锁相放大实验深圳大学

合集下载

FSK实验报告

FSK实验报告

深圳大学实验报告课程名称:通信原理
实验项目名称:数字调制技术
学院:信息工程学院
专业:通信工程
指导教师:李晓滨
报告人:学号:2011130147 班级:2班
实验时间:2013年11月21日
实验报告提交时间:2013年12月5日
教务处制
2、16TP03和16TP04波形
3、FSK调制信号和已调信号
4、3TP01的噪声电平。

6、17TP02解调参数信号
7、解调输出波形
3、π相波调节
4、PSK调制信号
6、压控振荡器
7、38TP02和38TP03两波形9、解调输出波形
注:1、报告内的项目或内容设置,可根据实际情况加以调整和补充。

2、教师批改学生实验报告时间应在学生提交实验报告时间后10日内。

锁相放大器的原理及应用

锁相放大器的原理及应用

锁相放大器的原理及应用1. 原理介绍锁相放大器(Lock-in Amplifier)是一种精密的信号处理仪器,常用于测量微小信号在高噪声环境中的幅度和相位。

其原理基于信号的时域和频域分析。

锁相放大器的工作原理如下:1.输入信号和参考信号分别经过同步检波器和相位补偿器。

同步检波器通过将输入信号和参考信号相乘,得到一个混频输出信号。

相位补偿器则用于调节参考信号的相位,使其与输入信号处于同一相位。

2.混频输出信号经过低通滤波器,滤去高频噪声和杂散信号,得到幅度和相位信息。

3.幅度和相位信息经过放大器放大后,输出到显示器或数据采集系统进行数据处理和分析。

2. 应用领域锁相放大器在各个领域都有广泛的应用,下面列举了几个主要的应用领域:2.1 光学领域2.1.1 光学干涉测量锁相放大器可以应用于光学干涉测量中,通过与参考光信号进行比较,提取出微小的干涉信号。

这对于测量物体表面形貌、薄膜厚度等具有重要意义。

2.1.2 光谱分析在光谱分析中,锁相放大器可以提取出光源的频率和相位信息,对于研究材料的光学性质、标定光谱仪等具有重要应用价值。

2.2 生物医学领域2.2.1 生物传感器生物传感器通常需要对微弱的生物信号进行放大和处理。

锁相放大器可以实现对生物信号的高灵敏度检测,应用于生物传感器的信号放大和分析。

2.2.2 磁共振成像(MRI)在磁共振成像中,锁相放大器可以对磁场感应信号进行放大和处理,提高成像的灵敏度和分辨率。

2.3 物理实验领域2.3.1 基础粒子物理实验在基础粒子物理实验中,需要对微小的粒子信号进行检测和处理。

锁相放大器可应用于实验中对粒子信号的放大和分析,用于寻找新的粒子。

2.3.2 材料科学研究锁相放大器可以应用于材料科学研究中,对材料的电学、热学、磁学等性质进行测量和分析。

3. 优势和限制3.1 优势•高灵敏度:锁相放大器可以放大微弱信号,提高信号与噪声的比值,从而实现对微小信号的检测。

•抗噪声能力强:锁相放大器可以滤除高频噪声和杂散信号,提高信号的纯度和准确性。

近代物理实验报告锁相放大器

近代物理实验报告锁相放大器

锁相放大器【摘要】锁相放大器可以理解为用噪声频带压缩旳措施,将微弱信号从噪声中提取出来。

本试验通过测量锁相放大器旳工作参数和特性,掌握有关检测原理以及锁相放大器旳对旳使用措施。

【关键词】锁相放大器、微弱信号放大一引言伴随科学技术旳发展,微弱信号旳检测越来越重要。

微弱信号检测是运用电子学、信息论、物理学和电子计算机旳综合技术。

它是在认识噪声与信号旳物理特性和有关性旳基础上,把被噪声沉没旳有用信号提取出来旳一门新兴技术学科。

锁相放大器就是检测沉没在噪声中微弱信号旳仪器。

它可用于测量交流信号旳幅度和位相,有极强旳克制干扰和噪声旳能力,极高旳敏捷度,可检测毫微伏量级旳微弱信号。

自1962 年第一台锁相放大器商品问世以来,锁相放大器有了迅速发展,性能指标有了很大提高,现已被广泛应用于科学技术旳诸多领域。

二、试验原理1、噪声在物理学旳许多测量中,常常碰到极微弱旳信号。

此类信号检测旳最终极限将取决于测量设备旳噪声,这里所说旳噪声是指干扰被测信号旳随机涨落旳电压或电流。

噪声旳来源非常广泛复杂,有旳来自测量时旳周围环境,如 50Hz 市电旳干扰,空间旳多种电磁波,有旳存在于测量仪器内部。

在电子设备中重要有三类噪声:热噪声、散粒噪声和 1/f 噪声,这些噪声都是由元器件内部电子运动旳涨落现象引起旳。

从理论上讲涨落现象永远存在,因此只能设法减少这些噪声,而不能完全消除。

2、相干检测及相敏检波器微弱信号检测旳基础是被测信号在时间上具有前后有关性旳特点。

有关反应了两个函∞ 数有一定旳关系,假如两个函数旳乘积对时间旳积分不为零,则表明这两个函数有关。

有 关按概念分为自有关和互有关,微弱信号检测中一般都采用抗干扰能力强旳互有关检测。

设信号 f 1(t )为被检信号 V s (t )和噪声 V n (t )旳叠加,f 2(t )为与被检信号同步旳参照信号V r (t ),两者旳有关函数为:R (τ) = lim1Tf (t )⋅ f (t -τ)d t = lim1T[V (t )+ V (t )]⋅V (t -τ)d t12T →∞2T ⎰-T 12T →∞2T ⎰-Tsnr= R sr (τ)+ R nr (τ)由于噪声 V n (τ)和参照信号 V r (τ)不有关,故 R nr (τ)=0,因此 R 12(τ)=R sr (τ)。

锁相放大器实验报告

锁相放大器实验报告

锁相放大器实验报告摘要:本实验利用锁相放大器对信号中的噪声进行抑制并对其进行检测,了解相关检测原理,锁相放大器的基本组成;掌握锁相放大器的正确使用方法及在检波上的应用。

通过实验学会锁相放大器的使用,掌握利用锁相放大器来观察信号输入信号通道前后的幅值以及波形情况,获得相位与电压、放大倍数与电压的关系,并且通过噪声的观察知道如何消除噪声。

关键词:锁相放大器,微弱信号放大,PSD输出波形,谐波响应引言:随着科学技术的发展,微弱信号的检测越来越重要。

微弱信号检测是利用电子学、信息论、物理学和电子计算机的综合技术。

它是在认识噪声与信号的物理特性和相关性的基础上,把被噪声淹没的有用信号提取出来的一门新兴技术学科。

锁相放大器就是检测淹没在噪声中微弱信号的仪器。

它可用于测量交流信号的幅度和位相,有极强的抑制干扰和噪声的能力,极高的灵敏度,可检测毫微伏量级的微弱信号。

锁相放大器可以理解为用噪声频带压缩的。

方法,将微弱信号从噪声中提取出来。

自1962年第一台锁相放大器商品问世以来,锁相放大器有了迅速发展,性能指标有了很大提高,现已被广泛应用于科学技术的很多领域。

一、实验原理:1、噪声在物理学的许多测量中,常常遇到极微弱的信号。

这类信号检测的最终极限将取决于测量设备的噪声,这里所说的噪声是指干扰被测信号的随机涨落的电压或电流。

噪声的来源非常广泛复杂,有的来自测量时的周围环境,如50Hz市电的干扰,空间的各种电磁波,有的存在于测量仪器内部。

在电子设备中主要有三类噪声:热噪声、散粒噪声和1/f噪声,这些噪声都是由元器件内部电子运动的涨落现象引起的。

从理论上讲涨落现象永远存在,因此只能设法减少这些噪声,而不能完全消除。

2、相干检测及相敏检波器微弱信号检测的基础是被测信号在时间上具有前后相关性的特点。

相关反映了两个函数有一定的关系,如果两个函数的乘积对时间的积分不为零,则表明这两个函数相关。

相关按概念分为自相关和互相关,微弱信号检测中一般都采用抗干扰能力强的互相关检测。

锁相放大实验 (2)

锁相放大实验 (2)

浙江师范大学实验报告实验名称锁相放大实验班级物理081班姓名王蓓学号08270112同组人翁先祥王聪叶品昭实验日期2010/10/19 室温气温锁相放大实验【摘要】弱信号的测量在当今物理实验中占着很大的地位。

其中锁相放大器是目前最常见的仪器,适用于对淹没在噪声背景中的正弦波或方波信号的检测。

通过本实验及相关知识的了解,了解相关检测原理,锁相放大器(LOOK-IN)的基本组成,掌握锁相放大器的正确使用方法及在检波上的应用。

【关键词】锁相放大器信噪比微小变化传感器放大信号噪声【正文】锁相放大器实际上是一个模拟的傅立叶变换器。

锁相放大器的输出是一个直流电压,正比于是输入信号中某一特定频率(参数输入频率)的信号幅值,而输入信号中的其他频率成分将不能对输出电压构成任何贡献。

这样我们可以利用参考信号把有用信号从待测信号中分离出来。

锁相放大器主要有三大部分组成:信号通道、参考通道、相关器。

如下图所示:信号通道包括低噪声前置放大器、有源滤波器、主放大器,它的作用是把微弱信号放大到足以推动乘法器的工作电平,并兼顾抑制噪声的功能。

参考通道是指从参考信号输入到乘法器输入之前的部分,它的作用是产生于被测信号同步的参考信号,通常参考通道输出的是与被测信号同步的对称方波,用以驱动乘法器工作。

锁相放大器的频率变换是通过乘法运算来进行的。

一般的乘法运算模拟电路,其线性程度和温度稳定性都存在问题。

所以在实际的锁相放大器中,采用开关元件进行同步检波,由此实现频率变换。

由开关元件所进行的同步检波电路,称作PSD (相敏检波器,Phase Sensitive Detector ),这是组成锁相放大器的心脏部分。

实际电路存在各种噪声会影响实验的精确度。

锁相放大器对于噪声的抑制能力,是由上图中低通滤波器(LPF )的截止频率来确定的。

锁相放大器的基本原理是相关接收原理,在相关接收中,可以把两个信号的函数1()f t 和2()f t 的相关函数定义为:121()lim()()2TTT R f t f t dtT ττ-→∞=-⎰它是度量一个随机过程在时间t 和t τ-两时刻线性相关的统计参数,如果1()f t 和2()f t 完全没有关系,则相关函数将是一个常数。

锁相放大器报告

锁相放大器报告

锁相放大器报告1. 引言锁相放大器(Lock-in Amplifier)是一种用于检测和放大微弱信号的仪器。

它的原理是利用参考信号与待测信号进行相位比较,并通过频率调制将待测信号转换成与参考信号频率相同的信号,从而实现信号的放大与解调。

锁相放大器在许多领域都有广泛的应用,例如光学测量、电子学实验、磁学、生物医学等。

本报告将重点介绍锁相放大器的原理、应用以及仪器的使用方法。

2. 原理锁相放大器的核心原理是相位敏感放大技术,它通过与参考信号进行相位比较,实现对待测信号的放大与解调。

具体原理可以分为以下几个步骤:1.信号混频:将待测信号与参考信号进行混频,产生一个电压与参考信号频率相同的交流信号。

2.低通滤波:对混频后的信号进行低通滤波,滤除高频噪声部分。

3.相位移动:通过改变参考信号的相位,实现对待测信号相位的调整。

相位调整后,待测信号与参考信号之间的相位差将被最小化。

4.放大器:对调整后的信号进行放大,增加信号的幅度。

5.解调器:将放大后的信号与参考信号进行相乘,得到待测信号的幅度信息。

锁相放大器将以上步骤组合在一起,能够对微弱信号进行高增益放大和高精度解调,从而提高信号的检测灵敏度和测量精度。

3. 应用锁相放大器在许多领域都有广泛的应用,下面将介绍几个典型的应用场景。

3.1 光学测量在光学测量中,锁相放大器常用于检测光能量、相位差、频率等参数。

例如在光学干涉仪中,通过锁相放大器可以对光的干涉信号进行放大和解调,从而实现对干涉信号的精确测量。

3.2 电子学实验锁相放大器在电子学实验中也有着广泛的应用,可以用于检测微弱信号、分析信号的谐波成分等。

例如在电阻、电容和电感测量中,锁相放大器可以消除噪声的影响,提高测量的精度。

3.3 生物医学在生物医学领域,锁相放大器被广泛应用于生物信号检测和分析。

例如在心电图检测中,锁相放大器可以提取出心电信号的有效部分,并抑制背景噪声干扰,从而实现对心电信号的准确分析和诊断。

锁相放大实验报告

锁相放大实验报告

锁相放大实验报告锁相放大实验报告摘要本实验利用锁相放大器对微弱信号中的噪声进行抑制并对其进行检测,了解相关检测原理,锁相放大器的基本组成;掌握锁相放大器的正确使用方法及在检波上的应用。

通过实验学会锁相放大器的使用,掌握利用锁相放大器来观察信号输入信号通道前后的幅值以及波形情况,获得相位角与电压、放大倍数与电压的关系,并且通过噪声的观察知道如何消除噪声。

关键词锁相放大器,通道,噪声带宽,信噪比正文锁相放大器己成为现代科学技术中必不可少的常备仪器。

国内72年南京大学首先从事这方面的研究工作,1974年研制成了第一台实验室样机,继后物理所等单位相继进行了这一方面的研究工作,1978年才有了工厂生产产品。

现在测量毫微伏量级的信号已是可能。

锁相放大器在涉及到微弱信号检测的各个领域都已得到了广泛的应用。

一、实验原理简析锁相放大器就是用来检测淹没在噪声中的微弱交流信号。

本质上,锁相放大器是一个具有任意窄带宽的滤波器,其频率调谐到信号的频率,排除掉大多数不需要的噪声而只允许被测量信号通过。

除了滤波,锁相放大器也能够提供增益,锁相放大器可以从噪声中提取比噪声小1000倍甚至10000倍的信号,锁相放大器的信噪改善比特别高它可用于测量交流信号的幅度和相位。

有极强的抑制干扰和噪声的能力,有极髙的灵敏度。

1.相关检测原理所谓相关就是指两个函数间有一定的关系,如果他们的乘积对时间求平均(积分)为零,则表明这两个函数不相关(彼此独立);如不为零,则表明两者相关。

由于互相关检测抗干扰能力强,因此在微弱信号检测中大都是采用互相关检测原理。

如果)(ltf和)(2 tf为两个功率有限的信号,则可定义其相关函数为:TTldttftfTR)()(2/llim21)(由于噪声的频率和相位都是随机量,它的偶尔出现可用长时间积分使它不影响信号的输出。

因而可以认为信号和噪声,噪声和噪声之间是互相独立,相关函数为零,通过推导,则:YTrsdttvtTR)()(2/1 lim)(由此可知,对两个混有噪声的功率有限信号进行相乘和积分处理(即相关检测)后,可将信号从噪声中检出,噪声被抑制,不影响输出。

锁相放大器实验

锁相放大器实验
本实验通过测量锁相放大器的工作参数和特性,掌握相关检测原理以及锁相放大器的使用方法。
2.原理
2.1理论
2.1.1相关接收
微弱信号检测的基础是被测信号在时间上具有前后相关性的特点。相关是指两个函数间有一定的关系,相关按概念分为自相关和互相关。微弱信号检测中一般采用抗干扰能力强的互相关检测。相关函数是表征线性相关的度量。
3)相关器对不相关信号的抑制
连接实验线路,调节输入信号的信号源的频率为200HZ时,改变干扰信号的频率,观察相关器噪声电压输出,分析相关器对不相关信号的抑制能力。
4)相关器对噪声的抑制及信噪比改善
连接实验线路,先不加干扰信号,在输入信号与输出信号同相的情况下观察相干器“加法器输出”与“PSD输出”的波形,测量直流输出电压;加入白噪声信号后,再用“加法器输出”与“PSD输出”的波形观察信号与噪声相混的波形。测量信号源的输入信号的电压、白噪声输入电压,再测量出相关器输出的信号电压与噪声电压,计算输出信号的信噪比。
3.2相敏检波器的特性研究及信噪比改善测量
1)相敏检波器PSD输出波形和电压测量
连接实验线路,在输入信号与参考信号不同相位下,观察由PSD输出的波形;测量相关器输出直流电压大小与信号、参考信号之间的幅值及相位差 的关系,
2)相关器的谐波响应的测量与观察
连接实验线路,宽带移相器的输入信号接至信号源的“倍频 分频输出”,使得参考信号的频率为信号频率的1/n.在n分别为1,2,3,4,5,6,7的情况下,调节相移,记录直流电压输出最大值。
3)相关器对不相关信号的抑制
相位差为0°时,加法器输出峰峰值为0.32V,PSD输出峰值为0.16V,加法器输出波形和PSD输出波形如图8所示,
图8加法器输出波形和PSD输出波形

锁相放大实验

锁相放大实验

锁相放大实验物理082班 08180202 陈蓓蓓摘要在做这个实验的时候我们不仅要了解什么事锁相放大器,更要利用锁相放大器观测信号输入信号通道前后的幅值、波形情况,观测参考通道前后信号的变化情况,观测锁相放大器输入输出波,并通过调节参考通道相移器来改变两信号间的相差的同时,观测锁相放大器输出信号幅值及波形变化,从中得出相关检波原理。

关键词锁相放大器、信号引言随着科学技术和生产的发展,需要测量许多物理量的微小变化。

特别是极端条件下的微弱信号的测量,成为我们可以深化认识自然、开拓新材料、创造新器件的基础。

通常我们用传感器将其转化为相应的电信号,然后对这些电信号进行放大,再被我们显示和记录。

但是,这些微小的变化被转化的过程中,各种条件下的噪声和干扰信号很可能将这些微弱信号淹没。

所以在本实验中我们使用锁相放大器来测量淹没在噪声背景中的正弦波或方波信号。

正文首先,我们需要清楚为什么锁相放大器能有很强的抗噪声能力呢?锁相放大器不容易受到噪声影响的原因,是因为很好地利用了噪声(白噪声)与目的信号(正弦波)之间在性质上的差别。

在这里,我们一方面整理白噪声的性质和正弦波的性质,一方面解说为什么锁相放大器会具有很强的噪声抑制能力。

噪声的性质1、平坦的频谱在宽阔的频率范围内,该信号具有几乎相同的频谱。

信号的瞬时电平成为预测不到的随机的值。

2随着频带宽度不同测量电压会改变在用毫伏计测量白噪声时,得到的测量值和白噪声所具有的频谱带宽(BandWidth: B.W.)的平方根以及电平成比例。

测量得到的电压值,与下图中的浅蓝色部分的面积成比例。

即使对于同样的噪声,如果用带通滤波器(BPF)来限制所通过的频带,那么测量所得的电压值就会不同。

把测量所得的噪声电压(Vrms),除以频带宽度的平方根,就得到用表示噪声大小的单位、也即称作噪声电压密度(V/√Hz)来衡量的值。

频道宽度如果缩小到1/100,那么测量所得的噪声电压就缩小到1/10。

锁相放大器原理

锁相放大器原理

锁相放大器原理锁相放大器(Lock-inAmplifier,简称LIA)是一种信号处理仪器,用于放大小幅度和短暂变化信号。

它主要应用于测量电性能,实时监测与采集信号,仪器仪表制造以及工业控制等。

锁相放大器的原理是将被测信号与一个正弦波(称为参考信号)相比较,输出信号与输入信号的波形几乎相同,只是信号的幅度大大放大。

因此,即使是一些微弱的短时信号,也可以在锁相放大器中捕获,进而被测量和解析。

锁相放大器的运作原理非常简单,它包括一个锁相电路,一个放大器以及一个相位环节。

首先,被测信号会首先进入锁相电路,在锁相电路中,被测信号和参考信号会分别被放大,并以复数形式传递到相位环节,在相位环节做处理后,将被测信号与参考信号相比较,以确定被测信号与参考信号之间的相位差,最后,被测信号会被反馈到放大器中,放大器会只放大被测信号和参考信号的相位差的部分,因而得到信号的放大。

一般来说,锁相放大器的时域精度高,可以用来测量短时间或小幅度信号,它运行的频率范围很宽,可以从低于10 Hz到1000 MHz,也可以应用于极其复杂的系统,这些方面都使得锁相放大器极大地拓展了测量应用的范围。

进步仪器推出了一系列优质的锁相放大器,它们采用先进科技,有着更高的分辨率,更高的精度,能够支持多种协同测量,具有更完善的噪声抑制功能,还具有多种扩展模块,使用起来方便快捷,更适合使用于高端科学研究中。

从上面可以看出,锁相放大器是一种极其重要的仪器,采用它可以放大小幅度信号,使这些信号能够被精确测量和检测,用于多种复杂的环境中,这种仪器无疑是研究者极其宝贵的工具,进步仪器贴心地为研究者提供优质的锁相放大器,以满足所有科研需求。

综上所述,锁相放大器是一种重要的信号处理仪器,它的原理是将被测信号与参考信号进行比较,从而放大被测信号,具有时域精度高,频率范围宽,容易扩展等优点,进步仪器凭借先进的技术,提供了一系列优质的锁相放大器,满足科学研究者的多种需求。

锁相放大器原理实验报告

锁相放大器原理实验报告

锁相放大器原理实验报告.docx艾孜买提江111XXXX0226物理112班一、实验目的l、了解相关器的原理,测量相关器的输出特性;2、了解锁定放大器的原理及典型框图;3、根据典型框图,组装锁定放大器;熟悉锁定放大器的使用方法二、实验原理实际测量一个被测量时,无用的噪声和干扰总是伴随着出现,影响了测量的精确性和灵敏度。

特别当噪声功率超过待测信号功率时,就需要用微弱信号检测仪器和设备来恢复或检测原始信号。

这些检测仪器是根据改进信噪比的原则设计和制作的。

可以证明,当信号的频率和相位己知时。

采用相干检测技术能使输出信噪比达到最大,微弱信号检测的著名仪器锁定放大器,就是采用这一技术设计与制造的。

锁定放大器是以相干检测技术为基础,其核心部分是相关器,基本原理框图如图1所示。

而锁定放大器的主要由三部分组成,即:信号通道(相关器前那一部分)、参考通道和相关器(包括直流放大器)。

图1.锁定放大器的基本原理图首先介绍相关器:它是锁定放大器的核心部分,其基本原理如下:1、相关接收原理互相关接收对于已知为周期性的信号的检测十分有用。

图所示,输入乘法器的两路信号中,e1(t)为被检测信号,是VA(t)与背景信号Vn(t)的叠加,e2(t)为在接收设备中设法产生的与被检测信号VA(t)同步的参考信号VB(t)。

将参考信号与杂有噪声的输入信号进行相关,得到被测信号的相关函数,就代表了被测信号。

其相关函数为:由于噪声Vn(t)与参考信号VB(t)的相关性,RNB=0,因此有2、相关器相关器由相敏检波器(PSD)与低通滤波器组成,是锁定放大器的核心部件。

锁定放图3锁定放大器中通常采用的相关器大器中的相关器,通常采用图3所示的形式,由一个开关式乘法器(_)与低通滤波器(LPF)组成。

(1)同步检测器令图3中输入开关乘法器的被测信号VA(t)和参考信号VB(t)分别为则开关乘法器的输出信号为可见开关乘法器的输出由和频(wA+wB)和差频(wA-wB)两部分组成。

锁相放大实验报告范文-图文

锁相放大实验报告范文-图文

锁相放大实验报告范文-图文(实验报告)锁相放大【摘要】随着科学技术的发展,需要测量许多物理量的微小变化。

其中锁相放大器是目前最常见的仪器,适用于对淹没在噪声背景中的正弦波或方波信号的检测。

通过对本实验的演练以及相关知识的了解,了解相关检测原理、锁相放大器(LOOK-IN)的基本组成,掌握锁相放大器的正确使用方法及在检波上的应用。

【关键词】弱信号检测、相关器、锁相放大、互相关函数、抗干扰【引言】随着科学技术和生产的发展,在很多时候我们需要测量许多物理量的微小变化。

特别是极端条件下的微弱信号的测量,是深化认识自然、开拓新材料、创造新器件的基础。

对上述微小变化的测量,通常我们可以用传感器将其转化为相应的电信号,然后对这些电信号进行发达,然后进行检测。

但是这些微小的变化通过传感器转换成的电信号十分微弱,而且各种条件下的噪声和干扰很可能将这些微弱信号淹没,因此单纯的使用放大器将其放大,并不能将这些信号正确地检测出来,因为一般放大器会将信号与噪声一起放大,被测信号因被噪声覆盖而使放大失去了意义。

因此去掉上述信号中的噪声与干扰成为了解决弱信号测量问题的关键。

一般,去除噪声和干扰有同步积累、相关接受等方法。

【正文】锁相放大器的基本原理是相关接收原理,由互相关函数R某y()lim12TTTT某(t)y(t)dt知道,若某(t),y(t)互相没有关系,互相关函数将是一个常数,等于两个随机函数的平均值的积,由于电噪声函数一般符合高斯正态分布,其平均值为零,因此我们认为信号和噪声的互相关函数为零。

令某(t)V(t)n1(t)y(t)Vr(t)n2(t)Vr(t)其中n1(t)和n2(t)分别代表了待测信号V(t)及参考信号混在一起的噪声,则R某y()lim12TTTTV(t)Vr(t)V(t)n2(t)Vr(t)n1(t)n1(t)n2(t)dtRr()R2()Rr1()R12()其中,Rr(),R2(),Rr1(),R12()分别是两信号之间,信号与噪声,噪声与噪声之间的相关函数,由于信号与噪声不相关,所以R2(),Rr1(),R12()为零。

近物实验II锁相放大

近物实验II锁相放大

锁相放大器实验一、引言锁相放大器(lock-in amplifier)是检测淹没在噪声中微弱信号的常用仪器。

它利用待测信号和参考信号的互相关检测原理实现对信号的窄带化处理,能有效地抑制噪声,实现对信号的检测和跟踪。

自1962年第一台锁相放大器问世以来,锁相放大器有了迅速发展,性能指标有了很大提高,目前已经能够在强噪声背景下检测出几nV 的交流信号。

锁相放大器已成为现代科学技术中必不可少的常用仪器,已广泛地用于物理、化学、生物、电讯、医学等领域。

锁相放大器不能像光子计数器那样测量极微弱的光信号,但它能测量宽范围的光强度,并且不局限于光信号的测量。

因此,培养学生掌握这种技术的原理和应用,具有重要的现实意义。

本实验通过测量锁相放大器的工作参数和特性,掌握相关检测原理以及锁相放大器的正确使用方法。

二、实验原理1.相关接收微弱信号检测的基础是被测信号在时间上具有前后相关性的特点。

所谓相关,是指两个函数间有一定的关系,相关按概念分为自相关和互相关。

微弱信号检测中一般都采用抗干扰能力强的互相关检测。

相关函数是表征线性相关的度量。

设信号)(1t f 为被检信号)(t V s 和噪声)(t V n 的叠加,)(2t f 为与被检信号同步的参考信号)(t V r , 二者的相关函数为()()()()()()()12121lim d 21lim ()d 2,T TT T s n r T T sr nr R f t f t t T V t V t V t t T R R τττττ-→∞-→∞=⋅-=+⋅-⎡⎤⎣⎦=+⎰⎰ (1) 由于噪声)(τn V 和参考信号)(τr V 不相关, 故0)(=τnr R ,所以)()(12ττsr R R =。

以上分析表明,利用参考信号与有用信号具有相关性,而参考信号与噪声相互独立、互不相关的性质,可以使之通过互相关运算削弱噪声的影响,即对混有噪声的信号和参考信号进行相乘和积分处理,就能够把深埋在任意大噪声中的微弱信号检测出来,根据此原理设计的相干检测器即相关器构成了锁相放大器的核心部分。

锁相放大技术在物理实验中的应用方法

锁相放大技术在物理实验中的应用方法

锁相放大技术在物理实验中的应用方法锁相放大技术是一种广泛应用于物理实验中的重要技术,它在测量信号中的微小相位变化方面具有较高的灵敏度。

本文将探讨锁相放大技术在物理实验中的应用方法,以及其对实验结果的重要性。

首先,让我们了解一下锁相放大技术的原理。

锁相放大器是一种电子设备,用于提取输入信号中的特定频率成分,并输出与该频率相位对应的分量。

它通过将信号与参考信号进行混频,得到一个与参考信号相位相同的交流信号,然后进行低通滤波,最终得到用于测量的直流信号。

在物理实验中,锁相放大技术有诸多应用。

其一是在光学实验中的斯托克斯参数测量。

斯托克斯参数描述了由散射光产生的光学反射现象,这对于材料的表征和分析非常重要。

通过将参考光束与散射光束进行混频,锁相放大器可以提取出散射光中特定频率的成分,从而得到斯托克斯参数的精确测量结果。

此外,在生物学实验中,锁相放大技术也有广泛的应用。

例如,在细胞膜电位测量中,锁相放大器可以提供对微弱电信号的高灵敏度检测。

生物系统中的电信号通常非常微弱,因此需要采用灵敏度较高的技术进行测量。

锁相放大技术通过将微弱的电信号与参考信号相位同步,可以放大信号并减少背景噪声,从而提高信号的检测能力。

在材料科学实验中,锁相放大技术也有其独特的应用。

例如,在热导率测量中,锁相放大器可以用来测量材料的热导率。

通过将热源的温度调制为特定的频率,然后测量材料中的温度变化,锁相放大器可以提取出与热导率相关的信号,并计算出材料的热导率值。

锁相放大技术在物理实验中的应用方法可以总结为以下几点。

首先,选择合适的参考信号。

参考信号的选择将直接影响到锁相放大器的检测灵敏度和信噪比。

通常可以使用参考光束、参考电压或参考电流作为参考信号。

其次,确定要测量的频率范围。

锁相放大器通常可以工作在一定的频率范围内,因此需要根据实验需求来选择合适的频率范围。

此外,在实际使用中,也需要注意减小实验环境中的干扰。

例如,适当隔离电磁干扰源,使用屏蔽信号线等措施可以有效地减小环境干扰对测量结果的影响。

锁相放大器实验报告

锁相放大器实验报告

锁相放大器实验报告锁相放大器实验报告引言:锁相放大器是一种用于测量微弱信号的高精度仪器,广泛应用于光电子学、材料科学等领域。

本实验旨在通过锁相放大器的使用,探索其原理和应用,并验证其在信号测量方面的优势。

一、实验目的本实验的主要目的是学习锁相放大器的工作原理和使用方法,并通过实验验证锁相放大器在测量微弱信号时的优越性能。

二、实验装置本实验所使用的实验装置主要包括锁相放大器、信号发生器、光电探测器等。

其中,锁相放大器是实验的核心设备,其通过对输入信号进行相位调制和解调,实现对微弱信号的放大和测量。

三、实验步骤1. 连接实验装置:首先,将信号发生器和光电探测器分别与锁相放大器连接,确保各设备之间的信号传输正常。

2. 设置实验参数:根据实验要求,设置锁相放大器的工作频率、相位等参数,以及信号发生器的频率和幅度等参数。

3. 测量信号:通过调节信号发生器的输出信号,使其与待测信号频率相匹配,然后通过光电探测器将信号转化为电信号输入到锁相放大器中。

4. 数据采集与分析:通过锁相放大器的显示屏或计算机软件,获取测量到的信号数据,并进行分析和处理,得到所需的实验结果。

四、实验结果与讨论通过实验,我们得到了一系列测量结果,并进行了相应的数据分析和讨论。

首先,我们验证了锁相放大器对微弱信号的放大效果。

实验结果表明,锁相放大器能够有效地放大微弱信号,并提供高精度的测量结果。

其次,我们研究了锁相放大器的相位调制和解调原理。

相位调制是通过改变输入信号的相位,使其与参考信号保持一定的相位差,从而实现对信号的放大和测量。

而解调则是将锁相放大器输出的调制信号恢复为原始信号,并进行相应的分析和处理。

另外,我们还探索了锁相放大器在光电子学领域的应用。

通过将锁相放大器与光电探测器相结合,我们可以实现对光信号的高精度测量,这在光通信、光谱分析等领域具有重要的应用价值。

五、实验总结通过本次实验,我们深入了解了锁相放大器的工作原理和使用方法,并验证了其在信号测量方面的优越性能。

基于数字锁相放大器的微弱光电信号检测研究

基于数字锁相放大器的微弱光电信号检测研究

基于数字锁相放大器的微弱光电信号检测研究基于数字锁相放大器的微弱光电信号检测研究摘要:微弱光电信号检测技术在光学传感、无线通信、生物医学等领域具有重要的应用价值。

本文通过对数字锁相放大器的原理和结构进行分析,研究了其在微弱光电信号检测中的应用。

通过实验验证,数字锁相放大器具有优异的性能,能够实现对微弱光电信号的高灵敏度检测,同时具备较高的精确度和稳定性。

研究结果表明,基于数字锁相放大器的微弱光电信号检测技术为相关领域提供了一种可靠的解决方案。

1. 引言微弱光电信号的检测是光学传感、无线通信和生物医学等领域中具有挑战性的问题之一。

传统的光电信号检测技术受到噪声、杂散等因素的干扰,难以实现高灵敏度的检测。

为了解决这一问题,数字锁相放大器应运而生。

数字锁相放大器以其独特的工作原理和结构,在微弱光电信号检测中得到了广泛应用。

2. 数字锁相放大器的原理与结构数字锁相放大器是一种将模拟信号转化为数字信号进行放大和处理的设备。

其基本原理是将输入信号与参考信号进行相位比较,然后通过数字处理单元对相位差进行采样和积分,最终得到放大后的信号。

数字锁相放大器主要由模拟信号采样电路、数字信号处理单元和数模转换电路等组成。

3. 数字锁相放大器在微弱光电信号检测中的应用数字锁相放大器具有高灵敏度、高精确度和高稳定性等优点,因此在微弱光电信号检测中有着广泛的应用。

通过对数字锁相放大器进行参数调节,可以实现对微弱光电信号的优化检测。

同时,数字锁相放大器还能够对杂散、噪声进行抑制和排除,提高信号的纯度和可靠性。

4. 实验验证与结果分析通过对基于数字锁相放大器的微弱光电信号检测系统进行实验验证,研究了其性能表现。

实验结果显示,数字锁相放大器在微弱光电信号检测中具有高灵敏度和稳定性。

同时,其检测结果还具有较高的精确度和重复性。

实验结果的可靠性和准确性验证了数字锁相放大器在微弱光电信号检测中的应用潜力。

5. 结论基于数字锁相放大器的微弱光电信号检测技术具有良好的性能表现,能够在光学传感、无线通信和生物医学等领域中提供可靠的解决方案。

锁相放大器实验报告

锁相放大器实验报告

ቤተ መጻሕፍቲ ባይዱ次实验的收获与体会
掌握了锁相放大器的基本原理和操作方法 学会了如何调整锁相放大器的参数以获得最佳性能 提高了实验动手能力和解决问题的能力 认识到团队合作在实验中的重要性,学会了如何与团队成员沟通和协作
对实验中遇到的问题和解决方案的反思与总结
遇到的问题:信号干扰、设备故障、操作失误等 解决方案:调整信号源、更换设备、规范操作等 反思:实验过程中需要注意的细节和可能出现的问题 总结:通过实验,提高了解决问题的能力和团队合作精神
调整锁相放大器参数,进行信号放大处理
调整锁相放大器参 数:设置合适的放 大倍数、相位差和 带宽
输入信号:选择合 适的信号源,如正 弦波、方波等
信号放大处理:将 输入信号通过锁相 放大器进行放大处 理
观察输出信号:使 用示波器等设备观 察输出信号的波形 和幅度,确保满足 实验要求
使用示波器和电脑采集和处理实验数据
Part Two
实验设备
锁相放大器
锁相放大器是一种用于测量微弱信号的电子设备。 锁相放大器的主要功能是提取信号中的频率和相位信息。 锁相放大器通常由一个参考信号和一个输入信号组成。 锁相放大器的性能指标包括灵敏度、动态范围、相位噪声等。
信号发生器
型号:Agilent 33220A 功能:产生正弦波、方波、三角波等信号 频率范围:1Hz-10MHz 精度:±0.01%
对实验教学的建议和改进意见
增加实验操作演示,帮助学生更好地理解和掌握实验步骤。 提供更多的实验案例,让学生通过实践锻炼解决问题的能力。 加强实验过程中的指导,及时发现并纠正学生的错误操作。 鼓励学生进行创新实验,培养学生的创新意识和实践能力。
对后续学习和实践的展望与计划
深入学习锁相放 大器的原理和应 用

锁相放大实验深圳大学

锁相放大实验深圳大学

深圳大学实验报告课程名称:近代物理实验(2)实验项目名称:锁相放大实验学院:物理科学与技术学院专业:应用物理学指导教师:报告人:学号:班级:01实验时间:实验报告提交时间:教务部制一.实验目的(1)了解相关检测原理和锁相放大器的基本组成以及锁相放大器的工作特性和主要参数测定;提高相关检测技术 水平。

(2)掌握锁相放大器的正确使用和锁相放大器的应用。

(3)了解微弱信号测量系统的参数设计要点与系统组成,搭建相关检测系统,分析测量数据,判定系统参数。

提高误差分析与分配能力。

二.实验原理检测微弱信号的核心问题是对噪声的处理,最简单、最常用的办法是采用选频放大技术,使放大器的中心频率f 0与待测信号频率相同,从而对噪声进行抑制,但此法存在中心频度不稳、带宽不能太窄及对等测信号缺点。

后来发展了锁相放大技术。

它利用等测信号和参与信号的相互关检测原理实现对信号的窄带化处理,能有效的抑制噪声,实现对信号的检测和跟踪。

1.锁相放大器的工作原理(1)相关检测及相关检测器。

所谓相关,是指两个函数不相关(彼此独立);如果它们的乘积对时间求平均(积分)为零,刚表明这两个函数的关系又可分为自相关和互相关两种。

由于互相关检测抗干扰能力强,因此在微弱信号检测中大都采用互相关检测原理。

如果f1(t)和f2(t-τ)为两个功率有限信号,刚可定义它们的互相关函数为:令f1(t)=V1(t)+n1(t),f2(t)=V1(t)+n2(t),其中n1(t)和n2(t)分别代表与待测信号V1(t)及参考信号V2(t)混在一起的噪声,则式(3.1.1)可写成:式中Rsr(τ),Rr2(τ),Rr1(τ),R12(τ)分别是两信号之间,信号对噪声及噪声之间的函数。

由于噪声的频率和相位都是随机量,他们的偶尔出现可用长时间积分使它不影响信号的输出。

所以,可认为信号和噪声、噪声和噪声之间是互相独立的,他们的互相关函数为零。

于是式(3.1.2)可写成:dt t V t V TR R r S T TT sr )()(21limττ-=≈⎰-∞→)( (3.1.3)上式表明,对两个混有噪声的功率有限信号进行相乘和积分处理(即相关检测)后,可将信号从噪声中检出,噪声被抑制,不影响输出。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

深圳大学实验报告课程名称:近代物理实验(2)实验项目名称:锁相放大实验学院:物理科学与技术学院专业:应用物理学指导教师:报告人:学号:班级:01实验时间:实验报告提交时间:教务部制一.实验目的(1)了解相关检测原理和锁相放大器的基本组成以及锁相放大器的工作特性和主要参数测定;提高相关检测技术 水平。

(2)掌握锁相放大器的正确使用和锁相放大器的应用。

(3)了解微弱信号测量系统的参数设计要点与系统组成,搭建相关检测系统,分析测量数据,判定系统参数。

提高误差分析与分配能力。

二.实验原理检测微弱信号的核心问题是对噪声的处理,最简单、最常用的办法是采用选频放大技术,使放大器的中心频率f 0与待测信号频率相同,从而对噪声进行抑制,但此法存在中心频度不稳、带宽不能太窄及对等测信号缺点。

后来发展了锁相放大技术。

它利用等测信号和参与信号的相互关检测原理实现对信号的窄带化处理,能有效的抑制噪声,实现对信号的检测和跟踪。

1.锁相放大器的工作原理(1)相关检测及相关检测器。

所谓相关,是指两个函数不相关(彼此独立);如果它们的乘积对时间求平均(积分)为零,刚表明这两个函数的关系又可分为自相关和互相关两种。

由于互相关检测抗干扰能力强,因此在微弱信号检测中大都采用互相关检测原理。

如果f1(t)和f2(t-τ)为两个功率有限信号,刚可定义它们的互相关函数为:令f1(t)=V1(t)+n1(t),f2(t)=V1(t)+n2(t),其中n1(t)和n2(t)分别代表与待测信号V1(t)及参考信号V2(t)混在一起的噪声,则式(3.1.1)可写成:式中Rsr(τ),Rr2(τ),Rr1(τ),R12(τ)分别是两信号之间,信号对噪声及噪声之间的函数。

由于噪声的频率和相位都是随机量,他们的偶尔出现可用长时间积分使它不影响信号的输出。

所以,可认为信号和噪声、噪声和噪声之间是互相独立的,他们的互相关函数为零。

于是式(3.1.2)可写成:dt t V t V TR R r S T TT sr )()(21limττ-=≈⎰-∞→)( (3.1.3)上式表明,对两个混有噪声的功率有限信号进行相乘和积分处理(即相关检测)后,可将信号从噪声中检出,噪声被抑制,不影响输出。

根据此原理设计的相关检测器见图(3.1.1)所示。

它是锁相放大器的心脏。

通常相关检测器由乘法器和积分器构成。

乘法器有两种:一种是模拟式乘法器:另一种是开头式乘法器,常采用方波作参考信号,而积分通常由RC 低通滤波器构成。

现在令式(3.1.3)中两个信号均为正弦波: 等测信号为 Vs(t)=e s cos ωt;参考信号为 Vr(t-τ)=e r cos[(ω+Δω)t+φ].在式中r 为两个信号的延迟时间。

它们进入乘法器后变换输出为V(t),即由原来以ω为中心频率的频谱变换成以Δω及和频2ω为中心的两个频谱,通过低通滤波器(简称LPF )后,和频信号被滤去,于是经LPF 输出的信号为式中K 是与低通滤波器的传输系数有关的常数。

上式表明,若两个相关信号为同频正弦波时,经相关检测后,其相关函数与两信号幅度的乘积成正比,同时与它们之间位相差的余弦成正比,特别是当待测信号和参考信号同频同位相,即Δω=0,φ=0时,输出最大,r s O e Ke V 可见参考信号也参与了输出。

为保证高质量的检测,参考信号必须非常稳定。

实际常用的参考信号Vr(t)是方波。

对于Vr(t)是方波的情况,相应采用开关式乘法器,称为相敏检波器(简称PSD )。

可将它等效为按输入信号Vs(t)的频率来改变极性的双刀掷开关(参见图10.2.2),此时可令式中k仍是与LPF传输系数有关的常数,式(3.1.5)表明,在Vr(t)为方波的情况,经相关检测后,其输出仅与待测信号的幅度es成正比,与两信号的相位差φ成正比。

如图(3.1.2)中Vs(t)和Vr(t)同时改变极性,则两者相位差φ=0,则:V(t)为全部“正”或“负”的脉动,否则V(t)就是“正”或“负”交替的交流信号。

信号经RC滤波后得到一定幅值的直流成分 Vo.当φ=0,π时,Vo最大;φ=π/2时Vo=0.如图3.1.3(a)~(c)所示。

当非同步的干涉信号进入PSD后,得到如图3.1.3(d)的波形。

经LPF积分后,平均值为零,得到抑制。

这种等效的开关电路可用场效应管斩波器或晶体管开关电路来实现。

理论上,由于噪声和信号不相关,通过相关检测器后应被抑制,但由于LPF的积分时间不可能无限大,实际上仍有噪声电平影响,它与LPF的时间常数密切相关,通过加大时间常数可以改善信噪比。

(2)锁相放大器的基本组成。

目前锁相放大器类型很多,但其基本组成只有三大部分,即信号通道、参考通道及相关检测器(参见图3.1.4)。

输入的交流待测信号与噪声一起进入信号通道,经低噪声前置放大器放大再通过高低通滤波,使噪声受到初步抑制,然后送入相敏检波器PSD,以免PSD出现过载。

参考信号进入参考通道后,一般也要经过放大、整形、移相等处理后再送入PSD与待测信号进行相关检测,可以通过调节参考通道的移相器使参考信号对输入信号之相位改变,使参考信号与输入信号同相即φ=0时,相位被锁定,从而抑制了不相干的噪声信号。

三.实验仪器四、实验步骤1.打开一起电源,按照要求连接好仪器,输入微弱信号和噪声,并注意在此实验中噪声频率比微弱信号大;2.输入方波信号,调节方波信号的相位,观察输出电压,当输出电压达到最大值时,参考信号与输入信号同频同相,把噪声信号除去,观察示波器上的波形。

此时保持相位不变,记录最大输出电压,并进行下一步实验;3.保持噪声输入不变,时间常数调到0.1s,改变输入信号,并记录输入信号的电压和对应的输出的电压值,记录五组;4.接步骤3,噪声输入不变,分别改变时间常数为1s和10s,按照步骤3记录数据;5.改变噪声输入频率,继续步骤3和步骤4,记录数据并整理;6.关闭电源。

五、数据记录噪声:162.8mV噪声:222mV噪声:726mV七.数据处理与分析1、乘法器的输出波形输入(mV)输出(mV)时间常数:1s18.6 1.8534 3.4454.5 5.2575.47.431008.85输入(mV)输出(mV)时间常数:0.1s 19.7 1.9736.5 3.6062.5 6.2179.37.72120.38.85输入(mV)输出(mV)时间常数:0.1s22.2 2.3444.4 4.1364.7 5.9482.77.55113.78.85输入(mV)输出(mV)时间常数:1s16.0 2.0533.2 3.8756.1 6.5468.27.70115.58.85输入(mV)输出(mV)时间常数:0.1s 17.3 2.0940.0 4.2960.47.2284.08.85113.08.85输入(mV)输出(mV)时间常数:0.1s16.0 2.0233.5 3.5250.6 5.8075.08.48116.78.85输入(mV)输出(mV)时间常数:1s16.2 3.2537.4 5.2255.57.4880.08.85116.08.85输入(mV)输出(mV)时间常数:0.1s 17.0 3.0429.0 4.8160.58.0580.38.85116.88.85输入(mV)输出(mV)时间常数:0.1s16.0 3.5030.2 4.5040.0 5.4464.0 6.9083.98.85图1 图2图1是输出电压没有达到最大值时微弱信号与方波经乘法器后的输出波形(噪声已撤去,方便观察),图2是输出电压达到最大值时微弱信号与方波经乘法器后的输出波形。

分析:由原理得知,噪声经过乘法器的累积约为0,而当方波与输入信号同频同相时,得到最大值,此时在负半轴的信号全部向上翻,并且节点之间很好的衔接。

此时保持相位不变,可以进行下一步实验。

2.等效噪声带宽的计算根据公式RCK 1-12=ω,其中K 为斜率,通过作图并取趋势线得到,RC 为时间常数。

(1)噪声162.8mV 时(2)噪声222mV 时(3)噪声726mV 时分析:图中输出为输入信号与参考信号的差频电压,一般为直流电压,其大小与输入信号幅值成正比,时间常数越长,其等效噪声带宽越窄,抑制噪声能力越强,机器响应时间越强。

八.实验总结与讨论本实验为验证性实验,根据相关原理用信号通道、参考通道、相关检测器组成的锁相放大器探测淹没在噪声中的微弱(有用)信号。

通过移相器会产生于原信号同频率的占空比为1:1的方波信号;PSD 输出信号经过低通滤波器后,交流部分会被滤去,只有直流部分会被输出,且ϕεοcos ke t =)(V ,可见当输出信号显示的电压值最大时,输入信号与参考信号同频同相。

在实验中,为提取深埋在噪声中的微弱信号,必须尽可能的压缩频带宽度。

锁相放大器最后检测的是输入信号与参考信号的差频电压,输出一般为直流电压,其大小与输入信号幅值成正比,原则上与被测信号的频率无关。

时间常数越长,其等效噪声带宽越窄,抑制噪声能力越强,机器响应时间越强。

在实验过程中,测噪声电压时把旋钮调至“噪声”处,但是在后来的测输入信号时,忘记把旋钮调回来,及时纠正后发现两种情况得到的数值不一样,需要注意。

在处理数据过程中,发现个别数据有两个输出电压值都是最大值8.85V ,但是输入电压不一样,这样在画趋势线求斜率K 时造成较大误差,应该取小一些的值。

九.思考题1.锁相放大器为什么能检测微弱信号?答:锁相放大器可以通过将待测信号、参考信号以及噪声信号进行相乘并尝试将积分,消除噪声信号的影响,通过观察不同参考信号和待测信号的积分结果,确定参考信号的相位及频率,从而提取出待测信号。

2.输入锁相放大器的待测信号和参考信号间的相位关系对检测结果有何影响?怎样调节两信号之间的相差?答:在不改变输入信号的幅值情况下质量电压V o 和相位差ψ成余弦关系,而在ψ=0°或180°时,输出V 最大。

当相位差ψ=90°或270°时,V=0.将信号分出两条道,一个作为待测信号,另一个与相移器连接,经相移器后输出,通过调节相移器,调节两信号间的相位差。

3.滤波器时间常数的选择对检测有什么影响?答:滤波器时间常数越大,对噪声的抑制会加强。

指导教师批阅意见:成绩评定:指导教师签字:年 月 日。

相关文档
最新文档