Id-Vd仿真的例子

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Notdamped=20
Iterations=25
Newdiscretization
DirectCurrent
ConstRefPot
RhsMin=1e-20
}
Math(Electrode="gate") {
Digits(NonLocal)=3
EnergyResolution(NonLocal)=0.001
{ name="drain" Voltage=( 0 at 0 , 3 at 0.2 , 3 at @<dosetime>@,
0 at @<dosetime+0.001>@, 0 at @<dosetime+0.999>@,
0.1 at @<dosetime+1>@, 0.1 at @<dosetime+4>@) }
Doping = "@doping@"
Parameter="@parameter@"
* output files:
Plot = "@dat@"
Current = "@plot@"
Output = "@log@"
}
Electrode {
{ Name="source" Voltage=0.0 }
{ Name="drain" Voltage=0.2 }
Electrode {
{ name="gate" Voltage=( 0.0 at 0 , 0.0 at @<dosetime>@,
0.0 at @<dosetime+0.999>@,
0.0 at @<dosetime+1>@ , 1.5 at @<dosetime+4>@) }
{ name="box_10" Voltage=0.0 }
Temperature=300
}
Plot {
ElectrostaticPotential
eTrappedCharge hTrappedCharge
eDensity hDensity
eCurrent/Vector hCurrent/Vector
ElectricField SpaceCharge
SRH RadiationGeneration
}
Physics (Material=Silicon) {
Mobility( DopingDependent HighFieldsat Enormal )
EffectiveIntrinsicDensity( OldSlotboom NoFermi )
Recombination( SRH(DopingDep) )
}
Plot {
eDensity hDensity eCurrent hCurrent
Potential SpaceCharge ElectricField
eMobility hMobility eVelocity hVelocity
Doping DonorConcentration AcceptorConcentration
Nonlocal(Length=5e-7)
}
* The curve Id(Vg) at Vd=0.1V is traced after dosetime s of irradiation [1s,dosetime s]
* Vd is decreased to 0.1V [dosetime s,dosetime+1 s] and Vg is ramped [dosetime+1 s,dosetime+4 s]
eCurrent/Vector hCurrent/Vector
ElectricField SpaceCharge
SRH RadiationGeneration
}
Math {
Derivatives
RelErrControl
Digits=4
ErRef(electron)=1.e8
ErRef(hole)=1.e8
t(s) 2 2.0014 2.00336 2.0061 0.007/0.0014*0.00336=1.68e-3
再加上用CurrentPlot设置的输出曲线数据的time,可以对漏压为0.1v栅压线性变化的Id-Vg曲线进行模拟
Solve {
Set(Trapfilling=Empty)
Coupled(Iterations=100){ Poisson }
Electrode {
{ Name="source" Voltage=0 }
{ Name="drain" Voltage=0 }
{ Name="gate" Voltage=0 }
{ Name="sub_con" Voltage=0 }
}
File {
Grid = "@grid@"
Doping = "@doping@"
# Parameter = "@parameter@"
Output = "@log@"
Plot = "@dat@"
Current = "@plot@"
}
Physics {
EffectiveIntrinsicDensity( Nobandgapnarrowing )
Recombination( SRH )
{ name="source" Voltage=0.0 }
经过对outputfile文件的显示的数据的分析,随着time的增加,已知节点之间的voltage随着t的增加而呈现出线性变化.
Vg(v)0 7e-4 1.68e-3 3.052e-0.3牛顿迭代法计算得到的时间点,根据error控制的步长确定.
}
Math {
Derivatives
RelErrControl
Digits=4
ErRef(electron)=1.e8
ErRef(hole)=1.e8
Notdamped=50
Iterations=40
Newdiscretization
DirectCurrent
ConstRefPot
RhsMin=1e-20
Notdamped=50
Iterations=40
Newdiscretization
DirectCurrent
ConstRefPot
RhsMin=1e-20
#TrapDLN=15
}
Solve {
Set(Trapfilling=Empty)
Coupled ( Iterations=100 LineSearchDamping=0.01 ) { Poisson }
Coupled { Poisson Electron Hole }
Unset(Trapfilling)没有这两个Set、Unset则无法仿真出Id-Vg曲线
Plot(FilePrefix="int")
Quasistationary (InitialStep=0.1 Minstep=1e-5 MaxStep=0.2
Radiation(DoseRate=2000 DoseTime=(1,@<dosetime>@) doseTsigma=0.2)
}
Physics (Material=Silicon) {
Mobility( DopingDependent HighFieldsat Enormal )
EffectiveIntrinsicDensity( OldSlotboom NoFermi )
CurrentPlot(Time=(Range=(0 1) Intervals=40))
}
}
可以运行但出来的图像没有曲线的形状,调整了漏段的电压,将Vd由0.2v增大为1v,仍旧是没有曲线,电流随栅电压的增大没有变化。
陈树鹏师兄的65nm辐照特性的仿真例子
File {
Grid = "@grid@"
Doping = "@doping@"
#TrapDLN=15
}
Math(Electrode="gate") {
Digits(NonLocal)=3
EnergyResolution(NonLocal)=0.001
Nonlocal(Length=5e-7)
}
Solve {
#-initial solution:
Coupled ( Iterations=100 LineSearchDamping=0.01 ) {Poisson}
Goal {Name="drain" Voltage=1.0}
) {
Coupled { Poisson Electron Hole }
CurrentPlot(Time=(Range=(0 1) Intervals=40))
}
}
自己Βιβλιοθήκη Baidu写的例子
File {* input files:
Grid = "@grid@"
Parameter = "@parameter@"
Output = "@log@"
Plot = "@dat@"
Current = "@plot@"
}
Physics {
EffectiveIntrinsicDensity( Nobandgapnarrowing )
Recombination( SRH )
eMobility hMobility
SurfaceRecombination
Doping DonorConcentration AcceptorConcentration
}
Math {
Derivatives
RelErrControl
Digits=4
ErRef(electron)=1.e8
ErRef(hole)=1.e8
Temperature=300
}
Physics(RegionInterface="sub/gatox") {
Recombination(eBarrierTunneling(PeltierHeat))
}
Physics(Electrode="gate"){
Recombination(eBarrierTunneling hBarrierTunneling)
Goal {Name="gate" Voltage=@gate@}
) {
Coupled { Poisson Electron Hole }
}
NewCurrent=""
Quasistationary (InitialStep=0.1
Minstep=1e-5 MaxStep=0.2 increment=1.5 DoZero
Traps(hNeutral Conc=5e17 EnergyMid=-0.5 FromMidBandGap
eXsection=5.0e-14 hXsection=5.10e-14 eJfactor=0 hJFactor=0 )
}
Physics(Electrode="gate"){
Recombination(eBarrierTunneling hBarrierTunneling)
Recombination( SRH(DopingDep) )
Temperature=300
}
* Yield function is calculated using VMODEL of theis example
* Trap definition for the Gate Oxide
Physics (Region=gatox) {
{ Name="gate" Voltage=0.0 }
{ Name="box_10" Voltage=0.0 }
}
Physics {
EffectiveIntrinsicDensity (NobandGapNarrowing)
Radiation(DoseRate=2000 DoseTime=(10,30) doseTsigma=0.2)
}
Physics(RegionInterface="sub/gatox") {
Recombination(eBarrierTunneling(PeltierHeat))
}
Plot {
ElectrostaticPotential
eTrappedCharge hTrappedCharge
eDensity hDensity
Coupled { Poisson Electron }
#-ramp gate:
Quasistationary (InitialStep=0.1 Minstep=1e-5 MaxStep=0.2
Goal{ Name="gate" Voltage=2 } )
{Coupled { Poisson Electron }
没有在其它的区域内制定复合模型,默认的是没有载流子的产生-复合模型
}
Physics(Material=Silicon){
EffectiveIntrinsicDensity(OldSlotboom NoFermi)
Mobility (DopingDep HighFieldSat Enormal)
Recombination(SRH(DopingDep))
相关文档
最新文档