高二精选题库2-11. 数学 数学doc北师大版
最新高二数学题库 北师大版高中数学选修21期末考试试题及答案(理科)
高二期末考试数学试题晁群彦一.选择题(每小题5分,满分60分)1.设n m l ,,均为直线,其中n m ,在平面”“”“,n l m l l a ⊥⊥⊥且是则内α的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件2.对于两个命题:①,1sin 1x R x ∀∈-≤≤, ②22,sin cos 1x R x x ∃∈+>,下列判断正确的是( )。
A. ① 假 ② 真B. ① 真 ② 假C. ① ② 都假D. ① ② 都真3.与椭圆1422=+y x 共焦点且过点(2,1)Q 的双曲线方程是( ) A. 1222=-y x B. 1422=-y x C. 1222=-y x D. 13322=-y x 4.已知12,F F 是椭圆的两个焦点,过1F 且与椭圆长轴垂直的弦交椭圆与A ,B 两点, 则2ABF ∆是正三角形,则椭圆的离心率是( )A2 B 12C D 135.过抛物线28y x =的焦点作倾斜角为045直线l ,直线l 与抛物线相交与A ,B 两点,则弦AB 的长是( )A 8B 16C 32D 646.在同一坐标系中,方程)0(0122222>>=+=+b a by ax x b x a 与的曲线大致是( )A .B .C .D .7.已知椭圆12222=+b y a x (b a >>0) 的两个焦点F 1,F 2,点P 在椭圆上,则12PF F ∆的面积 最大值一定是( )A 2a B ab C D 8.已知向量k -+-==2),2,0,1(),0,1,1(与且互相垂直,则实数k 的值是( )A .1B .51C . 53D .579.在正方体1111ABCD A B C D -中,E 是棱11A B 的中点,则1A B与1D E所成角的余弦值为( )A B C D 10.若椭圆x y n m ny mx -=>>=+1)0,0(122与直线交于A ,B 两点,过原点与线段AB 中点的连线的斜率为22,则m n的值是( )2.23.22.292. D C B A11.过抛物线y x 42=的焦点F 作直线交抛物线于()()222111,,,y x P y x P 两点,若621=+y y ,则21P P 的值为 ( )A .5B .6C .8D .1012.以12422y x -=1的焦点为顶点,顶点为焦点的椭圆方程为 ( )A.1121622=+y x B. 1161222=+y x C. 141622=+y x D. 二.填空题(每小题4分)13.已知A 、B 、C 三点不共线,对平面ABC 外一点O ,给出下列表达式:OCOB y OA x OM 31++=其中x ,y 是实数,若点M 与A 、B 、C 四点共面,则x+y=___14.斜率为1的直线经过抛物线y2=4x 的焦点,且与抛物线相交于A,B 两点,则AB等于___15.若命题P :“∀x >0,0222<--x ax ”是真命题 ,则实数a 的取值范围是___.16.已知90AOB ∠=︒,C 为空间中一点,且60AOC BOC ∠=∠=︒,则直线OC 与平面AOB 所成角的正弦值为___.C三.解答题(解答应写出必要的文字说明、证明过程和演算步骤。
北师大版高二数学练习册试题及答案
北师大版高二数学练习册试题及答案【一】1.下列说法中不正确的是()A.数列a,a,a,…是无穷数列B.1,-3,45,-7,-8,10不是一个数列C.数列0,-1,-2,-3,…不一定是递减数列D.已知数列{an},则{an+1-an}也是一个数列解析:选B.A,D显然正确;对于B,是按照一定的顺序排列的一列数,是数列,所以B 不正确;对于C,数列只给出前四项,后面的项不确定,所以不一定是递减数列.故选B.2.已知数列{an}的通项公式为an=1+(-1)n+12,则该数列的前4项依次为()A.1,0,1,0B.0,1,0,1C.12,0,12,0D.2,0,2,0解析:选A.当n分别等于1,2,3,4时,a1=1,a2=0,a3=1,a4=0.3.已知数列{an}的通项公式是an=2n2-n,那么()A.30是数列{an}的一项B.44是数列{an}的一项C.66是数列{an}的一项D.90是数列{an}的一项解析:选C.分别令2n2-n的值为30,44,66,90,可知只有2n2-n=66时,n=6(负值舍去),为正整数,故66是数列{an}的一项.4.已知数列的通项公式是an=2,n=1,n2-2,n≥2,则该数列的前两项分别是()A.2,4B.2,2C.2,0D.1,2解析:选B.当n=1时,a1=2;当n=2时,a2=22-2=2.5.如图,各图形中的点的个数构成一个数列,该数列的一个通项公式是()A.an=n2-n+1B.an=n(n-1)2C.an=n(n+1)2D.an=n(n+2)2解析:选C.法一:将各图形中点的个数代入四个选项便可得到正确结果.图形中,点的个数依次为1,3,6,10,代入验证可知正确答案为C.法二:观察各个图中点的个数,寻找相邻图形中点个数之间的关系,然后归纳一个通项公式.观察点的个数的增加趋势可以发现,a1=1×22,a2=2×32,a3=3×42,a4=4×52,所以猜想an=n(n+1)2,故选C.6.若数列{an}的通项满足ann=n-2,那么15是这个数列的第________项.解析:由ann=n-2可知,an=n2-2n.令n2-2n=15,得n=5.答案:57.已知数列{an}的前4项为11,102,1003,10004,则它的一个通项公式为________.解析:由于11=10+1,102=102+2,1003=103+3,10004=104+4,…,所以该数列的一个通项公式是an=10n+n.答案:an=10n+n8.已知数列{an}的通项公式为an=2017-3n,则使an>0成立的正整数n的值为________.解析:由an=2017-3n>0,得n答案:6729.已知数列{n(n+2)}:(1)写出这个数列的第8项和第20项;(2)323是不是这个数列中的项?如果是,是第几项?解:(1)an=n(n+2)=n2+2n,所以a8=80,a20=440.(2)由an=n2+2n=323,解得n=17.所以323是数列{n(n+2)}中的项,是第17项.10.已知数列2,74,2,…的通项公式为an=an2+bcn,求a4,a5.解:将a1=2,a2=74代入通项公式,得a+bc=2,4a+b2c=74,解得b=3a,c=2a,所以an=n2+32n,所以a4=42+32×4=198,a5=52+32×5=145.[B能力提升]11.已知数列{an}的通项公式为an=sinnθ,0解析:a3=sin3θ=12,又0答案:1212.“中国剩余定理”又称“孙子定理”.1852年英国来华传教士伟烈亚利将《孙子算经》中“物不知数”问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将2至2017这2016个数中能被3除余1且被5除余1的数按由小到大的顺序排成一列,构成数列{an},则此数列的项数为________.解析:能被3除余1且被5除余1的数就是能被15整除余1的数,故an=15n-14.由an=15n-14≤2017得n≤135.4,当n=1时,此时a1=1,不符合,故此数列的项数为135-1=134.答案:13413.在数列{an}中,a1=3,a17=67,通项公式是关于n的一次函数.(1)求数列{an}的通项公式;(2)求a2016;(3)2017是否为数列{an}中的项?若是,为第几项?解:(1)设an=kn+b(k≠0).由a1=3,且a17=67,得k+b=317k+b=67,解之得k=4且b=-1.所以an=4n-1.(2)易得a2016=4×2016-1=8063.(3)令2017=4n-1,得n=20184=10092∉N+,所以2017不是数列{an}中的项.14.(选做题)已知数列9n2-9n+29n2-1,(1)求这个数列的第10项;(2)98101是不是该数列中的项,为什么?(3)求证:数列中的各项都在区间(0,1)内;(4)在区间13,23内是否有数列中的项?若有,有几项?若没有,说明理由.解:(1)设an=9n2-9n+29n2-1=(3n-1)(3n-2)(3n-1)(3n+1)=3n-23n+1.令n=10,得第10项a10=2831.(2)令3n-23n+1=98101,得9n=300.此方程无正整数解,所以98101不是该数列中的项.(3)证明:因为an=3n-23n+1=3n+1-33n+1=1-33n+1,又n∈N+,所以0所以数列中的各项都在区间(0,1)内.(4)令13所以n>76,n当且仅当n=2时,上式成立,故区间13,23内有数列中的项,且只有一项为a2=47.【二】1.为了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为()A.50B.40C.25D.20解析:选C.根据系统抽样的特点,可知分段间隔为100040=25.2.某城区有农民、工人、知识分子家庭共计2000户,其中农民家庭1800户,工人家庭100户,知识分子家庭100户.现要从中抽取容量为40的样本,以调查家庭收入情况,则在整个抽样过程中,可以用到的抽样方法有()①简单随机抽样;②系统抽样;③分层抽样.A.②③B.①③C.③D.①②③解析:选 D.由于各类家庭有明显差异,所以首先应用分层抽样的方法分别从三类家庭中抽出若干户.又由于农民家庭户数较多,那么在农民家庭这一层宜采用系统抽样;而工人、知识分子家庭户数较少,宜采用简单随机抽样.故整个抽样过程要用到①②③三种抽样方法.3.从2004名学生中选取50名组成参观团,若采用下面的方法选取:先利用简单随机抽样从2004人中剔除4人,剩下的2000人再按系统抽样的方法进行,则每人入选的机会() A.不全相等B.均不相等C.都相等D.无法确定解析:选C.系统抽样是等可能的,每人入样的机率均为502004.4.总体容量为524,若采用系统抽样,当抽样的间距为下列哪一个数时,不需要剔除个体()A.3B.4C.5D.6解析:选B.由于只有524÷4没有余数,故选B.5.某单位有840名职工,现采用系统抽样方法抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为() A.11B.12C.13D.14解析:选B.法一:分段间隔为84042=20.设在1,2,…,20中抽取的号码为x0,在[481,720]之间抽取的号码记为20k+x0,则481≤20k+x0≤720,k∈N*,所以24120≤k+x020≤36.因为x020∈120,1,所以k=24,25,26, (35)所以k值共有35-24+1=12(个),即所求人数为12.法二:使用系统抽样的方法,从840人中抽取42人,即每20人中抽取1人,所以在区间[481,720]抽取的人数为720-48020=12.6.为了了解1203名学生对学校某项教改试验的意见,打算从中抽取一个容量为40的样本,现采用选取的号码间隔一样的系统抽样方法来确定所选取样本,则抽样间隔k=________.解析:由于120340不是整数,所以从1203名学生中随机剔除3名,则抽样间隔k=120040=30.答案:307.某高三(1)班有学生56人,学生编号依次为01,02,03,…,56.现用系统抽样的方法抽取一个容量为4的样本,已知编号为06,34,48的同学在样本中,那么样本中另一位同学的编号应该是________.解析:由于系统抽样的样本中个体编号是等距的,且间距为564=14,所以样本编号应为06,20,34,48.答案:208.为了了解学生对某网络游戏的态度,高三(11)班计划在全班60人中展开调查.根据调查结果,班主任计划采用系统抽样的方法抽取若干名学生进行座谈,为此先对60名学生进行编号:01,02,03,…,60.已知抽取的学生中最小的两个编号为03,09,则抽取的学生中的编号为________.解析:由最小的两个编号为03,09可知,抽样距为k=9-3=6,而总体容量N=60,所以样本容量n=Nk=10,即抽取10名同学,的编号为第10组抽取的个体的编号,故编号为3+9×6=57.答案:579.某批产品共有1564件,产品按出厂顺序编号,号码从1到1564,检测员要从中抽取15件产品做检测,请你给出一个系统抽样方案.解:(1)先从1564件产品中,用简单随机抽样的方法抽出4件产品,将其剔除.(2)将余下的1560件产品编号:1,2,3, (1560)(3)取k=156015=104,将总体均分为15组,每组含104个个体.(4)从第一组,即1号到104号利用简单随机抽样法抽取一个编号s.(5)按编号把s,104+s,208+s,…,1456+s共15个编号选出,这15个编号所对应的产品组成样本.10.下面给出某村委会调查本村各户收入情况做的抽样,阅读并回答问题.本村人口数:1200,户数300,每户平均人口数4人;应抽户数:30;抽样间隔:120030=40;确定随机数字:从标有1~30的号码中随机抽取一张,为12.确定第一样本户:编号12的户为第一样本户;确定第二样本户:12+40=52,52号为第二样本户;…(1)该村委会采用了何种抽样方法?(2)抽样过程存在哪些问题?试修改;(3)何处是用简单随机抽样?解:(1)系统抽样.(2)本题是对某村各户进行抽样,而不是对某村人口抽样.抽样间隔30030=10,其他步骤相应改为确定随机数字:从标有1~10的号码中随机抽取一张,为2.(假设)确定第一样本户:编号02的住户为第一样本户;确定第二样本户:2+10=12,12号为第二样本户.(3)确定随机数字:从标有1~30的号码中随机抽取一张,为12.[B能力提升]11.为了检测125个电子元件的质量,欲利用系统抽样的方法从中抽取容量为1Δ(Δ中的数字被墨水污染,无法分辨)的样本进行检测,若在抽样时首先利用简单随机抽样剔除了5个个体,则Δ中的数字有()A.1种可能B.2种可能C.3种可能D.4种可能解析:选C.由于125-5=120=10×12=15×8,故有3种可能,分别为0,2,5.12.已知某种型号的产品共有N件,且40<N<50,现需要利用系统抽样抽取样本进行质量检测,若样本容量为7,则不需要剔除;若样本容量为8,则需要剔除1个个体,则N=________.解析:因为样本容量为7时,不需要剔除,所以总体的容量N为7的倍数,又40<N <50,所以N=42或49.若N=42,因为42除以8的余数为2,所以当样本容量为8时,需要剔除2个个体,不符合题意;若N=49,因为49除以8的余数为1,所以当样本容量为8时,需要剔除1个个体,满足题意,故N=49.答案:4913.为了调查某路口一个月的车流量情况,*采用系统抽样的方法,样本距为7,从每周中随机抽取一天,他正好抽取的是星期日,经过调查后做出报告.你认为*这样的抽样方法有什么问题?应当怎样改进?如果是调查一年的车流量情况呢?解:*所统计的数据以及由此所推断出来的结论,只能代表星期日的交通流量.由于星期日是休息时间,很多人不上班,不能代表其他几天的情况.改进方法可以将所要调查的时间段的每一天先随机地编号,再用系统抽样方法来抽样,或者使用简单随机抽样来抽样亦可.如果是调查一年的交通流量,使用简单随机抽样法显然已不合适,比较简单可行的方法是把样本距改为8.14.(选做题)一个总体中的1000个个体编号为0,1,2,…,999,并依次将其均分为10个小组,组号为0,1,2,…,9,要用系统抽样方法抽取一个容量为10的样本,规定如果在第0组随机抽取的号码为x,那么依次错位地得到后面各组的号码,即第k组中抽取的号码的后两位数为x+33k的后两位数.(1)当x=24时,写出所抽取样本的10个号码;(2)若所抽取样本的10个号码中有一个的后两位数是87,求x的取值范围.解:(1)由题意知此系统抽样的间隔是100,根据x=24和题意得,24+33×1=57,第1组抽取的号码是157;由24+33×2=90,则在第2组抽取的号码是290,…故依次是24,157,290,323,456,589,622,755,888,921.(2)由x+33×0=87得x=87,由x+33×1=87得x=54,由x+33×2=87,得x=21,由x+33×3=187得x=88…,依次求得x值可能为21,22,23,54,55,56,87,88,89,90.。
高二精选题库数学 课堂训练_2-1北师大版
第2章 第1节时间:45分钟 满分:100分一、选择题(每小题7分,共42分)1. [2012·浙江嘉兴一中模拟]设集合M ={x |-2≤x ≤2},N ={y |0≤y ≤2},给出下列四个图形,其中能表示以集合M 为定义域,N 为值域的函数关系的是( )答案:B解析:利用函数的定义,要求定义域内的任一变量都有唯一的函数值与之对应,A 中(0,2]没有函数值,C 中函数值不唯一,D 中的值域不是N ,所以选B.2. 已知f :x →-sin x 是集合A (A ⊆[0,2π])到集合B ={0,12}的一个映射,则集合A 中的元素个数最多有( )A. 4个B. 5个C. 6个D. 7个答案:B解析:A ⊆[0,2π],由-sin x =0得x =0,π,2π;由-sin x =12得x =7π6,11π6,∴A 中最多有5个元素.3. 定义在R 上的函数f (x )满足f (x )=⎩⎪⎨⎪⎧log 2(4-x ), x ≤0f (x -1)-f (x -2), x >0,则f (3)的值为( )A. -1B. -2C. 1D. 2答案:B解析:f (3)=f (3-1)-f (3-2)=f (2)-f (1) =f (2-1)-f (2-2)-f (1)=f (1)-f (0)-f (1)=-f (0)=-log 24=-2.4. [2012·天津模拟]若一系列函数的解析式相同,值域相同,但其定义域不同,则称这些函数为“同族函数”,那么函数解析式为f (x )=x 2,值域为{1,4}的“同族函数”共有 ( )A. 7个B. 8个C. 9个D. 10个答案:C解析:先确定定义域的构成元素,再分类计数得到满足条件的定义域. 由已知x 2=1,得x =±1; x 2=4,得x =±2.∴“同族函数”的定义域必须是由±1,±2两组数中至少各取一个构成的集合. 当定义域中有两个元素时有{-1,-2},{-1,2},{1,-2},{1,2}共4个. 有三个元素时有{-1,-2,2},{-1,-2,1},{-1,2,1},{-2,2,1}共4个. 有四个元素时有{-2,-1,1,2}1个. 综上共有:4+4+1=9个.5. [2012·福建省宁德市模拟]若函数y =mx -1mx 2+4mx +3的定义域为R ,则实数m 的取值范围是( )A. (0,34]B. (0,34)C. [0,34]D. [0,34)答案:D解析:∵y =mx -1mx 2+4mx +3的定义域为R ,当m =0,∴mx 2+4mx +3=3满足题意. 当m >0时,Δ=16m 2-12m <0, 解得0<m <34,当m <0时,Δ=16m 2-12m <0,无解. 综上,0≤m <34,即m ∈[0,34).6. [2012·宁波市“十校联考”]设集合A =[0,12),B =[12,1],函数f (x )=⎩⎪⎨⎪⎧x +12,x ∈A 2(1-x ),x ∈B ,若x 0∈A ,且f [f (x 0)]∈A ,则x 0的取值范围是( )A. (0,14]B. (14,12)C. (14,12]D. [0,38]答案:B解析:因为f [f (x 0)]=f (x 0+12)=2(1-x 0-12)=1-2x 0,所以0≤1-2x 0<12,故14<x 0≤12,又x 0∈A ,所以14<x 0<12.二、填空题(每小题7分,共21分)7. 如图,函数f (x )的图像是曲线OAB ,其中点O ,A ,B 的坐标分别为(0,0),(1,2),(3,1),则f [1f (3)]的值等于__________.答案:2解析:f [1f (3)]=f (1)=2.8. (1)若2f (x )-f (-x )=x +1,则f (x )=__________;(2)若函数f (x )=xax +b ,f (2)=1,又方程f (x )=x 有唯一解,则f (x )=__________.答案:(1)x 3+1 (2)2xx +2解析:(1)∵2f (x )-f (-x )=x +1,用-x 去替换式子中的x , 得2f (-x )-f (x )=-x +1,即有⎩⎪⎨⎪⎧2f (x )-f (-x )=x +12f (-x )-f (x )=-x +1,解方程组消去f (-x ),得f (x )=x3+1.(2)由f (2)=1得22a +b =1,即2a +b =2;由f (x )=x 得x ax +b =x ,变形得x (1ax +b-1)=0,解此方程得x =0或x =1-b a ,又∵方程有唯一解,∴1-b a =0,解得b =1,代入2a +b =2得a =12,∴f (x )=2xx +2.9. [2012·南通六校联考(一)]定义新运算“⊕”如下:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2.设函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2],则函数f (x )的值域为__________.答案:[-4,6]解析:由题意知f (x )=⎩⎪⎨⎪⎧x -2,x ∈[-2,1]x 3-2,x ∈(1,2],当x ∈[-2,1]时,f (x )∈[-4,-1],当x∈(1,2]时,f (x )∈(-1,6],故当x ∈[-2,2]时,f (x )∈[-4,6].三、解答题(10、11题12分、12题13分)10. (1)已知f (x )的定义域为[0,1),求函数f (x +1)及f (x 2)的定义域; (2)已知f (x 2-3)=lg x 2x 2-6,求f (x )的定义域.解:(1)依题意,0≤x +1<1,∴-1≤x <0, ∴f (x +1)的定义域为[-1,0).由0≤x 2<1得-1<x <1,∴f (x 2)的定义域为(-1,1). (2)令u =x 2-3,则f (x )的定义域就是u 的值域. 要使lg x 2x 2-6有意义,只需x 2>6,即x 2-3>3,∴u >3, 即f (x )的定义域是(3,+∞).11.如图,在△AOB 中,点A (2,1),B (3,0),点E 在射线OB 上自O 开始移动.设OE =x ,过E 作OB 的垂线l ,记△AOB 在直线l 左边部分的面积为S ,试写出S 与x 的函数关系式,并画出大致的图像.解:当0≤x ≤2时,△OEF 的高EF =12x ,∴S =12x ·12x =14x 2;当2<x ≤3时,△BEF 的高EF =3-x ,∴S =12×3×1-12(3-x )·(3-x )=-12x 2+3x -3;当x >3时,S =32.所以S =f (x )=⎩⎪⎨⎪⎧x 24(0≤x ≤2)-12x 2+3x -3(2<x ≤3).32(x >3)函数图像如图所示.12. 定义在正整数集上的函数f (x )对任意m ,n ∈N *,都有f (m +n )=f (m )+f (n )+4(m +n )-2,且f (1)=1.(1)求函数f (x )的表达式;(2)若m 2-tm -1≤f (x )对于任意的m ∈[-1,1],x ∈N *恒成立,求实数t 的取值范围. 解:(1)取m =1,则有f (n +1)-f (n )=f (1)+4(1+n )-2=4n +3,当n ≥2时,f (n )=f (1)+[f (2)-f (1)]+[f (3)-f (2)]+…+[f (n )-f (n -1)]=2n 2+n -2, 又f (1)=1,∴f (x )=2x 2+x -2(x ∈N *). (2)f (x )=2(x +14)2-178,∴x =1时f (x )min =1,由条件得m 2-tm -1≤1在m ∈[-1,1]上恒成立,即m 2-tm -2≤0, 若m =0,则t ∈R ,若0<m ≤1,则t ≥m -2m ,即t ≥-1,若-1≤m <0,则t ≤m -2m ,即t ≤1,综上-1≤t ≤1.。
最新高二数学题库 北师大版高二数学选修21试题及答案
高二数学选修2-1质量检测试题(卷)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3至6页。
考试结束后. 只将第Ⅱ卷和答题卡一并交回。
第Ⅰ卷(选择题 共60分)注意事项:1.答第Ⅰ卷前,考生务必将姓名、准考号、考试科目用铅笔涂写在答题卡上。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上。
一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 顶点在原点,且过点(4,4)-的抛物线的标准方程是 A.24y x =- B.24x y =C.24y x =-或24x y = D. 24y x =或24x y =- 2. 以下四组向量中,互相平行的有( )组.(1) (1,2,1)a =,(1,2,3)b =-; (2) (8,4,6)a =-,(4,2,3)b =-; (3)(0,1,1)a =-,(0,3,3)b =-; (4)(3,2,0)a =-,(4,3,3)b =- A. 一 B. 二 C. 三 D. 四3. 若平面α的法向量为1(3,2,1)n =,平面β的法向量为2(2,0,1)n =-,则平面α与β夹角的余弦是B. C. D. 4.“5,12k k Z αππ=+∈”是“1sin 22α=”的A.充分不必要条件B. 必要不充分条件C.充要条件D. 既不充分又不必要条件 5. “直线l 与平面α内无数条直线都垂直”是“直线l 与平面α垂直”的( )条件A .充要B .充分非必要C .必要非充分D .既非充分又非必要6.在正方体1111ABCD A B C D -中,E 是棱11A B 的中点,则1A B 与1D E 所成角的余弦值为A B C D7. 已知两定点1(5,0)F ,2(5,0)F -,曲线上的点P 到1F 、2F 的距离之差的绝对值是6,则该曲线的方程为A.221916x y -= B.221169x y -= C.2212536x y -= D. 2212536y x -= 8. 已知直线l 过点P(1,0,-1),平行于向量(2,1,1)a =,平面α过直线l 与点M(1,2,3),则平面α的法向量不可能是A. (1,-4,2)B.11(,1,)42-C. 11(,1,)42-- D. (0,-1,1)9. 命题“若a b <,则a c b c +<+”的逆否命题是A. 若a c b c +<+,则a b >B. 若a c b c +>+,则a b >C. 若a c b c +≥+,则a b ≥D. 若a c b c +<+,则a b ≥10 . 已知椭圆221102x y m m +=--,若其长轴在y 轴上.焦距为4,则m 等于 A.4. B.5. C. 7. D .8.11.以下有四种说法,其中正确说法的个数为: (1)“m 是实数”是“m 是有理数”的充分不必要条件; (2) “a b >”是“22a b >”的充要条件;(3) “3x =”是“2230x x --=”的必要不充分条件; (4)“A B B =”是“A φ=”的必要不充分条件.A. 0个B. 1个C. 2个D. 3个12。
高二精选题库2-6. 数学 数学doc北师大版
第2模块 第6节[知能演练]一、选择题1.下列所给出的函数中,是幂函数的是( )A .y =-x 3B .y =x -3C .y =2x 3D .y =x 3-1解析:按照幂函数的定义,只有形如y =x α(α∈R )的函数才叫做幂函数.答案:B2.x ∈(0,1),则下列结论正确的是( )3.若函数f (x )是幂函数,且满足f (4)f (2)=3,则f (12)的值等于( )A .-3B .-13C .3D.13解析:依题意设f (x )=x α(α∈R ),则有4α2α=3,即2α=3,得α=log 23,则f (x )=x log23,于是f (12)=(12)log23=2-log23=2log213=13,选D.答案:D 4.若f (x )=x n 2+n +1(n ∈N ),则f (x )是( )A .奇函数B .偶函数C .奇函数或偶函数D .非奇非偶函数解析:由于当n ∈N 时,n (n +1)一定为偶数,因此n (n +1)+1一定为奇数,所以函数一定为奇函数.答案:A 二、填空题5.0.312,2.212,2.112这三个数从小到大排列为________.解析:由于函数f (x )=x 12在[0,+∞)上是增函数,所以f (0.3)<f (2.1)<f (2.2),即0.312<2.112<2.212.答案:0.312,2.112,2.212 6.若幂函数y =(m 2-3m +3)x m 2-m -2的图象不经过原点,则实数m 的值等于________. 解析:由于函数y =(m 2-3m +3)x m 2-m -2是幂函数,所以m 2-3m +3=1,解得m =1或2,而当m =1时,y =(m 2-3m +3)x m 2-m -2=x -2,定义域是{x |x ∈R ,x ≠0},图象不经过原点;当m =2时,y =(m 2-3m +3)x m 2-m -2=x 0,定义域是{x |x ∈R ,x ≠0},图象不经过原点.答案:1或2 三、解答题7.已知函数f (x )=x m -2x 且f (4)=72.(1)求m 的值. (2)判定f (x )的奇偶性.(3)判断f (x )在(0,+∞)上的单调性,并给予证明. 解:(1)因为f (4)=72,所以4m -24=72,所以m =1.(2)因为f (x )的定义域为{x |x ∈R ,x ≠0}, 又f (-x )=-x -2-x=-(x -2x )=-f (x ),所以f (x )是奇函数.(3)设x 1>x 2>0,则f (x 1)-f (x 2)=x 1-2x 1-(x 2-2x 2)=(x 1-x 2)(1+2x 1x 2),因为x 1>x 2>0,所以x 1-x 2>0,1+2x 1x 2>0,所以f (x 1)>f (x 2),所以f (x )在(0,+∞)上为单调递增函数.8.已知幂函数f (x )=x m 2-m -3(m ∈N *,m ≥2)在(0,+∞)内单调递减,g (x )=f (x -2009)f (x -2008).(1)求f (x );(2)比较g (44)与g (45)的大小.解:(1)由于函数f (x )在(0,+∞)内单调递减,所以m 2-m -3<0,解得1-132<m <1+132,由于m ∈N *,m ≥2,所以只能取m =2,这时f (x )=x -1.(2)由(1)知g (x )=f (x -2009)f (x -2008)=x -2008x -2009=x -2009+2009-2008x -2009=1+2009-2008x -2009,由于442=1936,452=2025,所以44<2009<45,因此g (44)<1,g (45)>1,所以g (44)<g (45).[高考·模拟·预测]1.给出命题:若函数y =f (x )是幂函数,则函数y =f (x )的图象不过第四象限,在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是( )A .3B .2C .1D .0解析:原命题是真命题,故它的逆否命题是真命题;它的逆命题为假命题,故它的否命题也为假命题.因此在它的逆命题、否命题、逆否命题中的真命题只有一个.答案:C2.已知函数f 1(x )=a x ,f 2(x )=x a ,f 3(x )=log a x (其中a >0,且a ≠1),在同一坐标系中画出其中的两个函数在第一象限内的图象,正确的是( )解析:观察选项,在0<a <1和a >1情况下,对三个函数的图象分析可知A 、C 、D 均不符合.选B.答案:B3.幂函数y =x a ,当a 取不同的正数时,在区间[0,1]上它们的图象是一族美丽的曲线(如图).设点A (1,0),B (0,1),连接AB ,线段AB 恰好被其中的两个幂函数y =x α,y =x β的图象三等分,即有BM =MN =NA .那么,αβ=( )A .1B .2C .3D .无法确定解法一:由条件得M (13,23),N (23,13),由一般性,可得13=(23)α,23=(13)β,即α=log 2313,β=log 1323.所以αβ=log 2313·log 1323=lg 13lg 23·lg 23lg 13=1.解法二:由解法一,得13=(23)α,23=(13)β,则(13)αβ=[(13)β]α=(23)α=13,即αβ=1,故选A.答案:A4.若x ∈[-1,1]时,22x -1<a x+1恒成立,则实数a 的取值范围为( ) A .(2,+∞) B .(3,+∞) C .(2,+∞)D .(5,+∞)解析:由22x -1<a x +1⇒(2x -1)lg2<(x +1)lg a ⇒x ·lg 4a -lg(2a )<0,设f (x )=x ·lg 4a -lg(2a ), 由当x ∈[-1,1]时,f (x )<0恒成立,得⎩⎪⎨⎪⎧f (1)<0f (-1)<0⇒⎩⎨⎧lg 4a -lg(2a )<0-lg 4a -lg(2a )<0⇒a >2为所求的范围.答案:A5.已知函数f (x )=x α(0<α<1),对于下列命题: ①若x >1,则f (x )>1; ②若0<x <1,则0<f (x )<1; ③若f (x 1)>f (x 2),则x 1>x 2; ④若0<x 1<x 2,则f (x 1)x 1<f (x 2)x 2.其中正确的命题序号是________.解析:作出y =x α(0<α<1)在第一象限的图象,由性质易判定①②③正确; 而f (x )x 表示图象上点P (x ,y )与原点连线的斜率,当0<x 1<x 2时应有f (x 1)x 1>f (x 2)x 2,∴④不正确.答案:①②③6.已知函数f (x )=x -k 2+k +2(k ∈Z )满足f (2)<f (3). (1)求k 的值并求出相应的f (x )的解析式;(2)对于(1)中得到的函数f (x ),试判断是否存在q ,使函数g (x )=1-qf (x )+(2q -1)x 在区间[-1,2]上的值域为[-4,178]?若存在,求出q ;若不存在,请说明理由. 解:(1)∵f (2)<f (3), ∴f (x )在第一象限是增函数. 故-k 2+k +2>0,解得-1<k <2. 又∵k ∈Z ,∴k =0或k =1.当k =0或k =1时,-k 2+k +2=2,∴f (x )=x 2. (2)假设存在q >0满足题设,由(1)知 g (x )=-qx 2+(2q -1)x +1,x ∈[-1,2]. ∵g (2)=-1,∴两个最值点只能在端点(-1,g (-1))和顶点(2q -12q ,4q 2+14q )处取得.而4q 2+14q -g (-1)=4q 2+14q -(2-3q )=(4q -1)24q ≥0,∴g (x )max =4q 2+14q =178,g(x)min=g(-1)=2-3q=-4. 解得q=2.∴存在q=2满足题意.。
2022-2023学年北师大版高二下数学:概率(附答案解析)
2022-2023学年北师大版高二下数学:概率一.选择题(共8小题)1.(2021秋•宜昌期中)某产品共有三个等级,分别为一等品、二等品和不合格品.从一箱产品中随机抽取1件进行检测,设“抽到一等品”的概率为0.55,“抽到二等品”的概率为0.2,则“抽到不合格品”的概率为()A.0.8B.0.75C.0.45D.0.25 2.(2021秋•常州期中)某个班级有55名学生,其中男生35名,女生20名,男生中有20名团员,女生中有12名团员.在该班中随机选取一名学生,如果选到的是团员,那么选到的是男生的概率为()A .B .C .D .3.(2021秋•沙市区校级期中)先后抛掷两枚骰子,甲表示事件“第一次掷出正面向上的点数是1”,乙表示事件“第二次掷出正面向上的点数是2”,丙表示事件“两次掷出的点数之和是7”,丁表示事件“两次掷出的点数之和是8”,则()A.甲与丙相互独立B.甲与丁相互独立C.乙与丁相互独立D.丙与丁相互独立4.(2021秋•浙江期中)不透明的口袋内装有红色、绿色和蓝色小球各2个,一次任意摸出2个小球,则与事件“2个小球都为红色”互斥而不对立的事件有()A.2个小球不全为红色B.2个小球恰有一个红色C.2个小球至少有一个红色D.2个小球不全为绿色5.(2021秋•仁寿县期中)先后抛掷一颗骰子两次,落在水平桌面后,记正面朝上的点数分别为x,y,事件A为:x+y为偶数,事件B为:xy为奇数,则概率P(B|A)=()A .B .C .D .6.(2021秋•河南期中)如图所示,阴影部分由六个全等的三角形组成,每个三角形是底边为圆的半径,顶角为120°的等腰三角形,若在圆内随机取一点,则该点落到阴影部分内的概率为()第1页(共18页)。
高二精选题库3-8. 数学 数学doc北师大版
第3模块第8节[知能演练]一、选择题1.一船向正北航行,看见正西方向有相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°,另一灯塔在船的南偏西75°,则这艘船的速度是每小时() A.5海里B.53海里C.10海里D.103海里解析:如下图,依题意有∠BAC=60°,∠BAD=75°,所以∠CAD=∠CDA=15°,从而CD=CA=10,在直角三角形ABC中,得AB=5,于是这艘船的速度是50.5=10(海里/小时).答案:C2.某人在C点测得塔顶A在南偏西80°,仰角为45°,此人沿南偏东40°方向前进10米到D,测得塔顶A的仰角为30°,则塔高为() A.15米B.5米C.10米D.12米解析:如图,设塔高为h,在Rt△AOC中,∠ACO=45°,则OC=OA=h.在Rt△AOD中,∠AOD=30°,则OD=3h,在△OCD中,∠OCD=120°,CD=10,由余弦定理得:OD2=OC2+CD2-2OC·CD cos∠OCD,即(3h)2=h2+102-2h×10×cos120°,∴h 2-5h -50=0,解得h =10或h =-5(舍). 答案:C3.在塔底的水平面上某点测得塔顶的仰角为θ,由此点向塔底沿直线走30 m ,测得塔顶的仰角为2θ,再向前走10 3 m ,测得塔顶的仰角为4θ,则塔高是( )A .10 mB .15 mC .12 mD .10 2 m解析:如下图,设塔高AB =h ,在△ACD 中,cos ∠ACD =(103)2+(103)2-3022×103×103=-12,所以∠ACD =120°,所以4θ=60°, AB =103sin60°=103×32=15 m. 答案:B4.△ABC 的周长等于20,面积是103,A =60°,则A 的对边长为( )A .5B .6C .8D .7解析:a +b +c =20,∴b +c =20-a , 即b 2+c 2+2bc =400+a 2-40a , ∴b 2+c 2-a 2=400-40a -2bc ① 又cos A =b 2+c 2-a 22bc =12,∴b 2+c 2-a 2=bc ②又S △ABC =12bc ·sin A =103,∴bc =40③由①②③可知a =7. 答案:D 二、填空题5.一船以每小时15 km 的速度向东航行,船在A 处看到一灯塔M 在北偏东60°方向,行驶4 h 后,船到达B 处,看到这个灯塔在北偏东15°方向,这时船与灯塔的距离为________ km.解析:如图,依题意有AB =15×4=60,∠MAB =30°,∠AMB =45°, 在△AMB 中,由正弦定理得60sin45°=BM sin30°,解得BM =30 2 km. 答案:30 26.甲、乙两楼相距20米,从乙楼底望甲楼顶的仰角为60°,从甲楼顶望乙楼顶的俯角为30°,则甲、乙两楼的高分别是________.解析:如图:依题意有甲楼的高度AB =20·tan60°=203米,又CM =DB =20米,∠CAM =60°,所以AM =CM tan60°=2033米,故乙楼的高度为CD =203-2033=4033米.答案:203米,4033米三、解答题7.如图,甲船以每小时302海里的速度向正北方向航行,乙船按固定方向匀速直线航行.当甲船位于A 1处时,乙船位于甲船的北偏西105°方向的B 1处,此时两船相距20海里.当甲船航行20分钟到达A 2处时,乙船航行到甲船的北偏西120°方向B 2处,此时两船相距102海里.问乙船每小时航行多少海里?解:如图,连接A 1B 2,由已知A 2B 2=102,A 1A 2=302×2060=102,∴A 1A 2=A 2B 2. 又∠A 1A 2B 2=180°-120°=60°, ∴△A 1A 2B 2是等边三角形, ∴A 1B 2=A 1A 2=10 2.由已知A 1B 1=20,∠B 1A 1B 2=105°-60°=45°, 在△A 1B 2B 1中,由余弦定理B 1B 22=A 1B 21+A 1B 22-2A 1B 1·A 1B 2·cos45° =202+(102)2-2×20×102×22=200, ∴B 1B 2=10 2.因此,乙船的速度的大小为10220×60=302(海里/小时). 即乙船每小时航行302海里.8.l 1,l 2,l 3是同一平面内三条不重合自上而下的平行直线.(1)如果l 1与l 2间的距离是1,l 2与l 3间的距离也是1,可以把一个正三角形ABC 的三顶点分别放在l 1,l 2,l 3上,求这个正三角形ABC 的边长;(2)如图,如果l 1与l 2间的距离是1,l 2与l 3间的距离是2,能否把一个正三角形ABC 的三顶点分别放在l 1,l 2,l 3上,如果能放,求该正三角形的边长;如果不能,说明理由.解:不妨设A ∈l 1,B ∈l 2,C ∈l 3. (1)∵A ,C 到直线l 2的距离相等,∴l 2过AC 的中点M ,且△ABC 为正三角形, ∴l 2⊥AC ,∴边长AC =2AM =2,故△ABC 的边长为2.(2)设边长为a ,BC 与l 3的夹角为θ,由对称性,不妨设0°<θ<60°, 则BC 与l 2的夹角也为θ,AB 与l 2的夹角就是60°-θ, ∴a sin θ=2,a sin(60°-θ)=1,两式相比, 得sin θ=2sin(60°-θ),即sin θ=3cos θ-sin θ, ∴2sin θ=3cos θ,∴tan θ=32, ∴sin θ=37,∴a =237=2213.[高考·模拟·预测]1.设G 是△ABC 的重心,且(56sin A )GA →+(40sin B )GB →+(35sin C )GC →=0,则B 的大小为( )A .15°B .30°C .45°D .60°解析:∵G 为△ABC 的重心,∴GA →+GB →+GC →=0, ∴56sin A =40sin B =35sin C , 结合正弦定理有56a =40b =35c , ∴a =57b ,c =87b ,由余弦定理有cos B =a 2+c 2-b 22ac =12,∴B =60°. 答案:D2在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,若A =π3,b =1,△ABC 的面积为32,则a 的值为( )A .1B .2 C.32D. 3解析:根据S =12bc sin A =32可得c =2,由余弦定理得a 2=b 2+c 2-2bc cos A =3,故a =3.答案:D3.如图,位于港口O 正东20海里B 处的渔船回港时出现故障.位于港口南偏西30°,距港口10海里C 处的拖轮接到海事部门营救信息后以30海里/小时的速度沿直线CB 去营救渔船,则拖轮到达B 处需要________小时.解析:由余弦定理得BC =202+102-2×10×20cos120°=107,从而需73小时到达B 处. 答案:734.如图,海岸线上有相距5海里的两座灯塔A ,B ,灯塔B 位于灯塔A 的正南方向.海上停泊着两艘轮船,甲船位于灯塔A 的北偏西75°,与A 相距32海里的D 处;乙船位于灯塔B 的北偏西60°方向,与B 相距5海里的C 处.则两艘轮船之间的距离为________海里.解析:连接AC .则AC =5,在△ACD 中,AD =32,AC =5,∠DAC =45°,由余弦定理得CD =13.答案:135.如下图,为了解某海域海底构造,在海平面内一条直线上的A ,B ,C 三点进行测量.已知AB =50 m ,BC =120 m ,于A 处测得水深AD =80 m ,于B 处测得水深BE =200 m ,于C 处测得水深CF =110 m ,求∠DEF 的余弦值.解:作DM ∥AC 交BE 于N ,交CF 于M .由题中所给数据可得,DF =MF 2+MD 2=302+1702=10298, DE =DN 2+EN 2=502+1202=130, EF =(BE -FC )2+BC 2=902+1202=150. 在△DEF 中,由余弦定理得, cos ∠DEF =DE 2+EF 2-DF 22×DE ×EF=1302+1502-102×2982×130×150=1665.[备选精题]6.△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,向量m =(-1,1),n =(cos B cos C ,sin B sin C -32),且m ⊥n . (1)求A 的大小; (2)现给出下列三个条件:①a =1;②2c -(3+1)b =0;③B =45°.试从中再选择两个条件以确定△ABC ,求出你所确定的△ABC 的面积. 解:(1)∵m ⊥n ,∴-cos B cos C +sin B sin C -32=0, 即cos B cos C -sin B sin C =-32,∴cos(B +C )=-32.∵A +B +C =180°,∴cos(B +C )=-cos A , ∴cos A =32,∴A =30°. (2)方案一:选择①②,可确定△ABC . ∵A =30°,a =1,2c -(3+1)b =0, 由余弦定理得12=b 2+(3+12b )2-2b ·3+12b ·32, 整理得b 2=2,∴b =2,c =6+22. ∴S △ABC =12bc sin A =12×2×6+22×12=3+14.方案二:选择①③,可确定△ABC . ∵A =30°,a =1,B =45°,∴C =105°. 又sin105°=sin(60°+45°) =sin60°cos45°+cos60°sin45°=6+24, 由正弦定理得c =a sin C sin A =1·sin105°sin30°=6+22,∴S △ABC =12ac sin B=12×1×6+22×22=3+14. (注:若选择②③不能确定三角形)。
高二精选题库 数学检测4.北师大版
单元质量检测(四)一、选择题1.若复数(a 2-4a +3)+(a -1)i 是纯虚数,则实数a 的值是( )A .1B .3C .1或3D .-1解析:由题意知⎩⎪⎨⎪⎧a 2-4a +3=0a -1≠0,解得a =3.答案:B2.复数1-2+i +11-2i的虚部是( )A.15i B.15 C .-15iD .-15解析:∵1-2+i +11-2i=-2-i (-2+i )(-2-i )+1+2i(1-2i )(1+2i )=-2-i 5+1+2i 5=-15+15i , ∴虚部为15.答案:B3.平面向量a ,b 共线的充要条件是( )A .a ,b 方向相同B .a ,b 两向量中至少有一个为零向量C .∃λ∈R ,b =λaD .存在不全为零的实数λ1,λ2,λ1a +λ2b =0解析:A 中,a ,b 同向则a ,b 共线;但a ,b 共线则a ,b 不一定同向,因此A 不是充要条件.若a ,b 两向量中至少有一个为零向量,则a ,b 共线;但a ,b 共线时,a ,b 不一定是零向量,如a =(1,2),b =(2,4),从而B 不是充要条件.当b =λa 时,a ,b 一定共线;但a ,b 共线时,若b ≠0,a =0,则b =λa 就不成立,从而C 也不是充要条件.对于D ,假设λ1≠0,则a =-λ2λ1b ,因此a ,b 共线;反之,若a ,b 共线,则a =nm b ,即m a -n b =0.令λ1=m ,λ2=-n ,则λ1a +λ2b =0. 答案:D4.如下图所示,已知梯形ABCD 中,AB ∥CD ,且AB =3CD ,M ,N 分别是AB ,CD 的中点,设AB →=e 1,AD →=e 2,MN →可表示为( )A .e 2+16e 1B .e 2-12e 1C .e 2-13e 1D .e 2+13e 1解析:MN →=12(MD →+MC →)=12(MD →+MD →+DC →)=12[2(MA →+AD →)+DC →]=12[2(-12e 1+e 2)+13e 1]=-12e 1+e 2+16e 1=e 2-13e 1. 答案:C5.向量a ,b 满足|a |=1,|b |=2,(a +b )⊥(2a -b ),则向量a 与b 的夹角为( )A .45°B .60°C .90°D .120°解析:由(a +b )⊥(2a -b )得(a +b )·(2a -b )=0, 即2|a |2+|a |·|b |cos α-|b |2=0,把|a |=1,|b |=2代入得cos α=0,∴α=90°(其中α为两向量的夹角). 答案:C6.设D 、E 、F 分别是△ABC 的三边BC 、CA 、AB 上的点,且DC →=2BD →,CE →=2EA →,AF →=2FB →,则AD →+BE →+CF →与BC →( )A .反向平行B .同向平行C .互相垂直D .既不平行也不垂直解析:∵DC →=2BD →,∴BC →-BD →=2BD →,∴BD →=13BC →.∵CE →=2EA →,∴BE →-BC →=2BA →-2BE →, ∴BE →=23BA →+13BC →.∵AF →=2FB →,∴BF →-BA →=-2BF →,∴BF →=13BA →.∴AD →+BE →+CF →=BD →-BA →+BE →+BF →-BC → =13BC →-BA →+23BA →+13BC →+13BA →-BC → =-13BC →.∴AD →+BE →+CF →与BC →反向平行. 答案:A7.已知非零向量a ,b ,若a ·b =0,则|a -2b ||a +2b |等于( )A.14 B .2 C.12D .1解析:|a -2b ||a +2b |=(a -2b )2(a +2b )2=a 2+4b 2a 2+4b 2=1.答案:D8.在△ABC 中,若BC →2=AB →·BC →+CB →·CA →+BC →·BA →,则△ABC 是( )A .锐角三角形B .直角三角形C .钝角三角形D .等边三角形解析:因为AB →·BC →+CB →·CA →+BC →·BA → =BC →·(AB →-CA →+BA →)=BC →·AC →,故BC →2-BC →·AC →=BC →·(BC →-AC →)=BC →·BA →=0, 即∠B =π2.答案:B9.一质点受到平面上的三个力F 1,F 2,F 3(单位:牛顿)的作用而处于平衡状态.已知F 1,F 2成60°角,且F 1,F 2的大小分别为2和4,则F 3的大小为( )A .6B .2C .2 5D .27解析:如图,F 3的大小等于F 1、F 2的合力的大小.由平面向量加法的三角形法则知,在△OAB 中OB 的长就是F 1、F 2的合力的大小,且在△OAB 中,∠OAB =120°,OB =F 21+F 22-2F 1·F 2cos120°=28=27,即F 3为27.答案:D10.函数y =tan(π4x -π2)的部分图象如下图所示,则(OA →+OB →)·AB →=( )A .-6B .-4C .4D .6解析:函数y =tan(π4x -π2)的图象是由y =tan x 的图象向右平移π2个单位,再将图象的横坐标扩大为原来的4π倍得到,所以点A 的坐标为(2,0),令tan(π4x -π2)=1得π4x -π2=π4,故可得B 点坐标为(3,1),所以(OA →+OB →)·AB →=(5,1)·(1,1)=6.答案:D11.设点P 为△ABC 的外心(三条边垂直平分线的交点),若AB =2,AC =4,则AP →·BC →=( )A .8B .6C .4D .2解析:我们可以采用特殊方法解答,设A (-1,0),B (1,0),C (-1,4),则外心P 为(0,2),故AP →=(1,2),BC →=(-2,4),故AP →·BC →=6.答案:B12.已知P 是△ABC 所在平面内的一点,若CB →=λP A →+PB →(其中λ∈R ),则点P 一定在( )A .△ABC 的内部B .AC 边所在的直线上 C .AB 边所在的直线上D .BC 边所在的直线上解析:CB →=PB →-PC →=λP A →+PB →化简即得-PC →=λP A →,由共线向量的充要条件可知,点P ,A ,C 三点共线,所以答案选B.答案:B 二、填空题13.若复数a +3i1+2i (a ∈R ,i 是虚数单位)是纯虚数,则实数a =________.解析:∵a +3i 1+2i =(a +3i )(1-2i )(1+2i )(1-2i )=a +65+3-2a5i ,∴⎩⎨⎧a +65=03-2a 5≠0,∴a =-6.答案:-614.向量a =(cos10°,sin10°),b =(cos70°,sin70°),|a -2b |=________. 解析:|a -2b |=a 2+4b 2-4a ·b =1+4-4(cos10°cos70°+sin10°sin70°) =5-4cos60°= 3. 答案: 315.已知AD 是△ABC 的中线,AD →=λAB →+μAC →(λ,μ∈R ),那么λ+μ=________;若∠A =120°,AB →·AC →=-2,则|AD →|的最小值是________.解析:若AD 为△ABC 的中线,则有AD →=12(AB →+AC →),∴λ+μ=1.|AD →|2=14(AB →+AC →)2=14(|AB →|2+|AC →|2+2AB →·AC →)=14(|AB →|2+|AC →|2-4),∵|AB →|2+|AC →|2≥2|AB →|·|AC →|=2AB →·AC →cos120°=8,所以|AD →|≥1.答案:1 116.给定两个长度为1的平面向量OA →和OB →,它们的夹角为120°.如图所示,点C 在以O 为圆心的圆弧AB 上变动.若OC →=xOA →+yOB →,其中x ,y ∈R ,则x +y 的最大值是________.解析:以O 为坐标原点,OA 为x 轴建立平面直角坐标系,则可知A (1,0),B (-12,32),设C (cos α,sin α)(α∈[0,2π3]),则有x =cos α+33sin α,y =233sin α,所以x +y =cos α+3sin α=2sin(α+π6),所以当α=π3时,x +y 取得最大值为2.答案:2 三、解答题17.如图,在平行四边形ABCD 中,M ,N 分别为DC ,BC 的中点,已知AM →=c ,AN →=d ,试用c ,d 表示AB →,AD →.解法一:设AB →=a ,AD →=b , 则a =AN →+NB →=d +(-12b )①b =AM →+MD →=c +(-12a )②将②代入①得a =d +(-12)[c +(-12a )]⇒a =43d -23c ,代入②得b =c +(-12)(43d -23c )=43c -23d .解法二:设AB →=a ,AD →=b . 因M ,N 分别为CD ,BC 中点, 所以BN →=12b ,DM →=12a .因而⎩⎨⎧c =b +12ad =a +12b ⇒⎩⎨⎧a =23(2d -c )b =23(2c -d ),即AB →=23(2d -c ),AD →=23(2c -d ).18.设a =(-1,1),b =(4,3),c =(5,-2),(1)求证a 与b 不共线,并求a 与b 的夹角的余弦值; (2)求c 在a 方向上的投影; (3)求λ1和λ2,使c =λ1a +λ2b .解:(1)∵a =(-1,1),b =(4,3),且-1×3≠1×4,∴a 与b 不共线. 又a ·b =-1×4+1×3=-1,|a |=2,|b |=5, ∴cos 〈a ,b 〉=a ·b |a ||b |=-152=-210.(2)∵a ·c =-1×5+1×(-2)=-7, ∴c 在a 方向上的投影为a ·c |a |=-72=-72 2.(3)∵c =λ1a +λ2b ,∴(5,-2)=λ1(-1,1)+λ2(4,3)=(4λ2-λ1,λ1+3λ2),∴⎩⎪⎨⎪⎧4λ2-λ1=5λ1+3λ2=-2,解得⎩⎨⎧λ1=-237λ2=37.19.设△ABC 的外心为O ,则圆O 为△ABC 的外接圆,垂心为H .求证:OH →=OA →+OB →+OC →.证明:延长BO 交圆O 于D 点,连AD 、DC , 则BD 为圆O 的直径,故∠BCD =∠BAD =90°. 又∵AE ⊥BC ,DC ⊥BC , 得AH ∥DC ,同理DA ∥CH . ∴四边形AHCD 为平行四边形, ∴AH →=DC →.又∵DC →=OC →-OD →=OC →+OB →, ∴AH →=OB →+OC →. 又∵OH →=OA →+AH →, ∴OH →=OA →+OB →+OC →.20.(1)如图,设点P ,Q 是线段AB 的三等分点,若OA →=a ,OB →=b ,试用a ,b 表示OP →,OQ →,并判断OP →+OQ →与OA →+OB →的关系;(2)受(1)的启示,如果点A 1,A 2,A 3,…,A n -1是AB 的n (n ≥3)等分点,你能得到什么结论?请证明你的结论.解:(1)OP →=OA →+AP →=OA →+13AB →=OA →+13(OB →-OA →)=13OB →+23OA →=23a +13b .同理OQ →=13a +23b ,∴OP →+OQ →=a +b =OA →+OB →.(2)OA 1→+OA n -1 =OA 2→+OA n -2 =…=OA →+OB →. 证明如下:由(1)可推出OA 1→=OA →+AA 1→=OA →+1n AB →=OA →+1n (OB →-OA →)=n -1n OA →+1n OB →,∴OA 1→=n -1n a +1n b ,同理OA n -1=1n a +n -1nb ,OA 2→=n -2n a +2n b ,OA n -2=2n a +n -2n b ,…因此有OA 1→+OA n -1=OA 2→+OA n -2=…=OA →+OB →.21.已知△ABC 的面积S 满足3≤S ≤3,且AB →·BC →=6,AB →与BC →的夹角为θ. (1)求θ的取值范围;(2)求函数f (θ)=sin 2θ+2sin θ·cos θ+3cos 2θ的最小值. 解:(1)由题意知: AB →·BC →=|AB →|·|BC →|·cos θ=6① S =12|AB →|·|BC →|·sin(π-θ) =12|AB →|·|BC →|·sin θ② ②÷①得S 6=12tan θ,即3tan θ=S .由3≤S ≤3,得3≤3tan θ≤3,即33≤tan θ≤1. ∵θ为AB →与BC →的夹角,∴θ∈(0,π),∴θ∈[π6,π4].(2)f (θ)=sin 2θ+2sin θ·cos θ+3cos 2θ =1+sin2θ+2cos 2θ=2+sin2θ+cos2θ =2+2sin(2θ+π4).∵θ∈[π6,π4],∴2θ+π4∈[7π12,3π4].∴当2θ+π4=3π4,即θ=π4时,f (θ)有最小值为3.22.设向量a =(4cos α,sin α),b =(sin β,4cos β),c =(cos β,-4sin β). (1)若a 与b -2c 垂直,求tan(α+β)的值; (2)求|b +c |的最大值;(3)若tan αtan β=16,求证:a ∥b . 解:(1)因为a 与b -2c 垂直,所以a ·(b -2c )=4cos αsin β-8cos αcos β+4sin αcos β+8sin αsin β=4sin(α+β)-8cos(α+β)=0, 因此tan(α+β)=2.(2)由b +c =(sin β+cos β,4cos β-4sin β),得 |b +c |=(sin β+cos β)2+(4cos β-4sin β)2 =17-15sin2β≤4 2.又当β=-π4时,等号成立,所以|b +c |的最大值为4 2.(3)由tan αtan β=16得4cos αsin β=sin α4cos β,所以a ∥b .。
高二精选题库2-1. 数学 数学doc北师大版
第2模块 第1节[知能演练]一、选择题 1.已知函数f (x )=a x-1的定义域和值域都是[1,2],则a 的值是( )A.22B .2 C. 2D.13解析:当a >1时,f (x )为增函数,所以有⎩⎪⎨⎪⎧ a 1-1=1,a 2-1=2,解得a =2;当0<a <1时,f (x )为减函数,所以有⎩⎪⎨⎪⎧a 1-1=2,a 2-1=1,无解.所以a =2.答案:B2.由等式x 3+a 1x 2+a 2x +a 3=(x +1)3+b 1(x +1)2+b 2(x +1)+b 3,定义一个映射:f (a 1,a 2,a 3)=(b 1,b 2,b 3),则f (2,1,-1)等于( )A .(-1,0,-1)B .(-1,-1,0)C .(-1,0,1)D .(-1,1,0)解析:由题意知x 3+2x 2+x -1=(x +1)3+b 1(x +1)2+b 2(x +1)+b 3, 令x =-1,得-1=b 3,即b 3=-1;再令x =0与x =1,得⎩⎪⎨⎪⎧-1=1+b 1+b 2+b 3,3=8+4b 1+2b 2+b 3,解得b 1=-1,b 2=0,故选A. 答案:A3.在股票买卖过程中,经常用到两种曲线,一种是即时价格曲线y =f (x )(实线表示),另一种是平均价格曲线y =g (x )(虚线表示)〔如f (2)=3是指开始买卖后两个小时的即时价格为3元;g (2)=3表示两个小时内的平均价格为3元〕,下图给出的四个图象中,其中可能正确的是( )解析:解答该题要注意平均变化率是一个累积平均效应,因此可以得到正确选项为C. 答案:C4.函数f (x +1)为偶函数,且x <1时,f (x )=x 2+1,则x >1时,f (x )的解析式为( ) A .f (x )=x 2-4x +4 B .f (x )=x 2-4x +5 C .f (x )=x 2-4x -5 D .f (x )=x 2+4x +5解析:因为f (x +1)为偶函数,所以f (-x +1)=f (x +1),即f (x )=f (2-x ).当x >1时,2-x <1,此时,f (2-x )=(2-x )2+1,即f (x )=x 2-4x +5. 答案:B 二、填空题5.设函数f (x )=⎩⎪⎨⎪⎧sin(πx 2),-1<x <0,e x -1,x ≥0若f (1)+f (a )=2,则a 的所有可能的值是________.解析:由已知可得,①当a ≥0时,有e 0+e a -1=1+e a -1=2,∴e a -1=1.∴a -1=0.∴a=1.②当-1<a <0时,有1+sin(a 2π)=2,∴sin(a 2π)=1.∴a 2=2k +12(k ∈Z ).又-1<a <0,∴0<a 2<1,∴当k =0时,有a 2=12,∴a =-22.综上可知,a =1或-22. 答案:1或-226.已知函数f (x )=4|x |+2-1的定义域是[a ,b ](a ,b 为整数),值域是[0,1],则满足条件的整数对(a ,b )共有________个.解析:令y =f (x )=4|x |+2-1,y ∈[0,1],即0≤4|x |+2-1≤1, 解得-2≤x ≤2,故满足条件的整数对(a ,b )为(-2,0),(-2,1),(-2,2),(0,2),(-1,2),共5个. 答案:5 三、解答题7.已知函数f (x )的定义域是[-1,2],求下列函数的定义域: (1)y =f (x )-f (-x ); (2)y =f (x -a )·f (x +a )(a >0). 解:(1)函数必须满足⎩⎪⎨⎪⎧ -1≤x ≤2-1≤-x ≤2⇒⎩⎪⎨⎪⎧-1≤x ≤2-2≤x ≤1⇒-1≤x ≤1.∴y =f (x )-f (-x )的定义域是[-1,1]. (2)为了使y =f (x -a )·f (x +a )有意义,需有⎩⎪⎨⎪⎧ -1≤x -a ≤2,-1≤x +a ≤2,即⎩⎪⎨⎪⎧a -1≤x ≤a +2,-a -1≤x ≤-a +2.∵a >0,令a -1<-a +2,即0<a <32,则当0<a <32时,a -1<-a +2,故定义域为[a -1,-a +2];当a =32时,故定义域为{x |x =12};当a >32时,a -1>-a +2,故定义域为Ø(舍去).8.(1)设f (x )是定义在实数集R 上的函数,满足f (0)=1,且对任意实数a 、b ,有f (a -b )=f (a )-b (2a -b +1),求f (x );(2)函数f (x )(x ∈(-1,1))满足2f (x )-f (-x )=lg(x +1),求f (x ). 解:(1)依题意令a =b =x ,则 f (x -x )=f (x )-x (2x -x +1), 即f (0)=f (x )-x 2-x , 而f (0)=1,∴f (x )=x 2+x +1. (2)以-x 代x ,依题意有 2f (-x )-f (x )=lg(1-x ) ① 又2f (x )-f (-x )=lg(1+x )②两式联立消去f (-x )得 3f (x )=lg(1-x )+2lg(1+x ), ∴f (x )=13lg(1+x -x 2-x 3)(-1<x <1).[高考·模拟·预测]1.已知函数f (x )=⎩⎪⎨⎪⎧x 2+4x ,x ≥0,4x -x 2,x <0.若f (2-a 2)>f (a ),则实数a 的取值范围是 ( )A .(-∞,-1)∪(2,+∞)B .(-1,2)C .(-2,1)D .(-∞,-2)∪(1,+∞)解析:通过作图可知,f (x )在R 上单调递增,∴f (2-a 2)>f (a )⇔2-a 2>a ,解得-2<a <1.故选C.答案:C2.定义在R 上的函数f (x )满足f (x )=⎩⎪⎨⎪⎧log 2(1-x ),x ≤0,f (x -1)-f (x -2),x >0,则f (2009)的值为}() A.-1 B.0C.1 D.2解析:由已知得f(-1)=log22=1,f(0)=0,f(1)=f(0)-f(-1)=-1,f(2)=f(1)-f(0)=-1,f(3)=f(2)-f(1)=-1-(-1)=0,f(4)=f(3)-f(2)=0-(-1)=1,f(5)=f(4)-f(3)=1,f(6)=f(5)-f(4)=0,所以函数f(x)的值以6为周期重复性出现,所以f(2009)=f(5)=1,故选C.答案:C3.已知函数f(x)为R上的奇函数,当x≥0时,f(x)=x(x+1).若f(a)=-2,则实数a =________.解析:当x<0时,-x>0,∴f(-x)=-x(-x+1).又∵f(x)为奇函数,∴f(-x)=-f(x),从而f(x)=x(1-x).∵当x≥0时,f(x)=x(x+1)>0,∴a<0.∴a(1-a)=-2,解得a=-1或a=2(舍).∴a=-1.答案:-14.某地区居民生活用电分为高峰和低谷两个时间段进行分时计价.该地区的电网销售电价表如下:千瓦时,则按这种计费方式该家庭本月应付的电费为________元(用数字作答).解析:A=50×0.568+150×0.598+50×0.288+50×0.318=148.4.答案:148.45.已知二次函数f(x)有两个零点0和-2,且f(x)最小值是-1,函数g(x)与f(x)的图象关于原点对称.(1)求f (x )和g (x )的解析式.(2)若h (x )=f (x )-λg (x )在区间[-1,1]上是增函数,求实数λ的取值范围. 解:(1)依题意,设f (x )=ax (x +2)=ax 2+2ax (a >0). f (x )图象的对称轴是x =-1,∴f (-1)=-1,即a -2a =-1,得a =1. ∴f (x )=x 2+2x .由函数g (x )的图象与f (x )的图象关于原点对称, ∴g (x )=-f (-x )=-x 2+2x .(2)由(1)得h (x )=x 2+2x -λ(-x 2+2x )=(λ+1)x 2+2(1-λ)x . ①当λ=-1时,h (x )=4x 满足在区间[-1,1]上是增函数; ②当λ<-1时,h (x )图象对称轴是x =λ-1λ+1,则λ-1λ+1≥1,又λ<-1,解得λ<-1; ③当λ>-1时,同理则需λ-1λ+1≤-1,又λ>-1,解得-1<λ≤0.综上,满足条件的实数λ的取值范围是(-∞,0].[备选精题]6.已知二次函数f (x )=ax 2+bx +c (a ,b ,c ∈R )满足:对任意实数x ,都有f (x )≥x ,且当x ∈(1,3)时,有f (x )≤18(x +2)2成立.(1)证明:f (2)=2;(2)若f (-2)=0,f (x )的表达式.解:(1)由条件知f (2)=4a +2b +c ≥2恒成立. ∵x =2时,f (2)=4a +2b +c ≤18(2+2)2=2成立,∴f (2)=2.(2)∵⎩⎪⎨⎪⎧4a +2b +c =24a -2b +c =0,∴4a +c =2b =1,∴b =12,c =1-4a .又∵f (x )≥x 恒成立,即ax 2+(b -1)x +c ≥0恒成立, ∴a >0,Δ=(12-1)2-4a (1-4a )≤0,解得a =18,b =12,c =12,∴f (x )=18x 2+12x +12.。
北师大版数学高二-选修2-1模块综合测试2
模块综合测试(二)(时间120分钟 满分150分)一、选择题(本大题共12小题,每小题5分,共60分) 1.已知命题p :∀x ∈R ,x ≥1,那么命题¬p 为( ) A .∀x ∈R ,x ≤1 B .∃x ∈R ,x <1 C .∀x ∈R ,x ≤-1D .∃x ∈R ,x <-1解析:全称命题的否定是特称命题. 答案:B2.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)与抛物线y 2=8x 有一个相同的焦点F ,且该点到双曲线的渐近线的距离为1,则该双曲线的方程为( )A .x 2-y 2=2B .x 23-y 2=1C .x 2-y 2=3D .x 2-y 23=1 解析:本题主要考查双曲线与抛物线的有关知识.由已知,a 2+b 2=4 ①,焦点F (2,0)到双曲线的一条渐近线bx -ay =0的距离为|2b |a 2+b 2=1 ②,由①②解得a 2=3,b 2=1,故选B.答案:B3.已知命题p ,q ,如果命题“¬p ”与命题“p ∨q ”均为真命题,那么下列结论正确的是( )A .p ,q 均为真命题B .p ,q 均为假命题C .p 为真命题,q 为假命题D .p 为假命题,q 为真命题 解析:命题“¬p ”为真,所以命题p 为假命题.又命题“p ∨q ”也为真命题,所以命题q 为真命题.答案:D4.在三角形ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边,已知命题p :a >b ,命题q :tan 2A >tan 2B ,则p 是q 的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件解析:本题主要考查充要条件的判定以及三角形、三角函数的有关知识.在三角形中,命题p :a >b ⇔A >B .命题q :tan 2A >tan 2B ⇔sin(A +B )sin(A -B )>0⇔A >B ,显然p 是q 的充要条件,故选C.答案:C5.如右图,在三棱锥A —BCD 中,DA ,DB ,DC 两两垂直,且DB =DC ,E 为BC 中点,则AE →·BC →等于( )A .0B .1C .2D .3解析:如右图,建立空间直角坐标系. 设DC =DB =a ,DA =b ,则B (a,0,0)、C (0,a,0)、A (0,0,b ),E (a 2,a2,0),所以BC →=(-a ,a,0),AE →=(a 2,a 2,-b ),AE →·BC →=-a 22+a 22+0=0.答案:A6.若直线y =x +1与椭圆x 22+y 2=1相交于A ,B 两个不同的点,则|AB →|等于( )A .43B .423C .83D .823解析:联立方程组⎩⎪⎨⎪⎧y =x +1,x 22+y 2=1,得3x 2+4x =0,解得A (0,1),B (-43,-13),所以|AB →|=(-43-0)2+(-13-1)2=423. 答案:B7.[2014·浙江省杭州二中期末考试]给出下列命题: ①若向量a ,b 共线,则向量a ,b 所在直线平行; ②若三个向量a ,b ,c 两两共面,则a ,b ,c 共面;③已知空间中三个向量a,b,c,则对空间的任意一个向量p,总存在实数x,y,z使得p=x a+y b+z c成立.其中正确命题的个数是()A.0 B.1C.2 D.3解析:本题主要考查空间向量的共线、共面、空间向量的基本定理等基础知识.若向量a,b共线,则向量a,b所在直线平行或在同一条直线上,故①不正确;在三棱锥P-ABC 中,取PA→,PB→,PC→分别为向量a,b,c,则a,b,c两两共面,但a,b,c不共面,故②不正确;在三棱锥P-ABC中,取AB→,BC→,CA→分别为向量a,b,c,则对向量PA→,不存在实数x,y,z使得PA→=x a+y b+z c成立,故③不正确;综上,正确命题的个数是0,故选A.答案:A8.下列四个结论中正确的个数为()①命题“若x2<1,则-1<x<1”的逆否命题是“若x>1或x<-1,则x2>1”;②已知p:∀x∈R,sin x≤1,q:若a<b,则am2<bm2,则p∧q为真命题;③命题“∃x∈R,x2-x>0”的否定是“∀x∈R,x2-x≤0”;④“x>2”是“x2>4”的必要不充分条件.A.0个B.1个C.2个D.3个解析:只有③中结论正确.答案:B9.[2014·河南省开封高中月考]如图,在长方体ABCD-A1B1C1D1中,AB=BC=2,AA1=2,E、F分别是面A1B1C1D1、面BCC1B1的中心,则E、F两点间的距离为()A.1 B.5 2C.62D.32解析:本题主要考查空间中两点间的距离.以点A 为原点,建立如图所示的空间直角坐标系,则E (1,1,2),F (2,1,22), 所以|EF |=(1-2)2+(1-1)2+(2-22)2=62,故选C. 答案:C10.如图,在直三棱柱ABC —A 1B 1C 1中,AC =BC =CC 1,AC ⊥BC ,点D 是AB 的中点,则直线B 1B 和平面CDB 1所成角的正切值为( )A .2 2B .322C . 2D .22解析:如右图,建立空间直角坐标系,可设AC =BC =CC 1=1, 则A (1,0,0),B (0,1,0),D (12,12,0),B 1(0,1,1),CD →=(12,12,0),CB 1→=(0,1,1),B 1B →=(0,0,-1).设平面CDB 1的法向量为n =(x ,y ,z ), 由⎩⎪⎨⎪⎧ n ·CD →=0,n ·CB 1→=0,即⎩⎪⎨⎪⎧12x +12y =0,y +z =0,不妨取n =(1,-1,1),所以cos 〈n ,B 1B →〉=n ·B 1B →|n ||B 1B →|=-13=-33.设直线B 1B 和平面CDB 1所成角为α,则sin α=33, 故cos α=63,tan α=22.11.已知F 是抛物线y2=4x 的焦点,过点F 且斜率为3的直线交抛物线于A 、B 两点,则||FA |-|FB ||的值为( )A .83B .163C .833D .823解析:本题主要考查直线与抛物线的位置关系以及抛物线的有关性质.直线AB 的方程为y =3(x -1),由⎩⎪⎨⎪⎧y 2=4x y =3(x -1)得3x 2-10x +3=0,故x 1=3,x 2=13,所以||FA |-|FB ||=|x 1-x 2|=83.故选A.答案:A12.[2012·浙江高考]如图,F 1、F 2分别是双曲线C :x 2a 2-y 2b 2=1(a ,b >0)的左、右焦点,B 是虚轴的端点,直线F 1B 与双曲线C 的两条渐近线分别交于P 、Q 两点,线段PQ 的垂直平分线与x 轴交于点M .若|MF 2|=|F 1F 2|,则双曲线C 的离心率是( )A .233B .62C . 2D . 3解析:本题主要考查双曲线离心率的求解.结合图形的特征,通过PQ 的中点,利用线线垂直的性质进行求解.不妨设c =1,则直线PQ :y =bx +b ,双曲线C 的两条渐近线为y =±b a x ,因此有交点P (-a a +1,b a +1),Q (a 1-a ,b 1-a ),设PQ 的中点为N ,则点N 的坐标为(a 21-a 2,b 1-a 2),因为线段PQ 的垂直平分线与x 轴交于点M ,|MF 2|=|F 1F 2|,所以点M 的坐标为(3,0),因此有k MN =b1-a 2-0a 21-a 2-3=-1b ,所以3-4a 2=b 2=1-a 2,所以a 2=23,所以e =62.二、填空题(本大题共4小题,每小题5分,共20分) 13.命题“∃x ∈R ,x 2+2x +2≤0”的否定是__________.解析:特称命题的否定是全称命题,故原命题的否定是∀x ∈R ,x 2+2x +2>0. 答案:∀x ∈R ,x 2+2x +2>014.已知双曲线x 2m -y 2n =1的一条渐近线方程为y =43x ,则该双曲线的离心率e 为__________.解析:当m >0,n >0时,可设a =3k ,b =4k , 则c =5k ,所以离心率e =53;当m <0,n <0时,可设a =4k ,b =3k , 则c =5k ,所以离心率e =54.答案:53或5415.正方体ABCD —A 1B 1C 1D 1中,点E 、F 分别是底面A 1C 1和侧面CD 1的中心,若EF →+λA 1D →=0(λ∈R ),则λ=__________.解析:如右图,连接A 1C 1,C 1D ,则E 在A 1C 1上,F 在C 1D 上易知EF 綊12A 1D ,∴EF →=12A 1D →, 即EF →-12A 1D →=0,∴λ=-12.答案:-1216. [2014·湖北省襄阳五中月考]已知函数f (x )=|x 2-2ax +b |(x ∈R ),给出下列命题:①若a 2-b ≤0,则f (x )在区间[a ,+∞)上是增函数;②若a 2-b >0,则f (x )在区间[a ,+∞)上是增函数;③当x =a 时,f (x )有最小值b -a 2;④当a 2-b ≤0时,f (x )有最小值b -a 2.其中正确命题的序号是________.解析:本题考查含绝对值的二次函数单调区间和最小值问题的求解.由题意知f (x )=|x 2-2ax +b |=|(x -a )2+b -a 2|.若a 2-b ≤0,则f (x )=|(x -a )2+b -a 2|=(x -a )2+b -a 2,可知f (x )在区间[a ,+∞)上是增函数,所以①正确,②错误;只有在a 2-b ≤0的条件下,才有x =a 时,f (x )有最小值b -a 2,所以③错误,④正确.三、解答题(本大题共6小题,共70分)17.(10分)(1)设集合M ={x |x >2},P ={x |x <3},则“x ∈M 或x ∈P ”是“x ∈(M ∩P )”的什么条件?(2)求使不等式4mx 2-2mx -1<0恒成立的充要条件. 解:(1)x ∈R ,x ∈(M ∩P )⇔x ∈(2,3). 因为“x ∈M 或x ∈P ”x ∈(M ∩P ). 但x ∈(M ∩P )⇒x ∈M 或x ∈P .故“x ∈M 或x ∈P ”是“x ∈(M ∩P )”的必要不充分条件.(2)当m ≠0时,不等式4mx 2-2mx -1<0恒成立⇔⎩⎪⎨⎪⎧4m <0Δ=4m 2+16m <0⇔-4<m <0.又当m =0时,不等式4mx 2-2mx -1<0对x ∈R 恒成立, 故使不等式4mx 2-2mx -1<0恒成立的充要条件是-4<m ≤0.18.(12分)[2014·福建省质检]某几何体ABC -A 1B 1C 1的三视图和直观图如图所示.(1)求证:A 1C ⊥平面AB 1C 1; (2)求二面角C 1-AB 1-C 的余弦值.解:(1)由三视图可知,在三棱柱ABC -A 1B 1C 1中,AA 1⊥底面A 1B 1C 1,B 1C 1⊥A 1C 1,且AA 1=AC =4,BC =3.以点C 为原点,分别以CA 、CB 、CC 1所在直线为x 轴、y 轴、z 轴,建立空间直角坐标系,如图.由已知可得A (4,0,0),B (0,3,0),C (0,0,0),A 1(4,0,4),B 1(0,3,4),C 1(0,0,4),∴CA 1→=(4,0,4),C 1A →=(4,0,-4),C 1B 1→=(0,3,0).∴CA 1→·C 1A →=4×4+0×0+4×(-4)=0,CA 1→·C 1B 1→=4×0+0×3+4×0=0. ∴CA 1⊥C 1A ,CA 1⊥C 1B 1,又C 1A ∩C 1B 1=C 1,∴A 1C ⊥平面AB 1C 1. (2)由(1)得,CA →=(4,0,0),CB 1→=(0,3,4),设平面AB 1C 的法向量为n =(x ,y ,z ),则CA →⊥n ,CB 1→⊥n ,∴⎩⎪⎨⎪⎧CB 1→·n =0CA →·n =0,∴⎩⎪⎨⎪⎧4x =03y +4z =0,即x =0,令y =4,则z =-3,得平面AB 1C 的一个法向量为n =(0,4,-3). 由(1)知,CA 1→是平面AB 1C 1的一个法向量, cos 〈n ,CA 1→〉=n ·CA 1→|n ||CA 1→|=-12202=-3210.由图可知,二面角C 1-AB 1-C 为锐角, 故二面角C 1-AB 1-C 的余弦值为3210.19.(12分)设直线l :y =x +1与椭圆x 2a 2+y 2b 2=1(a >b >0)相交于A ,B 两个不同的点,l 与x 轴相交于点F .(1)证明:a 2+b 2>1;(2)若F 是椭圆的一个焦点,且AF →=2FB →,求椭圆的方程.(1)证明:将x =y -1代入x 2a 2+y 2b 2=1,消去x ,整理,得(a 2+b 2)y 2-2b 2y +b 2(1-a 2)=0.由直线l 与椭圆相交于两个不同的点,得Δ=4b 4-4b 2(a 2+b 2)(1-a 2)=4a 2b 2(a 2+b 2-1)>0,所以a 2+b 2>1. (2)解:设A (x 1,y 1),B (x 2,y 2),则(a 2+b 2)y 21-2b 2y 1+b 2(1-a 2)=0,① 且(a 2+b 2)y 22-2b 2y 2+b 2(1-a 2)=0.②因为AF →=2FB →,所以y 1=-2y 2.将y 1=-2y 2代入①,与②联立,消去y 2, 整理得(a 2+b 2)(a 2-1)=8b 2.③因为F 是椭圆的一个焦点,则有b 2=a 2-1. 将其代入③式,解得a 2=92,b 2=72,所以椭圆的方程为2x 29+2y 27=1.20.(12分)已知两点M (-1,0)、N (1,0),动点P (x ,y )满足|MN →|·|NP →|-MN →·MP →=0, (1)求点P 的轨迹C 的方程;(2)假设P 1、P 2是轨迹C 上的两个不同点,F (1,0),λ∈R ,FP 1→=λFP 2→,求证:1|FP 1→| +1|FP 2→|=1.解:(1)|MN →|=2,则MP →=(x +1,y ), NP →=(x -1,y ). 由|MN →||NP →|-MN →·MP →=0, 则2(x -1)2+y 2-2(x +1)=0, 化简整理得y 2=4x .(2)由FP 1→=λ·FP 2→,得F 、P 1、P 2三点共线,设P 1(x 1,y 1)、P 2(x 2,y 2),斜率存在时,直线P 1P 2的方程为:y =k (x -1) 代入y 2=4x 得:k 2x 2-2(k 2+2)x +k 2=0. 则x 1x 2=1,x 1+x 2=2k 2+4k 2.∴1|FP 1→| +1|FP 2→| =1x 1+1+1x 2+1 =x 1+x 2+2x 1x 2+(x 1+x 2)+1=1.当P 1P 2垂直x 轴时,结论照样成立.21.(12分)[2013·江西高考]如图,四棱锥P -ABCD 中,PA ⊥平面ABCD ,E 为BD 的中点,G 为PD 的中点,△DAB ≌△DCB ,EA =EB =AB =1,PA =32,连结CE 并延长交AD于F .(1)求证:AD ⊥平面CFG ;(2)求平面BCP 与平面DCP 的夹角的余弦值.解:(1)证明:在△ABD 中,因为E 是BD 中点,所以EA =EB =ED =AB =1, 故∠BAD =π2,∠ABE =∠AEB =π3,因为△DAB ≌△DCB ,所以△EAB ≌△ECB , 从而有∠FED =∠BEC =∠AEB =π3,所以∠FED =∠FEA ,故EF ⊥AD ,AF =FD ,又因为PG =GD ,所以FG ∥PA . 又PA ⊥平面ABCD ,所以GF ⊥AD ,故AD ⊥平面CFG .(2)以点A 为坐标原点建立如图所示的坐标系,则A (0,0,0),B (1,0,0),C (32,32,0),D (0,3,0),P (0,0,32),故BC →=(12,32,0),CP →=(-32,-32,32),CD →=(-32,32,0).设平面BCP 的法向量n 1=(1,y 1,z 1), 则⎩⎨⎧ 12+32y 1=0,-32-32y 1+32z 1=0,解得⎩⎨⎧y 1=-33,z 1=23,即n 1=(1,-33,23). 设平面DCP 的法向量n 2=(1,y 2,z 2), 则⎩⎨⎧-32+32y 2=0,-32-32y 2+32z 2=0,解得⎩⎨⎧y 2=3,z 2=2,即n 2=(1,3,2).从而平面BCP 与平面DCP 的夹角的余弦值为cos θ=|n 1·n 2||n 1||n 2|=43169·8=24.22.(12分)[2014·山东高考]已知抛物线C :y 2=2px (p >0)的焦点为F ,A 为C 上异于原点的任意一点,过点A 的直线l 交C 于另一点B ,交x 轴的正半轴于点D ,且有|FA |=|FD |.当点A 的横坐标为3时,△ADF 为正三角形.(1)求C 的方程;(2)若直线l 1∥l ,且l 1和C 有且只有一个公共点E ,①证明直线AE 过定点,并求出定点坐标;②△ABE 的面积是否存在最小值?若存在,请求出最小值,若不存在,请说明理由.解:(1)由题意知F ⎝⎛⎭⎫p 2,0.设D (t,0)(t >0),则FD 的中点为⎝⎛⎭⎫p +2t 4,0.因为|FA |=|FD |,由抛物线的定义知3+p 2=⎪⎪⎪⎪t -p 2, 解得t =3+p 或t =-3(舍去).由p +2t 4=3,解得p =2. 所以抛物线C 的方程为y 2=4x .(2)①由(1)知F (1,0),设A (x 0,y 0)(x 0y 0≠0),D (x D,0)(x D >0),因为|FA |=|FD |,则|x D -1|=x 0+1,由x D >0得x D =x 0+2,故D (x 0+2,0).故直线AB 的斜率k AB =-y 02. 因为直线l 1和直线AB 平行,设直线l 1的方程为y =-y 02x +b , 代入抛物线方程得y 2+8y 0y -8b y 0=0, 由题意Δ=64y 20+32b y 0=0,得b =-2y 0. 设E (x E ,y E ),则y E =-4y 0,x E =4y 20, 当y 20≠4时,k AE =y E -y 0x E -x 0=-4y 0+y 04y 20-y 204=4y 0y 20-4, 可得直线AE 的方程为y -y 0=4y 0y 20-4(x -x 0),由y 20=4x 0,整理可得y =4y 0y 20-4(x -1), 直线AE 恒过点F (1,0). 当y 20=4时,直线AE 的方程为x =1,过点F (1,0),所以直线AE 过定点F (1,0). ②由①知直线AE 过焦点F (1,0),所以|AE |=|AF |+|FE |=(x 0+1)+⎝⎛⎭⎫1x 0+1=x 0+1x 0+2. 设直线AE 的方程为x =my +1,因为点A (x 0,y 0)在直线AE 上,故m =x 0-1y 0, 设B (x 1,y 1),直线AB 的方程为y -y 0=-y 02(x -x 0), 由于y 0≠0,可得x =-2y 0y +2+x 0, 代入抛物线方程得y 2+8y 0y -8-4x 0=0. 所以y 0+y 1=-8y 0, 可求得y 1=-y 0-8y 0,x 1=4x 0+x 0+4, 所以点B 到直线AE 的距离为 d =⎪⎪⎪⎪4x 0+x 0+4+m ⎝⎛⎭⎫y 0+8y 0-11+m 2 =4(x 0+1)x 0=4⎝⎛⎭⎫x 0+1x 0. 则△ABE 的面积S =12×4·⎝⎛⎭⎫x 0+1x 0⎝⎛⎭⎫x 0+1x 0+2≥16, 当且仅当1x 0=x 0,即x 0=1时等号成立.所以△ABE 的面积的最小值为16.。
数学北师大版高中选修2-1高二下数学期末试卷
高二数学期末试卷一、选择题(本大题共有12小题, 每小题5分, 共60分. 在每小题所给出的四个选项中,只有一项是符合题意的,请把正确选项前的字母代号填在题后的括号内)1.物体的运动方程是S =10t -t 2(S 的单位:m ; t 的单位:s), 则物体在t =2s 的速度是 ( ) A .2 m/s B .4 m/s C .6 m/s D .8 m/s 2.算法此算法的功能是 ( )A .a ,b ,c 中最大值B .a ,b ,c 中最小值C .将a ,b ,c 由小到大排序D .将a ,b ,c 由大到小排序3.从一群游戏的孩子中抽出k 人,每人扎一条红带,然后让他们返回继续游戏,一会后,再从中任取m 人,发现其中有n 人扎有红带,估计这群孩子的人数为 ( ) A .k m B .k n C .m kn D .n km4.甲、乙、丙、丁四名射击选手在选拔赛 中所得的平均环数x 及其方差S 2如下表所示,则选送参加决赛的最佳人选 是 ( )A .甲B . 乙C .丙D . 丁 5.若命题p : x ∈A ∪B , 则非p 是 ( ) A .x ∉A 且x ∉B B .x ∉A 或x ∉B C .x ∉A ∩B D .x ∈A ∩B 6.在下列命题中,(1)2,0x R x ∀∈≥. (2)x R ∃∈,使得x 2+x +1<0. (3)若tan α= tan β,则α=β.(4)若ac =b 2则a 、b 、c 成等比数列。
其中真命题有 ( ) A .0个 B .1个 C .2个 D .3个7.若不等式|x -1| <a 成立的充分条件是0<x <4,则实数a 的取值范围是 ( )A .a ≤1B .a ≤3C .a ≥1D .a ≥38. (文科做) 甲、乙两人下棋,两人下成和棋的概率是21,乙获胜的概率是31则65是 ( )A .乙胜的概率B .乙不输的概率C .甲胜的概率D .甲不输的概率8.(理科做)若向量、的坐标满足(2,1,2)a b +=--,(4,3,2)a b -=--,则·等于 ( ) A .1- B .5- C .5 D .79.(文科做) 设一组数据的方差s 2,将这组数据的每个数据乘以10,所得到一组新数据的方差是( )9.(理科做)下列积分正确的一个是( )A .22ππ-⎰sin x dx =2 B .271⎰=12C .ln 2⎰e x (1+ e x ) dx =163D .21⎰12xe x dxe10.已知双曲线x 2a 2 - y 22 =1(a>2)的两条渐近线的夹角为π3,则双曲线的离心率为 ( )A .2B . 3C .263D .23311.在平面直角坐标系中,点(x ,y ) 中的x 、y ∈{0,1,2,3,4,5,6}且x ≠y ,则点(x ,y )落在半圆(x -3)2+y 2=9(y ≥0)内(不包括边界) 的概率是 ( )A .1142B .1342C .37D .154912.函数y =x cos x -sin x 在下面哪个区间上是增函数 ( )A .(2π, 23π)B .(π, 2π)C .( 23π,25π) D .( 2π, 3π)二、填空题(本大题共有6小题,每题5分,共30分. 把结果直接填在题中的横线上)13.若施肥量x 与水稻产量y 的线性回归方程为ˆy=5x +250,当施肥量为80kg 时,预计的水 稻产量为 . 14.右图给出的是计算201614121+⋅⋅⋅+++的值的一个程序 框图,其中判断框内应填入的条件是 . 15有两个人在一座15层大楼的底层进入电梯,设他们中的每一个人自第二层开始在每一层离开是等可能的,则这两个 人在不同层离开的概率是 .16.直线y =x -3与抛物线y 2=4x 交于A 、B 两点,过A 、B 两点向抛物线的准线作垂线,垂足分别为P 、Q ,则梯形 APQB 的面积为 .17.点P 是椭圆19y 16x 22=+上一点, F 1、F 2是其焦点, 若 ∠F 1P F 2=90°, △F 1P F 2面积为 .18. (文科做) 函数f (x )= x -e x在点P 的切线平行于x 轴,则点P 的坐标为 . 18. (理科做) 由曲线y=24x 、直线x =1、x =6和x 轴围成的封闭图形的面积为 . 三、解答题(本大题共有6小题,满分50分. 解答需写出文字说明、推理过程或演算步骤) 19.一个社会调查机构就某地居民的月收入调查了20000人,并根据所得数据画了样本的频率分布直方图(如下图).根椐上述信息回答下列问题:(1)月收入在[3000, 3500 )的居民有多少人? (2) 试估计该地居民的平均月收入(元); (3) 为了分析居民的收入与年龄、学历、职 业等方面的关系,要从这20000人中再用分层抽样方法抽出300人作进一步调查,则在[2500, 3000 )(元)月收入段应抽出多少人.20.今有一批球票,按票价分别为10元票5张,20元票3张,50票2张,从这批票中抽出2 张. 问:(1)抽得2张均为20元的票价的概率 (2)抽得2张不同票价的概率.(3)抽得票价之和等于70元的概率.21.(文科做)已知命题p : f (x )=31x- , 且,命题q : 集合{}2|(2)10,A x x a x x R =+++=∈,B={x | x >0}, 且A B =∅,求实数a 的取值范围,使p 、q 中有且只有一个为真命题。
北师大版高二数学试题(有答案)(选修2-1)AKMKnU
(选修2-1)孙 敏一、选择题(本大题共12小题,每小题6分,共72分) 1、a 3>8是a >2的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分也非必要条件 2、全称命题“所有被5整除的整数都是奇数”的否定是( ) A .所有被5整除的整数都不是奇数; B .所有奇数都不能被5整除C .存在一个被5整除的整数不是奇数;D .存在一个奇数,不能被5整除3、抛物线281x y -=的准线方程是( )A . 321=x B . 2=y C . 321=y D . 2-=y 4、有下列命题:①20ax bx c ++=是一元二次方程(0a ≠);②空集是任何集合的真子集;③若a ∈R ,则20a ≥;④若,a b ∈R 且0ab >,则0a >且0b >.其中真命题的个数有( ) A .1 B . 2 C . 3 D . 45、椭圆1162522=+y x 的离心率为( ) A .35 B . 34 C .45 D . 9256、以坐标轴为对称轴,以原点为顶点且过圆096222=++-+y x y x 的圆心的抛物线的方程是( )A .23x y =或23x y -=B .23x y =C .x y 92-=或23x y =D .23x y -=或x y 92=7、已知a =(2,-3,1),b =(4,-6,x ),若a ⊥b ,则x 等于( ) A .-26 B .-10 C .2 D .10 8、如图,空间四边形ABCD 中,M 、G 分别是BC 、CD 的中点,则BC AB 2121++等于( )A .B .C .D .9、已知A 、B 、C 三点不共线,对平面ABC 外的任一点O ,下列条件中能确定点M 与点A 、B 、C 一定共面的是( ) A .OM OA OB OC =++u u u u r u u u r u u u r u u u r B . 2OM OA OB OC =--u u u u r u u u r u u u r u u u rC .1123OM OA OB OC =++u u u u r u u u r u u u r u u u rD .111333OM OA OB OC =++u u u u r u u u r u u u r u u u r10、设3=a ,6=b , 若a •b =9,则,<>a b 等于( )A .90°B .60°C .120°D .45°11、已知向量a =(1,1,-2),b =12,1,x ⎛⎫ ⎪⎝⎭,若a ·b ≥0,则实数x 的取值范围为( )A .2(0,)3 B .2(0,]3C .(,0)-∞∪2[,)3+∞D .(,0]-∞∪2[,)3+∞12、设R x x ∈21,,常数0>a ,定义运算“﹡”:22122121)()(x x x x x x --+=*,若0≥x ,则动点),(a x x P *的轨迹是( )A .圆B .椭圆的一部分C .双曲线的一部分D .抛物线的一部分 二、填空题(本大题共5小题,每小题5分,共25分)13、命题“若2430x x -+=,则x =1或x =3”的逆否命题为 . 14、给出下列四个命题:①x ∃∈R ,是方程3x -5=0的根;②,||0x x ∀∈>R ; ③2,1x x ∃∈=R ;④2,330x x x ∀∈-+=R 都不是方程的根. 其中假命题...的序号有 . 15、若方程11222=-+-k y k x 表示的图形是双曲线,则k 的取值范围为 . 16、抛物线24y x =的准线方程是 .17、由向量(102)=,,a ,(121)=-,,b 确定的平面的一个法向量是()x y =,,2n ,则x = ,y = .三、解答题(本大题共5小题,共53分.解答应写出文字说明、演算步骤或推证过程) 18、(本小题满分8分)双曲线的离心率等于2,且与椭圆221259x y +=有相同的焦点,求此双曲线方程.19、(本小题满分10分)已知命题:P “若,0≥ac 则二次方程02=++c bx ax 没有实根”. (1)写出命题P 的否命题;(2)判断命题P 的否命题的真假, 并证明你的结论.20、(本小题满分11分)已知0≠ab ,求证1=+b a 的充要条件是02233=--++b a ab b a21、(本小题满分12分)如图,在正方体ABCD -A 1B 1C 1D 1中,E 、F 分别是BB 1、CD的中点.(Ⅰ)证明:AD ⊥D 1F ; (Ⅱ)求AE 与D 1F 所成的角; (Ⅲ)证明:面AED ⊥面A 1FD 1.22、(本小题满分12分)设椭圆12222=b y a x +(a >b >0)的左焦点为F 1(-2,0),左准线 L 1 :ca x 2-=与x 轴交于点N(-3,0),过点N 且倾斜角为300的直线L 交椭圆于A 、B 两点。
高二精选题库数学 课堂训练10-6北师大版
第10章 第6节时间:45分钟 满分:100分一、选择题(每小题7分,共42分)1.从4名男生和2名女生中任选3人参加演讲比赛,设随机变量ξ表示所选3人中女生的人数,则P (ξ≤1)=( )A. 15 B. 25 C. 35 D. 45答案:D解析:P (ξ≤1)=P (ξ=0)+P (ξ=1)=C 34C 36+C 24C 12C 36=45.2.若离散型随机变量ξ的分布列为( )则常数c 的值为( ) A.23或13 B.23 C.13 D .1 答案:C解析:由题意知(9c 2-c )+(3-8c )=1, 解得c =23或c =13,当c =23时,3-8c =-73<0,不合题意,当c =13时,3-8c =13,9c 2-c =23,∴c =13.3.某射手射击所得环数X 的分布列为:A .0.28B .0.88C .0.79D .0.51答案:C解析:P (X >7)=P (X =8)+P (X =9)+P (X =10)=0.28+0.29+0.22=0.79.4.在15个村庄中有7个村庄交通不方便,现从中任意选10个村庄,用X 表示这10个村庄中交通不方便的村庄数,下列概率中等于C 47C 68C 1015的是( )A .P (X =2)B .P (X ≤2)C .P (X =4)D .P (X ≤4)答案:C解析:X 服从超几何分布,故P (X =k )=C k 7C 10-k 8C 1015,k =4.5.设随机变量X 等可能取值1,2,3,…,n ,如果P (X <4)=0.3,那么( ) A .n =3 B .n =4 C .n =10 D .n =9答案:C解析:∵P (X =k )=1n(k =1,2,3,…,n ),∴0.3=P (X <4)=P (X =1)+P (X =2)+P (X =3)=3n,∴n =10.6.[2012·山东烟台]一盒中有12个乒乓球,其中9个新的,3个旧的,从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数X 是一个随机变量,则P (X =4)的值是( )A.1220B.2755C.27220D.2155答案:C解析:“X =4”表示从盒中取了2个旧球,1个新球,故P (X =4)=C 23C 19C 312=27220.二、填空题(每小题7分,共21分) 7.已知随机变量ξ的分布列为若η=2ξ-3,则η答案:解析:由η=2ξ-38.随机变量ξ的分布列如下:若a 、b 、c 成等差数列,则答案:23解析:∵a 、b 、c 成等差数列,∴2b =a +c ,又a +b +c =1, ∴b =13,∴P (|ξ|=1)=a +c =23.9.抛掷两颗骰子,设掷得点数和为随机变量ξ,则P (3<ξ<7)=__________. 答案:13解析:抛掷两颗骰子所得的点数之和情况如下表:因此P (ξ=4)=336=112;P (ξ=5)=436=19;P (ξ=6)=536.故P (3<ξ<7)=P (ξ=4)+P (ξ=5)+P (ξ=6)=13.三、解答题(10、11题12分、12题13分)10. [2012·江西六校联考]小明打算从A 组和B 组两组花样滑冰动作中选择一组参加比赛.已知小明选择A 组动作的概率是选择B 组动作的概率的3倍,若小明选择A 组动作并正常发挥可获得10分,没有正常发挥只能获得6分;若小明选择B 组动作则一定能正常发挥并获得8分.据平时训练成绩统计,小明能正常发挥A 组动作的概率是0.8.(1)求小明选择A 组动作的概率;(2)设x 表示小明比赛时获得的分数,求x 的分布列.解:(1)设小明选择A 组动作的概率为P (A ),选择B 组动作的概率为P (B ), 由题知P (A )=3P (B ),P (A )+P (B )=1, 解得P (A )=0.75.(2)由题知x 的取值为6,8,10. P (x =6)=0.75×0.2=0.15, P (x =8)=0.25,P (x =10)=0.75×0.8=0.6.其分布列为11.[2011·湖南]3件,当天营业结束后检查存货,若发现存量少于2件,则当天进货补充至3件,否则不进货,将频率视为概率.(1)求当天商店不进货的概率;(2)记X 为第二天开始营业时该商品的件数,求X 的分布列.解:(1)P (“当天商店不进货”)=P (“当天商店销售量为0件”)+P (当天商品销售量为1件”)=120+520=310. (2)由题意知,X 的可能取值为2,3.P (X =2)=P (“当天商品销售量为1件”)=520=14;P (X =3)=P (“当天商品销售量为0件”)+P (“当天商品销售量为2件”)+P (“当天商品销售量为3件”)=120+920+520=34.故X 的分布列为12.40人,成绩分为1~5五个档次,例如表中所示跳高成绩为4分,跳远成绩为2分的队员为5人.将全部队员的姓名卡混合在一起,任取一张,该卡片上队员的跳高成绩为X ,跳远成绩为Y ,设X ,Y 为随机变量(注:没有相同姓名的队员).(1)求X =4的概率及X ≥3且y =5的概率; (2)求m +n 的值;(3)若Y 的均值为10540,求m ,n 的值.解:(1)当X =4时的概率为P 1=940;当X ≥3且Y =5时的概率为P 2=440=110.(2)m +n =40-37=3.(3)P (Y =1)=8+n 40;P (Y =2)=14;P (Y =3)=14;P (Y =4)=4+m 40;P (Y =5)=18.因为Y 的均值为10540,所以99+n +4m 40=10540,于是m =1,n =2.。
2019-2020学年高二数学北师大版选修2-1学业分层测评11 Word版含答案
学业分层测评(十一)(建议用时:45分钟)[学业达标]一、选择题1.如图2-5-7,在长方体ABCD -A 1B 1C 1D 1中,M ,N 分别是棱BB 1,B 1C 1的中点,若∠CMN =90°,则异面直线AD 1与DM 的夹角为( )图2-5-7A .30°B .45°C .60°D .90°【解析】 建立如图所示的空间直角坐标系,设D 1C 1=a ,C 1B 1=b ,C 1C =c .则D 1(0,0,0),A (0,b ,c ),D (0,0,c ),C (a,0,c ),M ⎝ ⎛⎭⎪⎪⎫a ,b ,12c ,N ⎝ ⎛⎭⎪⎪⎫a ,12b ,0.则MN →=⎝ ⎛⎭⎪⎪⎫0,-12b ,-12c ,MC →=⎝ ⎛⎭⎪⎪⎫0,-b ,12c .∵∠CMN =90°,∴MN →·MC →=0. 即12b 2-14c 2=0,即b 2=12c 2. ∴AD1→·DM →=(0,-b ,-c )·⎝ ⎛⎭⎪⎪⎫a ,b ,-12c =-b 2+12c 2=0.∴AD 1与DM 的夹角为90°.【答案】 D2.如图2-5-8,在正四面体A -BCD 中,E 为棱AD 的中点,则CE 与平面BCD 的夹角的正弦值为()图2-5-8A.32B .23C.12D .33【解析】 作AO ⊥平面BCD 于O ,则O 是△BCD 的中心,以O 为坐标原点,OD 为y 轴,OA 为z 轴建立空间直角坐标系,设AB =2,则O(0,0,0),A ⎝ ⎛⎭⎪⎪⎫0,0,263,C ⎝ ⎛⎭⎪⎪⎫1,-33,0,E ⎝ ⎛⎭⎪⎪⎫0,33,63, ∴OA →=⎝ ⎛⎭⎪⎪⎫0,0,263,CE →=⎝⎛⎭⎪⎪⎫-1,233,63, ∴cos 〈OA →,CE →〉=OA →·CE→|OA →||CE →|=43263×3=23.∴CE 与平面BCD 的夹角的正弦值为23.【答案】 B3.过正方形ABCD 的顶点A 作线段P A⊥平面ABC ,且P A =AB ,则平面ABC 与平面PCD 所成锐二面角的度数为( )A .75°B .60°C .45°D .30°【解析】 以A 为坐标原点,AB ,AD ,AP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,不妨设AB =1,则A (0,0,0),B (1,0,0),C (1,1,0),D (0,1,0),P (0,0,1),从而PD →=(0,1,-1),CD →=(-1,0,0).设平面ABC 与平面PCD 的法向量分别为n 1,n 2,取n 1=AP →=(0,0,1).设n 2=(x ,y ,z ),由n 2⊥CD →,n 2⊥PD →,可得⎩⎪⎨⎪⎧n2·CD →=-x =0n2·PD →=y -z =0,可取n 2=(0,1,1).于是cos 〈n 1,n 2〉=n1·n2|n1||n2|=0+0+11×2=22,所以平面ABC 与平面PCD 所成锐二面角的度数为45°.【答案】 C4.如图2-5-9所示,已知点P 为菱形ABCD 所在平面外一点,且P A⊥平面ABCD ,P A =AD =AC ,点F 为PC 中点,则平面CBF 与平面DBF 夹角的正切值为( )图2-5-9A.36B .34C.33D .233【解析】 设AC ∩BD =O ,连接OF ,以O 为原点,OB ,OC ,OF 所在直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系,设P A =AD =AC =1,则BD =3,∴B ⎝ ⎛⎭⎪⎪⎫32,0,0,F ⎝ ⎛⎭⎪⎪⎫0,0,12,C ⎝ ⎛⎭⎪⎪⎫0,12,0,D ⎝ ⎛⎭⎪⎪⎫-32,0,0.∴OC →=⎝ ⎛⎭⎪⎪⎫0,12,0,且OC →为平面BDF 的一个法向量.由BC →=⎝ ⎛⎭⎪⎪⎫-32,12,0,FB →=⎝ ⎛⎭⎪⎪⎫32,0,-12可得平面BCF 的一个法向量n =(1,3,3). ∴cos 〈n ,OC →〉=217,sin 〈n ,OC →〉=277.∴tan 〈n ,OC →〉=233.【答案】 D5.P 是二面角α-AB -β棱上的一点,分别在α,β平面内引射线PM ,PN ,如果∠BPM =∠BPN =45°,∠MPN =60°,那么α与β的夹角大小为( )【导学号:32550047】A .60°B .70°C .80°D .90°【解析】 设PM =a ,PN =b ,作ME ⊥AB ,NF ⊥AB ,则因∠BPM =∠BPN =45°,故PE =a 2,PF =b2.于是EM →·FN →=(PM →-PE →)·(PN →-PF →)=PM →·PN →-PM →·PF →-PE →·PN →+PE →·PF →=ab cos 60°-a ·b 2cos 45°-a 2·b cos 45°+a 2·b 2=ab 2-ab 2-ab 2+ab 2=0.因为EM ,FN 分别是α,β内的与棱AB 垂直的两条直线,所以EM →与FN →的夹角就是α与β的夹角.【答案】 D 二、填空题6.若平面α的一个法向量为m =(3,3,0),直线l 的一个方向向量为b =(1,1,1),则l 与α所成角的余弦值为________.【解析】 ∵平面α的法向量为m =(3,3,0),直线l 的一个方向向量为b =(1,1,1). 则cos 〈m ,b 〉=m·b|m||b|=1×3+1×3+032×3=63,sin 〈m ,b 〉=33.∴l 与α所成角的余弦值为33.【答案】337.正方形ABCD 所在平面与正方形ABEF 所在平面成60°的二面角,则异面直线AD 与BF 所成角的余弦值是________.【导学号:32550048】【解析】 建立如图坐标系,设AB =1,则D ⎝ ⎛⎭⎪⎪⎫12,0,32,A (0,0,0),AD →=⎝ ⎛⎭⎪⎪⎫12,0,32,F (1,0,0),B (0,1,0),BF →=(1,-1,0).cos θ=AD →·BF→|AD →|·|BF →|=12+0+01·2=24.【答案】 248.如图2-5-10所示,在正方体ABCD -A 1B 1C 1D 1中,A 1C 与AB 夹角的余弦值为________,A 1C 1与平面BB 1C1C 夹角为________,平面A 1BCD 1与平面ABCD 的夹角为________.图2-5-10【解析】 ∠A 1CD 是A 1C 与AB 的夹角,cos ∠A 1CD =13=33;∠A 1C 1B 1是A 1C 1与面BC 1的夹角,∠A 1C 1B 1=45°; ∠A 1BA 是面A 1BCD 1与面ABCD 的夹角,∠A 1BA =45°. 【答案】 3345° 45°三、解答题9.如图2-5-11,在三棱锥S -ABC 中,∠SAB =∠SAC =∠ACB =90°,AC =2,BC =13,SB =29.图2-5-11(1)求证:SC ⊥BC ;(2)求SC 与AB 所成角的余弦值.【解】 (1)证明:如图,取A 为原点,垂直于AB 的直线为x 轴,AB ,AS 分别为y 轴、z 轴建立空间直角坐标系,则有AC =2,BC =13,SB =29,得B (0,17,0)、S (0,0,23)、C ⎝⎛⎭⎪⎪⎫21317,417,0, ∴SC →=⎝ ⎛⎭⎪⎪⎫21317,417,-23, CB →=⎝⎛⎭⎪⎪⎫-21317,1317,0. ∵SC →·CB →=0,∴SC ⊥BC . (2)设SC 与AB 所成的角为α AB →=(0,17,0),SC →·AB →=4,|SC →||AB →|=417,∴cos α=SC →·AB →|SC →||AB →|=1717,即为所求.10.如图2-5-12,在三棱柱ABO -A 1B 1O 1中,OA⊥OB ,且OB =3,OA =4,BB 1=4,D 为A 1B 1的中点.P 为BB 1上一点,且OP ⊥BD .图2-5-12求直线OP 与底面AOB 的夹角的正弦值.【解】 以O 点为原点,以OB ,OA ,OO 1分别为x ,y ,z 轴建立空间直角坐标系,由题意,有O (0,0,0),B (3,0,0),D ⎝ ⎛⎭⎪⎪⎫32,2,4,B 1(3,0,4).设P (3,0,z ),则BD →=⎝ ⎛⎭⎪⎪⎫-32,2,4,OP →=(3,0,z ).∵BD ⊥OP ,∴BD →·OP →=-92+4z =0,解得z =98.∵BB 1⊥平面AOB ,∴BB1→是底面AOB 的一个法向量,且BB1→=(0,0,4).∴sin ∠POB =|cos ∠BPO |=|OP →·BB1→||OP →||BB1→|=923738×4=37373.∴直线OP 与底面AOB 夹角的正弦值为37373.[能力提升]1.平面α的一个法向量为n 1=(4,3,0),平面β的一个法向量为n 2=(0,-3,4),则平面α与平面β夹角的余弦值为( )A .-925B .925 C.725D .以上都不对 【解析】 cos 〈n 1,n 2〉=n1·n2|n1||n2|=-925,∴平面α与平面β夹角的余弦值为925.【答案】 B2.已知四棱锥P -ABCD 的底面为直角梯形,AB∥DC ,∠DAB =90°,P A⊥底面ABCD ,且P A =AD =DC =12,AB =1,则AC 与PB 所成的角的余弦值为( )A.55B .105C.155D .255【解析】 以A 为坐标原点,建立如图所示的空间直角坐标系A -xyz ,则各点坐标为A (0,0,0),B (0,1,0),C ⎝ ⎛⎭⎪⎪⎫12,12,0,P ⎝ ⎛⎭⎪⎪⎫0,0,12,从而AC →=⎝ ⎛⎭⎪⎪⎫12,12,0,PB →=⎝⎛⎭⎪⎪⎫0,1,-12,所以cos 〈AC →,PB →〉=AC →·PB →|AC →|·|PB →|=105.【答案】 B3.正四棱锥S -ABCD 中,O 为顶点在底面上的投影,P 为侧棱SD 的中点,且SO =OD ,则直线BC 与平面P AC 的夹角是________.【解析】 如图,以O 为原点建立空间直角坐标系,设OD =SO =OA =OB =OC =a , 则A (a,0,0),B (0,a,0),C (-a,0,0),P ⎝ ⎛⎭⎪⎪⎫0,-a 2,a 2,则CA →=(2a,0,0),AP →=⎝ ⎛⎭⎪⎪⎫-a ,-a 2,a 2,CB →(a ,a,0).设平面P AC 的法向量为n ,可求得n =(0,1,1),设BC 与平面P AC 的夹角为θ,则sin θ=|cos 〈CB →,n 〉|=12,∴θ=30°.【答案】 30°4.如图2-5-13,在四棱锥P -ABCD 中,P A ⊥底面ABCD ,AD ⊥AB ,AB ∥DC ,AD =DC =AP =2,AB =1,点E 为棱PC 的中点.【导学号:32550049】图2-5-13(1)证明:BE ⊥DC ;(2)求直线BE 与平面PBD 所成角的正弦值;(3)若F 为棱PC 上一点,满足BF ⊥AC ,求二面角F -AB -P 的余弦值.【解】 依题意,以点A 为原点建立空间直角坐标系(如图),可得B (1,0,0),C (2,2,0),D (0,2,0),P(0,0,2)由E 为棱PC 的中点,得E (1,1,1). (1)证明:BE →=(0,1,1),DC →=(2,0,0), 故BE →·DC →=0,所以BE ⊥DC . (2)BD →=(-1,2,0),PB →=(1,0,-2). 设n =(x ,y ,z )为平面PBD 的法向量,则⎩⎪⎨⎪⎧n·BD →=0,n·PB →=0,即⎩⎪⎨⎪⎧-x +2y =0,x -2z =0.不妨令y =1,可得n =(2,1,1)为平面PBD 的一个法向量.于是有cos 〈n ,BE →〉=n·BE →|n|·|BE →|=26×2=33. 所以,直线BE 与平面PBD 所成角的正弦值为33. (3)BC →=(1,2,0),CP →=(-2,-2,2),AC →=(2,2,0),AB →=(1,0,0).由点F 在棱PC 上,设CF →=λCP →,0≤λ≤1.故BF →=BC →+CF →=BC →+λCP →=(1-2λ,2-2λ,2λ).由BF ⊥AC ,得BF →·AC →=0,因此,2(1-2λ)+2(2-2λ)=0,解得λ=34. 即BF →=⎝ ⎛⎭⎪⎪⎫-12,12,32. 设n 1=(x ,y ,z )为平面F AB 的法向量,则⎩⎪⎨⎪⎧ n1·AB →=0,n1·BF →=0,即⎩⎪⎨⎪⎧x =0,-12x +12y +32z =0. 不妨令z =1,可得n 1=(0,-3,1)为平面F AB 的一个法向量.取平面ABP 的法向量n 2=(0,1,0). 则cos 〈n 1,n 2〉=n1·n2|n1|·|n2|=-310×1=-31010, 易知,二面角F -AB -P 是锐角,所以其余弦值为31010.。
北师大版本高中高二数学选修21试卷习题包括答案.docx
选修 2- 1姓名:张平安一 选 择 题(本题共 12 个小题,每小题只有一个正确答案,每小题 5 分,共 60分)1.x>2 是 x 2 4 的()A.充分不必要条件 B. 必要不充分条件A 、 1 a1b cB 、 1 a1b cC 、 1 a1b c D 、2222221 a 1 b c2 25、空间直角坐标系中, O 为坐标原点, 已知两点 A (3,1,0),B (-13,0),若点 C 满足 OC =α OA +β OB ,其中 α,β R ,α+β=1,则点 C 的轨迹为A 、平面B、直线C、圆D 、线段6、已知 a =(1,2,3), b =(3,0,-1), c =1,1, 3 给出下列等式:5 5C.既充分又必要条件D.既不充分又不必要条件2.命题“在 ABC 中,若 sin A1,则 A=30o ”的否命题是(2A. 在中,若 sin A1 ,则 ≠ 30oABC2AB. 在 ABC 中,若 sin A1,则 A=30o1 2C.在中,若 sin A,则 ≠ 30oABC2A① ∣ a b c ∣ = ∣a b c ∣ ② (a b) c = a (bc)③222)(ab c) 2 = ab c④ (a b) c = a (b c)其中正确的个数是A 、1 个B 、2 个C 、3 个D 、4 个7. 已知椭圆 x2 y 21 (a 5) 的两个焦点为 F 1 、 F2 ,且 | F 1 F 2 | 8 ,弦 AB 2a25D. 以上均不正确过点 F 1 ,则△ ABF 2 的周长为()3.已知命题 P :若 a b ,则 c>d ,命题 Q :若 e f ,则 a b 。
若 P 为真(A )10 (B )20 (C )2 41 (D ) 4 41 8. 椭圆 x 2y 2且 Q1上的点 P 到它的左准线的距离是 10,那么点 P 到它的 否 命 题 为 真 , 则 “ c d” 是 “ ef 的 ”10036的右焦点的距离是( ) ( )(A )15 (B )12 (C )10 (D )8A .充分条件B .必要条件C .充要条件D .既不9. 椭圆 x 2y 2 1 的焦点 F 1 、 F 2 ,P 为椭圆上的一点,已知 PF 1 PF 2 ,则259)(A )9 (B )12 (C )10 (D )8充分也不必要条件△ F 1 PF 2 的面积为(10. 椭圆 x 2 y 21上的点到直线 x 2y 2 0 的最大距离是()4、在平行六面体 ABCD-A 1B 1C 1D 1 中,M 为 AC 与 BD 的交点,若 A 1 B 1 a ,164A 1D 1b , A 1 Ac ,则下列向量中与 B 1M 相等的向量是(A )3(B ) 11 (C ) 2 2 (D ) 1011. 过抛物线 y ax 2(a>0) 的焦点 F 作一直线交抛物线于 P 、Q 两点,若线段 PF 与 FQ 的长分别为 p 、q ,则 1 1等于( )pq(A )2a(B )1(C ) 4a(D )42aa12. 如果椭圆x 2y 2 1的弦被点 (4 ,2) 平分,则这条弦所在的直线方369程是( )(A ) x 2 y0( B ) x 2 y 4 0(C ) 2x 3y 12 0(D ) x 2 y 8 0二.填空题(本大题共 4 个小题,每小题 4 分,共 16 分)三解答题(本大题共 6 个小题,共 74 分)17、(本题满分 14 分)已知命题 P “:若 ac 0, 则二次方程 ax 2 bx c0 没有实根” .(1) 写出命题 P 的否命题; (2) 判断命题 P 的否命题的真假 , 并证明你的结论 .13、“末位数字是 0 或 5 的整数能被 5 整除”的否定形式是否命题是14. 与椭圆 x 2y 2 1 具有相同的离心率且过点(, 3 )的椭圆的标准432 -方程。
2021年北师大版高二数学选修11模块试卷及答案
高二年级数学学科选修1-1模块试题命题人:宝鸡市斗鸡中学 张永春卷面满分为120分 考试时间90分钟一:选择题(本题共10小题,每题4分,共40分)1、判断下列语句是真命题的为( ).A .若整数a是素数,则a是奇数B .指数函数是增函数吗?C .若平面上两条直线不相交,则这两条直线平行D .x>152. “2x >”是“24x >”的( ).A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件3.条件210p x ->:,条件2q x <-:,则p ⌝是q ⌝的( ).A. 充分但不必要条件B. 必要但不充分条件C. 充分且必要条件D. 既不充分也不必要条件4、曲线221259x y +=与曲线22125-9-x y k k+=(k<9)的( ). A.长轴长相等 B.短轴长相等 C.离心率相等 D.焦距相等5.函数13)(23+-=x x x f 是减函数的区间为( ).A .),2(+∞B .)2,(-∞C .)0,(-∞D .(0,2) 6.函数,93)(23-++=x ax x x f 已知3)(-=x x f 在时取得极值,则a =( ).A .2B .3C .4D .57.抛物线24(0)y ax a =<的焦点坐标是( ).A.(,0)aB.(,0)a -C.(0,)aD. (0,)a -8.曲线34y x x =-在点(1,3)--处的切线方程是( ).A. 74y x =+B. 72y x =+C. 4y x =-D. 2y x =-9.与圆221x y +=及圆22-8120x y x ++=都外切的圆的圆心在( ). A.一个椭圆上 B.双曲线的一支上 C.一条抛物线上 D.一个圆上10. 设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是( ).A.2 B. 12C. 2D. 1 二:填空题(本题共4个小题,每小题5分,共20分)11.在下列四个命题中,正确的有________.(填序号)①若A 是B 的必要不充分条件,则非B 也是非A 的必要不充分条件②“⎩⎨⎧≤-=∆>04,02ac b a ”是“一元二次不等式20ax bx c ++≥的解集为R 的充要条件 ③“1x ≠”是“21x ≠”的充分不必要条件④“0x ≠”是“0x x +>”的必要不充分条件 12.已知方程22-121x y m m =++表示双曲线,则m 的取值范围是_________. 13.已知自由下落物体的路程为212gt ,则物体在t 0时刻的瞬时速度为 . 14.人造地球卫星的运行轨道是以地心为一个焦点的椭圆。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2模块 第11节[知能演练]一、选择题1.设f ′(x )是函数f (x )的导数,y =f ′(x )的图象如右图所示,则y =f (x )的图象最有可能是( )解析:由y =f ′(x )的图象可知,当x <0时,f ′(x )>0,∴f (x )在(-∞,0)上单调递增;当0<x <2时,f ′(x )<0,∴f ′(x )在(0,2)上单调递减.故选C.答案:C2.函数f (x )=1+x -sin x 在(0,2π)上是( )A .增函数B .减函数C .在(0,π)上增,在(π,2π)上减D .在(0,π)上减,在(π,2π)上增 解析:f ′(x )=1-cos x >0, ∴f (x )在(0,2π)上递增.故选A. 答案:A3.若a >3,则方程x 3-ax 2+1=0在(0,2)上恰有( )A .0个根B .1个根C .2个根D .3个根解析:令f (x )=x 3-ax 2+1,则f ′(x )=3x 2-2ax =3x (x -23a ).由f ′(x )=0,得x =0或x =23a (∵a >3,∴23a >2).∴当0<x <2时,f ′(x )<0,即f (x )在(0,2)上单调递减. 又f (0)·f (2)=8-4a +1=9-4a <0, ∴f (x )在(0,2)上有一个零点, 即方程在(0,2)上有一实根.故选B. 答案:B4.设a ∈R ,若函数y =e ax +3x ,x ∈R 有大于零的极值点,则( )A .a >-3B .a <-3C .a >-13D .a <-13解析:y ′=a ·e ax +3=0,当a =0时,显然不合题意,∴a ≠0. ∴e ax =-3a .∴x =1a ln(-3a ).由题意,得1a ln(-3a )>0,∴⎩⎪⎨⎪⎧a <0,0<-3a <1.∴a <-3. 故应选B. 答案:B 二、填空题5.已知函数f (x )=x 3-12x +8在区间[-3,3]上的最大值与最小值分别为M ,m ,则M -m =________.解析:f ′(x )=3x 2-12=3(x +2)(x -2),令f ′(x )=0,得x =±2.∵f (-3)=17,f (3)=-1,f (-2)=24,f (2)=-8,∴M -m =f (-2)-f (2)=32. 答案:32 6.若函数f (x )=4xx 2+1在区间(m,2m +1)上是单调递增函数,则实数m 的取值范围是________.解析:f ′(x )=4(x 2+1)-8x 2(x 2+1)2=4(1-x 2)(x 2+1)2,令f ′(x )>0,∴-1<x <1. 根据题意,得⎩⎪⎨⎪⎧m ≥-1,2m +1≤1,2m +1>m ,∴-1<m ≤0.答案:(-1,0] 三、解答题7.设函数f (x )=ln(2x +3)+x 2. (1)讨论f (x )的单调性;(2)求f (x )在区间[-34,14]上的最大值和最小值.解:(1)函数f (x )的定义域为(-32,+∞),f ′(x )=22x +3+2x =2(2x +1)(x +1)2x +3,令f ′(x )>0,∴x >-12或-32<x <-1.令f ′(x )<0,∴-1<x <-12.∴f (x )在区间(-32,-1)和(-12,+∞)上为增函数,在区间(-1,-12)上为减函数.(2)当x 在区间[-34,14]上变化时,f ′(x )与f (x )变化情况如下表:f (-34)=916+ln 32,f (-12)=14+ln2,f (14)=116+ln 72,由表知函数f (x )在x =-12处取最小值14+ln2.f (-34)-f (14)=12+ln 37=12(1-ln 499)<0.故函数f (x )在x =14处取最大值116+ln 72.8.已知f (x )=12x 2-a ln x (a ∈R ),(1)求函数f (x )的单调区间; (2)求证:当x >1时,12x 2+ln x <23x 3.(1)解:f ′(x )=x -a x =x 2-ax(x >0),若a ≤0时,f ′(x )≥0恒成立, ∴函数f (x )的单调增区间为(0,+∞). 若a >0时,令f ′(x )>0,得x >a ,∴函数f (x )的单调增区间为(a ,+∞),减区间为(0,a ). (2)证明:设F (x )=23x 3-(12x 2+ln x ),故F ′(x )=2x 2-x -1x .∴F ′(x )=(x -1)(2x 2+x +1)x .∵x >1,∴F ′(x )>0.∴F (x )在(1,+∞)上为增函数. 又F (x )在[1,+∞)上连续,F (1)=16>0,∴F (x )>16在(1,+∞)上恒成立.∴F (x )>0.∴当x >1时,12x 2+ln x <23x 3.[高考·模拟·预测]1.函数f (x )=(x -3)e x 的单调递增区间是( )A .(-∞,2)B .(0,3)C .(1,4)D .(2,+∞)解析:函数f (x )=(x -3)e x 的导数为f ′(x )=[(x -3)e x ]′=1·e x +(x -3)·e x =(x -2)·e x ,由函数导数与函数单调性关系得:当f ′(x )>0时,函数f (x )单调递增,此时由不等式f ′(x )=(x -2)·e x >0解得:x >2.答案:D2.若函数f (x )=x 3-6bx +3b 在(0,1)内有极小值,则实数b 的取值范围是( )A .(0,1)B .(-∞,1)C .(0,+∞)D .(0,12)解析:∵f ′(x )=3x 2-6b ,由题意,函数f ′(x )图象如右图.∴⎩⎪⎨⎪⎧ f ′(0)<0,f ′(1)>0,即⎩⎪⎨⎪⎧-6b <0,3-6b >0,得0<b <12.故选D.答案:D3.函数f (x )=x 3-15x 2-33x +6的单调减区间为________.解析:由f (x )=x 3-15x 2-33x +6得,f ′(x )=3x 2-30x -33,令f ′(x )<0,即3(x -11)(x +1)<0,求得-1<x <11,所以函数f (x )的单调减区间为(-1,11). 答案:(-1,11)4.若函数f (x )=x 2+ax +1在x =1处取极值,则a =________.解析:由于f ′(x )=(x 2+a )′·(x +1)-(x 2+a )·(x +1)′(x +1)2=2x ·(x +1)-(x 2+a )·1(x +1)2=x 2+2x -a (x +1)2,而函数f (x )在x =1处取极值,则f ′(1)=12+2×1-a (1+1)2=0,解得a =3,故填3.答案:35.已知函数f (x )=(x 2+ax -2a 2+3a )e x (x ∈R ),其中a ∈R . (Ⅰ)当a =0时,求曲线y =f (x )在点(1,f (1))处的切线的斜率;(Ⅱ)当a ≠23时,求函数f (x )的单调区间与极值.解:(Ⅰ)当a =0时,f (x )=x 2e x ,f ′(x )=(x 2+2x )e x ,故f ′(1)=3e.所以曲线y =f (x )在点(1,f (1))处的切线的斜率为3e.(Ⅱ)f ′(x )=[x 2+(a +2)x -2a 2+4a ]e x . 令f ′(x )=0,解得x =-2a 或x =a -2. 由a ≠23知,-2a ≠a -2.以下分两种情况讨论.(1)若a >23,则-2a <a -2.当x 变化时,f ′(x ),f (x )的变化情况如下表:内是增函数,在函数f (x )在x =-2a 处取得极大值f (-2a ),且f (-2a )=3a e -2a.函数f (x )在x =a -2处取得极小值f (a -2),且f (a -2)=(4-3a )e a -2.(2)若a <23,则-2a >a -2.当x 变化时,f ′(x ),f (x )的变化情况如下表:函数f (x )在x =a -2处取得极大值f (a -2),且f (a -2)=(4-3a )e a -2.函数f (x )在x =-2a 处取得极小值f (-2a ),且f (-2a )=3a e-2a.[备选精题]6.若存在实常数k 和b ,使得函数f (x )和g (x )对其定义域上的任意实数x 分别满足:f (x )≥kx +b 和g (x )≤kx +b ,则称直线l :y =kx +b 为函数f (x )和g (x )的“隔离直线”.已知h (x )=x 2,φ(x )=2eln x (其中e 为自然对数的底数).(1)求F (x )=h (x )-φ(x )的极值;(2)函数h (x )和φ(x )是否存在隔离直线?若存在,求出此隔离直线的方程;若不存在,请说明理由.解:(1)∵F (x )=h (x )-φ(x )=x 2-2eln x (x >0), ∴F ′(x )=2x -2e x =2(x -e)(x +e)x .当x =e 时,F ′(x )=0.∵当0<x <e 时,F ′(x )<0,此时函数F (x )递减; 当x >e 时,F ′(x )>0,此时函数F (x )递增, ∴当x =e 时,F (x )取极小值,其极小值为0.(2)由(1)可知函数h (x )和φ(x )的图象在x =e 处有公共点,因此若存在h (x )和φ(x )的隔离直线, 则该直线过这个公共点, 设隔离直线的斜率为k , 则直线方程为y -e =k (x -e), 即y =kx +e -k e.由h (x )≥kx +e -k e(x ∈R ),可得x 2-kx -e +k e ≥0,当x ∈R 时恒成立. ∴Δ=(k -2e)2, ∴由Δ≤0,得k =2 e.下面证明φ(x )≤2e x -e ,当x >0时恒成立. 令G (x )=φ(x )-2e x +e =2eln x -2e x +e , 则G ′(x )=2ex -2e =2e(e -x )x ,当x =e 时,G ′(x )=0. ∵当0<x <e 时,G ′(x )>0, 此时函数G (x )递增;当x >e 时,G ′(x )<0,此时函数G (x )递减, ∴当x =e 时,G (x )取极大值,其极大值为0. 从而G (x )=2eln x -2e x +e ≤0, 即φ(x )≤2e x -e(x >0)恒成立,∴函数h (x )和φ(x )存在唯一的隔离直线y =2e x -e.。