方法可使得变流单元输出一系列脉冲电压/电流波形,并通过调节脉冲电压/电流的脉宽、频率和相位等实现变流单元电压/电流或变流单元之间交换功率的控制。
由于PET中电能变换环节类型较多,需求多种多样,因此调制方法一般也无法统一。
在高压交流侧的多电平变流环节,一般功率半导体器件处于硬开关工作状态,可以采用如正弦脉宽调制、载波移相调制、空间矢量调制等方法,通过优化调制方法来降低开关频率可实现器件开关损耗的降低。
而在隔离级高频环节一般调制需要结合软开关技术,实现功率半导体器件的零电压开关或者零电流开关以减小器件开关损耗,提高开关频率。
电力电子变压器及其发展综述_潘诗锋
#科普园地#电力电子变压器及其发展综述Summary of Development of Power Electronic Transformer潘诗锋,赵剑锋(东南大学电气系,江苏南京210096)摘要:介绍了电力电子变压器的优点、工作原理、目前研究状况。
指出了用电力电子变压器解决电能质量问题是今后的发展趋势,拓宽了电力电子变压器的应用场合,使得其不但可以使用在对能量转换装置的体积、重量有特殊要求的场合,如航海、航空、航天等领域,还可以为电能质量敏感负荷供电。
它是建设/绿色电网0/数字电网0的关键设备之一,对其进行研制和使用可取得巨大的经济和社会效益。
关键词:电力电子变压器;电能质量;绿色电网;数字电网中图分类号:TM41文献标识码:E文章编号:1009-0665(2003)06-0052-03收稿日期: 2003-06-28传统的电力变压器具有制作工艺简单、可靠性高等优点,在电网中得到广泛应用。
但是,它的缺点也十分明显,如体积、重量、空载损耗大;过载时易导致输出电压下降、产生谐波;负载侧发生故障时,不能隔离故障,从而导致故障扩大;带非线性负荷时,畸变电流通过变压器耦合进入电网,造成对电网的污染;电源侧电压受到干扰时,又会传递到负载侧,导致对敏感负荷的影响;使用绝缘油造成环境污染;需要配套的保护设备对其进行保护[1]。
作为一种新型的能量转换设备,与传统的变压器相比,电力电子变压器具有体积小、重量轻、空载损耗小、不需要绝缘油等优点。
它是集电力电子、电力系统、计算机、数字信号处理以及自动控制理论等领域为一体的电力系统前沿研究课题,通过电力电子器件和电力电子变流技术,对能量进行转换与控制,以替代传统的电力变压器。
研究电力电子变压器的初衷是为了降低传统变压器的体积和重量。
因为,变压器的体积和重量与它的运行频率成反比,借助于电力电子技术提高其变换频率,就可减小体积和重量。
美国海军于20世纪70年代末至80年代初,首先对其进行了研究[2],美国电科院于1995年也进行了相关研究[3]。
面向电力电子变压器应用的大容量高频变压器技术综述
4、大容量高频变压器的检测与 维护
4、大容量高频变压器的检测与维护
为了保证大容量高频变压器的可靠性和稳定性,需要进行严格的检测和维护。 检测主要包括电气性能测试、机械性能测试和环境适应性测试等。电气性能测试 主要包括电压比、阻抗、绝缘电阻等测试项目,以检验变压器的电气性能是否符 合设计要求。机械性能测试则主要包括振动测试、冲击测试和寿命测试等,以检 验变压器的机械强度和稳定性。环境适应性测试则主要包括高温、低温、湿度等 环境因素对变压器性能的影响。
参考内容
内容摘要
电力电子变压器是现代电力系统中不可或缺的重要组成部分,而高频变压器 在其中扮演着关键的角色。本次演示将深入探讨电力电子变压器中高频变压器磁 芯和绕组特性的相关问题,以期为相关领域的研究和实践提供有益的参考。
内容摘要
在过去的研究中,高频变压器得到了广泛的。它的基本原理是通过在变压器 铁芯上绕制线圈,利用电磁感应原理实现电能的传递。由于高频变压器的频率较 高,因此具有小型化、高效化和轻量化等优点。在电力电子变压器领域,高频变 压器的设计主要涉及到磁芯和绕组的特性,这些特性对变压器的性能和稳定性有 着至关重要的影响。
谢谢观看
1、可以实现交直流的自由转换,提高电网的灵活性和稳定性; 2、可以实现能量的双向传递,提高能源利用效率;
一、交直流配电网电力电子变压器的概念和应用背景
3、具有较宽的调节范围,可以满足不同负荷的需求;
4、具有较高的效率,可以减少 能源损耗。
4、具有较高的效率,可以减少能源损耗。
在实际应用中,交直流配电网电力电子变压器已经得到了广泛的应用,例如 风力发电、太阳能发电、直流微电网、智能楼宇等领域。
主体部分
1、大容量高频变压器的技术概 述
配电系统电力电子变压器的研究
研究2023-11-03CATALOGUE目录•引言•电力电子变压器概述•配电系统概述•电力电子变压器在配电系统中的应用研究•电力电子变压器在配电系统中应用的挑战与解决方案•结论与展望01引言电力电子变压器在配电系统中的应用能够提高电力系统的稳定性和可靠性,降低系统运行成本,具有重要研究价值。
电力电子变压器在分布式能源、新能源并网、电动汽车充电桩等领域具有广泛的应用前景,对于推动能源结构优化和节能减排具有重要意义。
研究背景与意义研究内容与方法研究内容本文主要研究配电系统电力电子变压器的设计、控制策略、性能评估等方面,旨在提高变压器的运行效率和稳定性,降低能耗和噪声。
研究方法采用理论分析和实验研究相结合的方法,建立电力电子变压器的数学模型和控制策略,并通过实验平台进行性能验证和评估。
02电力电子变压器概述电力电子变压器的定义与工作原理定义电力电子变压器是一种通过电力电子技术实现对交流电压进行变换的装置,它可以将一种电压等级的电能转换为另一种电压等级的电能。
工作原理电力电子变压器主要基于电力电子开关器件(如IGBT、MOSFET等),通过控制开关的开闭状态来实现电压的变换。
它通常包括输入端、中间端和输出端三个部分,通过控制中间端的电压和频率,来实现输入端和输出端之间的电压和电流的变换。
分类根据变换的电压等级和用途,电力电子变压器可分为单相、三相、多模块组合式等类型。
按工作频率可分为工频、中频和高频等类型。
按冷却方式可分为自然冷却、强迫风冷、水冷等类型。
特点电力电子变压器具有体积小、重量轻、效率高、动态响应快、控制精度高等特点。
同时,它也具有噪声小、可靠性高、维护成本低等优点。
电力电子变压器的分类与特点电力电子变压器在配电系统中有着广泛的应用,如分布式能源、电动汽车充电桩、工业电源、新能源等领域。
它可以作为电压变换设备,满足不同设备对电压等级和电能质量的需求。
应用优势电力电子变压器在配电系统中能够实现高效节能、降低运营成本、提高供电可靠性等优势。
配电网电力电子变压器技术综述
配电网电力电子变压器技术综述摘要:在我国电力系统中最主要的电气设备就是电力变压器,传统的电力变压器负荷变化对电力影响特别大。
当电力的负荷发生故障时,不能很好的隔离故障,为了隔离故障而使用绝缘油会对环境形成一定的污染,传统的电力变压器有着自己的不足,比如体积大、空载耗损也比较大和重量大等;跟传统的变压器相比较来看,电力电子变压器是新型的一种能量电力转换设备,这种电力电子变压器最大的优点就是耗损相对比较小,不需要绝缘油等,鉴于此,本文主要分析配电网电力电子变压器技术。
关键词:配电网;电力电子;变压器技术1、电力电子变压器的基本原理电力电子变压器(powerelectronictransformer,PET),也称为固态变压器(solid-statetransformer,SST)或智能变压器(smarttransformer,ST)等,一般是指通过电力电子技术及高频变压器(相对于工频变压器工作频率更高)实现的具有但不限于传统工频交流变压器功能的新型电力电子设备。
电力电子变压器一般至少包括传统交流变压器的电压等级变换和电气隔离功能,此外,还包括交流侧无功功率补偿及谐波治理、可再生能源/储能设备直流接入、端口间的故障隔离功能以及与其他智能设备的通讯功能等。
初级功率变换器、次级功率变换器以及联系初级和次级功率变换器的高频变压器来共同构成电力电子变压器。
根据电力电子变压器的输入和输出这种特点来看,也就是电力电子变压器的交交变换,电力电子变压器的基本工作原理就是输入的工频电压利用原边变换器,将工频电压转换为高频电压,利用高频变压器耦合到副边,最后再利用副边功率变换器将电压转换成所需要的高频交流电压;对电力电子变压器要减小它的体积,来增加电力电子变压器的工作频率;为了把工频交流电转换成高频交流电,这就需要使用合适的电力控制方案和现代电力电子技术,最终能够使电力电子变压器逐步的过渡成小型变压器和轻型变压器。
其工作原理如图1所示,高压侧工频交流通过电力电子变流器一系列变换(交-交变换或交-直-交变换)形成高频交流电,然后通过高频变压器耦合到低压侧,再经过变流器一系列变换形成工频交流电,向负载供电。
配电网电力电子变压器技术综述 孟成
配电网电力电子变压器技术综述孟成摘要:电力电子变压器旨在代替传统电力变压器,实现电压变换、电能控制、无功补偿和不间断电源等智能化功能,使配电网结构更加精简,运行更加高效。
首先对电力电子变压器的发展历程、优势和工作原理进行了论述和分析,然后对电力电子变压器技术中的功率器件、高频变压器、电路拓扑结构、控制技术以及应用等关键问题和研究现状进行了较为全面的阐述,最后指明目前电力电子变压器亟需解决的问题。
关键词:电力电子变压器;配电网;功率器件;拓扑结构电子变压器的优势有很多,电子变压器也被称为固态变压器,或者是智能变压器,这种变压器的优势之一就是能够将电压进行变换,不断的变换频率,对电能的质量进行一定程度的控制,这种设备是目前十分先进和智能的设备。
传统的电力变压器已经利用了将近一百年,在这段时间以来,电力系统结构也发生了巨大的变化,电网的规模逐渐扩大,发电技术不断地成熟,直流的配电技术也逐渐的深入,智能电网深受广大用户的喜爱,针对这些种种挑战,传统的变压器呈现出很多的不足之处,电力电子变压器应运而生,解决了很多的问题,电力电子变压器也逐渐走入了专家和学者的眼中,被广大的研究者研究。
1电力电子变压器的工作原理从而对两侧变流器进行控制。
而整个过程能量是可以双向流动的。
变压器的体积大小与其工作频率成反比,频率越高,体积就越小。
目前,电力电子变压器有很多结构和种类,这些种类主要分为两个基本的要素,电力电子变流器和变压器。
电子变流器通过变压器来变换电流,然后通过高频变压器耦合到低压侧,再经过变流器一系列变换形成工频交流电,向负载供电。
其中脉冲宽度调制 PWM(pulse width modulation)技术由控制器实现,这样的好处是能够从两侧的变流器对整体变压器进行控制,这种控制的过程就是双向流动的。
变压器的体积与变压器的工作频率成反比,变压器的体积越小,工作频率就越高。
2电力电子变压器的核心部件2.1 功率开关器件我国的配电系统的电压有一定的等级的,主要的等级分为3种,低压等级、高压等级和中压等级,为了能够使配电网电力电子变压器能够具有更加吸引人的外观,更加实用的内部结构,应该具备高压、大电流和高频的特点。
电力电子变压器技术研究综述
电力电子变压器技术研究综述一、本文概述随着电力电子技术的快速发展,电力电子变压器(Power Electronic Transformer, PET)作为一种新型的电力变换设备,正逐渐在电力系统中得到广泛应用。
本文旨在对电力电子变压器技术的研究进行全面的综述,以期为相关领域的研究人员提供有益的参考。
本文将首先介绍电力电子变压器的基本原理和结构,阐述其在电力系统中的作用和优势。
接着,文章将重点分析电力电子变压器在电能质量控制、电网接入、分布式能源系统等方面的应用,探讨其在实际运行中的性能表现和存在的问题。
本文还将对电力电子变压器的关键技术进行深入研究,包括但不限于:高效能电能变换技术、宽频带电磁兼容技术、智能化控制技术等。
通过对这些关键技术的分析,本文旨在揭示电力电子变压器技术的发展趋势和潜在挑战。
本文将对电力电子变压器的未来研究方向进行展望,以期推动该领域的技术创新和应用发展。
通过本文的综述,我们期望能够为电力电子变压器的进一步研究和发展提供有益的启示和借鉴。
二、电力电子变压器的基本原理与特点电力电子变压器(Power Electronic Transformer, PET)是一种基于电力电子技术的新型变压器,它结合了传统变压器和电力电子技术的优点,具有许多独特的特性。
其基本原理主要基于电力电子转换器和控制系统,实现对电压、电流和功率的灵活控制和调节。
PET的基本原理可以分为三个部分:输入级、隔离级和输出级。
输入级通常采用AC/DC或AC/AC变换器,将输入的交流或直流电能转换为适合后续处理的直流电能。
隔离级则通过高频变换器实现电能的隔离和传输,同时实现电压和电流的灵活调节。
输出级则负责将高频电能转换回交流电能,以供用户使用。
灵活性和可控性:电力电子变压器可以通过控制系统实现对电压、电流和功率的灵活控制和调节,从而满足各种复杂的电力需求。
高效率:电力电子变压器采用高频变换技术,使得其转换效率远高于传统变压器,降低了能源浪费。
配电网电力电子变压器技术综述
路
~
C
图5 单级AC/AC型PET拓扑三
LC滤波
AC/AC变换电路
L1
高频电路
L
~
C1
高频变压器原边接入整流电流,由于开关管的 交替工作,工频交流信号变为高频交流信号。高频 变压器低压侧采用矩阵变换电路再将高频交流信号 还原为工频信号。
图 5 中变压器原边和副边必须加装钳位电路才 能实现开关管的安全换流。附加的钳位电路不但增 加了电路损耗和输出电流畸变程度,而且需要大容 量电解电容,削弱了单级型拓扑的优势。 2.2 双级型含低压直流环节类
基于对国内外 PET 相关研究的大量调研,主要
作者简介 :张在梅 (1975— ),女,工程师,本科,从事变配电所电气自动化控制、高压电气系统维护等工作 ; 刘艳 (1978— ),女,工程师,本科,从事变配电所电气自动化控制、局域网络构建等工作。
5
电工电气 (2021 No.7)
配电网电力电子变压器技术综述
低压直流
= =C
低压交流 ~
b)双级型含低压直流环节类
图3 单级AC/AC型PET拓扑一 单级型 PET 拓扑简单,变换效率高,可双向传 输功率。但是,该种拓扑功能单一,网侧不具备功 率因数校正功能,其应用受到一定限制。参考文 献 [15] 通过使用四象限开关来实现双极性压流变 换,其结构如图 4 所示。该结构的特点是每个模块 的开关数量少,可以方便实现压流变换。但与图 3 所示单级拓扑相比,其不足是需要模块数量增加了 一倍,且由于纹波电流较大需要更大的平波电感, 功率因数同样不高。
M.Kang 等人 [12] 提出了一种单级 AC/AC 型 PET 结构,如图 3 所示。在这种情况下,输入电压在通 过高频变压器之前被转换成占空比为 50% 的高频方 波,在高频低压侧对方波信号进行解调使其变为原 来的正弦波。为减小尺寸、提高效率,高频变压器 频率变化范围在 0.6 ~ 1.2 k H z,同等尺寸下传输 能量能力是普通工频变压器的 3 倍 。 [13-14]
电力电子变压器研究综述
电力电子变压器研究综述李璟摘要:电力电子变压器(PET ) 是一种采用电力电子变换器和高频开关变压器的电能传输装置。
首先,介绍了电PET 的基本工作原理及其研究现状。
其次,介绍了发展过程中出现的几种典型拓扑结构。
再次,对PET 的控制方法进行了总结。
最后,对将来PET 的应用及发展做出了展望。
关键词:电力电子变压器 电力系统 控制 拓扑0 引言PET 除了具有传统电力变压器电能变换与传输功能外,其突出优点在于体积小、重量轻,通过变压器原、副方电压源变换器对其交流侧电压幅值和相位的实时控制,可以实现变压器原、副方电压、电流和功率的灵活调节,在暂态过程中控制性能良好,本身具有断路器的功能,无需传统的变压器继电保护装置等[1~3]。
因此PET 具备解决电力系统相关问题的潜力,应用前景广阔。
随着电力系统朝着智能电网不断发展,PET 也受到越来越多的专家学者的关注。
1 PET 基本工作原理电力电子变压器是一种将电力电子变换技术和基于电磁感应原理的电能变换技术相结合,实现将一种电力特征的的电能转变为另一种电力特征的电能的静止电气设备。
[4]上述电力特征包括电压或者电流的幅值、相位、相序、波形、频率和相数等。
它的主要功能包括变压、变流、电气隔离、能量传递和电能控制。
在结构上,电力电子变压器主要包括两个部分:高频变压器和电力电子变换器。
电源接到一次侧时,电力电子变换器1将输入的工频交流电变换成高频交流电,高频交流电经高频变压器耦合后与这电力电子变换器2相连接,通过电力电子变换器2输出到负载上。
图1电力电子变压器中电力电子变换器的主要功能是实现电压或者电流的频率控制、相位控制和谐波控制;电力电子变压器中的高频变压器主要功能是电压等级的变换和电气隔离。
变压器容量S 可以表示为下式:m e c B A A J f K S ******=22.2 (1)式中K 为铜导线饱和因数;f 为励磁频率(Hz );c A 、e A 分别表示为铁芯和绕组导线面积(m 2);J 为导体中的电流密度(2/m A );m B 为最大磁通密度(T)。
电力电子变压器研究综述
电力电子变压器研究综述一、本文概述随着可再生能源的快速发展和智能电网的逐步推进,电力电子变压器(Power Electronic Transformer, PET)作为一种新型的电能转换设备,正受到越来越多的关注。
电力电子变压器不仅能够实现传统变压器的电压和电流变换功能,还具备更加灵活和智能的电能质量控制能力,为现代电力系统的稳定运行和高效管理提供了有力支持。
本文旨在对电力电子变压器的研究进行综述,全面梳理其发展历程、基本原理、关键技术、应用现状以及未来发展趋势。
文章将回顾电力电子变压器的诞生背景和发展历程,阐述其在现代电力系统中的重要地位。
文章将详细介绍电力电子变压器的基本工作原理,包括其拓扑结构、控制策略以及电能转换过程等。
在此基础上,文章将重点关注电力电子变压器的关键技术,如宽禁带半导体材料的应用、高效冷却技术、电磁兼容设计等,并分析这些技术对提升电力电子变压器性能的重要作用。
文章还将对电力电子变压器的应用现状进行梳理,包括在可再生能源并网、智能电网、微电网等领域的应用实例和效果分析。
通过对比分析,文章将展示电力电子变压器在提高电能质量、增强系统稳定性、促进可再生能源消纳等方面的优势。
文章将展望电力电子变压器的未来发展趋势,探讨其在新型电力系统中的潜在应用前景和可能面临的挑战。
通过本文的综述,读者可以对电力电子变压器的研究现状和发展趋势有更加全面和深入的了解,为相关领域的研究和应用提供有益的参考和借鉴。
二、电力电子变压器的基本原理与结构电力电子变压器(Power Electronic Transformer,简称PET)是一种新型的电能转换与传输设备,它将传统电力变压器的功能与电力电子技术的优势相结合,为现代电力系统提供了更加灵活、高效的解决方案。
PET的基本原理和结构是其在电力系统中发挥作用的关键。
基本原理上,电力电子变压器利用电力电子技术实现电能的高效转换和传输。
它首先通过整流器将输入的交流(AC)电转换为直流(DC)电,然后通过逆变器将直流电再转换回交流电。
配电网电力电子变压器技术综述
配电网电力电子变压器技术综述摘要:传统的电力变压器结构简单、运行可靠、经济性好,在长期运行实践中发挥了重要的作用。
但是,随着分布式电源的大量接入以及智能电网相关技术的应用推广,给传统电力变压器的应用方面带来挑战。
由于电力电子变压器(PET)在电能质量调节和谐波抑制等方面具有一定优势,PET的研究得到了大量关注。
由于目前对PET的研究多是在配电网的场景中,文中也主要讨论配电网PET相关技术。
关键词:配电网;电力电子变压器;拓扑结构;关键技术引言近年来,分布式电源在配电网的接入比例不断提升;分布式电源出力具有随机性和波动性,其大量接入给有源配电网的运行和调控带来了巨大的挑战。
随着半导体器件技术的不断发展,电力电子变换器广泛应用于中低压配网中。
其中电力电子变压器不仅具备传统变压器的电能传输、电气隔离作用,也可实现谐波、无功功率补偿以及精确、双向潮流调控功能。
电力电子变压器有效解决了分布式电源接入和控制问题。
而随着宽禁带器件技术的成熟,具有耐高压、高频,高效特性的碳化硅型器件将广泛应用于市场中。
碳化硅器件的应用将引领电力电子变压器迈向小型化、高效化发展,基于碳化硅型电力电子变压器具备取代传统工频变压器的潜力。
本文重点研究碳化硅型电力电子变压器的电路结构、数学模型和控制系统。
1电子电力变压器概述电子功率转换技术和电磁感应是电子电力变压器的基本原理,将一种供电装置的能量特性(电流频率、振幅、电压等)转换为另一种供电装置。
相对于传统电力变压器电子电力变压器与在于引入了电子电力转换技术。
因此,电力电子变压器可以实现一次侧和二次侧电压的实时监测,使供电系统的电流、功率和电压监测更加方便。
功率电子变压器不光具备相同功能的传统,在这一基础上他们又增添新功能,满足了现代电力系统的稳定性,如改进、优化配置各种电源、控制饮食的质量改进和能量流。
2配电网电力电子变压器技术综述2.1PET结构及基本控制方法该拓扑可分为前级和后级两部分,前级是在MMC输入级结构的基础上,将隔离级的隔离DC/DC变换器与MMC子模块整合在一起,组成新型功率子模块,并将子模块的输出并联到一起,得到低压直流输出,连接输出级。
电力电子变压器简要介绍
电力电子变压器简要介绍电力电子变压器是一种新型的电力变压器,其主要特点是在变压器的核心中直接将电压变换成了电流,而不是通过电流变换电压的方式。
它采用电力电子器件来进行电能转换,具有调节输出电压、频率、相位等的特点,已经得到了广泛的应用。
电力电子变压器是由电源、电力电子器件、控制系统、变压器等部分组成。
其结构相对传统的电力变压器来说稍复杂,但其工作原理却非常简单。
它是通过将输入电压变为脉冲信号,然后再将其转变成所需要的输出电压和电流,从而实现电力能量的转换。
电力电子变压器广泛用于交流电源以及各种电力系统中,可以进行变压、变频、电流控制等应用。
比如铁路电力变频供电系统、不间断电源等,都采用了电力电子变压器的技术。
电力电子变压器最大的优点是具有可调性。
通过控制电力电子器件的工作状态,可以调节输出电压、频率、相位等参数,从而满足不同的电力系统要求。
这使得电力电子变压器比传统的电力变压器更加灵活。
另外,电力电子变压器还具有高效性。
传统的变压器由于存在磁耗、铜耗等损耗导致效率比较低,而电力电子变压器则能够通过改善电力系统的功率因数、减少传输损耗等方面提高效率。
这样一来,它可以更加节省能源,缩减能源浪费。
在未来,电力电子变压器将会越来越广泛的应用于能源领域。
由于电力电子器件技术的不断发展和改进,电力电子变压器的性能和效率将会越来越高,同时它还可以减少系统的维护成本和运行成本,使其在电力系统的优化方面谋求更大的作用。
总之,电力电子变压器是一种处在不断进化和发展的新型电力变压器。
它采用电力电子器件进行电能转换,具有可调性和高效性等特点,广泛用于交流电源以及各种电力系统中。
随着技术的不断改进和电力系统的优化,电力电子变压器将会实现更多的创新和突破,同时也能够逐步升级电力系统的效率和可靠性。
配电网中的电力电子变压器技术的综述_上_马红星
变压 器 无 法满 足我 国建设 坚 强 智能 电网的需求 。
电力电子变压器具有的优点
这就使 得我们必须采 用更加智能 化 的 电力 电子 变压 器来 代 替传 统 变 压器 。 相对于传统 铁芯式变压器 , 电 力电子 变压器 具有以下优点 体 积 小 、 重量 轻 、 成本 低 、 无环境污染 。 电力 电子 变压器采 用高 频变压器 , 体积将大大减 小 , 其价格 将不 断下降 而低 于传统 工频 变压 器 。
和
功率器件 中 ,
的发展尤
是
助 于 解决 电力 系统 中所 面 临的 许多
新课题 , 主要 表现在如 下几个方面 作 为 一种 高 度可控 的 新 型输 电设 备 , 其原副边 电压的幅值和 相位均 可控 , 且可 关断故障大 电流 ,
题 需要解决
高压 电力 电子器件 的研 发 。
由
封 装技 术成 熟 ,
下降 、 产生谐 波 负载侧发生故障 时 , 不能隔离故障 , 从而导致故障扩大 带非线性负荷时 , 畸变 电流通过变压 器辐 合 进 入 电 网 , 造 成对 电 网 的污 染 电源 侧 电压 受到 干 扰时 , 又 会 使 用绝缘 油造 成环境污染 需要 传递到 负载 侧 , 导致对敏感负荷的影 响
需 要设计 高压 器件的 串联 均压方 案 ,
包括驱动方法
这一特 点应用到电力系统 后 , 将有望
对 电路拓 扑 进行 深入研 究 。 寻求更加稳定 、 成本更低 、 可靠性更 高 、 功能齐全的 电路拓扑 对 电力 电子 变压 器控 制策 略 的 研 究 。 关键 在 于得 出 能 同时 完成 能 量转 换 和解 决 电能质 量的 问题 功 能的控制策略 , 即如何将 电能传输 、
配电系统电力电子变压器拓扑结构综述
配电系统电力电子变压器拓扑结构综述发布时间:2021-03-03T03:27:01.823Z 来源:《福光技术》2020年23期作者:马秋昕[导读] 电力变压器是支撑电力系统安全稳定运行的重要设备,变换交流电能的形式是电力变压器的重要功能。
国网山西省电力公司忻州供电公司山西忻州 034000摘要:配电系统电力电子变压器是以传统电力变压器为基础的新型智能电力变压器,应用了电力电子交换技术,可以实现一、二次侧电压的灵活控制。
随着科学技术的快速发展,大功率电力电子器件制造能力有了显著提升,显著改善了电力电子交换控制措施,为解决电力系统中的诸多难题创造了有利条件。
因此,本文将简要概述电力电子变压器的工作原理与应用优势,并对电力电子变压器的发展与应用进行综述,旨在为广大电力工作者提供参考信息。
关键词:电力电子变压器;工作原理;应用综述前言电力变压器是支撑电力系统安全稳定运行的重要设备,变换交流电能的形式是电力变压器的重要功能。
电力变压器历经一百多年的发展,产品结构不断得到改进,并应用了各种新材料,变压器性能与制造水平得到了很大提升,如今电力变压器的电压等级已经达到了1000kV,容量高达百万千伏安,有效增强了电力系统运行的安全性与稳定性。
电力电子变压器是以电力电子技术、电力系统分析和自动控制等理论为基础的新型高电压变换器,不仅可以实现能量转换、潮流控制和电能质量控制功能,还有着解决海洋群岛供电和新型城市电网构建等难题的优势,为促进电力事业的发展提供强有力的技术支撑,电力变压器的发展已经成为电力工作者关注的热点话题。
一、电力电子变压器工作原理与优点电力电子交换技术与电磁感应原理是电力电子变压器的核心技术,基础思想是利用高频变压器替代工频变压器来传输电力能源,初、次级功率变换器和两者相互关联的高频变压器是主要的电力电子器件。
电力电子变压器工作原理如下:输入工频交流电历经初级变换器调制成高频交流电,利用高频变压器一次侧绕组、二次侧绕组把高频交流电耦合产生感应电动势,通过二次绕组把感应电动势施加至次级变换器,最终次级变换器会将高频交流电转换成工频交流电,从而向电力设备供给电力能源。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
配电网电力电子变压器技术综述
发表时间:2018-09-12T16:32:30.640Z 来源:《基层建设》2018年第22期作者:刘永林刘贻青
[导读] 摘要:在我国电力系统中最主要的电气设备就是电力变压器,传统的电力变压器负荷变化对电力影响特别大。
易事特集团股份有限公司广东省东莞市 52380
摘要:在我国电力系统中最主要的电气设备就是电力变压器,传统的电力变压器负荷变化对电力影响特别大。
当电力的负荷发生故障时,不能很好的隔离故障,为了隔离故障而使用绝缘油会对环境形成一定的污染,传统的电力变压器有着自己的不足,比如体积大、空载耗损也比较大和重量大等;跟传统的变压器相比较来看,电力电子变压器是新型的一种能量电力转换设备,这种电力电子变压器最大的优点就是耗损相对比较小,不需要绝缘油等,鉴于此,本文主要分析配电网电力电子变压器技术。
关键词:配电网;电力电子;变压器技术
1、电力电子变压器的基本原理
电力电子变压器(powerelectronictransformer,PET),也称为固态变压器(solid-statetransformer,SST)或智能变压器(smarttransformer,ST)等,一般是指通过电力电子技术及高频变压器(相对于工频变压器工作频率更高)实现的具有但不限于传统工频交流变压器功能的新型电力电子设备。
电力电子变压器一般至少包括传统交流变压器的电压等级变换和电气隔离功能,此外,还包括交流侧无功功率补偿及谐波治理、可再生能源/储能设备直流接入、端口间的故障隔离功能以及与其他智能设备的通讯功能等。
初级功率变换器、次级功率变换器以及联系初级和次级功率变换器的高频变压器来共同构成电力电子变压器。
根据电力电子变压器的输入和输出这种特点来看,也就是电力电子变压器的交交变换,电力电子变压器的基本工作原理就是输入的工频电压利用原边变换器,将工频电压转换为高频电压,利用高频变压器耦合到副边,最后再利用副边功率变换器将电压转换成所需要的高频交流电压;对电力电子变压器要减小它的体积,来增加电力电子变压器的工作频率;为了把工频交流电转换成高频交流电,这就需要使用合适的电力控制方案和现代电力电子技术,最终能够使电力电子变压器逐步的过渡成小型变压器和轻型变压器。
其工作原理如图1所示,高压侧工频交流通过电力电子变流器一系列变换(交-交变换或交-直-交变换)形成高频交流电,然后通过高频变压器耦合到低压侧,再经过变流器一系列变换形成工频交流电,向负载供电。
图1电力电子变压器的工作原理
2、电力电子变压器的几种电路类型
2.1、斩控式电力电子变压器
在1995年,电力电子变压器的实验样机被制造出来,这也是美国电科院首次成功制造斩控式的电力电子变压器。
2.2、交-交-交变换电力电子变压器
在1999年,交-交-交变换的电力电子变压器被制造出来,它是一种新型的电力电子变压器,这也是美国德州大学首次成功制造该种类型的电力电子变压器。
2.3、反激式电力电子变压器
反激式电力电子变压器是近年来研制的新型变压器,它的内部元件大大减少,结构非常的简化。
3、配电网电力电子变压器技术综述
3.1、PET的电路拓扑
PET一般可应用于智能电网、可再生能源接入或电力机车牵引变流系统等需要对电能形式进行变换并要求电气隔离的场合。
根据应用场景的不同,PET的高、低压端口电能形式及隔离方式一般也不相同,通常需要采用定制化的电路拓扑,很难实现统一标准化设计。
这也促成了PET电路拓扑的多元化技术路线。
作为应用于交流电网的PET,其输入侧一般为中高压交流端口,而为了能够涵盖传统工频变压器的基本功能,在很多场合也要求PET 能够输出低压交流。
因此,本文以中高压交流输入、低压交流输出的PET作为基本的分类对象。
而对于具有直流端口的PET来说,大多数情况下其可以作为低压交流输出型PET的一部分。
3.2、PET的控制保护技术
PET的高性能控制及保护涉及调制及软开关技术、电压/电流/功率等电气量的控制策略以及故障保护技术等,对PET的电气特性、损耗、可靠性有着极其重要的影响,也是PET的研究热点之一。
PET的调制主要是指控制PET主电路中各类功率半导体器件,使其按一定规律导通或关断的技术。
通过不同的调制方法可使得变流单元输出一系列脉冲电压/电流波形,并通过调节脉冲电压/电流的脉宽、频率和相位等实现变流单元电压/电流或变流单元之间交换功率的控制。
由于PET中电能变换环节类型较多,需求多种多样,因此调制方法一般也无法统一。
一般而言,PET的电气端口应具有电压/电流/功率的实时调节能力,可实现电能双向流动,从而可以接入不同类型的电源、储能和负荷等设备。
3.3、PET中的高频变压器优化设计
PET中的高频变压器是实现电气隔离和电压等级变换功能的核心元件。
首先需要说明的是,本文中的“高频”是与工频变压器的“工频”而言的相对概念。
一般来说,过低的工作频率会使得变压器铁心体积较大,而过高的频率会使得变压器及其连接的电力电子变换器损耗增加,给系统散热带来困难。
实际上,对于可以隔离10kV或更高电压的高频变压器来说,由于爬电距离、空气间隙等绝缘因素的限制,一般
工作频率高于数kHz之后,即便继续提高频率,高频变压器本身的体积很难继续减小;而因工作频率提高带来的变压器及变流器散热需求增加,需要另外增加散热设计,反而可能会增大PET系统的体积。
因此,PET中高频变压器的工作频率设计需综合考虑系统的体积(功率密度)、绝缘、散热等多项性能的协同优化。
所以,目前研制的PET样机中,高频变压器工作频率一般在400Hz~20kHz之间,有些文献中将这些变压器称为中频变压器(mediumfrequencyt ransformer,MFT)。
对于高压大容量的高频变压器来说,为了实现较高的功率密度,其绝缘和冷却设计需要重点考虑。
从绝缘形式划分, PET中的高频变压器可以分为油(液体)浸式和干式两种。
在已研制的PET样机中,两种类型的绝缘技术也均有采用[19,22-23,30,32,49,64,104,107]。
干式变压器的绝缘材料一般采用合成材料绝缘纸、环氧树脂等。
由于没有液体泄漏、挥发、着火等问题,干式变压器具有环境友好,维护少等优势。
但是,干式变压器的散热、绝缘、局部放电等需要特别处理。
因此,油浸式高频变压器依然获得了较多应用。
油浸式变压器除去绝缘性能好之外,由于铁心和绕组都可以浸泡在绝缘油中,采用导热性能良好的绝缘油时还可以起到很好的散热作用。
总之,电力电子技术融入变压器是当前电力系统研究的新兴领域,将这种变压器所提供的研究思路和理论应用于实际,并且逐渐实用化、民用化,能够极大的提高电力系统的电能利用效率,从而使电力系统的经济效益显著提高。
参考文献:
[1]周廷冬,徐永海.配电网电力电子变压器故障清除及保护技术综述[J].大功率变流技术,2017(04):81-86.
[2]李天宇.基于电力电子变压器的配电网无功优化关键技术研究[D].沈阳农业大学,2017.
[3]廖国虎.配电系统多功能电力电子变压器的研究[D].贵州大学,2015.
[4]马红星,李华武,杨喜军.配电网中的电力电子变压器技术的综述(下)[J].变频器世界,2012(02):47-52.
[5]马红星,李华武,杨喜军.配电网中的电力电子变压器技术的综述(上)[J].变频器世界,2012(01):53-58+65.。