14.二次函数的实际应用
二次函数实际应用
二次函数实际应用
二次函数是高中数学中重要的一章,也是大学数学和物理学等科目的基础。
它的实际应用非常广泛,下面列举一些常见的实际应用:
抛物线运动:当物体在重力作用下做自由落体运动时,它的运动轨迹是一个抛物线,而抛物线的方程就是二次函数。
经济学:二次函数可以用来描述经济学中的成本、利润、收益等变量之间的关系,例如生产某种产品的成本随产量的增加而增加,可以用二次函数来表示。
工程学:二次函数可以用来描述工程学中的一些物理量之间的关系,例如弹簧的弹性系数与伸长量之间的关系。
信号处理:在信号处理领域中,二次函数经常用于信号分析和滤波等方面。
计算机图形学:在计算机图形学中,二次函数被广泛应用于图像处理、光线追踪等方面。
总之,二次函数作为一种重要的数学工具,在许多学科中都有着广泛的应用。
了解二次函数的特点和应用,可以帮助我们更好地理解和应用这个概念,提高我们的数学和科学能力。
二次函数的应用
二次函数的应用在数学中,二次函数是指形式为f(x) = ax^2 + bx + c的函数,其中a、b、c为常数且a不等于0。
二次函数是一种常见且重要的函数类型,在实际生活中有广泛的应用。
本文将介绍二次函数的应用,并通过具体的实例来说明其在不同领域中的作用。
一、二次函数在物理学中的应用二次函数在物理学中常常用于描述运动的轨迹、抛物线的形状以及力学的相关问题。
例如,当一个物体在空中自由落体时,其下落的高度与时间之间的关系可以用二次函数来描述。
假设物体从高度为h的位置自由落下,忽略空气阻力的影响,记时间为t,则物体的高度可以表示为h = -gt^2 + vt + h0,其中g是重力加速度,v是物体的初速度,h0是物体的初始位置。
该二次函数描述了物体下落的抛物线轨迹。
二、二次函数在经济学中的应用二次函数在经济学中的应用非常广泛,可以用于描述成本、收益、利润等与产量或销量之间的关系。
例如,对于某个企业而言,其生产的产品的总成本可以由二次函数表示。
假设该企业的总成本C与产量x之间的关系可以表示为C = a'x^2 + b'x + c',其中a'、b'、c'为常数。
该二次函数描述了生产成本随着产量的增加而递增的曲线,对企业的经营决策具有重要的参考意义。
三、二次函数在工程学中的应用在工程学中,二次函数常常用于描述曲线的形状以及材料的弯曲变形。
例如,对于一座桥梁而言,其横截面的弯曲变形可以用二次函数来表示。
假设桥梁横截面的变形高度与距离之间的关系可以表示为y = ax^2 + bx + c,其中y表示高度,x表示距离。
该二次函数描述了桥梁横截面弯曲变形的形状,对于设计和构建安全的桥梁至关重要。
四、二次函数在生物学中的应用在生物学研究中,二次函数常常用于描述某些生物过程的增长或衰减。
例如,某种细菌的数量随着时间的推移而增长,其增长过程可以用二次函数来描述。
假设细菌数量与时间之间的关系可以表示为N = at^2 + bt + c,其中N表示细菌数量,t表示时间。
二次函数实际应用
二次函数实际应用二次函数是数学中的一种基本函数形式,具有形如y=ax^2+bx+c的表达式。
在实际应用中,二次函数可以描述许多现象和问题,并被广泛应用于物理、经济、工程等领域。
首先,二次函数在物理学中有着广泛的应用。
例如,自由落体运动可以通过秒关系y=1/2gt^2的二次函数形式进行描述,其中y表示物体的下落距离、g表示重力加速度、t表示时间。
此外,抛体运动、弹道轨迹、摆动等运动现象也可以用二次函数进行建模和分析。
其次,经济学中的成本、收益等问题也可以通过二次函数进行描述。
例如,一个企业的总成本可以表示为二次函数的形式,其中在一些产量水平下,固定成本和变动成本构成了二次函数中的常数项和一次项,而对应产量的平方构成了二次项。
通过分析这个二次函数,可以找到企业产量的最优值,从而使得总成本达到最小。
此外,工程学中的一些场景也可以通过二次函数进行建模。
例如,在桥梁设计中,桥的弯曲形状可以通过二次函数进行描述,从而确定合适的材料和结构;在天线设计中,信号的收发效果也可以通过二次函数进行分析,从而优化天线的设计参数。
除了以上几个领域,二次函数还可以用于图形的绘制和文化艺术中的创作。
二次函数具有形状优美的拱形,因此可以用于音乐中的节奏变化、舞蹈中的身体动作设计等方面。
此外,在美术作品中,二次函数的图像也经常被用来表现风景、人物或者抽象的意境。
除了上述应用领域,二次函数在数学领域本身也有着重要的地位。
二次函数是一种基本的函数形式,可以通过平方完成全域的建模,而一般的函数形式可以通过一次函数和二次函数的组合得到。
此外,二次函数的图像特点例如顶点、对称轴、开口方向等,以及与其他函数形式的关系,也是数学教育中的重要内容。
总之,二次函数在实际应用中有着广泛的用途。
无论是物理、经济、工程等领域,还是数学本身,都需要用到二次函数进行建模、分析和解决问题。
同时,二次函数也在文化艺术中发挥了重要的作用。
因此,了解和掌握二次函数的性质和应用,对于数学教育和实际应用都具有重要意义。
二次函数解决实际问题
二次函数解决实际问题【文章主题】二次函数解决实际问题【引言】二次函数是高中数学中的重要概念,它可以用来解决各种实际问题。
二次函数不仅具有图像美观和数学特性丰富的优点,还能够帮助我们解决现实生活中的一系列实际问题。
本文将深入探讨二次函数对于解决实际问题的具体应用,并结合示例来进一步加深理解。
【正文】1. 什么是二次函数?二次函数是一种具有形式为y = ax^2+bx+c的函数,其中a、b、c 为常数,且a不等于0。
它的图像通常呈现出一个开口向上或向下的U型曲线,称为抛物线。
二次函数的解析式和图像特性使得它成为解决实际问题的有力工具。
2. 二次函数的实际问题应用2.1 抛物线的轨迹由于二次函数具有抛物线形状,因此它在物理学中的应用非常广泛。
在炮弹的抛射问题中,我们可以利用二次函数来描述弹道的形状和轨迹,从而计算出炮弹的射程、最高点和最大高度等重要参数。
二次函数还可以应用于天体运动的研究、桥梁设计的拱形以及运动物体的轨迹预测等领域。
2.2 最值问题二次函数在经济学和管理学中也有广泛的应用,尤其是涉及利润、成本和收益等问题。
在销售决策中,我们可以建立一个二次函数模型来找到最大利润所对应的产量或价格,从而为企业的营销活动提供科学依据。
二次函数还能够帮助我们解决最小成本和最大效益的问题,为管理决策提供指导。
2.3 预测与优化问题二次函数在预测和优化问题中也有重要应用。
在金融领域,我们可以利用二次函数来建立股票价格的模型,预测未来趋势和价格波动。
二次函数还可以用于优化问题,例如最佳化分工与生产,最佳投资组合等。
3. 示例分析为了更好地理解二次函数解决实际问题的应用,我们以一个典型例子进行分析。
假设有一块田地,面积为1000平方米,现在需要修建一个矩形花坛在田地中。
我们想要找到面积最大的花坛。
我们需要建立数学模型。
设田地的长为x米,宽为(1000/x)米,花坛的面积为A(x) = x*(1000/x) = 1000米^2。
二次函数的实际应用问题解题技巧
二次函数的实际应用问题解题技巧二次函数是一种在数学中非常重要的函数,它在各个领域都有广泛的应用,比如物理、工程、经济学等等。
本文将介绍二次函数的一些实际应用问题解题技巧,以及如何在实际问题中应用这些技巧。
正文:1. 二次函数的实际应用问题二次函数在数学中主要用于描述抛物线、双曲线等曲线的情况。
在各个领域,二次函数都有广泛的应用,下面列举几个例子:- 物理学:在物理学中,二次函数主要用于描述质点的运动轨迹,如牛顿第二定律、万有引力定律等。
- 工程学:在工程学中,二次函数主要用于描述机械、电气、建筑等领域中的问题,如压力、张力、电流等。
- 经济学:在经济学中,二次函数主要用于描述供求关系、价格变化等。
例如,抛物线可以用来描述通货膨胀率的变化。
2. 二次函数的解题技巧在实际问题中,我们需要用到二次函数的一些基本性质和解题技巧,下面列举一些常见的解题技巧:- 求抛物线与x轴的交点:通过用x=0和x=抛物线顶点式来求解。
- 求抛物线的对称轴:通过用y=-b/2a来求解,其中a和b是二次函数的系数。
- 求二次函数的极值:通过用抛物线的对称轴和x轴的交点来求解。
- 求二次函数的图像形状:通过用抛物线的顶点坐标和参数方程来求解。
3. 拓展除了上述技巧,我们还可以利用二次函数的一些特殊性质来解决实际问题。
例如,我们可以通过用二次函数的对称性来解决实际问题,如求解一个二次函数的极值、图像形状等。
此外,我们还可以利用二次函数的性质来解决实际问题,如求解一个二次函数的方程、求抛物线的解析式等。
二次函数在数学中有着广泛的应用,而且在实际问题中,我们需要用到二次函数的基本性质和解题技巧来解决实际问题。
掌握这些技巧,可以帮助我们更好地理解和解决实际问题。
二次函数在生活中的运用
二次函数在生活中的运用
二次函数是一种常见的数学函数,在生活中有很多实际应用。
它的形式为 y = ax + bx + c,其中 a、b、c 是常数,而 x 和 y 分别表示自变量和因变量。
以下是二次函数在生活中的几个实际应用:
1. 物体的运动轨迹
当物体受到恒定的重力作用时,它的运动轨迹通常是一个二次函数。
这个函数的自变量可以是物体的时间或者位置,而因变量则是物体的高度或者速度。
通过分析这个函数,人们可以预测物体的落地时间和落点位置,为实际生活中的运动问题提供了重要的帮助。
2. 投资收益的计算
在投资领域,人们通常使用复利计算来估算投资收益。
而复利计算的公式可以转化为一个二次函数,其中自变量是投资时间,因变量是投资收益。
通过这个函数,人们可以预测不同投资方案的收益情况,为投资决策提供了参考依据。
3. 地址编码的设计
在物流配送领域,地址编码是非常重要的一环。
通过设计合适的地址编码,可以提高配送效率,减少误送和漏送的问题。
而地址编码通常采用的是二进制编码,其中每个位都是一个二次函数。
通过对这些二次函数的分析,人们可以设计出高效而准确的地址编码方案。
综上所述,二次函数在生活中有着广泛的应用。
人们可以通过学习和掌握二次函数的相关知识,更好地理解和应用这个数学概念,为
实际生活中的问题提供更加精准和科学的解决方案。
二次函数的实际应用(利润问题)
建立模型
将问题抽象为二次函数模型,确定各项参数。
验证和调整
通过实际数据验证模型的准确性,并根据实际 情况进行调整和优化。
2 图像特点
二次函数的图像形状通常为抛物线,具有顶点、对称轴和开口方向等特点。
3 重要概念
二次函数的最值、最值点、零点等重要概念对利润问题的分析很有帮助。
二次函数的利润问题
利润问题是二次函数在实际应用中的一个典型问题。通过二次函数,我们可以计算出不同销量对应的利润,并 进一步分析销量与利润之间的关系。
利润的计算公式
1 收入
收入是销量乘以单价,可以表示为 R = px,其中 p 表示单价,x 表示销量。
2 成本
成本是与销量相关的固定成本和单位成本的乘积,可以表示为 C = a + bx。
3 利润
利润是收入减去成本,可以表示为 P = R - C。
二次函数在利润问题中的应用举例
例一:最大利润
根据给定的销量-利润函数,我们 可以通过分析函数的图像找到最 大利润所对应的销量。
例二:利润变化率
我们可以通过利润函数的一阶导 数(利润对销量的变化率)来分 析利润的增减情况。
例三:最佳生产量
通过分析利润函数的零点,我们 可以确定最佳生产量以最大化利 润。
最大化利润和最小化亏损
最大化利润
通过优化销量,控制成本和定价策略,我们可以最 大化企业的利润。
最小化亏损
在经营中,我们也需要考虑如何降低亏损,避免经 营困难。
求解利润最大化的方法
1
利润函数建模
将利润问题建立二次函数模型,确定各项参数。
2
图像分析
分析二次函数图像的顶点、开口方向等特点,确定最值点。
二次函数在生活中的应用
二次函数在生活中的应用
二次函数是一种常见的数学函数,它在我们的生活和工作中有许多应用。
以下是二次函数在生活中的几个应用:
1. 抛物线运动
当一个物体以一定的初速度开始运动,并且受到重力的影响而向下运动时,它的运动轨迹就是一条抛物线。
这个运动过程可以用二次函数来描述。
例如,当你抛出一颗球时,它的高度会随着时间的推移而不断降低,形成一条抛物线。
2. 建筑设计
在建筑设计中,二次函数可以用来描述建筑物的结构和形状。
例如,在建造一座拱形桥时,设计师需要使用二次函数来确定桥的最高点和曲线的形状。
3. 经济学
在经济学中,二次函数可以用来描述成本和收益之间的关系。
例如,当一家企业决定生产某种产品时,它需要考虑生产成本和销售收益之间的平衡点,这个平衡点可以用二次函数来计算。
4. 电子技术
在电子技术中,二次函数可以用来描述电路中的电压和电流之间的关系。
例如,在设计一条放大电路时,工程师需要使用二次函数来确定电路的增益和频率响应。
总之,二次函数在我们的生活和工作中有许多应用,这些应用涉及到不同的领域,包括物理学、工程学、经济学和电子技术等。
熟练
掌握二次函数的概念和应用可以帮助我们更好地理解和解决实际问题。
二次函数的应用
二次函数的应用二次函数是数学中一种常见的函数形式,其方程可以表示为:y = ax^2 + bx + c其中,a、b、c为常数,且a ≠ 0。
二次函数在许多实际问题中都有广泛的应用,本文将介绍二次函数在几个不同领域的具体应用案例。
一、物理学领域中的应用1. 自由落体问题当物体在重力作用下自由落体时,其高度与时间之间的关系可以用二次函数来描述。
假设物体从初始高度h0下落,时间t与高度h之间的关系可以表示为:h = -gt^2 + h0其中g为重力加速度,取9.8m/s^2。
通过解二次方程可以求解物体落地的时间以及落地时的位置。
2. 弹射物体的运动考虑一个弹射物体,如抛射出的炮弹或投射物,其路径可以用一个抛物线来表示。
弹射物体的运动轨迹可以通过二次函数得到,可以利用二次函数的顶点坐标来确定最远射程或最高点。
二、经济学领域中的应用1. 成本和收入关系在经济学中,企业的成本和收入通常与产量相关。
通常情况下,成本和收入之间存在二次函数关系。
通过分析二次函数的图像,可以确定最大利润产量或最低成本产量。
2. 售价和需求关系在市场经济中,产品的售价通常与需求量相关。
通常情况下,售价和需求量之间存在二次函数关系。
通过分析二次函数的图像,可以找到最佳定价,以达到利润最大化。
三、工程学领域中的应用1. 抛物线拱桥在建筑和结构工程中,抛物线是通常用来设计拱桥的形状。
由于抛物线具有均匀承重特性,因此可以最大程度地减少桥墩的数量,提高桥梁的承载能力。
2. 抛物面反射器在光学和声学工程中,抛物面被广泛应用于反射器的设计。
由于抛物面具有焦点特性,因此可以实现光或声波的聚焦效果,提高反射效率。
四、生物学领域中的应用1. 生长模型植物和动物的生长通常可以使用二次函数模型来描述。
二次函数可以帮助分析生物在不同生长阶段的生长速率,并预测未来的生长趋势。
2. 群体增长生态学中,群体增长通常可以使用二次函数模型来描述。
例如,一种昆虫群体的数量随时间的变化可以通过二次函数来表示,通过分析二次函数的图像,可以预测种群数量的变化趋势。
二次函数在生活中的应用
二次函数在生活中的应用二次函数在生活中的应用二次函数是高中数学中的一大重点,是研究量与量之间的关系的一种数学工具。
在生活中,二次函数的应用非常广泛,与我们的日常生活息息相关。
本文将从多个方面介绍二次函数在生活中的应用。
1. 物理学中的应用在物理学中,二次函数是研究运动的重要工具。
当物体处于自由落体状态,其下落距离随时间的变化关系就可以用二次函数来表示,这个函数就是常见的自由落体公式:y = -1/2 g t² + v₀t + y₀其中,y 表示下落距离,g 表示重力加速度,t 表示时间,v₀表示物体的初速度,y₀表示物体的初始高度。
二次函数还可以用来描述物体的抛物线运动。
例如,一个抛出的物体的高度与水平距离之间的关系就是一个二次函数。
这个函数被称为抛物线,可以用以下形式表示:y = ax² + bx + c其中,a 表示抛物线的形状,b 表示抛物线的位置,c 表示抛物线的高度。
2. 经济学中的应用在经济学中,二次函数也被广泛应用。
例如,一家公司的成本与生产量之间的关系可以用一个二次函数来表示。
成本由固定成本和可变成本组成,其中固定成本不随生产量变化,可变成本与生产量成二次函数关系。
其函数关系式为:C = a + bx + cx²其中,C 表示总成本,x 表示生产量,a 表示固定成本,b 和 c 是常数。
二次函数还可以应用在市场调研中。
例如,研究一个新产品的销售量与价格之间的关系,就可以用一个二次函数来表示:y = -ax² + bx + c其中,y 表示销售量,x 表示价格,a、b、c 为常数。
这个函数就是常见的需求函数,有助于制定合理的价格策略。
3. 工程中的应用在工程中,二次函数也有很多应用。
例如,一个建筑物的荷载与塔高之间的关系就可以用二次函数来表示,这个函数被称为荷载曲线。
荷载曲线可以用以下形式表示:y = ax² + bx + c其中,y 表示荷载,x 表示塔高,a 表示荷载的变化率,b 和 c 是常数。
二次函数实际问题易考题型总结(全)
二次函数实际问题易考题型总结技巧1.二次函数的应用:(1)二次函数常用来解决最优化问题,这类问题实际上就是求函数的最大(小)值;(2)二次函数的应用包括以下方面:分析和表示不同背景下实际问题中变量之间的二次函数关系;运用二次函数的知识解决实际问题中的最大(小)值.注意:二次函数实际问题主要分为两个方面的问题,几何图形面积问题和经济问题。
解几何图形面积问题时要把面积公式中的各个部分分别用同一个未知数表示1,我们要用x分别把h,l表示出来。
经济问题:总利润=出来,如三角形S=hl2总销售额-总成本;总利润=单件利润×销售数量。
解最值问题时,一定要注意自变量的取值范围。
分为三类:①对称轴在取值范围内;②取值范围在对称轴左边;③取值范围在对称轴右边。
2.解决实际问题时的基本思路:(1)理解问题;(2)分析问题中的变量和常量;(3)用函数表达式表示出它们之间的关系;(4)利用二次函数的有关性质进行求解;(5)检验结果的合理性,对问题加以拓展等.题型:一、利润最值问题1、某商店销售一种商品,每件的进价为2.50元,根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是13.50元时,销售量为500件,而单价每降低1元,就可以多售出200件.请你分析,销售单价多少时,可以获利最大.2.某水产品养殖企业为指导该企业某种水产品的养殖和销售,对历年市场行情和水产品养殖情况进行了调查.调查发现这种水产品的每千克售价y(元)与销售月份x (月)满足关系式1336 8y x=-+,而其每千克成本2y(元)与销售月份x(月)满足的函数关系如图所示.(1)试确定b,c的值;(2)求出这种水产品每千克的利润y(元)与销售月份x(月)之间的函数关系式;(3)“五一”之前,几月份出售这种水产品每千克的利润最大?最大利润是多少?3、某食品零售店为食品厂供销一种面包,未售出的面包可退回厂家.经统计销售情况发现,当这种面包的单价定为7角时,每天卖出160个.在此基础上,这种面包的单价每提高1角时,该零售店每天就会少卖出20个.考虑了所有因素后该零售店每个面包的成本是5角.设这种面包的单价为x(角),零售店每天销售这种面包所获得的利润为y(角).⑴用含x的代数式分别表示出每个面包的利润与卖出的面包个数;⑵求y与x之间的函数关系式;⑶当面包单价定为多少时,该零售店每天销售这种面包获得的利润最大?最大利润为多少?二、面积最值问题1.蒋老师的家门前有一块空地,空地外有一面长10米的围墙,为了美化生活环境,蒋老师准备靠墙修建一个矩形花圃,他买回了32米长的不锈钢管准备作为花圃的围栏,为了浇花和赏花的方便,准备在花圃的中间再围出一条宽为一米的通道及在左右花圃各放一个1米宽的门(木质).花圃的长与宽如何设计才能使花圃的面积最大?2、小王家在农村,他家想利用房屋侧面的一面墙,围成一个矩形猪圈(以墙为长人现在已备足可以砌10米长的墙的材料.他想使猪圈的面积最大,你能帮他计算一下矩形的长和宽应当分别是多少米吗?此时猪圈的面积有多大?3.如图,把一张长10cm ,宽8cm 的矩形硬纸板的四周各剪去一个同样大小的正方形,再折合成一个无盖的长方体盒子(纸板的厚度忽略不计).(1)要使长方体盒子的底面积为48cm 2,那么剪去的正方形的边长为多少?(2)你感到折合而成的长方体盒子的侧面积会不会有更大的情况?如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由;(3)如果把矩形硬纸板的四周分别剪去2个同样大小的正方形和2个同样形状、同样大小的矩形,然后折合成一个有盖的长方体盒子,是否有侧面积最大的情况;如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由.三、图形问题1、学校要建造一个圆形喷水池,在水池中央垂直于水面安装一个花形柱子OA .O 恰好在水面中心,安置在柱子顶端A 处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下.且在过OA 的任意平面上的抛物线如图l -2-36所示,建立平面直角坐标系(如图l -2-37),水流喷出的高度y (m)与水面距离x (m)之间的函数关系式是25322y x x =-++,请回答下列问题: (1)花形柱子OA 的高度;(2)若不计其它因素,水池的半径至少要多少米,才能使喷出的水不至于落在池外?O 2.某跳水运动员进行10米跳台跳水训练时,身体(看成一点)在空中的运动路线是如图所示坐标系下经过原点O 的一条抛物线(图中标出的数据为已知条件).在跳某个规定动作时,正常情况下,该运动员在空中的最高处距水面米,入水处距池边的距离为4米,运动员在距水面高度为5米以前,必须完成规定的翻腾动作,并调整好入水姿势,否则就会出现失误.(1)求这条抛物线的解析式;(2)在某次试跳中,测得运动员在空中的运动路线是(1)中的抛物线,且运动员在空中完成规定的翻腾动作并调整好入水姿势时,距池边的水平距离为米,问此次跳水会不会失误?并通过计算说明理由.2103335四、图像问题(一)长度最值、平行四边形问题8.如图,抛物线1417452++-=x y 与y 轴交于A 点,过点A 的直线与抛物线交于另一点B ,过点B 作BC ⊥x 轴,垂足为点C(3,0).(1)求直线AB 的函数关系式;(2)动点P 在线段OC 上从原点出发以每秒一个单位的速度向C 移动,过点P 作PN ⊥x 轴,交直线AB 于点M ,交抛物线于点N. 设点P 移动的时间为t 秒,MN 的长度为s 个单位,求s 与t 的函数关系式,并写出t 的取值范围;(3)设在(2)的条件下(不考虑点P 与点O ,点C 重合的情况),连接CM ,BN ,当t 为何值时,四边形BCMN 为平行四边形?问对于所求的t 值,平行四边形BCMN 是否菱形?请说明理由.O xAMNBPC 题22图(二)周长与面积最值问题9.如图,已知抛物线y=ax2+bx+3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,3).(1)求抛物线的解析式;(2)在(1)中抛物线的对称轴上是否存在点D,使△BCD的周长最小?若存在,求出点D的坐标,若不存在,请说明理由;(3)若点E是(1)中抛物线上的一个动点,且位于直线AC的下方,试求△ACE的最大面积及E 点的坐标.(三)等腰三角形问题10.如图,抛物线254y ax ax =-+经过ABC △的三个顶点,已知BC x ∥轴,点A 在x 轴上,点C 在y 轴上,且AC BC =.(1)求抛物线的对称轴;(2)写出A B C ,,三点的坐标并求抛物线的解析式;(3)探究:若点P 是抛物线对称轴上且在x 轴下方的动点,是否存在PAB △是等腰三角形.若存在,求出所有符合条件的点P 坐标;不存在,请说明理由.(四)直角三角形 如图,在平面直角坐标系中放置一直角三角板,其顶点为A (0,1),B (2,0),O (0,0),将此三角板绕原点O 逆时针旋转90°,得到△A′B′O.(1)一抛物线经过点A′、B′、B ,求该抛物线的解析式;(2)设点P 是在第一象限内抛物线上的一动点,是否存在点P ,使四边形PB′A′B 的面积是△A′B′O 面积4倍?若存在,请求出P 的坐标;若不存在,请说明理由.(3)在(2)的条件下,试指出四边形PB′A′B 是哪种形状的四边形?并写出四边形PB′A′B 的两条性质.A CB y x0 1 1(五)圆如图,半径为2的⊙C 与x 轴的正半轴交于点A ,与y 轴的正半轴交于点B ,点C 的坐标为(1,0).若抛物线23y x bx c =-++过A 、B 两点. (1)求抛物线的解析式;(2)在抛物线上是否存在点P ,使得∠PBO=∠POB?若存在,求出点P 的坐标;若不存在说明理由;(3)若点M 是抛物线(在第一象限内的部分)上一点,△MAB 的面积为S ,求S 的最大(小)值.(六)分段函数、累计二次函数问题11.启优学堂积极应对2018年世界金融危机,及时调整投资方向,瞄准光伏产业,建成了太阳能光伏电池生产线,由于新产品开发初期成本高,且市场占有率不高等因素的影响,产品投产上市一年来,公司经历了由初期的亏损到后来逐步盈利的过程(公司对经营的盈亏情况每月最后一天结算1次),公司累积获得的利润y(万元)与销售时间第x月之间的函数关系(即前x个月的利润总和y 与x之间的关系)对应的点都在如图所示的图象上,该图象从左至右,依次是线段OA、曲线AB和曲线BC,其中曲线AB为抛物线的一部分,点A为该抛物线的顶点,曲线BC为另一抛物线y=-5x2+205x-1230的一部分,且点A、B、C的横坐标分别为4、10、12。
二次函数的实际应用总结
二次函数的实际应用总结二次函数是高中数学中重要的一类函数。
它具有形如y=ax^2+bx+c的特点,其中a、b、c是实数且a不等于0。
二次函数有许多实际应用,涉及到物理、经济和生活中的各种问题。
本文将总结几个二次函数的实际应用。
一、物体自由落体物体自由落体是一个常见的物理问题,可以用二次函数来描述。
当一物体从高处自由落下时,它的高度与时间之间的关系可以由二次函数表示。
设物体自由落下的高度为H(米),时间为t(秒),重力加速度为g(9.8米/秒²),则有公式H = -gt²/2。
其中负号表示高度的减小,因为物体向下运动。
通过这个二次函数,我们可以计算物体在不同时间下的高度,进而研究物体的运动规律。
例如,我们可以计算物体自由落地所需的时间,或者计算物体在某个时间点的高度。
这在工程设计和物理实验中具有重要意义,帮助我们预测和控制物体的运动。
二、开口向上/向下的抛物线二次函数的图像通常是一个抛物线,其开口的方向由二次项系数a的正负决定。
当a大于0时,抛物线开口向上;当a小于0时,抛物线开口向下。
对于开口向上的抛物线,我们可以将其应用到生活中的一些情景。
比如,一个喷泉的水柱,水流高度与时间之间的变化可以用开口向上的二次函数来描述。
同样,开口向下的抛物线也有实际应用。
例如,一个弹簧的变形量与受力之间的关系常常是开口向下的二次函数。
通过了解抛物线的性质和方程,我们可以更好地理解和解决与之相关的问题。
三、经济学中的应用二次函数在经济学中也有广泛的应用。
例如,成本函数和收入函数常常是二次函数。
企业的成本与产量之间的关系可以用二次函数来刻画。
同样,市场需求和供给也可以用二次函数来表达。
在经济学中,研究成本、收入、需求和供给的函数对于决策和市场分析至关重要。
通过对二次函数的运用,我们可以计算某一产量下的成本和收入,并了解市场价格的影响因素。
这有助于企业决策和经济政策的制定。
四、其他实际应用除了以上提到的应用,二次函数还可以用于建模和预测其他实际问题。
二次函数的应用举例
二次函数的应用举例在数学中,二次函数是一类常见的函数形式,其表达式一般为y =ax^2 + bx + c,其中a、b、c为常数,且a不为零。
二次函数在实际应用中具有广泛的应用,本文将介绍二次函数的几个常见应用举例。
1. 物体的抛射运动物体的抛射运动是二次函数的典型应用之一。
当一个物体被斜抛时,其运动轨迹可以用二次函数表示。
例如,当某个物体以一定的初速度水平抛出时,其高度与飞行时间之间的关系可以用二次函数模型来描述。
具体而言,该模型为y = -16t^2 + vt + h,其中t为时间(单位为秒),v为初速度(单位为米/秒),h为抛出高度(单位为米)。
2. 曲线的绘制二次函数可以绘制出各种曲线形状,从而在绘画、设计等领域中被广泛应用。
例如,在建筑设计中,二次函数常被用于绘制圆顶建筑、拱桥等曲线形状。
在绘画中,二次函数可以绘制出各种曲线,如抛物线、椭圆等,用于美化作品或表达特定的艺术效果。
3. 利润的最大化在经济学中,二次函数常被用于研究企业的利润最大化问题。
根据经济学原理,企业在销售产品时,需考虑生产成本和销售价格之间的关系,以实现最大利润。
假设某企业的成本函数为C(x) = ax^2 + bx + c,其中x为生产数量,a、b、c为常数。
则该企业的利润函数为P(x) =R(x) - C(x),其中R(x)为销售收入函数。
通过求解利润函数的极大值,可以确定最佳的生产数量,从而实现利润的最大化。
4. 投射物体的落地点计算二次函数还可以用于计算投射物体的落地点。
例如,当一个物体从一定高度自由落体时,它的落地点(水平方向的距离)可以用二次函数模型来计算。
具体而言,该模型为d = v0t + 1/2at^2,其中d为落地点距离(单位为米),v0为初速度(水平方向,单位为米/秒),t为时间(单位为秒),a为重力加速度(单位为米/秒^2)。
总结起来,二次函数在物理学、数学、经济学等领域具有广泛的应用。
通过物体的抛射运动、曲线的绘制、利润的最大化以及落地点的计算等实例,我们可以看到二次函数在实际问题中的重要性。
二次函数的实际应用实例
二次函数的实际应用实例二次函数是高中数学中的重要内容,它广泛应用于实际生活中的各个领域。
本文将就二次函数的实际应用举例说明其在现实生活中的重要性和作用。
1. 抛物线的建筑设计在建筑设计中,抛物线是一个常见的曲线形状,许多建筑物的外形和结构都采用了抛物线的形状。
例如,著名的法国巴黎卢浮宫的玻璃金字塔,其设计就采用了二次函数的曲线,使得整个建筑物看起来美观而富有立体感。
2. 炮弹的轨迹预测在军事领域中,掌握炮弹的轨迹是重要的战术指导。
二次函数可以模拟炮弹的轨迹,帮助军事专家预测炮弹的飞行轨迹和落点。
通过测量和计算炮弹的初速度、发射角度和空气阻力等因素,可以得到一个二次函数来描述炮弹的运动轨迹,为军事作战提供重要的参考依据。
3. 跳伞运动员的自由落体跳伞运动是一项极具挑战性和刺激性的运动。
在空中自由落体的过程中,跳伞运动员会受到重力的作用,其下落的轨迹可以用二次函数来描述。
通过观察和计算下降的速度和时间,可以得到运动员下落的二次函数,帮助运动员进行准确的跳伞时间和地点选择。
4. 投掷物的运动轨迹在体育比赛中,如篮球、铅球、飞镖等项目中,投掷物的运动轨迹是重要的判定依据。
通过研究和分析投掷物的飞行轨迹,可以得到二次函数来描述其运动状态。
这样运动员可以更好地掌握投掷的力度和角度,提高命中的准确性。
5. 导弹的飞行轨迹在军事技术中,导弹的飞行轨迹预测是一门重要的科学。
通过利用二次函数,可以描述导弹的飞行轨迹和速度变化。
这有助于军事专家预测导弹的落点和机动能力,从而制定出更加有效的军事战略。
综上所述,二次函数在现实生活中有着广泛的应用。
从建筑设计、军事战术、体育比赛到军事技术,二次函数的实际应用不胜枚举。
了解和掌握二次函数的特性和用途,对我们理解和应用数学知识具有重要意义。
二次函数的应用
二次函数的应用二次函数是一种常见的数学函数,它的一般形式为 y = ax^2 + bx + c,其中 a、b、c 是实数且a ≠ 0。
二次函数在各个领域都有广泛的应用,下面将介绍几个常见的二次函数应用场景。
1. 物理学中的自由落体运动自由落体是物理学中常见的运动形式,它的运动规律可以用二次函数来描述。
当一个物体在重力作用下自由下落时,其位移和时间的关系可以通过二次函数来表示。
假设物体的下落轨迹为 y = -4.9t^2 + v0t + h0,其中 t 表示时间,v0 表示初始速度,h0 表示初始高度。
通过二次函数的图像,我们可以计算物体的落地时间、最大高度等物理量,进一步分析自由落体运动的特性。
2. 金融学中的收益率曲线在金融学中,收益率曲线常用来描述不同期限的债券收益率之间的关系。
假设某个债券的收益率与到期期限的关系可以用二次函数表示,那么我们可以通过该二次函数的图像来预测不同期限的债券的收益率。
另外,通过对收益率曲线进行分析,可以评估利率的变动趋势、市场风险等重要的金融指标。
3. 经济学中的成本函数在经济学中,成本函数是描述企业生产成本与产量之间关系的数学函数。
对于某些生产过程,成本函数常常具有二次函数的形式。
例如,某企业的总成本可以表示为 C(q) = aq^2 + bq + c,其中 q 表示产量,a、b、c 是常数。
通过分析该二次函数,可以找到最小成本对应的产量,从而在生产决策中进行合理的成本控制。
4. 工程学中的抛物线天桥设计在工程设计中,抛物线天桥是一种常见的设计形式。
抛物线为二次函数的图像,因此可以通过二次函数来描述天桥的形状和结构。
工程师可以利用二次函数的性质来计算天桥的高度、跨度等参数,确保天桥的结构稳定性和安全性。
总结起来,二次函数的应用十分广泛,涵盖了物理学、金融学、经济学、工程学等多个领域。
通过对二次函数图像的分析和计算,我们可以探索和解决实际问题,提高问题的解决效率和准确性。
二次函数在生活中的运用
二次函数在生活中的运用二次函数是一个具有形式为y=ax^2+bx+c的二次多项式函数,其中a、b、c是实数且a≠0。
它是数学中一个重要的函数类型,其在现实生活中有许多广泛的应用。
下面将介绍一些二次函数在生活中的运用。
1.物体的自由落体运动:当物体从静止的位置开始自由下落时,其高度与时间的关系可以用二次函数来描述。
根据物体下落的加速度和初速度,我们可以建立二次函数模型来预测物体的高度随时间的变化。
2.弹性力的计算:弹性力是恢复力的一种,其大小与物体偏离平衡位置的距离成正比。
当物体被施加一个力使其偏离平衡位置时,恢复力的大小可以用二次函数描述。
3.抛物线的建模:抛物线是二次函数的图像,它在很多领域中都有应用。
例如,在建筑设计中,抛物线形状的屋顶可以提供更好的排水系统。
在桥梁设计中,抛物线形状的拱桥可以提供更好的结构稳定性。
4.投射物体的路径预测:当一个物体以一定的初速度和角度被抛出时,它的轨迹可以用二次函数模型来预测。
例如,在棒球运动中,球员可以通过分析投球的初速度和角度来预测球的落点。
5.音乐乐器的调音:乐器的音高可以通过改变乐器弦的张力来调节。
根据弦的拉紧程度,可以建立一个二次函数模型来描述音高与弦长的关系。
这使得乐器演奏者能够根据需要调整乐器的音高。
6.经济中的成本与产出关系:在经济学中,成本与产出的关系经常可以用二次函数来描述。
例如,生产一定数量的商品所需的成本与产出之间可能存在一个最优点,通过求二次函数的极值,可以确定最大化利润的产量。
7.变量与值的关系:二次函数可以用来描述两个变量之间的关系。
例如,员工的工资与工作经验之间可能存在一个二次函数模型,随着工作经验的增加,工资可能会呈现先上升后下降的趋势。
8.交通流量的模拟:交通流量的变化可以用二次函数来建模。
例如,小时交通流量随时间的变化可能呈现一个钟形曲线,交通高峰期的交通流量较大,而其他时间段的交通流量相对较小。
以上仅列举了二次函数在生活中的一些应用,其中还有许多其他的应用。
二次函数的日常应用实例
二次函数的日常应用实例二次函数作为高中数学中的一个重要概念,具有广泛的应用领域。
本文将介绍二次函数在现实生活中的几个常见应用实例,以帮助读者更好地理解和应用这一数学知识。
1. 物体运动的轨迹分析二次函数可以描述物体在空间中的运动轨迹。
例如,当一个投掷物体从地面上抛出时,它的运动轨迹可以用二次函数来描述。
假设一个物体从地面上以初始速度v向上抛出,重力加速度为g。
物体的高度h 可以用二次函数h(t) = -0.5gt^2 + vt + h_0来表示,其中t表示时间,h_0表示初始高度。
通过解析二次函数,可以分析物体的运动轨迹、最大高度、飞行时间等参数。
2. 抛物线形状的建筑设计在建筑设计中,抛物线形状经常被应用于拱门、扶手、悬臂等结构中。
这些结构的形状可以用二次函数来描述。
通过对二次函数进行合适的平移、缩放和旋转,可以根据设计要求来创建出各种形态的抛物线结构。
抛物线结构不仅具有美观的外观,还具有稳定性和均衡负荷的优势。
3. 经济学中的消费模型在经济学中,二次函数常常被用来建立消费模型,帮助研究者了解人们的消费行为。
例如,假设一个人的收入为x,他的消费支出为y。
那么,他的消费行为可以用二次函数y = ax^2 + bx + c来模拟。
通过研究二次函数的系数a、b、c,可以分析消费者的倾向、边际消费率以及其对价格变化的敏感度等信息,为企业和政府制定经济政策提供指导。
4. 高精度测量中的误差修正在科学实验和测量中,我们经常需要对测量误差进行修正。
二次函数被广泛应用于误差修正的算法中。
假设我们进行一次测量,得到的结果为y,而真实值为x。
我们可以构建一个二次函数y = ax^2 + bx + c 来表示测量值与真实值之间的关系。
通过测量多组数据并利用最小二乘法求解系数a、b、c,我们可以对测量结果进行校正,提高测量精度。
5. 经典力学中的力学模型二次函数在经典力学中也有重要的应用。
例如,胡克定律描述了弹簧的弹性变形与施加力之间的关系。
二次函数的应用与解析方法总结
二次函数的应用与解析方法总结二次函数是数学中常见的一种函数类型,其方程的一般形式为y = ax^2 + bx + c,其中a、b、c为常数,且a ≠ 0。
本文将对二次函数的应用以及解析方法进行总结,力求给读者带来清晰而有力的理解。
一、二次函数的应用二次函数在实际中有着广泛的应用,下面将从几个常见的应用领域进行介绍。
1. 物体运动的轨迹当物体在匀加速的情况下运动时,其运动轨迹可以用二次函数来表示。
例如,一个水平抛体的运动轨迹满足二次函数的形式。
通过分析二次函数的参数,我们可以获得物体的运动方程、最高点、最远点等重要信息。
2. 抛物线的建模在物理学、经济学等领域,经常需要对抛物线进行建模。
二次函数正好可以描述抛物线的形状,在分析与解决问题时起到重要作用。
例如,利用二次函数可以进行岩石抛射的模拟、抛物线路径的优化等。
3. 金融领域在金融领域,二次函数可以用来建模一些与利率、价格等相关的问题。
例如,通过利用二次函数可以计算债券的价格、利润最大化的产销决策等金融问题。
4. 工程建模在工程领域,二次函数被广泛应用于建筑、桥梁、道路等项目的设计与规划中。
例如,通过对桥梁的曲线进行建模,可以确定合适的桥高、长度等参数。
二、二次函数的解析方法解析二次函数是指求解二次方程的根的过程,下面将介绍几种常见的解析方法。
1. 因式分解法对于一般的二次方程ax^2 + bx + c = 0,如果可以将其因式分解得到(a1x + b1)(a2x + b2) = 0的形式,那么方程的解就可以直接由此得到。
2. 完全平方式当二次方程的判别式D = b^2 - 4ac大于0时,方程有两个不相等的实根。
可以通过使用求根公式x = (-b ± √D) / 2a来求解。
3. 配方法对于一些特殊的二次方程,可以通过配方法化简为平方差的形式,从而方便求解。
一般而言,如果方程的b项较大,可以通过配方法将其化为完全平方式进行处理。
4. 公式转换法当遇到二次方程的系数a或b很难处理时,可以通过一些公式的转化来简化求解的过程。
二次函数在生活中的应用案例
二次函数在生活中的应用案例1. 游艺项目中的过山车设计过山车是一个经典的游艺项目,其设计中应用了二次函数的概念。
在过山车的设计中,设计师需要考虑到乘客的体验和安全。
二次函数可以描述过山车的轨道曲线,使乘客在高速行驶和兴奋的同时,保持相对平稳和安全的感觉。
通过调整二次函数的参数,如抛物线的开口方向、高度、曲率等,设计师可以创造出令人惊险刺激又相对安全的过山车体验。
2. 投掷运动中的球的抛物线轨迹在投掷运动中,例如投掷物体或运动员抛投物体,物体在空中的轨迹可以被二次函数描述。
球类运动如篮球、足球、棒球等的投掷和弹射过程,都可以用二次函数模型来描述球的运动轨迹。
运动员和教练可以利用二次函数模型来预测球的飞行轨迹和最佳投掷角度,从而提高命中率和战术效果。
3. 桥梁和建筑物设计在桥梁和建筑物的设计过程中,对于拱形和弧形结构的设计,也是利用了二次函数的概念。
二次函数可以描述建筑物和桥梁的曲线形状,使得结构既具有美观性,又具备一定的坚固和稳定性。
例如,拱桥和拱门的设计中,二次函数模型可以帮助工程师确定合适的拱形曲线,以及正确的弧度和支撑结构,从而确保桥梁的结构稳定和承载能力。
4. 金融领域的货币供给和通货膨胀模型二次函数在金融领域中也有广泛的应用。
例如,货币供给和通货膨胀模型可以使用二次函数来描述。
在经济学中,通过调整二次函数的参数,如货币供应量和通货膨胀率之间的关系,可以预测未来经济的走势和市场表现。
政府和央行可以据此采取相应的货币政策,以维持经济的稳定和平衡。
5. 自然界中的抛物线曲线在自然界中,许多自然现象的运动轨迹也可以用二次函数来描述。
例如,抛物线轨迹可以在大多数情况下模拟自然界中物体的运动。
比如,自由落体下的物体、喷泉中水的喷射、炮弹的轨迹等都可以使用二次函数模型来描述其运动状态。
通过利用二次函数,我们可以更好地理解和解释自然界中的规律和现象。
总结:二次函数在生活中的应用案例非常广泛。
从游艺项目的过山车设计到金融领域的经济模型,从投掷运动的球的抛物线轨迹到桥梁和建筑物的设计,二次函数都发挥着重要的作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六节 二次函数的实际应用
姓名:________ 班级:________ 用时:______分钟
1.(2019·易错题)足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线,不考虑空气阻力,足球距离地面的高度h(单位:m )与足球被踢出后经过的时间t(单位:s )之间的关系如下表:
t 0 1 2
3
4
5
6
7 …
h 0 8 14 18 20 20 18 14 …
下列结论:①足球距离地面的最大高度为20 m ;②足球飞行路线的对称轴是直线t =9
2;③足球被踢出9 s 时落地;④足球被踢出1.5 s 时,距离地面的高度
是11 m .其中正确结论的个数是( ) A .1 B .2 C .3 D .4
2.(2018·北京中考)跳台滑雪是冬季奥运会比赛项目之一,运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y(单位:m )与水平距离x(单位:m )近似满足函数关系y =ax 2+bx +c(a≠0).如图记录了某运动员起跳后的x 与y 的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为( )
A .10 m
B .15 m
C .20 m
D .22.5 m
3.(2018·武汉中考)飞机着陆后滑行的距离y(单位:m )关于滑行时间t(单位:
s )的函数解析式是y =60t -32
t 2.在飞机着陆滑行中,最后 4 s 滑行的距离是
________m .
4.(2018·沈阳中考)如图,一块矩形土地ABCD 由篱笆围着,并且由一条与CD 边平行的篱笆EF 分开.已知篱笆的总长为900 m (篱笆的厚度忽略不计),当AB =__________m 时,矩形土地ABCD 的面积最大.
5.(2017·成都中考)随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择,李华从文化宫站出发,先乘坐地铁,准备在离家较近的A ,B ,C ,D ,E 中的某一站出地铁,再骑共享单车回家,设他出地铁的站点与文化宫距离为x(单位:千米),乘坐地铁的时间y 1(单位:分钟)是关于x 的一次函数,其关系如下表:
地铁站 A B C
D
E
x(千米) 8 9 10 11.5 13 y 1(分钟)
18
20
22
25
28
(1)求y 1关于x 的函数表达式;
(2)李华骑单车的时间(单位:分钟)也受x 的影响,其关系可以用y 2=12x 2
-11x
+78来描述,请问:李华应选择在哪一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间.
6.(2018·衢州中考)某游乐园有一个直径为16米的圆形喷水池,喷水池的周边有一圈喷水头,喷出的水柱为抛物线,在距水池中心3米处达到最高,高度为5米,且各方向喷出的水柱恰好在喷水池中心的装饰物处汇合.如图所示,以水平方向为x轴,喷水池中心为原点建立直角坐标系.
(1)求水柱所在抛物线(第一象限部分)的函数表达式;
(2)王师傅在喷水池内维修设备期间,喷水管意外喷水,为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心多少米以内?
(3)经检修评估,游乐园决定对喷水设施做如下设计改进:在喷出水柱的形状不变的前提下,把水池的直径扩大到32米,各方向喷出的水柱仍在喷水池中心保留的原装饰物(高度不变)处汇合,请探究扩建改造后喷水池水柱的最大高度.
7.(2018·黄冈中考)我市某乡镇在“精准扶贫”活动中销售一农产品,经分析发现月销售量
y(万件)与月份
x(月)的关系为
y =
⎩⎪⎨⎪⎧x +4(1≤x≤8,x 为整数),-x +20(9≤x≤12,x 为整数),
每件产品的利润z(元)与月份x(月)的关系如下表:
(1)请你根据表格求出每件产品利润z(元)与月份x(月)的关系式;
(2)若月利润w(万元)=当月销售量y(万件)×当月每件产品的利润z(元),求月利润w(万元)与月份x(月)的关系式;
(3)当x 为何值时,月利润w 有最大值,最大值为多少?
参考答案
1.B 2.B 3.24 4.150
5.解:(1)设y 1=kx +b ,将(8,18),(9,20)代入,
得⎩⎪⎨⎪⎧8k +b =18,9k +b =20,解得⎩
⎪⎨⎪⎧k =2,b =2, 故y 1关于x 的函数表达式为y 1=2x +2.
(2)设李华从文化宫回到家所需时间为y 分钟,则 y =y 1+y 2=2x +2+1
2x 2-11x +78
=12
x 2
-9x +80, ∴当x =9时,y 有最小值, y min =12
×92
-9×9+80=39.5.
答:李华应选择在B 站出地铁,才能使他从文化宫回到家所需的时间最短,最短时间为39.5分钟.
6.解:(1)设水柱所在抛物线(第一象限部分)的函数表达式为y =a(x -3)2+5(a≠0),将(8,0)代入y =a(x -3)2
+5,解得a =-1
5
,
∴水柱所在抛物线(第一象限部分)的函数表达式为 y =-1
5
(x -3)2+5(0<x <8).
(2)当y =1.8时,有-1
5(x -3)2+5=1.8,
解得x 1=-1(舍),x 2=7,
∴为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心7米以内. (3)当x =0时,y =-15(x -3)2+5=16
5
.
设改造后水柱所在抛物线(第一象限部分)的函数表达式为y =-15x 2+bx +16
5.
∵该函数图象过点(16,0),
∴0=-15×162
+16b +165
,解得b =3,
∴改造后水柱所在抛物线(第一象限部分)的函数表达式为y =-15x 2+3x +16
5=
-15(x -152)2+28920,∴扩建改造后喷水池水柱的最大高度为289
20米. 7.解:(1)根据表格可知当1≤x≤10(x 为整数)时,z =-x +20, 当11≤x≤12(x 为整数)时,z =10, ∴z 与x 的关系式为
z =⎩
⎪⎨⎪⎧-x +20(1≤x≤10,x 为整数),10(11≤x≤12,x 为整数). (2)当1≤x≤8时,
w =(-x +20)(x +4)=-x 2+16x +80; 当9≤x≤10时,
w =(-x +20)(-x +20)=x 2-40x +400; 当11≤x≤12时,
w =10(-x +20)=-10x +200, ∴w 与x 的关系式为
w =⎩⎪⎨⎪
⎧-x 2+16x +80(1≤x≤8,x 为整数),
x 2
-40x +400(9≤x≤10,x 为整数),-10x +200(11≤x≤12,x 为整数).
(3)当1≤x≤8时,w =-x 2+16x +80=-(x -8)2+144, ∴x=8时,w 有最大值为144万元;
当9≤x≤10时,w =x 2-40x +400=(x -20)2, w 随x 的增大而减小,
∴x=9时,w 有最大值为121万元; 当11≤x≤12时,w =-10x +200, w 随x 的增大而减小,
∴x=11时,w 有最大值为90万元. ∵90<121<144,
∴x=8时,w 有最大值为144万元.。