广东专插本考试《高等数学》真题

合集下载

2002-2015广东专插本高数真题(无答案)

2002-2015广东专插本高数真题(无答案)

2002年广东省普通高等学校本科插班生招生考试《高等数学》试题一、填空题(每小题3分,共24分)1、函数xxy ++=11的定义域是 。

2、若)sin(ln x e y=,则=dxdy。

3、=-→)1ln(142lim e Dx x。

4、已知函数2x y =,在某点处的自变量的增量2.0=∆x ,对应函数的微分8.0-=dy ,则自变量的始值是 。

5、函数xe x xf 2)(=的n 阶麦克劳林展开式是=)(x f 。

6、如果点(1,3)是曲线23bx ax y +=的拐点,则要求a = 。

b = 。

7、若dt t y x x)cos(2cos sin ⎰=π则=dxdy。

8、设→→→→→→→-+=--=k j i b k f t a 2,23,则=⋅-→→b a 3)( 。

二、单项选择题(每小题3分,共24分)9、若11)(+-⋅=x xa a x x f ,则下面说法正确的是( )A 、)(x f 是奇函数B 、)(x f 是偶函数C 、)(x f 是非奇偶函数D 、)(x f 无法判断10、设函数⎪⎩⎪⎨⎧>+≤=11)(2x bax x xx f ,为了使函数)(x f 在1=x 处连续且可导,a和b 的取值应该是( )A 、a=2,b=1B 、a=1,b=2C 、a=2,b=-1D 、a=-1,b=211、若函数)(x f 在[]b a ,上连续,在()b a ,内一阶和二阶导数存在且均小于零,则)(x f 在[]b a ,内( )A 、单调增加,图形是凸的B 、单调增加,图形是凹的C 、单调减少,图形是凸的D 、单调减少,图形是凹的12、由方程0=-+e xy ey所确定的隐函数,y 在0=x 处的导数0=x dxdy是( )A 、eB 、e 1 C 、e - D 、e1-13、广义积分⎰+∞∞-++x x x dx22的值是( )A 、0B 、2πC 、πD 、π214、定积分⎰dx e x 10的值是( )A 、0B 、1C 、2D 、315、幂级数∑=⋅+nn nn x n 1212的收敛区间是( )A 、⎥⎦⎤⎢⎣⎡-21,21 B 、[]1,1- C 、[]2,2- D 、[]+∞∞-,16、微分方程)0(,022≠=+k y k dx dy 满足初始条件0,====x x dxdy A y的特解是( )A 、kx A sin B 、kx A cos C 、Ax k sin D 、Axk cos三、计算题(每小题7分,共28分)17、求极限xt dte xtx cos 21cos 0lim--→⎰18、将函数12)(34+-=x x x f 展开为(x-1)的多项式。

广东专插本高等数学-试卷45_真题无答案

广东专插本高等数学-试卷45_真题无答案

广东专插本(高等数学)-试卷45(总分44, 做题时间90分钟)1. 选择题选择题在每小题给出的四个选项中,只有一项是符合要求的。

1.当χ→0时,下列无穷小量中与等价的是 ( )SSS_SINGLE_SELA χB 2χCχ 2D2χ 22.函数y=sinχ-χ在区间[0,π]上的最大值是 ( )SSS_SINGLE_SELAB 0C -πD π3.若∫f(χ)dχ=F(χ)+C,则∫e -χ f(e -χ)dχ ( )SSS_SINGLE_SELAe -χ )+F(e -χ )+CBe -χ-F(e -χ )+CCF(e -χ )+CD-F(e -χ )+C4.曲线y=在χ=1处的切线方程是 ( )SSS_SINGLE_SELA 3y-2χ=5B -3y+2χ=5C 3y+2χ=-5D 3y+2χ=55.下列无穷级数中,发散的是 ( )SSS_SINGLE_SELABCD2. 填空题1.f(χ)=χe χ,则f (n)(χ)的极小值点为_______.SSS_FILL2.函数f(χ)=在χ=0处是_______间断点.SSS_FILL3.=_______.SSS_FILL4.交换二次积分I=∫-11 dy f(χ,y)dχ的积分次序,则I=_______.SSS_FILL5.方程y〞-4y′+3y=0满足初始条件y|χ=0=6,y′|χ=0=10的特解是_______.SSS_FILL4. 解答题解答题解答时应写出推理、演算步骤。

1.求极限SSS_TEXT_QUSTI2.已知函数y=arcsinχ.SSS_TEXT_QUSTI3.求不定积分SSS_TEXT_QUSTI4.1f(χ)dχ,求f(χ).设函数f(χ)=χ(1-χ) 5+∫SSS_TEXT_QUSTI5.设函数z=(χ 2+y 2 ) ,求SSS_TEXT_QUSTI6.计算χ 2dχdy,其中D为圆环区域:1≤χ 2+y 2≤4.SSS_TEXT_QUSTI7.求微分方程y〞-2y′+y=0满足初始条件y(0)=3和y′(0)=-2的特解.SSS_TEXT_QUSTI8.判定级数的敛散性.SSS_TEXT_QUSTI5. 综合题1.设f(χ)在(-∞,+∞)上连续,令F(χ)=f(t)dt(a>0),G(χ)=∫0χ f(t)dt. (1)试用G(χ)表示F(χ); (2)求F(χ).SSS_TEXT_QUSTI2.求函数f(χ)=在χ>0时的最大值,并从数列1,,…中选出最大的一项(已知).SSS_TEXT_QUSTI1。

广东专插本(高等数学)模拟试卷30(题后含答案及解析)

广东专插本(高等数学)模拟试卷30(题后含答案及解析)

广东专插本(高等数学)模拟试卷30(题后含答案及解析)题型有:1. 选择题 2. 填空题 4. 解答题 5. 综合题选择题在每小题给出的四个选项中,只有一项是符合要求的。

1.函数f(χ)=χ3sinχ是( )A.奇函数B.偶函数C.有界函数D.周期函数正确答案:B2.设函数在χ=0处连续,则a= ( ) A.0B.1C.2D.3正确答案:B3.有( )A.一条垂直渐近线,一条水平渐近线B.两务垂直渐近线,一条水平渐近线C.一条垂直渐近线,两条水平渐近线D.两条垂直渐近线,两条水平渐近线正确答案:A4.设函数f?(2χ-1)=eχ,则f(χ)= ( )A.B.C.D.正确答案:D5.下列微分方程中,其通解为y=C1cosχ+C2sinχ的是( ) A.y?-y?=0B.y?+y?=0C.y?+y=0D.y?-y=0正确答案:C填空题6.设函数f(χ)=2χ+5,则f[f(χ)-1]=______。

正确答案:4χ+137.如果函数y=2χ2十aχ+3在χ=1处取得极小值,则a=______。

正确答案:-48.设f(χ)=e2χ,则不定积分=_____。

正确答案:eχ+C9.设方程χ-1+χey确定了y是的隐函数,则dy=______。

正确答案:10.微分方程y?-y?=0的通解为______。

正确答案:y=C1+C2eχ(C1,C2为任意常数)解答题解答时应写出推理、演算步骤。

11.求极限。

正确答案:由于当χ→0时,χ4是无穷小量,且,故可知,当χ→0时,1-e-32-3χ2,故所以12.已知参数方程。

正确答案:所以则13.求不定积分∫χ.arctanxdx。

正确答案:14.已知函数f(χ)处处连续,且满足方程求。

正确答案:方程两边关于χ求导,得f(χ)=2χ+sin2χ+χ.cos2χ.2+(-sin2χ).2 =2χ+2χcos2χ,f?(χ)=2+2cos2χ+2χ.(-2sin2χ)=2(1+cos2χ)-4χsin2χ,所以,。

广东专插本高等数学-试卷50_真题-无答案

广东专插本高等数学-试卷50_真题-无答案

广东专插本(高等数学)-试卷50(总分44,考试时间90分钟)1. 选择题选择题在每小题给出的四个选项中,只有一项是符合要求的。

1. y=+lg(χ+2)的定义域为( )A. (-2,+∞)B. (1,+∞)C. (-2,-1]∪[1,+∞)D. (-2,-1)2. 若f′(χ0)=-3,则=( )A. -3B. -6C. -9D. -123. 设∫f(χ)dχ=χ2+C,则∫χf(1-χ2)dχ=( )A. -2(1-χ2)2+CB. 2(1-χ2)2+CC. -(1-χ2)2+CD. (1-χ2)2+C4. 设f(χ,y)在点(χ0,y0)处偏导数存在,=( )A. f′χ(χ0,y0)B. f′y(2χ0,y0)C. 2f′χ(χ0,y0)D. f′χ(χ0,y0)5. 如果=ρ(un>0,n=1,2,…),则级数un的收敛条件是( )A. ρ>1B. ρ≥1C. ρ<1D. ρ≤12. 填空题1. 函数f(χ)=的极值为_______.2. 已知f(χ)=χ2lnχ,χ=h(t)满足条件h(0)=3,h′(0)=7,则f[h(t)]|t=0=_______.3. 设f(χ)在[a,b]上满足f(χ)>0,f′(χ)<0,f〞(χ)>0,令S1=∫abf(χ)dχ,S2=f(b)(b-a),S3=[f(b)+f(a)](b-a),则S1,S2,S3的大小顺序为_______.4. 通解为y=C1cos2χ+C2sin2χ(C1,C2为任意常数)的二阶线性常系数齐次微分方程为_______.5. 设f(χ,y)=2χ+arcsin,则fχ(2,1)=_______.4. 解答题解答题解答时应写出推理、演算步骤。

1. 设f(χ)=试确定常数a,b的值,使f(χ)在点χ=处可导.2. 求极限3. 设z=uv+sint,而u=et,v=cost,求.4. 计算不定积分∫χe2χdχ.5. 平面图形D是由曲线y=eχ及直线y=e,χ=0所围成的,求平面图形D绕χ轴旋转一周所生成旋转体的体积.6. 计算dχdy,其中D是由y=1,y=χ,y=2,χ=0所围成的闭区域.7. 求微分方程y〞-2y′-3y=0的通解.8. 判定级数的敛散性.5. 综合题1. 过点P(1,0)作抛物线y=的切线,该切线与上述抛物线及χ轴围成一平面图形,求此图形绕χ轴旋转一周所成的旋转体的体积.2. 设函数y=f(χ)在区间[a,b]上连续,且f(χ)>0,F(χ)=∫aχf(t)dt+∫aχ,χ∈[a,b],证明:(1)F′(χ)≥2;(2)方程F(χ)=0在区间(a,b)内有且仅有一个实根.。

《高等数学》专插本2005-2019年历年试卷

《高等数学》专插本2005-2019年历年试卷

广东省2019年普通高等学校本科插班生招生考试高等数学一、单项选择题(本在题共5小题,每小题3分,共15分。

每小题只有一个选项符合题目要求)1.函数22()2x xf x x x -=+-的间断点是A .2x =- 和0x =B .2x =- 和1x =C .1x =- 和2x =D .0x = 和1x =2.设函数1,0()2,0cos ,0x x f x x x x +<⎧⎪==⎨⎪>⎩,则0lim ()x f x → A .等于1 B .等于2 C .等于1 或2 D .不存在 3. 已知()tan ,()2xf x dx x Cg x dx C=+=+⎰⎰C 为任意常数,则下列等式正确的是A .[()()]2tan x f x g x dx x C +=+⎰B .()2tan ()x f x dx x C g x -=++⎰C .[()]tan(2)x f g x dx C =+⎰D .[()()]tan 2x f x g x dx x C +=++⎰4.下列级数收敛的是A .11nn e ∞=∑ B .13()2nn ∞=∑C .3121()3n n n ∞=-∑ D .121()3n n n ∞=⎡⎤+⎢⎥⎣⎦∑.5.已知函数 ()bf x ax x =+在点1x =-处取得极大值,则常数,a b 应满足条件 A .0,0a b b -=< B .0,0a b b -=> C .0,0a b b +=< D .0,0a b b +=> 二、填空题(本大题共5小题,每小题3分,共15分)6.曲线33arctan x t ty t ⎧=+⎨=⎩,则0t =的对应点处切线方程为y =7.微分方程0ydx xdy +=满足初始条件的1|2x y ==特解为y =8.若二元函数(,)z f x y =的全微分sin cos ,x xdz e ydx e ydy =+ ,则2zy x∂=∂∂ 9.设平面区域{(,)|0,01}D x y y x x =≤≤≤≤,则Dxdxdy =⎰⎰10.已知1()sin(1)tf x dx t t tπ=>⎰,则1()f x dx +∞=⎰三、计算题(本大题共8小题,每小题6分,共48分)11.求20sin 1lim x x e x x→-- 12.设(0)21x x y x x =>+,求dydx13.求不定积分221xdx x ++⎰14.计算定积分012-⎰15.设xyz x z e -=,求z x ∂∂和z y∂∂ 16.计算二重积分22ln()Dx y d σ+⎰⎰,其中平面区域22{(,)|14}D x y x y =≤+≤ 17.已知级数1n n a ∞=∑和1n n b ∞=∑满足0,n n a b ≤≤且414(1),321n n b n b n n ++=+- 判定级数1n n a ∞=∑的收敛性18.设函数()f x 满足(),xdf x x de -=求曲线()y f x =的凹凸区间 四、综合题(大题共2小题,第19小题12分,第20小题10分,共22分) 19.已知函数()x ϕ满足0()1()()xxx x t t dt x t dt ϕϕϕ=+++⎰⎰(1)求()x ϕ;(2)求由曲线 ()y x ϕ=和0,2x x π==及0y =围成的平面图形绕x 轴旋转而成的立体的体积20.设函数()ln(1)(1)ln f x x x x x =+-+(1)证明:()f x 在区间(0,) 内单调减少;(2)比较数值20192018与20182019的大小,并说明理由;2019年广东省普通高校本科插班生招生考试《高等数学》参考答案及评分标准一、单项选择题(本大题共5小题,每小题3分,共15分) 1.B 2.A 3.D 4.C 5.B二、填空题(本大题共5小题,每个空3分,共15分) 6.13x 7.2x 8.cos x e y 9.1310.π 三、计算题(本大题共8小题,每小题6分,共48分)11.原式00cos sin 1limlim 222x x x x e x e x x →→-+=== 12.解:21ln ln ln(21)12ln 1212(ln 1)2121xx x y x y x x x y x y x dy x x dx x x =+∴=-+'∴=+-+∴=+-++Q13.解:22222211112(1)12112arctan ln(1)2x dxx dx d x x xx x C++=++++=+++⎰⎰⎰14.,t =则211,22x t dx tdt =-=20121214215311,,2211()221()2111()253115t x t dx tdtt t tdt t t dtt t-==-==-=-=-=-⎰⎰⎰g15.解:设(,,)xyzf x y z x z e=--(,,)1(,,)(,,)11,11xyzxxyzyxyzzxyz xyzxyz xyzf x y z yzef x y z xzef x y z xyez yze z xzex xye y xye∴=-=-=--∂-∂∴==-∂+∂+16.解:由题意得12,0rθπ≤≤≤≤2222ln()3(4ln2)23(4ln2)|2(8ln23)Dx y ddππσθθπ∴+==-=-=-⎰⎰⎰17.解:由题意得414(1),321nnb nb n n++=+-414(1)1lim lim1,3213nx xnb nb n n+→∞→∞+∴==<+-由比值判别法可知1nnb∞=∑收敛0,n n a b ≤≤Q 由比较判别法可知1n n a ∞=∑也收敛18.解()()()()(1)xx x x df x x dedf x xde f x xe f x e x ----=∴='∴=-''∴=-Q()f x ∴的凹区间为(1,)+∞,凸区间为(,1)-∞19.(1)由题意得0()1()()()1()xxx x x t dt x x t dt ϕϕϕϕϕ'=++-=+⎰⎰()()()()0x x x x ϕϕϕϕ''∴=-''∴+=特征方程210r +=,解得r i=±通解为()cos sin x x x Cϕ=++(0)1,0()cos sin C x x xϕϕ=∴=∴=+Q(2)由题意得2202022(cos sin )(1sin 2)1(cos 2)22x V x x dx x dx x x ππππππππ=+=+=-=+⎰⎰20.证明(1)()ln(1)(1)ln 1()ln(1)ln 111ln(1)ln ()1f x x x x x x x f x x x x x x x x x=+-++'∴=+-+-+=+--++Q 证明11ln(1)ln ()01x x x x +--+<+即可 即证11ln(1)ln ()1x x x x+-<++令()ln g x x =()ln g x x =Q 在(0,)+∞连续可导,由拉格朗日中值定理得ln(1)ln 1ln(1)ln ()1x x x x g x x x ξ+-'+-===+-且1x x ξ<<+ 111101x x x xξξ<<+∴<<<+Q 11ln(1)ln ()1x x x x ∴+-<++成立11ln(1)ln ()01x x x x ∴+--+<+()f x ∴在(0,)+∞单调递减(2)设2019,2018a b ==则201820192019,2018ba ab ==比较,a b b a 即可,假设a bb a >即ln ln a b b a >即ln ln b ab a >设ln (),x g x x =则21ln ()xg x x -'=()g x Q 在(0,)+∞单调递减即()()g b g a ∴>,即a b b a >成立即2019201820182019>广东省2018年普通高等学校本科插班生招生考试高等数学一、单项选择题(本在题共5小题,每小题3分,共15分。

广东专插本(高等数学)-试卷44

广东专插本(高等数学)-试卷44

广东专插本(高等数学)-试卷44(总分:44.00,做题时间:90分钟)一、选择题(总题数:6,分数:12.00)1.选择题在每小题给出的四个选项中,只有一项是符合要求的。

(分数:2.00)__________________________________________________________________________________________ 解析:2.已知函数f(2χ-1)的定义域为[0,1],则函数f(χ)的定义域为 ( )(分数:2.00)1]B.[-1,1] √C.[0,1]D.[-1,2]解析:解析:由f(2χ-1)的定义域为[0,1],可知-1≤2χ-1≤1,所以f(χ)的定义域为[-1,1],故选B.3.若函数f(χ)χ=0处连续,则a= ( ).(分数:2.00)A.0B.1C.-1√解析:解析:由f(χ)在χ=0处连续可知f(χ)=f(0),于是有a=f(0)D.4.f(χ)=(χ-χ0 ).φ(χ),其中φ(χ)可导,则f′(χ0 )= ( )(分数:2.00)A.0B.φ(χ0 ) √C.φ′(χ0 )D.∞解析:解析:f′(χ)=φ(χ)+(χ-χ0 )φ′(χ),则f′(χ0 )=φ(χ0 ),故选B.5.已知d[e -χ f(χ)]=e χ dχ,且f(0)=0,则f(χ)= ( )(分数:2.00)A.e 2χ+e χB.e 2χ-e χ√C.e 2χ+e -χD.e 2χ-e -χ解析:解析:由d[e -χf(χ)]=e χdχ可得[e -χf(χ)]′=e χ,两边同时积分刮∫[e -χf(χ)]′dχ=∫e χ dχ,即有e -χ f(χ)=e χ+C,两边同时乘以e χ,即得f(χ)=e 2χ+Ce χ,又f(0)=1+C=0.即得C=-1.于是f(χ)=e 2χ-e χ.故诜B.6. ( )(分数:2.00)√解析:解析:根据级数的性质有收敛级数加括号后所成的级数仍收敛,故选D.二、填空题(总题数:5,分数:10.00)7.曲线y=χarctanχ)的水平渐近线是 1.(分数:2.00)填空项1:__________________ (正确答案:正确答案:y=-1)解析:解析:又y=-1.8.设f(χ)在χ=02,则f′(0)= 1.(分数:2.00)填空项1:__________________ (正确答案:正确答案:4)f′(0)=4.1.(分数:2.00)填空项1:__________________ (正确答案:正确答案:3)=3.10.微分方程y〞-4y′-5y=0的通解为 1.(分数:2.00)填空项1:__________________ (正确答案:正确答案:y=C 1 e -χ C 2 e 5χ)解析:解析:微分方程的特征方程为λ2-4λ-5=0,则λ1=-1,λ2=5,则微分方程通解为y =C 1 e -χ+C 2 e 5χ (C 1,C 2为任意常数).11.设函数f(χ)在点χ0处可导,且f′(χ0)≠0, 1.(分数:2.00)填空项1:__________________ (正确答案:正确答案:[*])三、解答题(总题数:9,分数:18.00)12.解答题解答时应写出推理、演算步骤。

广东省2010~2020年专插本考试《高等数学》真题及答案

广东省2010~2020年专插本考试《高等数学》真题及答案

广东省2010年普通高校本科插班生招生考试《高等数学》试题一、单项选择题(本大题共5小题,每小题3分,共15分)1.设函数()y f x =的定义域为(,)-∞+∞,则函数1[()()]2y f x f x =--在其定义域上是()A .偶函数B .奇函数C .周期函数D .有界函数2.0x =是函数1,0()0,0x e x f x x ⎧⎪<=⎨≥⎪⎩的()A .连续点B .第一类可去间断点C .第一类跳跃间断点D .第二类间断点3.当0x →时,下列无穷小量中,与x 等价的是()A .1cos x-B .211x +-C .2ln(1)x x ++D .21x e -4.若函数()f x 在区间[,]a b 上连续,则下列结论中正确的是()A .在区间(,)a b 内至少存在一点ξ,使得()0f ξ=B .在区间(,)a b 内至少存在一点ξ,使得()0f ξ'=C .在区间(,)a b 内至少存在一点ξ,使得()()()()f b f a f b a ξ-'=-D .在区间(,)a b 内至少存在一点ξ,使得()()()b af x dx f b a ξ=-⎰5.设22(,)f x y xy x y xy +=+-,则(,)f x y y∂∂=()A .2y x-B .-1C .2x y-D .-3二、填空题(本大题共5小题,每小题3分,共15分)6.设a ,b 为常数,若2lim()21x ax bx x →∞+=+,则a b +=.7.圆²²x y x y =++在0,0()点处的切线方程是.8.由曲线1y x=是和直线1x =,2x =及0y =围成的平面图形绕x 轴旋转一周所构成的几何体的体积V =.9.微分方程5140y y y '--'='的通解是y =.10.设平面区域22{(,)|1}D x y x y =+≤D={x ,y )x ²+y'≤1},则二重积分222()Dx y d σ+=⎰⎰.三、计算题(本大题共8小题,每小题6分,共48分)11.计算22ln sin lim(2)x xx ππ→-.12.设函数22sin sin 2,0()0,0x x x f x xx ⎧+≠⎪=⎨⎪=⎩,用导数定义计算(0)f '.13.已知点1,1()是曲线12xy ae bx =+的拐点,求常数a ,b 的值.14.计算不定积分cos 1cos xdx x -⎰.15.计算不定积分ln 51x e dx -⎰.16.求微分方程sin dy yx dx x+=的通解.17.已知隐函数(,)z f x y =由方程231x xy z -+=所确定,求z x ∂∂和z y∂∂.18.计算二重积分2Dxydxdy ⎰⎰,其中D 是由抛物线²1y x =+和直线2y x =及0x =围成的区域.四、综合题(本大题共2小题,第19小题10分,第20小题12分,共22分)19.求函数0Φ()(1)xx t t dt =-⎰的单调增减区间和极值。

高数广东专插本历年真题汇编2005-2019年_unlocked

高数广东专插本历年真题汇编2005-2019年_unlocked

∑∞ 3 n
B. n=1 2
∑ C.
∞2 n=1 3n

1 n3
∑ D.
∞ n=1
2 3
n
+
1 n
5. 已知函数 f (x=) ax + b 在点 x = −1 处取得极大值,则常数 a , b 应满足条件 x
A. a − b= 0,b < 0
B. a − b= 0,b >0
C. a + b= 0,b < 0
(1)证明: f (x) 在区间 (0, +∞) 内单调减少;
(2)比较数值 20182019 与 20192018 的大小,并说明理由.
2
广东省 2018 年普通高等学校本科插班生招生考试
高等数学
一、单项选择题(本大题共 5 小题,每小题 3 分,共 15 分.每小题只有一个选项符合题目要
求)
1. lim (3x sin 1 + sin x ) =
∫ A. [ f (x)g= (x)]dx 2x tan x + C
∫ B. = f (x) dx 2−x tan x + C
g(x)
∫ C. f [g= (x)]dx tan(2x ) + C
∫ D. [ f (x) + g(x)]dx= tan x + 2x + C
4. 下列级数收敛的是
∞1
∑ A. en n=1
6.
已知
x
y
= =
log2 3t
t
,则
dy dx
t =1
=
.
2
∫ 7. ( x + sin x)dx = . −2

专插本《高等数学》2008-2012 年试题

专插本《高等数学》2008-2012 年试题
9、设 ,则 =。
10、微分方程 的通解是。
三、计算题(本大题共8小题,每小题6分,共48分)
11、计算 。
12、求函数 在区间[-1,2]上的最大值及最小值。
13、设参数方程 确定函数y=y(x),计算 。
14、求不定积分 。
15、计算定积分 。
16、设方程 确定隐函数 ,求 。
17、计算二重积分 ,其中D是由y轴、直线y=1,y=2及曲线xy=2所围成的平面区域。
20、设函数 .
(1)判断 在区间(0,2)上的图形的的凹凸性,并说明理由;
(2)证明:当0<x<2时,有 <0。
2009年广东省普通高校本科插班生招生考试
《高等数学》试题答案及评分参考
一、单项选择题(本大题共5小题,每小题3分,共15分)
1、A 2、C 3、A 4、D 5、C
二、填空题(本大题共5小题,每个空3分,共15分)
1、设 则
A. -1 B.1 C. 3 D.
2、极限
A. 0 B.1 C. 2 D.
3、下列函数中,在点 处连续但不可导的是
A. B.
C. D.
4、积分
A. B.
C. D.
5、改变二次积分 的积分次序,则I=
A. B.
C. D.
二、填空题(本大题共5小题,每小题3分,共15分)
6、若当 时, ,则常数a=。
6、-4 7、 8、4 9、2y 10、
三、计算题(本大题共8小题,每小题6分,共48分)
11、解:原式=
=
= .
12、解: ,
=
= .
13、解: ,
.
14、解:设
原式=
=
= .
15、解: 为奇函数, ,

广东专插本高等数学-试卷47_真题-无答案

广东专插本高等数学-试卷47_真题-无答案

广东专插本(高等数学)-试卷47(总分44,考试时间90分钟)1. 选择题选择题在每小题给出的四个选项中,只有一项是符合要求的。

1. 设函数f(χ)=,则f(χ)在( )A. χ=0,χ=1处都间断B. χ=0,χ=1处都连续C. χ=0处间断,χ=1处连续D. χ=0处连续,χ=1处间断2. 曲线f(χ)=的水平渐近线为( )A. y=B. y=-C. y=D. y=-3. =( )A. 0B. ∞C.D.4. 设y=4χ-(χ>0),其反函数χ=φ(y)在y=0处导数是( )A.B.C.D.5. 下列级数中,收敛的级数是( )A.B.C.D.2. 填空题1. 设f(χ)=在χ=0处连续,则a=_______.2. y=χlnχ在点χ=1处的切线方程是_______.3. |sinx|dχ=_______.4. 已知y1=eχ,y1=χeχ为微分方程y〞+Py′+qy=0的解,则P=_______,q=_______.5. 若函数f(χ)=aχ+bχ在χ=1处取得极值2,则a=_______,b=_______.4. 解答题解答题解答时应写出推理、演算步骤。

1. 问a为何值时,函数f(χ)=在点χ=0处连续.2. 求极限3. 已知函数y=,求y(n).4. 计算5. 设函数f(χ)=求∫13f(χ-2)dχ.6. 计算二重积分I=(χ2+y2+3y)dχdy,其中D={(χ,y)|χ2+y2≤a2,χ≥0}.7. 求微分方程y″′=χ+1满足y(0)=2,y′(0)=0,y〞(0)=1的特解.8. 判断级数(a>0)的敛散性.5. 综合题1. 已知曲线y=a(a>0)与曲线y=ln在点(χ0,y0)处有公切线,试求:(1)常数a和切点(χ0,y0);(2)两曲线与χ轴围成的平面图形的面积S.2. 已知f(χ)=χ5-3χ-1,求:(1)函数f(χ)的凹凸区间;(2)证明方程f(χ)=0在(1,2)内至少有一个实根.。

高数2005-2016年专插本试题(卷)与答案解析

高数2005-2016年专插本试题(卷)与答案解析

高等数学历年试题集及答案(2005-2016)2005年广东省普通高等学校本科插班生招生考试《高等数学》试题一、单项选择题(本大题共5小题,每小题3分,共15分) 1、下列等式中,不成立...的是 A 、1)sin(lim x =--→πππx x B 、11sin lim x =∞→x x C 、01sin lim 0x =→x x D 、1sin 20x lim =→x x 2、设)(x f 是在(+∞∞-,)上的连续函数,且⎰+=c e dx x f x 2)(,则⎰dx xx f )(=A 、22x e - B 、c e x +2 C 、C e x +-221 D 、C e x +213、设x x f cos )(=,则=--→ax a f x f ax )()(limA 、-x sinB 、x cosC 、-a sinD 、x sin 4、下列函数中,在闭区间[-1,1]上满足罗尔中值定理条件的是A 、|)(=x f x | B 、2)(-=x x f C 、21)(x x f -= D 、3)(x x f =5、已知xxy u )(=,则yu ∂∂= A 、12)(-x xy x B 、)ln(2xy x C 、1)(-x xy x D 、)ln(2xy y二、填空题(本大题共5小题,每个空3分,共15分) 6、极限)1(1lim -∞→xx ex = 。

7、定积分211sin x exdx --⎰= 。

8、设函数xxx f +-=22ln )(,则(1)f ''= 。

9、若函数1(1),0,()(12),0.x a x x f x x x +≤⎧⎪=⎨⎪+>⎩在x=0处连续,则a= 。

10、微分方程222x xe xy dydx-=+的通解是 。

三、计算题(本大题共10小题,每小题5分,共50分) 11、求极限1(22n lim +-+∞→n n n )。

(word完整版)广东专插本2001-2011年高等数学历年题集(2011年10月更新)

(word完整版)广东专插本2001-2011年高等数学历年题集(2011年10月更新)

高等数学历年试题集(含标准答案)5、计算二重积分(),Dx y dxdy +⎰⎰其中D 为2,2x y x y ==及2xy =所围成(0)x >。

6、求一阶线性微分方程423(cos )2x xy yx e x x -=+-的通解。

四、应用题(本题8分) 设有椭圆22221x y a b+= (1)用定积分计算要椭圆绕x 轴旋转所产生的旋转体体积。

(2)求内接于该随圆而平行于坐标轴的最大矩形面积。

20、试求函数xy ze =在点(2,3)处的全微分。

四、应用题(每小题8分,共24分)21、三个点A 、B 、C 不在同一直线上,60ABC∠=o 。

汽车以80千米/小时的速度由A 向B 行驶,同时火车以50千米/小时的速度由B 向C 行驶。

如果AB=200千米,试求运动开始几小时后汽车与火车间的距离为最小? 22、试计算由抛物线2y x =与直线23y x =-所围成的图形的面积。

23、设有边长为2a 的在方形薄板。

如果薄板材料的度和到对解线线交点的距离平方成正比,且在它的角上的密度为l ,试求这个正方形薄板的质量。

2004年专升本插班考试《高等数学》试题一、填空题(每小题4分,共20分) 1、函数211x xy --=的定义域是 。

2、=+→x x xx 52tan 30lim 。

3、若=-=dxdyx x e y x 则),cos (sin 。

4、若函数⎰+--=x dt t t t x f 02112)(,=)21(f 则 。

5、设23,32a i j k b i j k c i j =-+=-+=-r r r r r r r r r r r和,()()a b b c +⨯+=r r r r则 。

二、单项选择题(每小题4分,共20分) 6、若⎰=+=I dx x I 则,231( )(A )C x ++23ln 21 (B )()C x ++23ln 21(C )C x ++23ln (D )()C x ++23ln 7、设)2ln(),(xyx y x f +=,=),f y 01('则( ) (A )0, (B )1, (C)2, (D)21 8、曲线2,,1===x x y x y 所围成的图形面积为S ,则S=( ) (A )dx x x )1(21-⎰ (B )dx xx )1(21-⎰(C )dx y dx y )2()12(2121-+-⎰⎰(D )dx x dx x)2()12(2121-+-⎰⎰9、函数项级数∑∞=-1)2(n nx n的收敛区间是( )(A )1x > (B )1x < (C )13x x <>及 (D )13x << 10、⎰⎰=12),(xx dy y x f dx I 变换积分分次序后有I=( )(A )210(,)x x dx f x y dy ⎰⎰ (B )⎰⎰10),(yydx y x f dx(C )⎰⎰102),(yy dx y x f dx (D )⎰⎰yydx y x f dx 1),(三、简单计算题(每题9分,共36分)11、求极限x x x e x x 30sin )2()2(lim ++-→12、求由方程0sin 21=+-y y x 所确定的隐函数y 的二阶导数22dx y d 。

广东专插本考试《高等数学》真题

广东专插本考试《高等数学》真题

普通高校本科插班生招生(一)考试高等数学一、单项选择题(本大题共5小题,每小题3分,共15分.每小题只有一项符合题目要求)1.=+→∆)sin 1sin 3(lim 0x xx x xA .0B .1C .3D .42.设函数)(x f 具有二阶导数,且1)0(-='f ,0)1(='f ,1)0(-=''f ,3)1(-=''f ,则下列说法正确的是A .点0=x 是函数)(x f 的极小值点B .点0=x 是函数)(x f 的极大值点C .点1=x 是函数)(x f 的极小值点D .点1=x 是函数)(x f 的极大值点3.已知Cx dx x f +=⎰2)(,其中C 为任意常数,则⎰=dx xf )(2A .C x +5B .C x +4C .C x +421D .C x +3324.级数∑∞==-+13)1(2n nnA .2B .1C .43D .215.已知{}94) , (22≤+≤=y x y x D ,则=+⎰⎰Dd yx σ221A .π2B .π10C .23ln2πD .23ln 4π二、填空题(本大题共5小题,每小题3分,共15分)6.已知⎩⎨⎧== 3log t 2y tx ,则==1t dx dy 。

7.=+⎰-dx x x )sin (22。

8.=⎰+∞-dx e x 021。

9.二元函数1+=y xz,当e x =,0=y 时的全微分===ex y dz 0。

10.微分方程ydx dy x =2满足初始条件1=x y 的特解为=y 。

三、计算题(本大题共8小题,每小题6分,共48分)11.确定常数a ,b 的值,使函数⎪⎪⎩⎪⎪⎨⎧>+=<++= 0 )21(00 1)(2x x x b x x ax x f x ,,,在0=x 处连续。

12.求极限))1ln(1(lim 20x x x x +-→.13.求由方程xxe y y =+arctan )1(2所确定的隐函数的导数dx dy.14.已知)1ln(2x +是函数)(x f 的一个原函数,求⎰'dx x f )(.15.求曲线x xy ++=11和直线0=y ,0=x 及1=x 围成的平面图形的面积A .16.已知二元函数21y xyz +=,求y z ∂∂和x y z ∂∂∂2.17.计算二重积分⎰⎰-Dd y x σ1,其中D 是由直线x y =和1=y ,2=y 及0=x 围成的闭区域.18.判定级数∑∞=+12sin n nx n的收敛性.四、综合题(本大题共2小题,第19小题10分,第20小题12分,共22分)19.已知函数0)(4)(=-''x f x f ,0=+'+''y y y 且曲线)(x f y =在点)0 0(,处的切线与直线12+=x y 平行(1)求)(x f ;(2)求曲线)(x f y =的凹凸区间及拐点.20.已知dtt x f x⎰=02cos )((1)求)0(f '(2)判断函数)(x f 的奇偶性,并说明理由;(3)0>x ,证明)0(31)(3>+->λλλx x x f .。

广东专插本高等数学-试卷41_真题-无答案

广东专插本高等数学-试卷41_真题-无答案

广东专插本(高等数学)-试卷41(总分44,考试时间90分钟)1. 选择题选择题在每小题给出的四个选项中,只有一项是符合要求的。

1. 极限的值是( )A. eB.C. e2D. 02. 函数y=χ3在闭间[0,1]上满足拉格朗日中值定理的条件,其中ξ=( )A.B.C.D.3. 函数f(χ)=在点χ=1处( )A. 不可导B. 连续C. 可导且f′(1)=2D. 无法判断是否可导4. 设∫f(χ)dχ=F(χ)+C,则∫χf(aχ2+b)dχ=( )A. F(aχ2+b)+CB. F(aχ2+b)C. F(aχ2+b)+CD. F(aχ2+b)+C5. 微分方程y〞-5y′+4y=0的通解是( )A. y=C1e-χ+C2e-4χB. y=eχ+e4χC. y=C1eχ+C2e4χD. y=(C1+C2χ)eχ2. 填空题1. 设________.2. f(χ)=+χ3∫01f(χ)dχ,则∫01(χ)dχ=_______.3. 设z=χy+χF(),其中F为可微函数,则=_______.4. 微分方程y〞+y′=0的通解为_______.5. 设dσ=4π,这里a>0,则a=_______.4. 解答题解答题解答时应写出推理、演算步骤。

1. 求极限2. 设y=y(χ)由自方程所确定,求3. 求不定积分4. 设曲线求t=0至t=之间的_段弧长.5. 设z=ylnχ,求6. 求二次积分7. 求微分方程eyy′-χ=0满足y|χ=0=0的特解.8. 判断级数参的敛散性.5. 综合题1. 设平面图形D是由曲线y=eχ,直线y=e及y轴所围成的,求:(1)平面图形D的面积;(2)平面图形D绕y轴旋转一周所形成的旋转体的体积.2. 设f(χ)在区间[a,b]上可导,且f(a)=f(b)=0,证明:至少存在一点ξ∈(a,b),使得f′(ξ)+3ξf(ξ)=0.。

2024广东专插本考试高等数学试题

2024广东专插本考试高等数学试题

2024广东专插本考试高等数学试题2024广东专插本考试高等数学试题一、选择题1、下列函数中,在区间(0,1)内为增函数的是: A. y = ln(x + 1) B. y = e^(-x) C. y = sinx D. y = cosx2、设{an}为等比数列,a1 = 2,公比为q,则a2 等于: A. 2q B. qC. 1/qD. q^23、下列图形中,面积为S的平行四边形的个数是: A. 1 B. 2 C. 3D. 4二、填空题 4. 已知向量a = (1, -2),向量b = (3, -4),则向量a 与向量b 的夹角为__________。

5. 设函数f(x) = x^3 - 6x^2 + 9x - 3,则f(-2) = __________。

6. 若矩阵A = [1, 2; 3, 4],则|A| = __________。

三、解答题 7. 求函数y = sinx + cosx + sinxcosx + 1的最大值与最小值。

8. 求下列微分方程的通解:dy/dx = y/(x + 1),其中y(0) = 1。

9. 在等差数列{an}中,已知a1 = 1,S100 = 100a10,求{an}的前n项和Sn的公式。

四、应用题 10. 某公司生产一种产品,每年需投入固定成本40万元,此外每生产100件产品还需增加投资2万元。

设总收入为R(x)万元,x为年产量,产品以每百件为单位出售,售价为47万元/百件。

若当年产量不足300件时,可全部售出;若当年产量超过300件,则只能销售75%。

试求该公司的年度总收入R(x)的表达式。

五、选做题 11. 在极坐标系中,已知两点A、B的极坐标分别为(3, π/6)、(4, π/3),求△AOB的面积S。

12. 已知函数f(x)在[0,1]上连续,且f(0) = f(1) = 0。

试求证:存在一点ξ∈[0,1],使得f(ξ) = -ξ。

六、附加题 13. 求证:在正整数中,n^3 - n一定是6的倍数。

广东专插本高等数学-试卷58_真题-无答案

广东专插本高等数学-试卷58_真题-无答案

广东专插本(高等数学)-试卷58(总分44,考试时间90分钟)1. 选择题选择题在每小题给出的四个选项中,只有一项是符合要求的。

1. χ→0+时,与等价的无穷小量是( )A. 1-B.C. -1D. 1-cos2. 在[-1,3]上,函数f(χ)=1-χ2满足拉格朗日中值定理的ζ=( )A. 0B. 一1C. 1D. 23. 若f(χ)的导函数为sinχ,则f(χ)的一个原函数是( )A. 1+sinχB. 1-sinχC. 1+cosχD. 1-cosχ4. 曲线y=2-(χ+1)5的拐点为( )A. (-1,2)B. (0,1)C. (-2,3)D. 不存在5. 级数是( )A. 发散的B. 绝对收敛的C. 条件收敛的D. 敛散性不能确定的2. 填空题1. 函数f(χ)=ln(1+χ2)的极值为_______.2. 设函数y=y(χ)由参数方程确定,则=_______.3. 定积分(χ2.arctanχ+cosχ)dχ=_______.4. 设u=χ3+2y2+χy,χ=sint,y=et,则=_______.5. 若nun=k(k>0),则正项级数un的敛散性为_______.4. 解答题解答题解答时应写出推理、演算步骤。

1. 设f(χ)=试问当α取何值时,函数f(χ)在点χ=0处:(1)连续;(2)可导.2. 求极限3. 求函数f(χ)=χ+的单调区间、极值、凸凹区间及拐点.4. 求不定积分5. 设函数z=χ2yf(χ2-y2,χy),求6. 求(χ2+y2)dσ,其中D为y=χ,y=χ+a,y=a,和y=3a(a>0)为边的平行四边形.7. 求微分方程χlnχdy+(y-lnχ)dχ=0满足y|χ=e=1的特解.8. 判定级数的敛散性.5. 综合题1. 求F(χ)=在[0,1]上的最值.2. 设f(u,v)具有二阶连续偏导数,且满足=1,又g(χ,y)=f[χy,(χ2-y2)]求。

广东专插本2001-2011年高等数学历年题集(2011年10月更新)

广东专插本2001-2011年高等数学历年题集(2011年10月更新)

高等数学历年试题集(含标准答案)5、计算二重积分(),Dx y dxdy +⎰⎰其中D 为2,2xy x y ==及2xy =所围成(0)x >。

6、求一阶线性微分方程423(cos )2x xy y x e x x -=+-的通解。

四、应用题(本题8分)设有椭圆22221x y a b+=(1)用定积分计算要椭圆绕x 轴旋转所产生的旋转体体积。

(2)求内接于该随圆而平行于坐标轴的最大矩形面积。

20、试求函数xy ze =在点(2,3)处的全微分。

四、应用题(每小题8分,共24分)21、三个点A 、B 、C 不在同一直线上,60ABC∠=。

汽车以80千米/小时的速度由A 向B 行驶,同时火车以50千米/小时的速度由B 向C 行驶。

如果AB=200千米,试求运动开始几小时后汽车与火车间的距离为最小? 22、试计算由抛物线2y x =与直线23y x =-所围成的图形的面积。

23、设有边长为2a 的在方形薄板。

如果薄板材料的度和到对解线线交点的距离平方成正比,且在它的角上的密度为l ,试求这个正方形薄板的质量。

2004年专升本插班考试《高等数学》试题一、填空题(每小题4分,共20分) 1、函数211x xy --=的定义域是 。

2、=+→xx xx 52tan 30lim。

3、若=-=dxdyx x e y x则),cos (sin 。

4、若函数⎰+--=x dt t t t x f 02112)(,=)21(f 则 。

5、设23,32a i j k b i j k c i j =-+=-+=-和,()()a b b c +⨯+=则 。

二、单项选择题(每小题4分,共20分) 6、若⎰=+=I dx x I 则,231( )(A )C x ++23ln 21 (B )()C x ++23ln 21(C )C x ++23ln (D )()C x ++23ln 7、设)2ln(),(xyx y x f +=,=),f y 01('则( ) (A )0, (B )1, (C)2, (D)21 8、曲线2,,1===x x y x y 所围成的图形面积为S ,则S=( ) (A )dx x x )1(21-⎰ (B )dx xx )1(21-⎰(C )dx y dx y)2()12(2121-+-⎰⎰(D )dx x dx x )2()12(2121-+-⎰⎰ 9、函数项级数∑∞=-1)2(n nx n的收敛区间是( )(A )1x > (B )1x < (C )13x x <>及 (D )13x << 10、⎰⎰=12),(xxdy y x f dx I 变换积分分次序后有I=( )(A )210(,)x xdx f x y dy ⎰⎰ (B )⎰⎰10),(yydx y x f dx(C )⎰⎰102),(yy dx y x f dx (D )⎰⎰yydx y x f dx 1),(三、简单计算题(每题9分,共36分) 11、求极限xx x e x x 3sin )2()2(lim++-→ 12、求由方程0sin 21=+-y y x 所确定的隐函数y 的二阶导数22dxyd 。

广东专插本高等数学真题

广东专插本高等数学真题

2008年广东省普通高校本科插班生招生考试《高等数学》试题一、单项选择题(本大题共5小题,每小题3分,共15分。

每小题给出的四个选项,只有一项是符合题目要求的) 1、下列函数为奇函数的是A. x x -2B. xxe e -+ C. xxe e -- D. x x sin 2、极限()xx x 101lim -→+=A. eB. 1-e C. 1 D.-1 3、函数在点0x 处连续是在该点处可导的A.必要非充分条件B. 充分非必要条件C.充分必要条件D. 既非充分也非必要条件 4、下列函数中,不是x xe e 22--的原函数的是A.()221x xe e -+ B.()221x xe e -- C.()x xe e 2221-+ D. ()x xe e 2221-- 5、已知函数xy e z =,则dz =A. ()dy dx e xy +B. ydx +xdyC. ()ydy xdx e xy +D. ()xdy ydx e xy + 二、填空题(本大题共5小题,每小题3分,共15分) 6、极限xx x e e x-→-0lim= 。

7、曲线y=xlnx 在点(1,0)处的切线方程是= 。

8、积分()⎰-+22cos sin ππdx x x = 。

9、设y e v y e u xx sin ,cos ==,则xvy u ∂∂+∂∂= 。

10、微分方程012=+-x x dx dy 的通解是 。

三、计算题(本大题共8小题,每小题6分,共48分) 11、计算xx xx x sin tan lim 0--→。

x e e x f x x 2)(--='-,(4分)222)(2)(x x xx e e ee xf ---=-+=''>0,于是)(x f '在),0(+∞内单调增加,从而)(x f '>)0(f '=0,所以)(x f 在),0(+∞内单调增加,故)(x f >)0(f =0,即2x x e e -+>212x +.20、解:设⎰--=xdt t f x x F 01)(2)(,则)(x F 在[0,1]上连续,1)0(-=F ,因为0<f(x)<1,可证⎰1)(dx x f <1,于是⎰-=1)(1)1(dtt f F >0,所以)(x F 在(0,1)内至少有一个零点.又)(2)(x f x F -='>2﹣1>0,)(x F 在[0,1]上单调递增,所以)(x F 在(0,1)内有唯一零点,即⎰=-xdt t f x 01)(2在(0,1)内有唯一实根(6分) (8分)(10分)(3分)(6分) (9分)(12分)2009年广东省普通高校本科插班生招生考试《高等数学》试题一、单项选择题(本大题共5小题,每小题3分,共15分。

《高等数学》专插本2005-2019年历年试卷

《高等数学》专插本2005-2019年历年试卷

广东省2019年普通高等学校本科插班生招生考试高等数学一、单项选择题(本在题共 小题,每小题 分,共 分。

每小题只有一个选项符合题目要求).函数22()2x xf x x x -=+-的间断点是.2x =- 和0x = .2x =- 和1x = .1x =- 和2x = .0x = 和1x =.设函数1,0()2,0cos ,0x x f x x x x +<⎧⎪==⎨⎪>⎩,则0lim ()x f x → .等于1 .等于2 .等于1 或2 .不存在 已知()tan ,()2xf x dx x Cg x dx C =+=+⎰⎰C 为任意常数,则下列等式正确的是.[()()]2tan x f x g x dx x C +=+⎰ .()2tan ()x f x dx x C g x -=++⎰.[()]tan(2)x f g x dx C =+⎰.[()()]tan 2x f x g x dx x C +=++⎰.下列级数收敛的是.11nn e ∞=∑ .13()2nn ∞=∑.3121()3n n n ∞=-∑ .121()3n n n ∞=⎡⎤+⎢⎥⎣⎦∑..已知函数 ()bf x ax x =+在点1x =-处取得极大值,则常数,a b 应满足条件.0,0a b b -=< .0,0a b b -=>.0,0a b b +=< .0,0a b b +=> 二、填空题(本大题共 小题,每小题 分,共 分).曲线33arctan x t ty t ⎧=+⎨=⎩,则0t =的对应点处切线方程为y =.微分方程0ydx xdy +=满足初始条件的1|2x y ==特解为y = .若二元函数(,)z f x y =的全微分sin cos ,xxdz e ydx e ydy =+ 则2zy x∂=∂∂ .设平面区域{(,)|0,01}D x y y x x =≤≤≤≤,则Dxdxdy =⎰⎰.已知1()sin(1)tf x dx t t tπ=>⎰,则1()f x dx +∞=⎰三、计算题(本大题共 小题,每小题 分,共 分).求20sin 1lim x x e x x →--.设(0)21x x y x x =>+,求dydx.求不定积分221xdx x ++⎰.计算定积分012-⎰.设xyzx z e-=,求z x ∂∂和z y∂∂ .计算二重积分22ln()Dx y d σ+⎰⎰,其中平面区域22{(,)|14}D x y x y =≤+≤ .已知级数1n n a ∞=∑和1n n b ∞=∑满足0,n n a b ≤≤且414(1),321n n b n b n n ++=+- 判定级数1nn a ∞=∑的收敛性.设函数()f x 满足(),xdf x x de-=求曲线()y f x =的凹凸区间四、综合题(大题共 小题,第 小题 分,第 小题 分,共 分) .已知函数()x ϕ满足0()1()()xxx x t t dt x t dt ϕϕϕ=+++⎰⎰( )求()x ϕ;( )求由曲线 ()y x ϕ=和0,2x x π==及0y =围成的平面图形绕x 轴旋转而成的立体的体积.设函数()ln(1)(1)ln f x x x x x =+-+ ( )证明:()f x 在区间(0,)+∞内单调减少; ( )比较数值20192018与20182019的大小,并说明理由;年广东省普通高校本科插班生招生考试《高等数学》参考答案及评分标准一、单项选择题(本大题共 小题,每小题 分,共 分) 二、填空题(本大题共 小题,每个空 分,共 分)13x2x cos xe y 13π 三、计算题(本大题共 小题,每小题 分,共 分)原式00cos sin 1limlim 222x x x x e x e x x →→-+=== 解:21ln ln ln(21)12ln 1212(ln 1)2121xx x y x y x x x y x y x dy x x dx x x =+∴=-+'∴=+-+∴=+-++解:22222211112(1)12112arctan ln(1)2x dxx dx d x x xx x C++=++++=+++⎰⎰⎰,t =则211,22x t dx tdt =-=20121021420153011,,2211()221()2111()253115t x t dx tdt t t tdtt t dtt t -==-==-=-=-=-⎰⎰⎰解:设(,,)xyzf x y z x z e=--(,,)1(,,)(,,)11,11xyz x xyz y xyzz xyz xyz xyz xyzf x y z yze f x y z xze f x y z xye z yze z xze x xye y xye ∴=-=-=--∂-∂∴==-∂+∂+解:由题意得12,0r θπ≤≤≤≤222020ln()3(4ln 2)23(4ln 2)|2(8ln 23)Dx y d d ππσθθπ∴+==-=-=-⎰⎰⎰ 解:由题意得414(1),321n n b n b n n ++=+-414(1)1lim lim 1,3213n x x nb n b n n +→∞→∞+∴==<+- 由比值判别法可知1nn b∞=∑收敛0,n n a b ≤≤由比较判别法可知1n n a ∞=∑也收敛.解()()()()(1)xx x x df x x de df x xde f x xe f x e x ----=∴='∴=-''∴=-()f x ∴的凹区间为(1,)+∞,凸区间为(,1)-∞( )由题意得0()1()()()1()xxx x x t dt x x t dt ϕϕϕϕϕ'=++-=+⎰⎰()()()()0x x x x ϕϕϕϕ''∴=-''∴+=特征方程210r +=,解得r i=±通解为()cos sin x x x Cϕ=++(0)1,0()cos sin C x x xϕϕ=∴=∴=+由题意得2202022(cos sin )(1sin 2)1(cos 2)22x V x x dx x dx x x ππππππππ=+=+=-=+⎰⎰证明( )()ln(1)(1)ln 1()ln(1)ln 111ln(1)ln ()1f x x x x x x x f x x x x x x x x x=+-++'∴=+-+-+=+--++ 证明11ln(1)ln ()01x x x x +--+<+即可 即证11ln(1)ln ()1x x x x+-<++令()ln g x x =()ln g x x =在(0,)+∞连续可导,由拉格朗日中值定理得ln(1)ln 1ln(1)ln ()1x x x x g x x x ξ+-'+-===+-且1x x ξ<<+ 111101x x x xξξ<<+∴<<<+11ln(1)ln ()1x x x x ∴+-<++成立11ln(1)ln ()01x x x x∴+--+<+()f x ∴在(0,)+∞单调递减( )设2019,2018a b ==则201820192019,2018b a a b ==比较,a b b a 即可,假设a bb a>即ln ln a b b a >即ln ln b ab a >设ln (),x g x x =则21ln ()xg x x -'=()g x 在(0,)+∞单调递减即()()g b g a ∴>,即a b b a >成立即2019201820182019>广东省 年普通高等学校本科插班生招生考试高等数学一、单项选择题(本在题共 小题,每小题 分,共 分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

20XX 年广东省普通高校本科插班生招生考试
《高等数学》试题
一、单项选择题(本大题共5小题,每小题3分,满分15分。

每小题给出的四个选项中,
只有一项是符合题目要求的。


1.若函数⎩⎨⎧<+≥+= 1 11 3)(x x x a x x f ,
,在点1=x 出连续,则常数=a
A .-1
B .0
C .1
D .2
2.已知函数)(x f 满足6)
()3(lim
000
=∆-∆+→∆x
x f x x f x ,则=')(0x f
A .1
B .2
C .3
D .6
3.若点)2 1(,为曲线23bx ax y +=的拐点,则常数a 与b 的值应分别为 A .-1和3 B .3和-1 C .-2和6 D .6和-2
4.设函数)(x f 在区间[]1 1,
-上可导,c 为任意实数,则⎰
='dx x f x )(cos sin A . c x xf +)(cos cos B .c x xf +-)(cos cos C .c x f +)(cos D .c x f +-)(cos
5.已知常数项级数∑∞
=1
n n
u
的部分和)(1
*N n n n
s n ∈+=
,则下列常数项级数中,发散的是
A .
∑∞
=12n n
u
B .
∑∞
=++1
1)(n n n
u u
C .∑∞
=+1)1(n n n u D .∑∞
=-1
])53([n n
n u
二、填空题(本大题共5小题,每小题3分,满分15分。

) 6.极限=∞
→x
x x 3
sin
lim 。

7.设
2
1x x y +=
,则==0
x dy 。

8.设二元函数y x z ln =,则
=∂∂∂x
y z
2 。

9.设平面区域{}
1) , (22
≤+=
y x
y x D ,则=+⎰⎰D
d y x σ)(22 。

10.椭圆曲线14
22
=+y x 围成的平面图形绕x 轴旋转一周而成的旋转体体积=v 。

三、计算题(本大题共8小题,每小题6分,满分48分。

) 11.求极限)sin 1(
lim 320
x
x
x x -→. 12.求曲线232
=++xy e y x
在点)1 0(,处的切线方程.
13.求不定积分⎰-dx x x )
1(1

14.计算定积分
dx x x 21


15.15.设v
u z =,而y x u +=2,x v =,求
1==∂∂y x x
z 和
1==∂∂y x y
z .
16.设平面区域D 由曲线1=xy 和直线x y =及2=x 围成,计算二重积分
⎰⎰
D
d y x
σ2
17.已知函数x
e y 2=是微分方程02=+'-''ay y y 的一个特解,求常数a 的值,并求该微分函数的通解
18.已知函数∑∞
=1
n n u 满足)()11(31*
1N n u n u n n n ∈+=+,且11=u 判定级数∑∞
=1n n u 的收
敛性.
四、综合题(本大题共2小题,第19小题10分,第20小题12分,满分22分。


19.设函数2
2
1)1ln()(x x x x f +-+=,证明: (1)当0→x 时,)(x f 是比x 高阶的无穷小; (2)当0>x 时,0)(>x f .
20.已知定义在区间) 0[∞+,
上的非负可导函数)(x f 满足
0)( 1)(1)(0222
≥++=⎰x dt t
t f x f x
(1)判断函数)(x f 是否存在极值,并说明理由; (2)求)(x f .。

相关文档
最新文档