2022版高考数学大一轮复习第11章概率第2讲古典概型与几何概型2

合集下载

高考数学一轮复习 第十一章 概率 11.2 古典概型 文

高考数学一轮复习 第十一章 概率 11.2 古典概型 文

【步步高】(江苏专用)2017版高考数学一轮复习 第十一章 概率11.2 古典概型 文1.基本事件的特点(1)任何两个基本事件是互斥的;(2)任何事件(除不可能事件)都可以表示成基本事件的和. 2.古典概型具有以下两个特点的概率模型称为古典概率模型,简称古典概型. (1)所有的基本事件只有有限个; (2)每个基本事件的发生都是等可能的.3.如果1试验的等可能基本事件共有n 个,那么每一个等可能基本事件发生的概率都是 1n,如果某个事件A 包含了其中m 个等可能基本事件,那么事件A 发生的概率为P (A )= mn. 4.古典概型的概率公式P (A )=A 包含的基本事件的个数基本事件的总数.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)“在适宜条件下,种下一粒种子观察它是否发芽”属于古典概型,其基本事件是“发芽与不发芽”.( × )(2)掷一枚硬币两次,出现“两个正面”“一正一反”“两个反面”,这三个结果是等可能事件.( × )(3)从市场上出售的标准为500±5 g 的袋装食盐中任取一袋,测其重量,属于古典概型.( × )(4)(教材改编)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为13.( √ )(5)从1,2,3,4,5中任取出两个不同的数,其和为5的概率是0.2.( √ )(6)在古典概型中,如果事件A 中基本事件构成集合A ,且集合A 中的元素个数为n ,所有的基本事件构成集合I ,且集合I 中元素个数为m ,则事件A 的概率为n m.( √ )1.从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是________. 答案 13解析 基本事件的总数为6,构成“取出的2个数之差的绝对值为2”这个事件的基本事件的个数为2, 所以所求概率P =26=13.2.(2014·陕西改编)从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为________. 答案 35解析 取两个点的所有情况为10种,所有距离不小于正方形边长的情况有6种,概率为610=35. 3.(2015·课标全国Ⅰ改编)如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为________. 答案110解析 从1,2,3,4,5中任取3个不同的数共有如下10种不同的结果:(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5),其中勾股数只有(3,4,5),所以概率为110. 4.(教材改编)同时掷两个骰子,向上点数不相同的概率为________. 答案 56解析 掷两个骰子一次,向上的点数共6×6=36种可能的结果,其中点数相同的结果共有6个,所以点数不同的概率P =1-66×6=56.5.从1,2,3,4,5,6这6个数字中,任取2个数字相加,其和为偶数的概率是________. 答案 25解析 从6个数字中任取2个数字的可能情况有(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),共15种,其中和为偶数的情况有(1,3),(1,5),(2,4),(2,6),(3,5),(4,6),共6种,所以所求的概率是25.题型一 基本事件与古典概型的判断例1 袋中有大小相同的5个白球,3个黑球和3个红球,每球有一个区别于其他球的编号,从中摸出一个球.(1)有多少种不同的摸法?如果把每个球的编号看作一个基本事件建立概率模型,该模型是不是古典概型?(2)若按球的颜色为划分基本事件的依据,有多少个基本事件?以这些基本事件建立概率模型,该模型是不是古典概型?解 (1)由于共有11个球,且每个球有不同的编号,故共有11种不同的摸法.又因为所有球大小相同,因此每个球被摸中的可能性相等,故以球的编号为基本事件的概率模型为古典概型.(2)由于11个球共有3种颜色,因此共有3个基本事件,分别记为A :“摸到白球”,B :“摸到黑球”,C :“摸到红球”,又因为所有球大小相同,所以一次摸球每个球被摸中的可能性均为111,而白球有5个,故一次摸球摸到白球的可能性为511,同理可知摸到黑球、红球的可能性均为311,显然这三个基本事件出现的可能性不相等,所以以颜色为划分基本事件的依据的概率模型不是古典概型.思维升华 一个试验是否为古典概型,在于这个试验是否具有古典概型的两个特点——有限性和等可能性,只有同时具备这两个特点的概型才是古典概型.下列试验中,是古典概型的个数为__________________________________.①向上抛一枚质地不均匀的硬币,观察正面向上的概率; ②向正方形ABCD 内,任意抛掷一点P ,点P 恰与点C 重合; ③从1,2,3,4四个数中,任取两个数,求所取两数之一是2的概率; ④在线段[0,5]上任取一点,求此点小于2的概率. 答案 1解析 ①中,硬币质地不均匀,不是等可能事件, 所以不是古典概型.②④的基本事件都不是有限个,不是古典概型. ③符合古典概型的特点,是古典概型问题. 题型二 古典概型的求法例2 (1)已知5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,恰有一件次品的概率为________________________________. 答案 0.6解析 5件产品中有2件次品,记为a ,b ,有3件合格品,记为c ,d ,e ,从这5件产品中任取2件,结果有(a ,b ),(a ,c ),(a ,d ),(a ,e ),(b ,c ),(b ,d ),(b ,e ),(c ,d ),(c ,e ),(d ,e )共10种.恰有一件次品的结果有6种,则其概率为P =610=0.6.(2)(2015·江苏)袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为________. 答案 56解析 设取出的2只球颜色不同为事件A .基本事件有:(白,红),(白,黄),(白,黄),(红,黄),(红,黄),(黄,黄)共6种,事件A 包含5种.故P (A )=56.(3)(2014·四川)一个盒子里装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a ,b ,c .①求“抽取的卡片上的数字满足a +b =c ”的概率; ②求“抽取的卡片上的数字a ,b ,c 不完全相同”的概率. 解 ①由题意知,(a ,b ,c )所有的可能为(1,1,1),(1,1,2),(1,1,3),(1,2,1),(1,2,2),(1,2,3),(1,3,1),(1,3,2),(1,3,3),(2,1,1),(2,1,2),(2,1,3),(2,2,1),(2,2,2),(2,2,3),(2,3,1),(2,3,2),(2,3,3),(3,1,1),(3,1,2),(3,1,3),(3,2,1),(3,2,2),(3,2,3),(3,3,1),(3,3,2),(3,3,3),共27种.设“抽取的卡片上的数字满足a +b =c ”为事件A , 则事件A 包括(1,1,2),(1,2,3),(2,1,3),共3种. 所以P (A )=327=19.因此,“抽取的卡片上的数字满足a +b =c ”的概率为19.②设“抽取的卡片上的数字a ,b ,c 不完全相同”为事件B ,则事件B 包括(1,1,1),(2,2,2),(3,3,3),共3种.所以P (B )=1-P (B )=1-327=89.因此,“抽取的卡片上的数字a ,b ,c 不完全相同”的概率为89.引申探究1.本例(2)中,将4个球改为颜色相同,标号分别为1,2,3,4的四个小球,从中一次取两球,求标号和为奇数的概率.解 基本事件数仍为6.设标号和为奇数为事件A ,则A 包含的基本事件为(1,2),(1,4),(2,3),(3,4),共4种, 所以P (A )=46=23.2.本例(2)中,条件不变改为有放回地取球,取两次,求两次取得球的颜色相同的概率. 解 基本事件:(白,白),(白,红),(白,黄),(白,黄),(红,红),(红,白),(红,黄),(红,黄),(黄,黄),(黄,白),(黄,红),(黄,黄),(黄,黄),(黄,白),(黄,红),(黄,黄),共16种,其中颜色相同的有6种,故所求概率为P =616=38.思维升华 求古典概型的概率的关键是求试验的基本事件的总数和事件A 包含的基本事件的个数,这就需要正确列出基本事件,基本事件的表示方法有列举法、列表法和树形图法,具体应用时可根据需要灵活选择.将一颗骰子先后抛掷2次,观察向上的点数,求:(1)两数中至少有一个奇数的概率;(2)以第一次向上的点数为横坐标x ,第二次向上的点数为纵坐标y 的点(x ,y )在圆x 2+y 2=15的外部或圆上的概率.解 由题意,先后抛掷2次,向上的点数(x ,y )共有n =6×6=36种等可能结果,为古典概型.(1)记“两数中至少有一个奇数”为事件B ,则事件B 与“两数均为偶数”为对立事件,记为B .∵事件B 包含的基本事件数m =3×3=9.∴P (B )=936=14,则P (B )=1-P (B )=34,因此,两数中至少有一个奇数的概率为34.(2)点(x ,y )在圆x 2+y 2=15的内部记为事件C ,则C 表示“点(x ,y )在圆x 2+y 2=15上或圆的外部”.又事件C 包含基本事件:(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),共8种.∴P (C )=836=29,从而P (C )=1-P (C )=1-29=79.∴点(x ,y )在圆x 2+y 2=15的外部或圆上的概率为79.题型三 古典概型与统计的综合应用例3 (2015·天津)设甲、乙、丙三个乒乓球协会的运动员人数分别为27,9,18.现采用分层抽样的方法从这三个协会中抽取6名运动员组队参加比赛. (1)求应从这三个协会中分别抽取的运动员的人数;(2)将抽取的6名运动员进行编号,编号分别为A 1,A 2,A 3,A 4,A 5,A 6.现从这6名运动员中随机抽取2人参加双打比赛. ①用所给编号列出所有可能的结果;②设A 为事件“编号为A 5和A 6的两名运动员中至少有1人被抽到”,求事件A 发生的概率. 解 (1)应从甲、乙、丙三个协会中抽取的运动员人数分别为3,1,2.(2)①从6名运动员中随机抽取2人参加双打比赛的所有可能结果为{A 1,A 2},{A 1,A 3},{A 1,A 4},{A 1,A 5},{A 1,A 6},{A 2,A 3},{A 2,A 4},{A 2,A 5},{A 2,A 6},{A 3,A 4},{A 3,A 5},{A 3,A 6},{A 4,A 5},{A 4,A 6},{A 5,A 6},共15种.②编号为A 5和A 6的两名运动员中至少有1人被抽到的所有可能结果为{A 1,A 5},{A 1,A 6},{A 2,A 5},{A 2,A 6},{A 3,A 5},{A 3,A 6},{A 4,A 5},{A 4,A 6},{A 5,A 6},共9种.因此,事件A 发生的概率P (A )=915=35.思维升华 有关古典概型与统计结合的题型是高考考查概率的一个重要题型,已成为高考考查的热点.概率与统计结合题,无论是直接描述还是利用频率分布表、频率分布直方图、茎叶图等给出信息,只要能够从题中提炼出需要的信息,则此类问题即可解决.(2014·山东)海关对同时从A ,B ,C 三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如下表所示.工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.地区 ABC数量50150100(1)求这6件样品中来自A ,B (2)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.解 (1)因为样本容量与总体中的个体数的比是650+150+100=150,所以样本中包含三个地区的个体数量分别是 50×150=1,150×150=3,100×150=2.所以A ,B ,C 三个地区的商品被选取的件数分别是1,3,2. (2)设6件来自A ,B ,C 三个地区的样品分别为:A ;B 1,B 2,B 3;C 1,C 2.则从6件样品中抽取的这2件商品构成的所有基本事件为:{A ,B 1},{A ,B 2},{A ,B 3},{A ,C 1},{A ,C 2},{B 1,B 2},{B 1,B 3},{B 1,C 1},{B 1,C 2},{B 2,B 3},{B 2,C 1},{B 2,C 2},{B 3,C 1},{B 3,C 2},{C 1,C 2},共15个.每个样品被抽到的机会均等,因此这些基本事件的出现是等可能的.记事件D :“抽取的这2件商品来自相同地区”,则事件D 包含的基本事件有:{B 1,B 2},{B 1,B 3},{B 2,B 3},{C 1,C 2},共4个.所以P (D )=415,即这2件商品来自相同地区的概率为415.六审细节更完善典例 (14分)一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4. (1)从袋中随机取两个球,求取出的球的编号之和不大于4的概率;(2)先从袋中随机取一个球,该球的编号为m ,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n ,求n <m +2的概率.(1)基本事件为取两个球↓(两球一次取出,不分先后,可用集合的形式表示) 把取两个球的所有结果列举出来↓{1,2},{1,3},{1,4},{2,3},{2,4},{3,4} ↓两球编号之和不大于4(注意:和不大于4,应为小于4或等于4) ↓{1,2},{1,3}↓利用古典概型概率公式求解P =26=13(2)两球分两次取,且有放回↓(两球的编号记录是有次序的,用坐标的形式表示) 基本事件的总数可用列举法表示 ↓(1,1),(1,2),(1,3),(1,4) (2,1),(2,2),(2,3),(2,4) (3,1),(3,2),(3,3),(3,4) (4,1),(4,2),(4,3),(4,4)↓(注意细节,m 是第一个球的编号,n 是第2个球的编号)n <m +2的情况较多,计算复杂↓(将复杂问题转化为简单问题) 计算n ≥m +2的概率 ↓n ≥m +2的所有情况为(1,3),(1,4),(2,4)↓P 1=316↓注意细节,P 1=316是n ≥m +2的概率,需转化为其,对立事件的概率n <m +2的概率为1-P 1=1316.规范解答解 (1)从袋中随机取两个球,其一切可能的结果组成的基本事件有{1,2},{1,3},{1,4},{2,3},{2,4},{3,4},共6个.从袋中取出的球的编号之和不大于4的事件共有{1,2},{1,3},2个.因此所求事件的概率P=26=13.[6分](2)先从袋中随机取一个球,记下编号为m,放回后,再从袋中随机取一个球,记下编号为n,其一切可能的结果有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个.[8分]又满足条件n≥m+2的事件为(1,3),(1,4),(2,4),共3个,所以满足条件n≥m+2的事件的概率为P1=316.[12分]故满足条件n<m+2的事件的概率为1-P1=1-316=1316.[14分]温馨提醒(1)本题在审题时,要特别注意细节,使解题过程更加完善.如第(1)问,注意两球一起取,实质上是不分先后,再如两球编号之和不大于4,即两球编号之和小于或等于4等;第(2)问,有先后顺序.(2)在列举基本事件空间时,可以利用列举、画树状图等方法,以防遗漏.同时要注意细节,如用列举法,第(1)问写成{1,2}的形式,表示无序,第(2)问写成(1,2)的形式,表示有序.(3)本题解答时,存在格式不规范,思维不流畅的严重问题.如在解答时,缺少必要的文字说明,没有按要求列出基本事件.在第(2)问中,由于不能将求事件n<m+2的概率转化成先求n≥m +2的概率,导致数据复杂、易错.所以按要求规范解答是做好此类题目的基本要求.[方法与技巧]1.古典概型计算三步曲第一,本试验是不是等可能的;第二,本试验的基本事件有多少个;第三,事件A是什么,它包含的基本事件有多少个.2.确定基本事件的方法(1)当基本事件总数较少时,可列举计算;(2)列表法、树状图法.3.较复杂事件的概率可灵活运用互斥事件、对立事件、相互独立事件的概率公式简化运算.[失误与防范]1.古典概型的重要思想是事件发生的等可能性,一定要注意在计算基本事件总数和事件包括的基本事件个数时,它们是不是等可能的.2.概率的一般加法公式:P(A∪B)=P(A)+P(B)-P(A∩B).公式使用中要注意:(1)公式的作用是求A∪B的概率,当A∩B=∅时,A、B互斥,此时P(A∩B)=0,所以P(A∪B)=P(A)+P(B);(2)要计算P(A∪B),需要求P(A)、P(B),更重要的是把握事件A∩B,并求其概率;(3)该公式可以看作一个方程,知三可求一.A组专项基础训练(时间:40分钟)1.袋中装有6个白球,5个黄球,4个红球,从中任取一球抽到白球的概率为________.答案2 5解析从15个球中任取一球有15种抽法,抽到白球有6种,所以抽到白球的概率P=615=2 5.2.若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为________.答案9 10解析由题意知,从五位大学毕业生中录用三人,所有不同的可能结果有(甲,乙,丙),(甲,乙,丁),(甲,乙,戊),(甲,丙,丁),(甲,丙,戊),(甲,丁,戊),(乙,丙,丁),(乙,丙,戊),(乙,丁,戊),(丙,丁,戊),共10种,其中“甲与乙均未被录用”的所有不同的可能结果只有(丙,丁,戊)这1种,故其对立事件“甲或乙被录用”的可能结果有9种,所求概率P=910.3.2015年暑假里,甲乙两人一起去游泰山,他们约定,各自独立地从1到6号景点中任选4个进行游览,每个景点参观1小时,则最后1小时他们同在一个景点的概率是________.答案1 6解析最后一个景点甲有6种选法,乙有6种选法,共有36种,他们选择相同的景点有6种,所以P=636=1 6.4.连掷两次骰子分别得到点数m、n,则向量(m,n)与向量(-1,1)的夹角θ>90°的概率是__________.答案5 12解析∵(m,n)·(-1,1)=-m+n<0,∴m>n.基本事件总共有6×6=36(个),符合要求的有(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1),…,(5,4),(6,1),…,(6,5),共1+2+3+4+5=15(个). ∴P =1536=512.5.现有10个数,它们能构成一个以1为首项,-3为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是________. 答案 35解析 a n =(-3)n -1,∴a 2=-3,a 3=9,a 4=-27,…,小于8的项共有a 1,a 2,a 4,a 6,a 8,a 10,共6项. 所以所求概率为610=35.6.(2014·浙江)在3张奖券中有一、二等奖各1张,另1张无奖.甲、乙两人各抽取1张,两人都中奖的概率是________. 答案 13解析 设中一、二等奖及不中奖分别记为1,2,0,那么甲、乙抽奖结果有(1,2),(1,0),(2,1),(2,0),(0,1),(0,2),共6种. 其中甲、乙都中奖有(1,2),(2,1),共2种, 所以P (A )=26=13.7.用两种不同的颜色给图中三个矩形随机涂色,每个矩形只涂一种颜色,则相邻两个矩形涂不同颜色的概率是________.答案 14解析 由于只有两种颜色,不妨将其设为1和2,若只用一种颜色有111;222. 若用两种颜色有122;212;221;211;121;112. 所以基本事件共有8种.又相邻颜色各不相同的有2种,故所求概率为14.8.连续2次抛掷一枚骰子(六个面上分别标有数字1,2,3,4,5,6),记“两次向上的数字之和等于m ”为事件A ,则P (A )最大时,m =________. 答案 7解析 1+1=2,1+2=3,1+3=4,1+4=5,1+5=6,1+6=7,2+1=3,2+2=4,2+3=5,2+4=6,2+5=7,2+6=8……依次列出m 的可能的值,知7出现次数最多.9.设连续掷两次骰子得到的点数分别为m ,n ,令平面向量a =(m ,n ),b =(1,-3). (1)求使得事件“a ⊥b ”发生的概率; (2)求使得事件“|a |≤|b |”发生的概率.解 (1)由题意知,m ∈{1,2,3,4,5,6},n ∈{1,2,3,4,5,6},故(m ,n )所有可能的取法共36种.a ⊥b ,即m -3n =0,即m =3n ,共有2种:(3,1),(6,2),所以事件a ⊥b 的概率为236=118.(2)|a |≤|b |,即m 2+n 2≤10,共有(1,1),(1,2),(1,3),(2,1),(2,2),(3,1)6种,其概率为636=16.10.有7位歌手(1至7号)参加一场歌唱比赛,由500名大众评委现场投票决定歌手名次,根据年龄将大众评委分为五组,各组的人数如下:组别 ABCDE人数5010015015050(1)委,其中从B 组中抽取了6人.请将其余各组抽取的人数填入下表.组别 ABCDE人数 50100 150 150 50 抽取人数6(2)在(1)中,若A ,大众评委中分别任选1人,求这2人都支持1号歌手的概率.解 (1)由题设知,分层抽样的抽取比例为6%,所以各组抽取的人数如下表:组别 ABCDE人数 50 100 150 150 50 抽取人数36993(2)记从A 组抽到的12312B 组抽到的6个评委为b 1,b 2,b 3,b 4,b 5,b 6,其中b 1,b 2支持1号歌手.从{a 1,a 2,a 3}和{b 1,b 2,b 3,b 4,b 5,b 6}中各抽取1人的所有结果为由以上树状图知所有结果共18种,其中2人都支持1号歌手的有a 1b 1,a 1b 2,a 2b 1,a 2b 2共4种,故所求概率P =418=29.B 组 专项能力提升 (时间:25分钟)11.从正六边形的6个顶点中随机选择4个顶点,则以它们作为顶点的四边形是矩形的概率等于________. 答案 15解析 如图所示,从正六边形ABCDEF 的6个顶点中随机选4个顶点,可以看作随机选2个顶点,剩下的4个顶点构成四边形,有A 、B ,A 、C ,A 、D ,A 、E ,A 、F ,B 、C ,B 、D ,B 、E ,B 、F ,C 、D ,C 、E ,C 、F ,D 、E ,D 、F ,E 、F ,共15种.若要构成矩形,只要选相对顶点即可,有A 、D ,B 、E ,C 、F ,共3种,故其概率为315=15.12.已知集合M ={1,2,3,4},N ={(a ,b )|a ∈M ,b ∈M },A 是集合N 中任意一点,O 为坐标原点,则直线OA 与y =x 2+1有交点的概率是________. 答案 14解析 易知过点(0,0)与y =x 2+1相切的直线为y =2x (斜率小于0的无需考虑),集合N 中共有16个元素,其中使OA 斜率不小于2的有(1,2),(1,3),(1,4),(2,4),共4个,故所求的概率为416=14.13.一个袋子中装有六个大小形状完全相同的小球,其中一个编号为1,两个编号为2,三个编号为3.现从中任取一球,记下编号后放回,再任取一球,则两次取出的球的编号之和等于4的概率是________. 答案518解析 基本事件数为6×6=36,编号之和为4的有:10种,所求概率为1036=518.14.甲、乙两人用4张扑克牌(分别是红桃2,红桃3,红桃4,方片4)玩游戏,他们将扑克牌洗匀后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一张. (1)设(i ,j )表示甲、乙抽到的牌的牌面数字(如果甲抽到红桃2,乙抽到红桃3,记为(2,3)),写出甲、乙两人抽到的牌的所有情况;(2)若甲抽到红桃3,则乙抽到的牌的牌面数字比3大的概率是多少?(3)甲、乙约定,若甲抽到的牌的牌面数字比乙大,则甲胜;否则,乙胜,你认为此游戏是否公平?请说明理由.解 (1)方片4用4′表示,则甲、乙两人抽到的牌的所有情况为:(2,3),(2,4),(2,4′),(3,2),(3,4),(3,4′),(4,2),(4,3),(4,4′),(4′,2),(4′,3),(4′,4)共12种不同的情况.(2)甲抽到3,乙抽到的牌只能是2,4,4′,因此乙抽到的牌的牌面数字大于3的概率为23.(3)甲抽到的牌的牌面数字比乙大,有(3,2),(4,2),(4,3),(4′,2),(4′,3),共5种情况.甲胜的概率为P 1=512,乙胜的概率为P 2=712.因为512<712,所以此游戏不公平.15.(2014·福建)根据世行2013年新标准,人均GDP 低于1 035美元为低收入国家;人均GDP 为1 035~4 085美元为中等偏下收入国家;人均GDP 为4 085~12 616美元为中等偏上收入国家;人均GDP 不低于12 616美元为高收入国家.某城市有5个行政区,各区人口占该城市人口比例及人均GDP 如下表:(1)(2)现从该城市5个行政区中随机抽取2个,求抽到的2个行政区人均GDP 都达到中等偏上收入国家标准的概率.解 (1)设该城市人口总数为a ,则该城市人均GDP 为1a(8 000×0.25a +4 000×0.30a +6000×0.15a +3 000×0.10a +10 000×0.20a )=6 400. 因为6 400∈[4 085,12 616),所以该城市人均GDP 达到了中等偏上收入国家标准.(2)“从5个行政区中随机抽取2个”的所有的基本事件是:{A ,B },{A ,C },{A ,D },{A ,E },{B ,C },{B ,D },{B ,E },{C ,D },{C ,E },{D ,E },共10个.设事件“抽到的2个行政区人均GDP 都达到中等偏上收入国家标准”为M ,则事件M 包含的基本事件是:{A ,C },{A ,E },{C ,E },共3个,所以所求概率为P (M )=310.。

2021高考数学一轮复习第11章概率第2节古典概型课件文北师大版

2021高考数学一轮复习第11章概率第2节古典概型课件文北师大版

(白,红),(白,白),(白,黑),(黑,红),(黑,白),(黑,黑),共9
种,其中2次取出的球颜色相同有3种,所以2次取出的球颜色不同的
概率为1-39=23.]
13
课堂考点探究
14
⊙考点1 古典概型的概率计算 求古典概型概率的步骤
(1)判断本试验的结果是否为等可能事件,设出所求事件A; (2)分别求出基本事件的总数n与所求事件A中所包含的基本事件 个数m; (3)利用公式P(A)=mn ,求出事件A的概率.
44
2.设平面向量a=(m,1),b=(2,n),其中m,n∈{1,2,3,4},记
“a⊥(a-b)”为事件A,则事件A发生的概率为( )
1
1
A.8
B.4
1
1
C.3
D.2
45
A [有序数对(m,n)的所有可能情况为(1,1),(1,2),(1,3),(1,4), (2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3), (4,4),共 16 个.由 a⊥(a-b)得 m2-2m+1-n=0,即 n=(m-1)2, 由于 m,n∈{1,2,3,4},故事件 A 包含的基本事件为(2,1)和(3,4),共 2 个,所以 P(A)=126=18.故选 A.]
31
②不妨设抽出的7名同学中,来自甲年级的是A,B,C,来自乙 年级的是D,E,来自丙年级的是F,G,则从抽出的7名同学中随机 抽取的2名同学来自同一年级的所有可能结果为{A,B},{A,C}, {B,C},{D,E},{F,G},共5种.
所以事件M发生的概率P(M)=251.
32
⊙考点2 古典概型与其他知识的交汇问题

2023版高考数学一轮总复习11-1随机事件古典概型与几何概型课件

2023版高考数学一轮总复习11-1随机事件古典概型与几何概型课件
域用A表示(A⊆Ω),则P(A)= A的几何度量.
Ω的几何度量
考法一 古典概型概率的求法 1.求解古典概型概率的步骤
2.基本事件个数的确定方法 1)列举法:此法适合于基本事件个数较少的古典概型. 2)列表法:此法适合于从多个元素中选定两个元素的试验,也可看成坐标 法.
3)画树状图法:画树状图法是进行列举的一种常用方法,适用于有顺序的 问题及较复杂问题中基本事件个数的探求. 4)运用排列组合知识计算.
A39 7
答案 D
创新 生活中的概率问题 1.概率问题常与生活实际或数学文化相结合,主要考查学生的逻辑推 理、数据分析、数学抽象等核心素养. 2.解决这类问题的关键:①认真审题,把握信息;②弄清提供的问题情境的 意义;③抽象转化成数学问题,应用熟悉的数学知识解决.
例1 (2021湖南湘潭一模,7)德国心理学家艾宾浩斯研究发现,遗忘在学习 之后立即开始,而且遗忘的进程并不是均匀的.最初遗忘速度很快,以后逐 渐减慢.他认为“保持和遗忘是时间的函数”.他用无意义音节(由若干音 节字母组成,能够读出,但无内容意义,即不是词的音节)作为记忆材料,用 节省法计算保持和遗忘的数量,并根据试验结果绘成描述遗忘进程的曲 线,即著名的艾宾浩斯遗忘曲线(如图所示).若一名学生背了100个英语单 词,一天后,该学生在这100个英语单词中随机听写2个英语单词,以频率代 替概率,不考虑其他因素,则该学生恰有1个单词不会的概率大约为 ( )
m=5+4+3+2+1=15,则取到的整数十位数字比个位数字大的概率P= m =15
n 25
=3.
5
答案 B
考法二 几何概型概率的求法
例2 (2021辽宁辽南协作体联考,9)1876年4月1日,加菲尔德在《新英格兰 教育日志》上发表了勾股定理的一种证明方法,即在如图的直角梯形 ABCD中,利用“两个全等的直角三角形和一个等腰直角三角形的面积之 和等于直角梯形的面积”,可以简洁明了地推证出勾股定理.1881年加菲 尔德就任美国第二十任总统.后来,人们为了纪念他对勾股定理直观、易 懂的证明,就把这一证明方法称为“总统证法”.如图,设∠ECB=60°,在梯 形ABCD中随机取一点,则此点取自等腰直角△CDE(阴影部分)中的概率 是() A.2(2- 3 ) B.2- 3 C. 3 -1 D.2( 3-1)

2022数学第十一章概率11.2古典概型学案文含解析新人教A版

2022数学第十一章概率11.2古典概型学案文含解析新人教A版

11。

2古典概型必备知识预案自诊知识梳理1.基本事件在一次试验中,我们常常要关心的是所有可能发生的基本结果,它们是试验中不能再分的最简单的随机事件,其他事件可以用它们来描绘,这样的事件称为。

2.基本事件的特点(1)任何两个基本事件是的.(2)任何事件(除不可能事件)都可以表示成的和.3。

古典概型具有以下两个特点的概率模型称为古典概率模型,简称古典概型。

(1)有限性:试验中所有可能出现的基本事件.(2)等可能性:每个基本事件出现的可能性。

4。

古典概型的概率公式.P(A)=A包含的基本事件的个数基本事件的总数1。

任一随机事件的概率都等于构成它的每一个基本事件概率的和。

2。

求试验的基本事件数及事件A包含的基本事件数的方法有列举法、列表法和树状图法。

考点自诊1.判断下列结论是否正确,正确的画“√”,错误的画“×”。

(1)在一次古典概型试验中,其基本事件的发生一定是等可能的.()(2)基本事件的概率都是1n。

若某个事件A包含的结果有m个,则P(A)=mn.()(3)掷一枚质地均匀的硬币两次,出现“两个正面”“一正一反"“两个反面”,这三个结果是等可能事件.()(4)在古典概型中,如果事件A中基本事件构成集合A,所有的基本事件构成集合I,那么事件A的概率为card(A)card(I)。

()(5)从1,2,3,4,5中任取出两个不同的数,其和为5的概率是0。

2.()2.某同学打算编织一条毛线围巾送给妈妈,决定从妈妈喜欢的白色、黄色和紫色中随机选择两种颜色的毛线编织,那么这条围巾是由白色、紫色两种颜色的毛线编织的概率是()A.14B.13C。

12D.343.(2019全国3,3)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是()A。

16B。

14C。

13D.124.从集合A={1,3,5,7,9}和集合B={2,4,6,8}中各取一个数,那么这两个数之和除以3余1的概率是()A。

2020版高考数学大一轮复习第11章概率第2讲古典概型与几何概型课件文

2020版高考数学大一轮复习第11章概率第2讲古典概型与几何概型课件文
5 8
对于事件A,先将数字4放在五个不同数的中间位置,再考虑分别从 数字1,2,3和5,6,7,8中各取两个数字,则事件A包含的基本事件种数 为 C C =3×6=18.由古典概型的概率计算公式,得P(A)= 18 = 56
2 2 4 3
9 28
.
考法2 几何概型的求法
1.与长度、角度有关的几何概型
C.

D.
之间的区间长度为 = .
由几何概型的概率计算公式,得P=
= .故选B.
文科数学 第十一章:概率
(2)[2019吉林百校联考] 太极图是以黑白两个鱼形纹组成的图案,它形象 地表达了阴阳轮转,展现了一种相互转化、相对统一的形式美.按照太极图 的构图方法,在如图所示的平面直角坐标系中,圆O被y=3sin x的图象分割 为两个对称的鱼形图案,其中小圆的半径均为1,现在在大圆内随机取一点, 则此点取自阴影部分的概率为( )
考点1 古典概型
考点2 几何概型
考点3 随机模拟
考点1 古典概型(重点)
1.基本事件的特点
(1)任何两个基本事件都是互斥的.
(2)任何事件(除不可能事件)都可以表示成基本事件的和. 2.古典概型的特点
文科数学 第十一章:概率
3.古典概型的概率计算公式 P(A)= .
注意:下列三类试验不是古典概型:(1)基本事件的个数有限,但非等可能
机模拟产生了20组如下的随机数:
7527 0293 7140 9857 0347 4373 8636 6947 1417 4698 0371 6233 2616 8045 6011 3661 9597 7424 7610 4281 根据以上数据估计该运动员射击4次至少击中3次的概率为
.

高考数学一轮复习统考 第11章 概率 第2讲 古典概型学案(含解析)北师大版-北师大版高三全册数学学

高考数学一轮复习统考 第11章 概率 第2讲 古典概型学案(含解析)北师大版-北师大版高三全册数学学

第2讲 古典概型基础知识整合1.基本事件的特点(1)任何两个基本事件是□01互斥的. (2)任何事件(除不可能事件)都可以表示成□02基本事件的和. 2.古典概型 (1)古典概型的定义具有以下两个特点的概率模型称为古典概率模型,简称古典概型. 有限性—试验中所有可能出现的基本事件□03只有有限个 |等可能性—每个基本事件出现的可能性□04相等 (2)古典概型的概率公式P (A )=□05A 包含的基本事件的个数基本事件的总数.一个试验是否为古典概型,在于这个试验是否具有古典概型的两个特征——有限性和等可能性,只有同时具备这两个特征的概率模型才是古典概型.正确的判断试验的类型是解决概率问题的关键.1.一枚硬币连掷2次,恰好出现1次正面的概率是( ) A.12 B.14 C.34 D .0答案 A解析 列举出所有基本事件,找出“恰有1次出现正面”包含的结果.一枚硬币连掷2次,基本事件有(正,正),(正,反),(反,正),(反,反),共4个,而恰有1次出现正面包括(正,反),(反,正),2个,故其概率为24=12.2.为美化环境,从红,黄,白,紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( )A.13B.12C.23D.56答案 C解析 从红,黄,白,紫4种颜色的花中任选2种有以下选法:(红,黄),(红,白),(红,紫),(黄,白),(黄,紫),(白,紫),共6种,其中红色和紫色的花不在同一花坛(亦即黄色和白色的花不在同一花坛)的选法有4种,所以所求事件的概率P =46=23.故选C.3.(2017·天津高考)有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为( )A.45B.35C.25D.15 答案 C解析 从5支彩笔中任取2支不同颜色彩笔的取法有红黄、红蓝、红绿、红紫、黄蓝、黄绿、黄紫、蓝绿、蓝紫、绿紫,共10种,其中取出的2支彩笔中含有红色彩笔的取法有红黄、红蓝、红绿、红紫,共4种,所以所求概率P =410=25.故选C. 4.(2019·金华模拟)从1,2,3,4,5,6六个数中任取2个数,则取出的两个数不是连续自然数的概率是( )A.35B.25C.13D.23答案 D解析 从1,2,3,4,5,6六个数中任取2个数共有15种情况,取出的两个数是连续自然数的有5种情况,则取出的两个数不是连续自然数的概率P =1-515=23.5.(2018·江苏高考)某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为________.答案310解析 把男生编号为男1,男2,女生编号为女1,女2,女3,则从5名学生中任选2名学生有:男1男2,男1女1,男1女2,男1女3,男2女1,男2女2,男2女3,女1女2,女1女3,女2女3,共10种情况,其中选中2名女生有3种情况,则恰好选中2名女生的概率为310.6.甲、乙两人玩猜数字的游戏,先由甲任想一个数字,记为a ,再由乙猜甲刚才想的数字,把乙猜出的数字记为b ,且a ,b ∈{1,2,3,4},若|a -b |≤1,则称甲、乙“心有灵犀”.现任意找两个人玩这个游戏,则他们“心有灵犀”的概率为________.答案 58解析 两人分别从1,2,3,4四个数中任取一个,有16种情况,其中满足|a -b |≤1的情况有(1,1),(1,2),(2,1),(2,2),(2,3),(3,2),(3,3),(3,4),(4,3),(4,4),共10种,故他们“心有灵犀”的概率为1016=58.核心考向突破考向一 简单的古典概型 考向一 简单的古典概型例1 袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.(1)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率; (2)向袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.解 (1)将标号为1,2,3的三张红色卡片分别记为A ,B ,C ,标号为1,2的两张蓝色卡片分别记为D ,E .从五张卡片中任取两张的所有可能结果为(A ,B ),(A ,C ),(A ,D ),(A ,E ),(B ,C ),(B ,D ),(B ,E ),(C ,D ),(C ,E ),(D ,E ),共10种.由于每一张卡片被取到的机会均等,因此这些基本事件的出现是等可能的.从五张卡片中任取两张,这两张卡片颜色不同且它们的标号之和小于4的结果为(A ,D ),(A ,E ),(B ,D ),共3种.所以这两张卡片颜色不同且它们的标号之和小于4的概率为310.(2)将标号为0的绿色卡片记为F .从六张卡片中任取两张的所有可能结果为(A ,B ),(A ,C ),(A ,D ),(A ,E ),(A ,F ),(B ,C ),(B ,D ),(B ,E ),(B ,F ),(C ,D ),(C ,E ),(C ,F ),(D ,E ),(D ,F ),(E ,F ),共15种.由于每一张卡片被取到的机会均等,因此这些基本事件的出现是等可能的.从六张卡片中任取两张,这两张卡片颜色不同且它们的标号之和小于4的结果为(A ,D ),(A ,E ),(A ,F ),(B ,D ),(B ,F ),(C ,F ),(D ,F ),(E ,F ),共8种.所以这两张卡片颜色不同且它们的标号之和小于4的概率为815.1.求古典概型概率的步骤(1)判断本试验的结果是不是等可能事件,设出所求事件A ;(2)分别求出基本事件的总数n 与所求事件A 中所包含的基本事件个数m ; (3)利用公式P (A )=mn,求出事件A 的概率. 2.基本事件个数的确定方法 方法 适用条件列表法 此法适用于从多个元素中选定两个元素的试验,也可看成是坐标法树状图法树状图是进行列举的一种常用方法,适合于有顺序的问题及较复杂问题中基本事件数的探求[即时训练] 1.一个盒子里装有三张卡片,分别标有数字1,2,3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a ,b ,c .(1)求“抽取的卡片上的数字满足a +b =c ”的概率; (2)求“抽取的卡片上的数字a ,b ,c 不完全相同”的概率.解 (1)由题意,得(a ,b ,c )所有可能的结果为(1,1,1),(1,1,2),(1,1,3),(1,2,1),(1,2,2),(1,2,3),(1,3,1),(1,3,2),(1,3,3),(2,1,1),(2,1,2),(2,1,3),(2,2,1),(2,2,2),(2,2,3),(2,3,1),(2,3,2),(2,3,3),(3,1,1),(3,1,2),(3,1,3),(3,2,1),(3,2,2),(3,2,3),(3,3,1),(3,3,2),(3,3,3),共27种.设“抽取的卡片上的数字满足a +b =c ”为事件A , 则事件A 包括(1,1,2),(1,2,3),(2,1,3),共3种. 所以P (A )=327=19.因此“抽取的卡片上的数字满足a +b =c ”的概率为19.(2)设“抽取的卡片上的数字a ,b ,c 不完全相同”为事件B ,则事件B -包括(1,1,1),(2,2,2),(3,3,3),共3种.所以P (B )=1-P (B -)=1-327=89.因此“抽取的卡片上的数字a ,b ,c 不完全相同”的概率为89.精准设计考向,多角度探究突破 考向二 较复杂的古典概型角度1 古典概型与平面向量的交汇例2 (1)(2019·宁波模拟)连掷两次骰子得到的点数分别为m 和n ,记向量a =(m ,n )与向量b =(1,-1)的夹角为θ,则θ∈⎝⎛⎦⎥⎤0,π2的概率是( )A.512 B.12 C.712 D.56答案 C 解析 cos θ=a ·b |a ||b |=m -n|a ||b |. ∵θ∈⎝⎛⎦⎥⎤0,π2,∴m ≥n .(m ,n )一共有6×6=36(种)不同组合. 满足m ≥n 的有1+2+3+4+5+6=21(种). 所以所求的概率P =2136=712.(2)(2019·宿迁模拟)已知k ∈Z ,A B →=(k,1),A C →=(2,4),若|A B →|≤4,则△ABC 是直角三角形的概率是________.答案 37解析 因为|A B →|=k 2+1≤4,所以-15≤k ≤15, 因为k ∈Z ,所以k =-3,-2,-1,0,1,2,3,当△ABC 为直角三角形时,应有AB ⊥AC ,或AB ⊥BC ,或AC ⊥BC ,由A B →·A C →=0,得2k+4=0,所以k =-2,因为B C →=A C →-A B →=(2-k,3),由A B →·B C →=0,得k (2-k )+3=0,所以k =-1或3,由A C →·B C →=0,得2(2-k )+12=0,所以k =8(舍去),故使△ABC 为直角三角形的k 值为-2,-1或3,所以所求概率P =37.角度2 古典概型与平面几何、解析几何的交汇例3 (1)(2019·山东省实验中学模拟)已知直线l 1:x -2y -1=0,直线l 2:ax -by +1=0,其中a ,b ∈{1,2,3,4,5,6},则直线l 1与l 2的交点位于第一象限的概率为( )A.16B.14C.13D.12 答案 A解析 l 2的斜率小于l 1的斜率时,直线l 1与l 2的交点位于第一象限,此时共有六种情况:a =1,b ∈{3,4,5,6};a =2,b ∈{5,6}.因此所求概率为66×6=16.故选A. (2)(2019·洛阳统考)将一颗骰子先后投掷两次分别得到点数a ,b ,则直线ax +by =0与圆(x -2)2+y 2=2有公共点的概率为________.答案712解析 依题意,将一颗骰子先后投掷两次得到的点数所形成的数组(a ,b )有C 16C 16=36个,其中满足直线ax +by =0与圆(x -2)2+y 2=2有公共点,即满足2aa 2+b2≤2,a 2≤b 2的数组(a ,b )有6+5+4+3+2+1=21个,因此所求的概率等于2136=712.角度3 古典概型与函数的交汇例4 (1)(2020·亳州质检)已知集合M ={1,2,3,4},N ={(a ,b )|a ∈M ,b ∈M },A 是集合N 中任意一点,O 为坐标原点,则直线OA 与y =x 2+1有交点的概率是( )A.12B.13C.14D.18 答案 C解析 易知过点(0,0)与y =x 2+1相切的直线为y =2x (斜率小于0的无需考虑),集合N 中共有4×4=16个元素,其中使直线OA 的斜率不小于2的有(1,2),(1,3),(1,4),(2,4),共4个,故所求的概率为416=14.故选C.(2)已知M ={1,2,3,4},若a ∈M ,b ∈M ,则函数f (x )=ax 3+bx 2+x -3在R 上为增函数的概率是( )A.916B.716C.14答案 A解析 记事件A 为“函数f (x )=ax 3+bx 2+x -3在R 上为增函数”.因为f (x )=ax 3+bx2+x -3,所以f ′(x )=3ax 2+2bx +1.当函数f (x )在R 上为增函数时,f ′(x )≥0在R 上恒成立.又a >0,所以Δ=(2b )2-4×3a =4b 2-12a ≤0在R 上恒成立,即a ≥b 23.当b =1时,有a ≥13,故a 可取1,2,3,4,共4个数;当b =2时,有a ≥43,故a 可取2,3,4,共3个数;当b =3时,有a ≥3,故a 可取3,4,共2个数; 当b =4时,有a ≥163,故a 无可取值.综上,事件A 包含的基本事件有4+3+2=9种. 又a ,b ∈{1,2,3,4},所以所有的基本事件共有16种. 故所求事件A 的概率为P (A )=916.故选A.较复杂的古典概型问题的求解方法解决与古典概型交汇命题的问题时,把相关的知识转化为事件,列举基本事件,求出基本事件和随机事件的个数,然后利用古典概型的概率计算公式进行计算.[即时训练] 3.设平面向量a =(m,1),b =(2,n ),其中m ,n ∈{1,2,3,4},记“a ⊥(a -b )”为事件A ,则事件A 发生的概率为( )A.18B.14C.13D.12答案 A解析 有序数对(m ,n )的所有可能结果有4×4=16(个).由a ⊥(a -b ),得m 2-2m +1-n =0,即n =(m -1)2,由于m ,n ∈{1,2,3,4},故事件A 包含的基本事件为(2,1)和(3,4),共2个,所以P (A )=216=18.4.(2019·甘肃兰州模拟)双曲线C :x 2a 2-y 2b2=1(a >0,b >0),其中a ∈{1,2,3,4},b ∈{1,2,3,4},且a ,b 取到其中每个数都是等可能的,则直线l :y =x 与双曲线C 的左、右支各有一个交点的概率为( )A.14B.38C.12D.58 答案 B解析 若直线l :y =x 与双曲线C 的左、右支各有一个交点,则b a>1,基本事件总数为4×4=16,满足条件的(a ,b )的情况有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共6个,故所求概率为38.5.(2019·河南郑州模拟)已知一组抛物线y =12ax 2+bx +1,其中a 为2,4中任取的一个数,b 为1,3,5中任取的一个数,从这些抛物线中任意抽取两条,它们在与直线x =1交点处的切线相互平行的概率是________.答案215解析 抛物线共有6条,任取两条共C 26=15种情况.∵y ′=ax +b ,∴在与直线x =1交点处的切线斜率为a +b ,而a 为2,4中任取的一个数,b 为1,3,5中任取的一个数,保证a +b 相等的抛物线有2对,∴在与直线x =1交点处的切线相互平行的概率为215.考向三 古典概型与统计的交汇问题例5 (2019·长春模拟)某教师为了了解高三所教两个班级的一模数学成绩情况,将两个班的数学成绩(单位:分)绘制成如图所示的茎叶图.(1)分别求出甲、乙两个班级数学成绩的中位数、众数;(2)若规定成绩大于等于115分为优秀,分别求出两个班级数学成绩的优秀率; (3)从甲班中130分以上的5名同学中随机抽取3人,求至多有1人的数学成绩在140分以上的概率.解 (1)由所给的茎叶图,知甲班50名同学的成绩由小到大排序,排在第25,26位的是108,109,出现次数最多的是103,故甲班数学成绩的中位数是108.5,众数是103;乙班48名同学的成绩由小到大排序,排在第24,25位的是106,107,出现次数最多的是92和101,故乙班数学成绩的中位数是106.5,众数为92和101.(2)由茎叶图中的数据可知,甲班中数学成绩为优秀的人数为20,优秀率为2050=25;乙班中数学成绩为优秀的人数为18,优秀率为1848=38.(3)从5人中抽取3人的不同情况共有C 35种,其中至多有1人的数学成绩在140分以上的情况有C 12C 23+C 33种,故至多有1人的数学成绩在140分以上的概率P =C 12C 23+C 33C 35=710.求解古典概型与统计交汇问题的思路(1)依据题目的直接描述或频率分布表、频率分布直方图、茎叶图等统计图表给出的信息,提炼出需要的信息.(2)进行统计与古典概型概率的正确计算.[即时训练] 5.(2019·广州五校联考)某市为庆祝北京夺得2022年冬奥会举办权,围绕“全民健身促健康、同心共筑中国梦”主题开展全民健身活动.组织方从参加活动的群众中随机抽取120名群众,按他们的年龄分组:第1组[20,30),第2组[30,40),第3组[40,50),第4组[50,60),第5组[60,70],得到的频率分布直方图如图所示.(1)若电视台记者要从抽取的群众中选一人进行采访,估计被采访人恰好在第1组或第4组的概率;(2)已知第1组群众中男性有3名,组织方要从第1组中随机抽取2名群众组成志愿者服务队,求至少有1名女性群众的概率.解 (1)设第1组[20,30)的频率为f 1,则由题意,得f 1=1-(0.035+0.030+0.020+0.010)×10=0.05.,被采访人恰好在第1组或第4组的频率为0.05+0.020×10=0.25.所以估计被采访人恰好在第1组或第4组的概率为0.25. (2)∵第1组[20,30)的人数为0.05×120=6.∴第1组中共有6名群众,其中女性群众共3名.记第1组中的3名男性群众分别为A ,B ,C,3名女性群众分别为x ,y ,z ,从第1组中随机抽取2名群众组成志愿者服务队包含(A ,B ),(A ,C ),(A ,x ),(A ,y ),(A ,z ),(B ,C ),(B ,x ),(B ,y ),(B ,z ),(C ,x ),(C ,y ),(C ,z ),(x ,y ),(x ,z ),(y ,z ),共15个基本事件.至少有一名女性群众包含(A ,x ),(A ,y ),(A ,z ),(B ,x ),(B ,y ),(B ,z ),(C ,x ),(C ,y ),(C ,z ),(x ,y ),(x ,z ),(y ,z ),共12个基本事件.∴从第1组中随机抽取2名群众组成志愿者服务队,至少有1名女性群众的概率P =1215=45.盒中有三张分别标有号码3,4,5的卡片,从盒中随机抽取一张记下号码后放回,再随机抽取一张记下号码,则两次抽取的卡片号码中至少有一个为奇数的概率为________.答案 89 解析 解法一:两次抽取的卡片号码有(3,3),(3,4),(3,5),(4,3),(4,4),(4,5),(5,3),(5,4),(5,5),共9种,其中至少有一个是奇数有(3,3),(3,4),(3,5),(4,3),(4,5),(5,3),(5,4),(5,5),共8种,因此所求概率为89. 解法二:所求事件的对立事件为“两次抽取的卡片号码都为偶数”,只有(4,4)这1种取法,而两次抽取的卡片号码有(3,3),(3,4),(3,5),(4,3),(4,4),(4,5),(5,3),(5,4),(5,5),共9种,因此所求事件的概率为1-19=89. 答题启示“正难则反”的思想是一种常见的数学思想,如反证法、补集的思想都是“正难则反”思想的体现.在解决问题时,如果从问题的正面入手比较复杂或不易解决,那么尝试采用“正难则反”思想往往会起到事半功倍的效果,大大降低题目的难度.在求对立事件的概率时,经常应用“正难则反”的思想,即若事件A 与事件B 互为对立事件,在求P (A )或P (B )时,利用公式P (A )=1-P (B )先求容易的一个,再求另一个.对点训练1.某单位要在4名员工(含甲、乙2人)中随机选2名到某地出差,则甲、乙2人中,至少有1人被选中的概率是( )A.56B.23C.13D.12答案 A解析 解法一:设四人分别为甲、乙、丙、丁,则随机选2名的情况为甲乙、甲丙、甲丁、乙丙、乙丁、丙丁,共6种,其中甲、乙2人中,至少有1人被选中的情况为甲乙、甲丙、甲丁、乙丙、乙丁,共5种,所以所求概率为56. 解法二:设四人分别为甲、乙、丙、丁,则随机选2名的情况为甲乙、甲丙、甲丁、乙丙、乙丁、丙丁,共6种,其中甲、乙2人都没被选中的情况为丙丁,共1种,所以所求概率为1-16=56. 2.(2019·烟台模拟)口袋里装有红球、白球、黑球各1个,这3个球除颜色外完全相同,有放回地连续抽取2次,每次从中任意取出1个球,则2次取出的球颜色不同的概率是( )A.29B.13C.23D.89 答案 C解析 解法一:由题意,得基本事件有(红,红),(红,白),(红,黑),(白,红),(白,白),(白,黑),(黑,红),(黑,白),(黑,黑),共9个,2次取出的球颜色不同包含的基本事件有6个,所以2次取出的球颜色不同的概率P =69=23,故选C. 解法二:由题意,得基本事件有(红,红),(红,白),(红,黑),(白,红),(白,白),(白,黑),(黑,红),(黑,白),(黑,黑),共9个,其中2次取出的球颜色相同的基本事件有3个,所以2次取出的球颜色不同的概率为1-39=23.。

高考数学(人教B版 文科)总复习课件:11-2古典概型

高考数学(人教B版 文科)总复习课件:11-2古典概型

题型一 基本事件与古典概型的判断 【例1 】 袋中有大小相同的5 个白球,3 个黑球和3 个 红球,每球有一个区别于其他球的编号,从中摸出一个 球. (1)有多少种不同的摸法?如果把每个球的编号看作 一个基本事件建立概率模型,该模型是不是古典概型? (2)若按球的颜色为划分基本事件的依据,有多少个 基本事件?以这些基本事件建立概率模型,该模型是不 是古典概型?

①若xy ≤3 ,则奖励玩具一个; ②若xy ≥8 ,则奖励水杯一个;
③其余情况奖励饮料一瓶. 假设转盘质地均匀,四个区域划分均匀.小亮准备参 加此项活动.
(1)求小亮获得玩具的概率; (2)请比较小亮获得水杯与获得饮料的概率的大小, 并说明理由.
【解析】 用数对(x,y)表示儿童参加活动先后记录 的数,则基本事件空间Ω与点集S={(x,y)|x∈N ,y∈N ,1 ≤x≤4 ,1 ≤y≤4}一一对应.
C .2
.3
D
【解析】 ①中,硬币质地不均匀,不是等可能事件 ,
所以不是古典概型. ②④的基本事件都不是有限个,不是古典概型. ③符合古典概型的特点,是古典概型问题. 【答案】 B
(2)(2015· 江苏)袋中有形状、大小都相同的4 只球, 其中1 只白球,1 只红球,2 只黄球,从中一次随机摸出 2 只球,则这2 只球颜色不同的概率为________.
概率.
【方法规律】 有关古典概型与统计结合的题型是高 考考查概率的一个重要题型,已成为高考考查的热点. 概率与统计结合题,无论是直接描述还是利用频率分布 表、频率分布直方图、茎叶图等给出信息,只需能够从 题中提炼出东济南二模)国家环境标准制定 的空气质量指数与空气质量等级对应关系如下表:
群众体育活动的开展情况,拟采用分层抽样的方法从A , B,C 三个行政区抽出6 个社区进行调查,已知A ,B,C

高考数学大一轮复习 第十一章 概率 11.2 古典概型教师用书 文 新人教版-新人教版高三全册数学试

高考数学大一轮复习 第十一章 概率 11.2 古典概型教师用书 文 新人教版-新人教版高三全册数学试

2018版高考数学大一轮复习 第十一章 概率 11.2 古典概型教师用书 文 新人教版1.基本事件的特点(1)任何两个基本事件是互斥的;(2)任何事件(除不可能事件)都可以表示成基本事件的和. 2.古典概型具有以下两个特点的概率模型称为古典概率模型,简称古典概型. (1)试验中所有可能出现的基本事件只有有限个; (2)每个基本事件出现的可能性相等.3.如果一次试验中可能出现的结果有n 个,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是1n ;如果某个事件A 包括的结果有m 个,那么事件A 的概率P (A )=mn.4.古典概型的概率公式P (A )=A 包含的基本事件的个数基本事件的总数.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)“在适宜条件下,种下一粒种子观察它是否发芽”属于古典概型,其基本事件是“发芽与不发芽”.( × )(2)掷一枚硬币两次,出现“两个正面”“一正一反”“两个反面”,这三个结果是等可能事件.( × )(3)从市场上出售的标准为500±5 g 的袋装食盐中任取一袋,测其重量,属于古典概型.( × )(4)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为13.( √ )(5)从1,2,3,4,5中任取出两个不同的数,其和为5的概率是0.2.( √ )(6)在古典概型中,如果事件A 中基本事件构成集合A ,且集合A 中的元素个数为n ,所有的基本事件构成集合I ,且集合I 中元素个数为m ,则事件A 的概率为n m.( √ )1.从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ) A.12 B.13 C.14 D.16 答案 B解析 基本事件的总数为6,构成“取出的2个数之差的绝对值为2”这个事件的基本事件的个数为2,所以所求概率P =26=13,故选B.2.(2016·)从甲、乙等5名学生中随机选出2人,则甲被选中的概率为( ) A.15 B.25 C.825 D.925 答案 B解析 从甲、乙等5名学生中随机选2人共有10种情况,甲被选中有4种情况,则甲被选中的概率为410=25.3.(2015·课标全国Ⅰ)如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( )A.310B.15C.110D.120 答案 C解析 从1,2,3,4,5中任取3个不同的数共有如下10种不同的结果:(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5),其中勾股数只有(3,4,5),所以概率为110.故选C. 4.从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为________.答案3 5解析取两个点的所有情况为10种,所有距离不小于正方形边长的情况有6种,概率为610=35.5.(教材改编)同时掷两个骰子,向上点数不相同的概率为________.答案5 6解析掷两个骰子一次,向上的点数共6×6=36(种)可能的结果,其中点数相同的结果共有6个,所以点数不同的概率P=1-66×6=56.题型一基本事件与古典概型的判断例1 (1)有两颗正四面体的玩具,其四个面上分别标有数字1,2,3,4,下面做投掷这两颗正四面体玩具的试验:用(x,y)表示结果,其中x表示第1颗正四面体玩具出现的点数,y表示第2颗正四面体玩具出现的点数.试写出:①试验的基本事件;②事件“出现点数之和大于3”包含的基本事件;③事件“出现点数相等”包含的基本事件.(2)袋中有大小相同的5个白球,3个黑球和3个红球,每球有一个区别于其他球的编号,从中摸出一个球.①有多少种不同的摸法?如果把每个球的编号看作一个基本事件建立概率模型,该模型是不是古典概型?②若按球的颜色为划分基本事件的依据,有多少个基本事件?以这些基本事件建立概率模型,该模型是不是古典概型?解(1)①这个试验的基本事件为(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4).②事件“出现点数之和大于3”包含的基本事件为(1,3),(1,4),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4).③事件“出现点数相等”包含的基本事件为(1,1),(2,2),(3,3),(4,4).(2)①由于共有11个球,且每个球有不同的编号,故共有11种不同的摸法.又因为所有球大小相同,因此每个球被摸中的可能性相等,故以球的编号为基本事件的概率模型为古典概型.②由于11个球共有3种颜色,因此共有3个基本事件,分别记为A:“摸到白球”,B:“摸到黑球”,C:“摸到红球”,又因为所有球大小相同,所以一次摸球每个球被摸中的可能性均为111,而白球有5个,故一次摸球摸到白球的可能性为511,同理可知摸到黑球、红球的可能性均为3 11,显然这三个基本事件出现的可能性不相等,所以以颜色为划分基本事件的依据的概率模型不是古典概型.思维升华一个试验是否为古典概型,在于这个试验是否具有古典概型的两个特点——有限性和等可能性,只有同时具备这两个特点的概型才是古典概型.下列试验中,古典概型的个数为( )①向上抛一枚质地不均匀的硬币,观察正面向上的概率;②向正方形ABCD内,任意抛掷一点P,点P恰与点C重合;③从1,2,3,4四个数中,任取两个数,求所取两数之一是2的概率;④在线段[0,5]上任取一点,求此点小于2的概率.A.0 B.1 C.2 D.3答案 B解析 ①中,硬币质地不均匀,不是等可能事件, 所以不是古典概型;②④的基本事件都不是有限个,不是古典概型; ③符合古典概型的特点,是古典概型. 题型二 古典概型的求法例2 (1)(2015·某某)袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为________. 答案 56解析 设取出的2只球颜色不同为事件A .基本事件有:(白,红),(白,黄),(白,黄),(红,黄),(红,黄),(黄,黄)共6种,事件A 包含5种.故P (A )=56.(2)(2016·某某)某儿童乐园在“六一”儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设两次记录的数分别为x ,y .奖励规则如下:a .若xy ≤3,则奖励玩具一个;b .若xy ≥8,则奖励水杯一个;c .其余情况奖励饮料一瓶.假设转盘质地均匀,四个区域划分均匀,小亮准备参加此项活动. ①求小亮获得玩具的概率;②请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.解 用数对(x ,y )表示儿童参加活动先后记录的数,则基本事件空间Ω与点集S ={(x ,y )|x ∈N ,y ∈N,1≤x ≤4,1≤y ≤4}一一对应.因为S 中元素的个数是4×4=16,所以基本事件总数n =16. ①记“xy ≤3”为事件A , 则事件A 包含的基本事件共5个, 即(1,1),(1,2),(1,3),(2,1),(3,1). 所以P (A )=516,即小亮获得玩具的概率为516.②记“xy ≥8”为事件B ,“3<xy <8”为事件C . 则事件B 包含的基本事件共6个,即(2,4),(3,3),(3,4),(4,2),(4,3),(4,4). 所以P (B )=616=38.事件C 包含的基本事件共5个,即(1,4),(2,2),(2,3),(3,2),(4,1). 所以P (C )=516.因为38>516,所以小亮获得水杯的概率大于获得饮料的概率. 引申探究1.本例(1)中,若将4个球改为颜色相同,标号分别为1,2,3,4的四个小球,从中一次取两球,求标号和为奇数的概率.解 基本事件数仍为6.设标号和为奇数为事件A ,则A 包含的基本事件为(1,2),(1,4),(2,3),(3,4),共4种, 所以P (A )=46=23.2.本例(1)中,若将条件改为有放回地取球,取两次,求两次取球颜色相同的概率. 解 基本事件为(白,白),(白,红),(白,黄),(白,黄),(红,红),(红,白),(红,黄),(红,黄),(黄,黄),(黄,白),(黄,红),(黄,黄),(黄,黄),(黄,白),(黄,红),(黄,黄),共16种,其中颜色相同的有6种,故所求概率为P =616=38.思维升华 求古典概型的概率的关键是求试验的基本事件的总数和事件A 包含的基本事件的个数,这就需要正确列出基本事件,基本事件的表示方法有列举法、列表法和树状图法,具体应用时可根据需要灵活选择.(1)(2016·全国乙卷)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( ) A.13 B.12 C.23 D.56 答案 C解析 从4种颜色的花中任选2种种在一个花坛中,余下2种种在另一个花坛,有((红黄),(白紫)),((白紫),(红黄)),((红白),(黄紫)),((黄紫),(红白)),((红紫),(黄白)),((黄白),(红紫)),共6种种法,其中红色和紫色不在一个花坛的种法有((红黄),(白紫)),((白紫),(红黄)),((红白),(黄紫)),((黄紫),(红白)),共4种,故所求概率为P =46=23,故选C. (2)某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)参加书法社团未参加书法社团参加演讲社团 8 5 未参加演讲社团230①从该班随机选1名同学,求该同学至少参加上述一个社团的概率;②在既参加书法社团又参加演讲社团的8名同学中,有5名男同学A 1,A 2,A 3,A 4,A 5,3名女同学B 1,B 2,B 3.现从这5名男同学和3名女同学中各随机选1人,求A 1被选中且B 1未被选中的概率.解 ①由调查数据可知,既未参加书法社团又未参加演讲社团的有30人, 故至少参加上述一个社团的共有45-30=15(人),所以从该班随机选1名同学,该同学至少参加上述一个社团的概率为P =1545=13.②从这5名男同学和3名女同学中各随机选1人,其一切可能的结果组成的基本事件有 {A 1,B 1},{A 1,B 2},{A 1,B 3},{A2,B1},{A2,B2},{A2,B3},{A3,B1},{A3,B2},{A3,B3},{A4,B1},{A4,B2},{A4,B3},{A5,B1},{A5,B2},{A5,B3},共15个.根据题意,这些基本事件的出现是等可能的,事件“A1被选中且B1未被选中”所包含的基本事件有{A1,B2},{A1,B3},共2个.因此,A1被选中且B1未被选中的概率为P=215.题型三古典概型与统计的综合应用例3 (2015·某某)某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工.根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为:[40,50),[50,60),…,[80,90),[90,100].(1)求频率分布直方图中a的值;(2)估计该企业的职工对该部门评分不低于80的概率;(3)从评分在[40,60)的受访职工中,随机抽取2人,求此2人的评分都在[40,50)的概率.解(1)因为(0.004+a+0.018+0.022×2+0.028)×10=1,所以a=0.006.(2)由所给频率分布直方图知,50名受访职工评分不低于80的频率为(0.022+0.018)×10=0.4,所以该企业职工对该部门评分不低于80的概率的估计值为0.4.(3)受访职工中评分在[50,60)的有50×0.006×10=3(人),记为A1,A2,A3;受访职工中评分在[40,50)的有50×0.004×10=2(人),记为B1,B2,从这5名受访职工中随机抽取2人,所有可能的结果共有10种,它们是{A1,A2},{A1,A3},{A 1,B 1},{A 1,B 2},{A 2,A 3},{A 2,B 1},{A 2,B 2},{A 3,B 1},{A 3,B 2},{B 1,B 2}.又因为所抽取2人的评分都在[40,50)的结果有1种,即{B 1,B 2},故所求的概率为P =110.思维升华 有关古典概型与统计结合的题型是高考考查概率的一个重要题型,已成为高考考查的热点.概率与统计结合题,无论是直接描述还是利用频率分布表、频率分布直方图、茎叶图等给出信息,只要能够从题中提炼出需要的信息,则此类问题即可解决.海关对同时从A ,B ,C 三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如下表所示.工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.地区 ABC数量50150100(1)求这6件样品中来自A ,B ,C 各地区商品的数量;(2)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.解 (1)因为样本容量与总体中的个体数的比是 650+150+100=150,所以样本中包含三个地区的个体数量分别是 50×150=1,150×150=3,100×150=2.所以A ,B ,C 三个地区的商品被选取的件数分别是1,3,2. (2)设6件来自A ,B ,C 三个地区的样品分别为A ;B 1,B 2,B 3;C 1,C 2.则从6件样品中抽取的这2件商品构成的所有基本事件为{A ,B 1},{A ,B 2},{A ,B 3},{A ,C 1},{A ,C 2},{B 1,B 2},{B 1,B 3},{B 1,C 1},{B 1,C 2},{B 2,B 3},{B 2,C 1},{B 2,C 2},{B 3,C 1},{B 3,C 2},{C 1,C 2},共15个.每个样品被抽到的机会均等,因此这些基本事件的出现是等可能的.记事件D :“抽取的这2件商品来自相同地区”,则事件D 包含的基本事件有{B 1,B 2},{B 1,B 3},{B 2,B 3},{C 1,C 2},共4个.所以P (D )=415,即这2件商品来自相同地区的概率为415.六审细节更完善典例 (12分)一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4. (1)从袋中随机取两个球,求取出的球的编号之和不大于4的概率;(2)先从袋中随机取一个球,该球的编号为m ,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n ,求n <m +2的概率.(1)基本事件为取两个球↓(两球一次取出,不分先后,可用集合的形式表示) 把取两个球的所有结果列举出来 ↓{1,2},{1,3},{1,4},{2,3},{2,4},{3,4} ↓两球编号之和不大于4(注意:和不大于4,应为小于4或等于4) ↓{1,2},{1,3}↓利用古典概型概率公式求解P =26=13(2)两球分两次取,且有放回↓(两球的编号记录是有次序的,用坐标的形式表示) 基本事件的总数可用列举法表示↓(1,1),(1,2),(1,3),(1,4) (2,1),(2,2),(2,3),(2,4) (3,1),(3,2),(3,3),(3,4) (4,1),(4,2),(4,3),(4,4)↓(注意细节,m 是第一个球的编号,n 是第2个球的编号)n <m +2的情况较多,计算复杂↓(将复杂问题转化为简单问题) 计算n ≥m +2的概率 ↓n ≥m +2的所有情况为(1,3),(1,4),(2,4)↓P 1=316↓(注意细节,P 1=316是n ≥m +2的概率,需转化为其对立事件的概率)n <m +2的概率为1-P 1=1316.规X 解答解 (1)从袋中随机取两个球,其一切可能的结果组成的基本事件有{1,2},{1,3},{1,4},{2,3},{2,4},{3,4},共6个.从袋中取出的球的编号之和不大于4的事件有{1,2},{1,3},共2个. 因此所求事件的概率P =26=13.[4分](2)先从袋中随机取一个球,记下编号为m ,放回后,再从袋中随机取一个球,记下编号为n ,其一切可能的结果有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个.[6分] 又满足条件n ≥m +2的事件为(1,3),(1,4),(2,4),共3个, 所以满足条件n ≥m +2的事件的概率为P 1=316.[10分]故满足条件n <m +2的事件的概率为1-P1=1-316=1316.[12分]1.(2016·全国丙卷)小敏打开计算机时,忘记了开某某码的前两位,只记得第一位是M,I,N中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是( )A.815B.18C.115D.130答案 C解析第一位是M,I,N中的一个字母,第二位是1,2,3,4,5中的一个数字,所以总的基本事件的个数为15,密码正确只有一种,概率为115,故选C.2.若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为( )A.23B.25C.35D.910答案 D解析由题意知,从五位大学毕业生中录用三人,所有不同的可能结果有(甲,乙,丙),(甲,乙,丁),(甲,乙,戊),(甲,丙,丁),(甲,丙,戊),(甲,丁,戊),(乙,丙,丁),(乙,丙,戊),(乙,丁,戊),(丙,丁,戊),共10种,其中“甲与乙均未被录用”的所有不同的可能结果只有(丙,丁,戊)这1种,故其对立事件“甲或乙被录用”的可能结果有9种,所求概率P=910.3.(2015·某某)已知5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,恰有一件次品的概率为( )A.0.4 B.0.6 C.0.8 D.1答案 B解析设3件合格品为A1,A2,A3,2件次品为B1,B2,从5件产品中任取2件有(A1,A2),(A1,A3),(A1,B1),(A1,B2),(A2,A3),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(B1,B2),共10种.恰有1件次品有6种,∴P =610=0.6. 4.(2016·某某模拟)设a ∈{1,2,3,4},b ∈{2,4,8,12},则函数f (x )=x 3+ax -b 在区间[1,2]上有零点的概率为( ) A.12 B.58 C.1116 D.34 答案 C解析 由已知f ′(x )=3x 2+a >0,所以f (x )在R 上递增,若f (x )在[1,2]上有零点,则需⎩⎪⎨⎪⎧f 1=1+a -b ≤0,f 2=8+2a -b ≥0,经验证有(1,2),(1,4),(1,8),(2,4),(2,8),(2,12),(3,4),(3,8),(3,12),(4,8),(4,12),共11对满足条件,而总的情况有16种, 故所求概率为1116.5.连掷两次骰子分别得到点数m ,n ,则向量(m ,n )与向量(-1,1)的夹角θ>90°的概率是( )A.512B.712C.13D.12 答案 A解析 ∵(m ,n )·(-1,1)=-m +n <0,∴m >n .基本事件总共有6×6=36(个),符合要求的有(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1),…,(5,4),(6,1),…,(6,5),共1+2+3+4+5=15(个). ∴P =1536=512,故选A.6.(2016·某某模拟)在平面直角坐标系中,从下列五个点:A (0,0),B (2,0),C (1,1),D (0,2),E (2,2)中任取三个,这三点能构成三角形的概率是( )A.25B.35C.45 D .1 答案 C解析 从5个点中取3个点,列举得ABC ,ABD ,ABE ,ACD ,ACE ,ADE ,BCD ,BCE ,BDE ,CDE ,共10个基本事件,而其中ACE ,BCD 两种情况三点共线,其余8个均符合题意,故能构成三角形的概率为810=4 5.7.从正六边形的6个顶点中随机选择4个顶点,则以它们作为顶点的四边形是矩形的概率等于( )A.110B.18C.16D.15答案 D解析如图所示,从正六边形ABCDEF的6个顶点中随机选4个顶点,可以看作随机选2个顶点,剩下的4个顶点构成四边形,有A、B,A、C,A、D,A、E,A、F,B、C,B、D,B、E,B、F,C、D,C、E,C、F,D、E,D、F,E、F,共15种.若要构成矩形,只要选相对顶点即可,有A、D,B、E,C、F,共3种,故其概率为315=15.8.若A、B为互斥事件,P(A)=0.4,P(A∪B)=0.7,则P(B)=________.答案0.3解析因为A、B为互斥事件,所以P(A∪B)=P(A)+P(B),故P(B)=P(A∪B)-P(A)=0.7-0.4=0.3.9.(2017·某某月考)如右图的茎叶图是甲、乙两人在4次模拟测试中的成绩,其中一个数字被污损,则甲的平均成绩不超过乙的平均成绩的概率为________.答案0.3解析依题意,记题中的被污损数字为x,若甲的平均成绩不超过乙的平均成绩,则有(8+9+2+1)-(5+3+x+5)≤0,x≥7,即此时x的可能取值是7,8,9,因此甲的平均成绩不超过乙的平均成绩的概率P=310=0.3.10.连续2次抛掷一枚骰子(六个面上分别标有数字1,2,3,4,5,6),记“两次向上的数字之和等于m ”为事件A ,则P (A )最大时,m =________. 答案 7解析 1+1=2,1+2=3,1+3=4,1+4=5,1+5=6,1+6=7,2+1=3,2+2=4,2+3=5,2+4=6,2+5=7,2+6=8,…,依次列出m 的可能取值,知7出现次数最多.11.设连续掷两次骰子得到的点数分别为m ,n ,令平面向量a =(m ,n ),b =(1,-3). (1)求事件“a ⊥b ”发生的概率; (2)求事件“|a |≤|b |”发生的概率.解 (1)由题意知,m ∈{1,2,3,4,5,6},n ∈{1,2,3,4,5,6},故(m ,n )所有可能的取法共36种.因为a ⊥b ,所以m -3n =0,即m =3n ,有(3,1),(6,2),共2种, 所以事件a ⊥b 发生的概率为236=118. (2)由|a |≤|b |,得m 2+n 2≤10,有(1,1),(1,2),(1,3),(2,1),(2,2),(3,1),共6种,其概率为636=16.12.甲、乙两人用4X 扑克牌(分别是红桃2,红桃3,红桃4,方片4)玩游戏,他们将扑克牌洗匀后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一X .(1)设(i ,j )表示甲、乙抽到的牌的牌面数字(如果甲抽到红桃2,乙抽到红桃3,记为(2,3)),写出甲、乙两人抽到的牌的所有情况;(2)若甲抽到红桃3,则乙抽到的牌的牌面数字比3大的概率是多少?(3)甲、乙约定,若甲抽到的牌的牌面数字比乙大,则甲胜;否则,乙胜,你认为此游戏是否公平?请说明理由.解 (1)方片4用4′表示,则甲、乙两人抽到的牌的所有情况为(2,3),(2,4),(2,4′),(3,2),(3,4),(3,4′),(4,2),(4,3),(4,4′),(4′,2),(4′,3),(4′,4),共12种不同的情况.(2)甲抽到3,乙抽到的牌只能是2,4,4′,因此乙抽到的牌的牌面数字大于3的概率为23.(3)甲抽到的牌的牌面数字比乙大,有(3,2),(4,2),(4,3),(4′,2),(4′,3),共5种情况.甲胜的概率为P 1=512,乙胜的概率为P 2=712.因为512<712,所以此游戏不公平.*13.(2015·某某)一辆小客车上有5个座位,其座位号为1,2,3,4,5.乘客P 1,P 2,P 3,P 4,P 5的座位号分别为1,2,3,4,5,他们按照座位号从小到大的顺序先后上车.乘客P 1因身体原因没有坐自己的1号座位,这时司机要求余下的乘客按以下规则就座:如果自己的座位空着,就只能坐自己的座位;如果自己的座位已有乘客就座,就在这5个座位的剩余空位中任意选择座位.(1)若乘客P 1坐到了3号座位,其他乘客按规则就座,则此时共有4种坐法.下表给出了其中两种坐法,请填入余下两种坐法(将乘客就座的座位号填入表中空格处);(2)若乘客P 1坐到了2号座位,其他的乘客按规则就座,求乘客P 5坐到5号座位的概率. 解 (1)余下两种坐法如下表所示:(2)若乘客P 1坐到了2号座位,其他乘客按规则就座,则所有可能的坐法可用下表表示:于是,所有可能的坐法共8种,设“乘客P 5坐到5号座位”为事件A ,则事件A 中的基本事件的个数为4,所以P (A )=48=12.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十一章概率第二讲古典概型与几何概型1。

[2021长春市第一次质量监测]张老师居住的一条街上,行驶着甲、乙两路公交车,这两路公交车的数目相同,并且都是每隔十分钟就到达车站一辆(即停即走)。

张老师每天早晨都是在6:00到6:10之间到达车站乘车到学校,这两条公交线路对他是一样的,都可以到达学校,甲路公交车的到站时间是6:09,6:19,6:29,6:39,…,乙路公交车的到站时间是6:00,6:10,6:20,6:30,…,则张老师乘坐上甲路公交车的概率是() A.10%B。

50%C。

60%D。

90%2。

[2021安徽省示范高中联考]在以正五边形ABCDE的顶点为顶点的三角形中,任取一个,是钝角三角形的概率()A。

12B.13C。

14D.233。

[2021石家庄质检]北京冬奥会将于2022年2月4日到2022年2月20日在北京和张家口举行.申奥成功后,中国邮政陆续发行多款邮票,图案包括冬奥会会徽“冬梦”、冬残奥会会徽“飞跃”、冬奥会吉祥物“冰墩墩”、冬残奥会吉祥物“雪容融”、多种冰上运动等.现从2枚会徽邮票、2枚吉祥物邮票、1枚冰上运动邮票共5枚邮票中任取3枚,则恰有1枚吉祥物邮票的概率为()A.310B.12C。

35D。

7104。

[2021晋南高中联考]把分别写有1,2,3,4的四张卡片全部分给甲、乙、丙三个人,每人至少一张,且若分得的卡片超过一张,则必须是连号,那么2,3连号的概率为 ( )A.23B .13C 。

35D 。

145。

[2021贵阳四校第一次联考][条件创新]在区间[-2,2]内随机取一个数x ,则事件“y ={2x ,x ≤0,x +1,x >0,且y ∈[12,2]”发生的概率为( )A.78B 。

58C 。

38D 。

126。

[2021广东珠海模拟][与音乐结合]现有8位同学参加音乐节演出活动,每位同学都会拉小提琴或吹长笛,已知5人会拉小提琴,5人会吹长笛,现从这8人中随机选一人上场演出,恰好选中两种乐器都会演奏的同学的概率是 ( )A.14B 。

12C 。

38D.587。

[2021蓉城名校联考]已知x ,y 满足|x |+|y |≤1,则事件“x 2+y 2≤12”的概率为( )A.π8B .π4C 。

1—π8D 。

1-π48。

[2021黑龙江省六校阶段联考]古希腊雅典学派算学家欧道克萨斯提出了“黄金分割”的理论,利用尺规作图可画出已知线段的黄金分割点,具体方法如下:如图11-2-1,取线段AB =2,过点B 作AB 的垂线,并用圆规在垂线上截取BC =12AB =1,连接AC ;以C 为圆心,BC 长为半径画弧,交AC 于点D ;以A 为圆心,AD 长为半径画弧,交AB 于点E 。

则点E 为线段AB 的黄金分割点。

若在线段AB 上随机取一点F ,则使得BE ≤AF ≤AE 的概率约为(参考数据:√5≈2.236)( )A.0。

236 B。

0。

382 C。

0。

472 D。

0。

618图11-2-19.[2021洛阳市第一次统考]已知圆O:x2+y2=4交x轴正半轴于点P,在圆O上随机取一点Q,则使|PQ|<2成立的概率为()A。

16B.13C。

12D.23图11—2—210.[2020唐山市摸底考试]图11—2-2由一个半圆和一个四分之一圆构成,其中空白部分为二者的重合部分,两个阴影部分分别记为A和M。

在此图内任取一点,此点取自A区域的概率记为P(A),取自M区域的概率记为P(M),则() A。

P(A)>P(M)B。

P(A)<P(M)C。

P(A)=P(M)D.P(A)与P(M)的大小关系与半径长度有关11。

[2020河南联考]阳马是底面为长方形,有一条侧棱与底面垂直的四棱锥.在阳马P-ABCD中,PC为阳马P—ABCD中最长的棱,AB=1,AD=2,PC=3,若在阳马P-ABCD的外接球内部随机取一点,则该点位于阳马内的概率为()A.127πB。

427πC.827πD。

49π12。

[2020大同市高三调研]中国象棋是中华文化的瑰宝,中国象棋棋盘上的“米"字形方格叫作九宫。

现有一张中国象棋棋盘的示意图如图11—2—3所示.若在矩形ABCD内(其中楚河汉界宽度等于每个小格的边长)随机取一点,则该点落在九宫内的概率是。

图11—2—313.[2021苏州中学调研]苏州轨道交通3号线已开始运行,苏州轨道交通集团面向广大市民开展“参观体验,征求意见”活动,市民可以通过苏州地铁App抢票.小陈抢到了三张体验票,准备从四位朋友小王、小张、小刘和小李中随机选择两位去参加体验活动,则小王和小李至多有一人被选中的概率为()A。

16B.13C.23D。

5614。

[2021江苏徐州模拟][情境创新]如图11—2-4,《宋人扑枣图轴》是作于宋朝的中国古画.甲、乙两人想根据该图编排一个舞蹈,舞蹈中他们要模仿该图中小孩扑枣时的爬、扶、捡、顶中的两个动作,每人模仿一个动作,若他们采用抽签的方式来决定谁模仿哪个动作,则甲模仿“爬”或“扶”且乙模仿“扶"或“捡”的概率是 ( )A 。

12B.13C.14D.16图11-2—415。

[2020衡水中学6月模拟]2020年是中国农历的鼠年,中国邮政为此发行了一枚名为“鼠兆丰年"的鼠年生肖邮票,两只大老鼠带着可爱的小老鼠侧身远望,身边是寓意丰收的花生,表情欢喜、得意,寓意2020年五谷丰登,阖家欢乐。

该邮票的规格为36×36 mm,为了估算图11—2—5中3只老鼠图案的面积,现向该邮票内随机投掷200粒芝麻,恰有120粒芝麻落在老鼠图案内,据此可估计老鼠图案的面积为 ( )A.791 mm 2 B 。

778 mm 2 C 。

745 mm 2 D 。

700 mm 2图11—2—516.[2020洛阳市第一次联考]在[-6,9]内任取一个实数m ,设f (x )=-x 2+mx +m ,则函数f (x )的图象与x 轴有公共点的概率为( )A 。

215B 。

715C 。

35D 。

111517.[2020武汉市部分学校质量监测]圆周率π是一个在数学及物理学中普遍存在的数学常数,它既常用又神秘,古今中外很多数学家曾研究它的计算方法.下面做一个游戏:请足够多的人各自随意写下两个小于1的正数,然后请他们各自检查一下,所得的两数与1是否能作为一个锐角三角形的三边长,最后把结论告诉你,你只需将每个人的结论记录下来就能算出圆周率的近似值.假设有n 个人说“能”,而有m 个人说“不能",那么应用你学过的知识可算得圆周率π的近似值为 ( )A.mm+nB.nm+nC 。

4mm+nD.4n m+n18.[2020成都市高三摸底测试]为践行“绿水青山就是金山银山”的发展理念,某城区对辖区内A ,B,C 三类行业共200个单位的生态环境治理成效进行了考核评估,考评成绩达到80分及以上的单位被称为“星级”环保单位,未达到80分的单位被称为“非星级”环保单位。

现通过分层抽样的方法抽取了这三类行业中的20个单位,其考评分数如下.A 类行业:85,82,77,78,83,87.B 类行业:76,67,80,85,79,81.C 类行业:87,89,76,86,75,84,90,82。

(1)试估算这三类行业中每类行业的单位个数;(2)若在抽出的A 类行业的这6个单位中,随机选取3个单位进行交流发言,求选出的3个单位中既有“星级"环保单位,又有“非星级”环保单位的概率.19。

[2021江西省重点中学联考][与集合、函数综合]对数的发明是数学史上的重大事件,它可以改进数字的计算方法、提高计算速度和准确度。

已知集合M={1,3},N={1,3,5,7,9},若从集合M,N中各任取一个数x,y,则log3(xy)为整数的概率为()A.15 B。

25C.35D.4520。

[2020河北张家口5月模拟][角度创新]定义一个运算:对于一个正整数n,如果它是奇数,则将它乘3再加1;如果它是偶数,则将它除以2。

如此循环最终都能够得到1.如:取n=6,根据上述过程,得出6,3,10,5,16,8,4,2,1,共9个数.若n=5,从根据上述过程得出的整数中,随机选取两个不同的数,则这两个数都是偶数的概率为()A。

37B。

715C。

25D。

35答案第十一章概率第二讲古典概型与几何概型1。

D张老师在早晨6:00到6:10之间到达车站是等可能的,故张老师在早晨6:00到6:09之间到达车站乘坐上甲路公交车的概率为910=90%,故选D.2.A在正五边形ABCDE的五个顶点中任取三个顶点可以构成的三角形有△ABC,△ABD,△ABE,△ACD,△ACE,△ADE,△BCD,△BCE,△BDE,△CDE,共10个三角形,其中△ABC,△BCD,△CDE,△ADE,△ABE这5个三角形是钝角三角形,所以在以正五边形ABCDE的顶点为顶点的三角形中,任取一个,是钝角三角形的概率P=510=12,故选A.3.C(枚举法)记5枚邮票中吉祥物邮票分别为x,y,其余三枚分别为a,b,c,则从5枚邮票中任取3枚的基本事件有abc,abx,aby,bcx,bcy,acx,acy,axy,bxy,cxy,共10个,3枚中恰有1枚吉祥物邮票的基本事件有abx,aby,bcx,bcy,acx,acy,共6个,所以恰有1枚吉祥物邮票的概率P=610=35。

故选C。

4。

B由题意知,四张卡片中有两张卡片要连号,所以分给甲、乙、丙三人共有18种分法,分别是(12,3,4),(12,4,3),(3,12,4),(4,12,3),(3,4,12),(4,3,12),(1,23,4),(4,23,1),(1,4,23),(4,1,23),(23,1,4),(23,4,1),(1,2,34),(2,1,34),(1,34,2),(2,34,1),(34,1,2),(34,2,1).其中2,3连号的有6种,它们是(1,23,4),(4,23,1),(1,4,23),(4,1,23),(23,1,4),(23,4,1),所以2,3连号的概率P=618=13。

故选B.5。

D 设事件M 为“y ={2x,x ≤0,x +1,x >0,且y ∈[12,2]”。

易知该分段函数是一个增函数,则{x ≤0,12≤2x≤2或{x >0,12≤x +1≤2,解得—1≤x ≤1,所以该事件发生的概率P (M )=1−(−1)2−(−2)=12.故选D .6。

A 从8人中随机选一人上场演出所包含的基本事件数为8,由题易知,两种乐器都会演奏的同学有2人,所以恰好选中两种乐器都会演奏的同学所包含的基本事件数为2,因此所求概率为P =28=14,故选A .7。

相关文档
最新文档