从频率到概率

合集下载

频率与概率的关系

频率与概率的关系

频率与概率的关系
事件的概率是一个确定的常数,而频率是不确定的,当试验次数较少时,频率的大小摇摆不定,当试验次数增大时,频率的大小波动变小,并逐渐稳定在概率附近.可见,概率是频率的稳定值,而频率是概率的近似值.
要点诠释:
(1)频率本身是随机的,在试验前不能确定,无法从根本上来刻画事件发生的可能性的大小,在大量重复试验的条件下可以近似地作为这个事件的概率;
(2)频率和概率在试验中可以非常接近,但不一定相等;
(3)概率是事件在大量重复试验中频率逐渐稳定到的值,即可以用大量重复试验中事件发生的频率去估计得到事件发生的概率,但二者不能简单地等同,两者存在一定的偏差是正常的,也是经常的.
第1页共1页。

数学上“频率”与“概率”的关系?

数学上“频率”与“概率”的关系?

数学上“频率”与“概率”的关系?我是中考数学当百荟,从事初中数学教学三⼗多年。

说到“频率”与“概率”的关系,⾸先要了解初中数学中基本的统计思想:⽤样本估计总体,⽤频率估计概率;其次,要知道数学试验的统计量:频率=频数/总次数。

频率是通过试验得到的统计量,⽽概率是通过建⽴数学模型,计算得到的理论值。

在⼀定的情况下,可以⽤频率去估计(代替)事件发⽣的概率。

⼀。

⽤样本估计总体统计中,通常通过调查的⽅式获取相关的统计量。

调查通常有两种⽅式:普查和抽样调查。

⽐如:第六次全国⼈⼝普查(2010年11⽉1⽇),就是在国家统⼀规定的时间内,按照统⼀的⽅法、统⼀的项⽬、统⼀的调查表和统⼀的标准时点,对全国⼈⼝普遍地、逐户逐⼈地进⾏的⼀次性调查登记。

这次⼈⼝普查登记的全国总⼈⼝为1,339,724,852⼈这个数据采⽤的就是普查⽅式得到的。

⽽国家统计局每季度发布的居民⼈均可⽀配收⼊、居民消费价格指数、调查失业率等统计指标,是采⽤抽样调查⽅式获取的。

当统计的总体容量很⼤,调查耗时费⼒,调查成本巨⼤或者试验具有破坏性时,不宜采⽤普查⽅式,就要⽤抽样的⽅式来进⾏统计,然后⽤样本的统计量,去估计总体统计量。

这种统计思想就叫做⽤样本估计总体。

⽐如:某照明企业⽣产⼀批LED灯泡,为统计这批LED灯泡的使⽤寿命,采⽤哪种调查⽅式⽐较适合呢?因为要了解LED的使⽤寿命,按试验要求,就必须将LED灯泡变成“长明灯”,⼀直点亮直⾄⾃然熄灭(寿终正寝)。

这样试验是具有破坏性的,显然不能⽤普查⽅式,只能采⽤抽样的⽅式来进⾏。

从这批LED灯泡中,随机抽取50只灯泡作为⼀个样本,通过试验得到这个样本的平均使⽤寿命为3000⼩时,然后我们就说该企业的这批LED灯泡(总体)的使⽤寿命为3000⼩时。

⼆。

⽤频率估计概率俗话说,天有不测风云,⼈有旦⼣祸福。

这句话从数学的⾓度来理解就是,在⾃然界和⼈类社会中,严格确定的事件是⼗分有限的,⽽随机事件却是⼗分普遍的,概率就是对随机事件的⼀种数学的定量描述。

如何用频率来估计概率

如何用频率来估计概率

如何用频率来估计概率在苏科版初中数学课本里所学习的概率计算问题有以下类型:第一类是可以列举有限个等可能发生的结果的概率计算问题(一步试验直接列举,两步以上的试验可以借助树状图或表格列举),比如掷一枚均匀硬币的试验;第二类是用试验或者模拟试验的数据计算频率,并用频率估计概率的概率计算问题,比如掷图钉的试验。

在八年级的数学学习中概率的计算,主要是第二类题型,我们知道频率是研究概率的基础,所以利用频率估计概率的试题频频出现在各地的中考试卷中,下面以中考题为例,来剖析这一类题型的解法。

一、填空题中的用频率估计概率例1.在课外活动中,小明同学在相同的条件下做了某种作物种子发芽的实验,结果如下表所示:由此估计这种作物种子发芽率约为(精确到0.01).解:由公式种子的发芽率= 可求出种子的发芽率为0.939,因为精确到0.001故答案为0.94.点评:本题考察了百分率问题(1)种子的发芽率= ;(2)注意括号的中的要求为精确到0.01例2.有一箱规格相同的红、黄两种颜色的小塑料球共1000个.为了估计这两种颜色的球各有多少个,小明将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后,发现摸到红球的频率约为0.6,据此可以估计红球的个数约为.解:解:∵摸到红球的频率约为0.6,∴红球所占的百分比是60%.∴1000×60%=600.故答案为:600.点评:本题考查用频率估计概率,因为多次重复上述过程后,发现摸到红球的频率约为0.6,所以红球所占的百分比也就是60%,根据总数可求出红球个数.二、选择题中的用频率估计概率例3.“六?一”儿童节,某玩具超市设立了一个如图所示的可以自由转动的转盘,开展有奖购买活动.顾客购买玩具就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应奖品.下表是该活动的一组统计数据:下列说法不正确的是()A.当n很大时,估计指针落在“铅笔”区域的频率大约是0.70B.假如你去转动转盘一次,获得铅笔的概率大约是0.70C.如果转动转盘2000次,指针落在“文具盒”区域的次数大约有600次D.转动转盘10次,一定有3次获得文具盒解:由表中提供的信息可知,只有“转动转盘10次,一定有3次获得文具盒”的判断不一定正确,故应选D.点评:正确正解频率与概率之间的关系是求解此类问题的关键. 由表中提供的信息,我们可以知道,当n很大时,指针落在“铅笔”区域的频率趋于0.70,由此,由频率与概率之间的关系可知,假如你去转动转盘一次,获得铅笔的概率大约是0.70,如果转动转盘2000次,指针落在“文具盒”区域的次数大约有2000次×(1-0.7)=600次,而将转盘转动转盘10次,却不一定有3次获得文具盒.三、解答题中的用频率估计概率例4.六一期间,某公园游戏场举行“迎奥运”活动.有一种游戏的规则是:在一个装有6个红球和若干个白球(每个球除颜色外其他都相同)的袋中,随机摸一个球,摸到一个红球就得到一个奥运福娃玩具.已知参加这种游戏活动为40 000人次,公园游戏场发放的福娃玩具为10 000个.(1)求参加一次这种游戏活动得到福娃玩具的频率;(2)请你估计袋中白球接近多少个?分析(1)由40 000人次中公园游戏场发放的福娃玩具为10 000个,结合频率的意义可直接求得.(2)由概率与频率的关系可估计从袋中任意摸出一个球,恰好是红球的概率,从而引进未知数,构造方程求解.解(1)因为= ,所以参加一次这种游戏活动得到福娃玩具的频率为.(2)因为试验次数很大,大数次试验时,频率接近于理论频率,所以估计从袋中任意摸出一个球,恰好是红球的概率是.设袋中白球有x个,则根据题意,得= ,解得x=18.经检验x=18是方程的解.所以估计袋中白球接近18个.点评:利用频率估计概率,并以此引进未知数构造方程是求解此类问题的常用方法,同学们在学习时应注意体会和运用.例5.研究问题:一个不透明的盒中装有若干个只有颜色不一样的红球与黄球,怎样估算不同颜色球的数量?操作方法:先从盒中摸出8个球,画上记号放回盒中,再进行摸球实验,摸球实验的要求:先搅拌均匀,每次摸出一个球,放回盒中,再继续.点评:(1)根据表格数据可以得到50次摸球实验活动中,出现红球20次,黄球30次,由此即可求出盒中红球、黄球各占总球数的百分比;(2)由题意可知50次摸球实验活动中,出现有记号的球4次,由此可以求出总球数,然后利用(1)的结论即可求出盒中红球.此题主要考查了利用频率估计概率的问题,首先利用模拟实验得到盒中红球、黄球各占总球数的百分比,然后利用百分比即可求出盒中红球个数.。

频率与概率的概念、古典概率

频率与概率的概念、古典概率

频率与概率的联系
频率是概率的近似值,当实验或观察 次数足够多时,频率趋近于概率。
在长期实践中,人们常常根据频率来 估计概率,从而做出相应的决策。
概率是频率的极限值,即当实验或观 察次数趋于无穷时,频率的值就是该 事件的概率。
如何选择频率或概率方法
01
在实际应用中,应根据 具体情况选择使用频率 或概率方法。
02
古典概率
古典概率的定义
古典概率是指在一系列等可能 事件中,某一事件发生的概率。
古典概率的定义基于事件的等 可能性,即每个事件发生的可 能性是相等的。
古典概率通常用于描述那些可 以重复进行且结果已知的实验, 例如掷骰子、抽签等。
古典概率的计算方法
计算公式
$P(A) = frac{有利于A的基本事件数}{全部 基本事件数}$
频率与概率的关系
频率是概率的估计
通过大量试验或观察,我们可以得到某一事件的频率,这个频率可以作为该事 件概率的一个估计值。
概率是频率的极限
当试验次数趋于无穷时,频率趋于概率。也就是说,如果一个随机事件的频率 在长期观察中稳定在某个值附近,那么我们可以认为这个值就是该事件的概率。
频率与概率的优缺点
频率和概率在统计学、决策理论、贝叶斯推断等领域中都有广泛应用。
如何更好地理解和应用频率与概率
• 了解频率与概率的基本定义和性质:掌握概率的基本性质,如概率的取值范围 、独立性、互斥性等,有助于更好地理解和应用频率与概率。
• 掌握概率计算方法:了解概率的基本计算方法,如加法公式、乘法公式、全概 率公式等,有助于计算复杂事件的概率。
可观察性
频率可以直接通过试验或观察获 得,不需要复杂的数学模型或理 论。
可验证性

1-2随机事件的概率

1-2随机事件的概率

事件A发生 的可能性的大小
概率 P A
只是概率的近似值
概率的统计定义
1-2 随机事件的概率
定义 在相同条件下进行n次重复试验, 若事件A
rn ( A) 随着试验次数n的增大而 发生的频率 f n ( A) n
稳定地在某个常数P附近摆动,则称P为事件A的概率, 记为P(A).
例如,若我们希望知道某射手中靶的 概率,应对这个射手在同样条件下大量 射击情况进行观察记录. 若他射击n发,中靶 m发,当n很大时,可 用频率m/n作为他中 靶概率的估计.
P( A AB) P( B AB)
P ( A) P ( AB) P ( B ) P ( AB ) 0.45 0.1 0.35 0.1 0.6.
1-2 随机事件的概率
例6 某人外出旅游两天,据天气预报,第一天降水概率为 0.6,第二天为0.3,两天都降水的概率为0.1,试求: (1)*“第一天下雨而第二天不下雨”的概率P(B), (2)* “第一天不下雨而第二天下雨”的概率P(C), (3) “至少有一天下雨”的概率P(D), (4) “两天都不下雨”的概率P(G), (5) “至少有一天不下雨”的概率P(F)。
1-2 随机事件的概率
三、概率的公理化定义
1-2 随机事件的概率
定义: 设E是随机试验, S是它的样本空间, 对于
E的每一件事件A赋予一个实数,记为P(A), 若P(A)满
足下列三个条件:
1. 非负性: 对每一个事件A, 有 P ( A) 0;
2. 完备性: P ( S ) 1; 3. 可列可加性: 对任意可数个两两互不相容的 事件 A1 , A2 ,, An ,, 有
=0.6+0.3-0.1=0.8 (4) G A1 A2 A1 A2

初中数学知识点:频率与概率的关系

初中数学知识点:频率与概率的关系

初中数学知识点:频率与概率的关系
事件的概率是一个确定的常数,而频率是不确定的,当试验次数较少时,频率的大小摇摆不定,当试验次数增大时,频率的大小波动变小,并逐渐稳定在概率附近.可见,概率是频率的稳定值,而频率是概率的近似值.
要点诠释:
(1)频率本身是随机的,在试验前不能确定,无法从根本上来刻画事件发生的可能性的大小,在大量重复试验的条件下可以近似地作为这个事件的概率;
(2)频率和概率在试验中可以非常接近,但不一定相等;
(3)概率是事件在大量重复试验中频率逐渐稳定到的值,即可以用大量重复试验中事件发生的频率去估计得到事件发生的概率,但二者不能简单地等同,两者存在一定的偏差是正常的,也是经常的.
第1 页共1 页。

经典的用频率估算概率

经典的用频率估算概率
若抛10次,其中4次正面朝上,则正面朝上的 频率是多少?0—.4—如果有5次正面向上呢?—0.5 —频率是否会改变? 会改变 这就是说同次试验的频率和概率是否相同? 有时相同,有时不相同 ________________
历史上曾有人作过抛掷硬币的大量重复实验,
结果如下表所示
抛掷次数(n) 2048 4040 12000 30000 24000

1 3
(2)小英说:“这次试验中出现5点朝上的概率最大”小红说:
“如果掷600次,6点朝上的次数正好是100次”小英和小红的说法
正确吗?为什么?
答:都错误。(1)因为5点朝上的频率最大并不能说明5点朝上的 概率最大,只有当试验次数足够大时,频率稳定在概率的附近,这 时可以用频率来估计概率次数不够大时频率不能估计概率。
事件A发生的频率 m 会稳定在某个常 n
数p附近,那么这个常数p叫做事件A的
概率。
m
记为P(A)=p 或 P(A)=
n
由定义可知:
(1)求一个事件的概率的基本方法是通 过大量的重复试验;
(2)只有当频率在某个常数附近摆动时, 这个常数才叫做事件A 的概率;
(3)概率是频率的稳定值,而频率是概 率的近似值;
(4)概率反映了随机事件发生的可能性 的大小; (5)必然事件的概率为1,不可能事件的
概率为0.因此 0 PA 1.
例1:对一批衬衫进行抽查,结果如下表:
抽取 50 件数n
优等
品件
42
数m
优等 品频 0.84 率m/n
100 88
0.88
200 176 0.88
500 800 1000 445 724 901
n
某种油菜籽在相同条件下的发芽试验结果 表:

用频率估计概率 概率的简单应用(解析版)

用频率估计概率 概率的简单应用(解析版)

第16讲 用频率估计概率 概率的简单应用例1.某鱼塘里养了1600条鲤鱼,若干条草鱼和800条鲢鱼,该鱼塘主通过多次捕捞试验后发现,捕捞到草鱼的频率稳定在0.5左右,则该鱼塘捞到鲢鱼的概率约为( ) A .23B .12C .13D .16【答案】D 【解析】根据捕捞到草鱼的频率可以估计出放入鱼塘中鱼的总数量,从而可以得到捞到鲤鱼的概率. 解:∵捕捞到草鱼的频率稳定在0.5左右 设草鱼的条数为x ,可得:0.51600800xx=++,∴x =2400,经检验:2400x =是原方程的根,且符合题意, ∴捞到鲢鱼的概率为:8001160080024006=++,故选:D . 【点睛】本题考察了概率、分式方程的知识,解题的关键是熟练掌握概率的定义,通过求解方程,从而得到答案.例2.一个不透明的袋子里装有50个黑球,2个白球,这些球除颜色外其余都完全相同.小明同学做摸球试验,将球搅匀后,从中随机摸出一个球,记下它的颜色后放回袋中,然后再重复进行下一次试验,当摸球次数很大时,摸到白球的频率接近于( ) A .150B .126C .125D .12【答案】B 【解析】根据概率的求法,在一次试验中,有n 种可能的结果,并且它们发生的可能性都相等,事件A 包含其中的m 种结果,那么事件A 发生的概率P(A)=mn,列式求解即可. ∵一个不透明的袋子里装有50个黑球,2个白球, ∴摸到白球的概率为215226=,∴摸到白球的频率为:126. 故选:B . 【点睛】本题主要考查了概率的求法,熟悉掌握概率的计算方法是解题的关键.例3.太原市林业部门要考察某种幼苗的移植成活率,于是进行了试验,表中记录了这种幼苗在一定条件下移植的成活情况: 移植总数n 400 1500 3500 7000 9000 14000 成活数m369133532036335807312628成活的频率m n0.923 0.890 0.915 0.905 0.897 0.902根据以上数据,估计这种幼苗移植成活的概率是( ) A .0.80 B .0.85C .0.90D .0.95【答案】C 略例4.如图是一副宣传节约用水的海报,海报长1.2m ,宽0.6m .小明为了测量海报上“节约用水从我做起”八个字所占的面积,在长方形海报上随机撒豆子(假设豆子落在海报内每一点都是等可能的).经过大量试验,发现豆子落在“节约用水从我做起”八个字上的频率稳定在0.2左右.由此可估计海报上“节约用水从我做起”八个字所占的面积约为( )A .20.35mB .20.7mC .20.144mD .20.2m【答案】C 【解析】长方形宣传海报的面积为()21.20.60.72m⨯=.∵豆子落在“节约用水 从我做起”八个字上的频率稳定在0.2左右,∴“节约用水 从我做起”八个字图案占长方形宣传海报的20%.∴海报上“节约用水 从我做起”八个字的面积约为()21.20.60.72m⨯=.例5.一个不透明的盒子里装有若干个同一型号的白色乒乓球,小明想通过摸球实验估计盒子里有白色乒乓球的个数,于是又另外拿了9个黄色乒乓球(与白色乒乓球的型号相同)放进盒子里.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回去,通过大量重复摸球实验后发现,摸到黄色乒乓球的频率稳定在30%,估计原来盒子中白色乒乓球的个数为()A.21 B.24 C.27 D.30【答案】A【解析】设原来盒子中白色乒乓球的个数为x,根据摸到黄色乒乓球的频率稳定在30%得99x+=30%,解方程即可求解.设原来盒子中白色乒乓球的个数为x,根据题意,得:99x+=30%,解得:x=21,经检验:x=21是分式方程的解,∴原来盒子中白色乒乓球的个数为21个,故选A.【点睛】本题考查了频率与频数的关系,熟知频率=频数数据总和是解决问题的关键.例6.一个暗箱里放有a个除颜色外完全相同的球,这a个球中红球只有4个,若每次将球搅匀后,任意摸出1个球记下颜色再放回暗箱,通过大量重复摸球实验后发现,摸到红球的频率稳定在20%附近,那么可以推算出a大约是()A.25 B.20 C.15 D.10【答案】B【解析】由在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,即可知其概率,再利用概率公式即可推算出a的大小.由题意可得4100%20% a⨯=,解得20a=.经检验:a=20是原方程的根且符合题意【点睛】本题考查用频率估计概率,熟记概率公式是解本题的关键例7.笼子里关着一只小松鼠(如图),笼子的主人决定把小松鼠放归大自然,将笼子所有的门都打开,松鼠要先经过第一道门(A,B,或C),再经过第二道门(D或E)才能出去.问松鼠走出笼子的路线(经过的两道门)有()种不同的可能?A.12 B.6 C.5 D.2【答案】B【解析】解决本题的关键是分析两道门各自的可能性情况,然后再进行组合得到打开两道门的方法,这类题要读懂题意,从中找出组合的规律进行求解,本题不同的是首先分析每道门的情况数,然后整体进行组合即可得解.解:因为第一道门有A、B、C三个出口,所以出第一道门有三种选择;又因第二道门有两个出口,故出第二道门有D、E两种选择,因此小松鼠走出笼子的路线有6种选择,分别为AD、AE、BD、BE、CD、CE.故选:B.【点睛】本题考查了概率、所有可能性统计,通过列举法可以举出所有可能性的路径.一、单选题1.在抛掷硬币的试验中,下列结论正确的是()A.经过大量重复的抛掷硬币试验,可发现“正面向上”的频率越来越稳定B.抛掷10000次硬币与抛掷12000次硬币“正面向上”的频率相同C.抛掷50000次硬币,可得“正面向上”的频率为0.5D.若抛掷2000次硬币“正面向上”的频率是0.518,则“正面向下”的频率也为0.518【答案】A【解析】根据频率的概念与计算公式逐项判断即可得.A、经过大量重复的抛掷硬币试验,可发现“正面向上”的频率越来越稳定,此项正确;B、抛掷10000次硬币与抛掷12000次硬币“正面向上”的频率可能不同,此项错误;C、抛掷50000次硬币,可得“正面向上”的频率约为0.5,此项错误;D、若抛掷2000次硬币“正面向上”的频率是0.518,则“正面向下”的频率为10.5180.482-=,此项错误;故选:A.【点睛】本题考查了频率的概念与计算公式,掌握理解频率的概念是解题关键.2.投掷硬币m次,正面向上n次,其频率p=nm,则下列说法正确的是()A.p一定等于12B.p一定不等于12C.多投一次,p更接近12D.投掷次数逐步增加,p稳定在12附近【答案】D【解析】【分析】大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这个常数就叫做事件概率的估计值,而不是一种必然的结果.投掷硬币m次,正面向上n次,投掷次数逐步增加,p稳定在12附近.故选:D.【点睛】考查利用频率估计概率,大量反复试验下频率稳定值即概率.注意随机事件可能发生,也可能不发生.3.为了解某地区九年级男生的身高情况,随机抽取了该地区1000名九年级男生的身高数据,统计结果如下.根据以上统计结果,随机抽取该地区一名九年级男生,估计他的身高不低于170cm的概率是()A.0.32 B.0.55 C.0.68 D.0.87 【答案】C【解析】【分析】先计算出样本中身高不低于170cm的频率,然后根据利用频率估计概率求解.解:样本中身高不低于170cm的频率5501300.681000+==,所以估计抽查该地区一名九年级男生的身高不低于170cm的概率是0.68.故选:C.【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.4.一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在0.3,那么估计摸到黄球的概率为()A.0.3 B.0.7 C.0.4 D.0.6【答案】A【解析】【分析】根据利用频率估计概率得摸到黄球的频率稳定在0.3,进而可估计摸到黄球的概率.∵通过大量重复摸球实验后发现,摸到黄球的频率稳定在0.3,∴估计摸到黄球的概率为0.3,故选:A.【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率.5.在三行三列的方格棋盘上沿骰子的某条棱翻动骰子(相对面上分别标有1点和6点,2点和5点,3点和4点).开始时,骰子如图(1)所示摆放,朝上的点数是2,最后翻动到如图(2)所示位置.现要求翻动次数最少,则最后骰子朝上的点数为2的概率为()A .112 B .16C .13D .14【答案】C 【解析】 【分析】根据题意模拟骰子的翻动过程,可以得到最后骰子朝上的点数所有的可能性和点数为2的基本事件的个数,代入概率公式即可.设三行三列的方格棋盘的格子坐标为(),a b ,其中开始时骰子所处的位置为()1,1,则图题(2)所示的位置为()3,3,则从()1,1到()3,3且次数翻动最少,共有6种走法,最后骰子朝上的点数分别为2,5,1,5,3,2,故最后骰子朝上的点数为2的概率为2163P ==,故选C . 【点睛】本题主要考查概率,根据已知条件计算出骰子朝上的点数所有的基本事件和满足条件的基本事件个数是关键.6.如图,小球从A 入口往下落,在每个交叉口都有向左或向右两种可能,且可能性相等.则小球从E 出口落出的概率是( )A .12 B .13C .14D .16【答案】C 【解析】 【分析】根据“在每个交叉口都有向左或向右两种可能,且可能性相等”可知在点B 、C 、D 处都是等可能情况,从而得到在四个出口E 、F 、G 、H 也都是等可能情况,然后概率的意义列式即可得解.解:由图可知,在每个交叉口都有向左或向右两种可能,且可能性相等, 小球最终落出的点共有E 、F 、G 、H 四个,所以小球从E 出口落出的概率是:14;故选:C . 【点睛】此题考查的是求概率问题,掌握概率公式是解决此题的关键.7.用直角边长分别为2、1的四个直角三角形和一个小正方形(阴影部分)拼成了如图所示的大正方形飞镖游戏板.某人向该游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是( )A .13B .14C .15D 5【答案】C 【解析】 【分析】分别计算出大正方形和小正方形的面积,再利用概率公式计算即可 解:大正方形的面积为:21214(21)52⨯⨯⨯+-=, 阴影部分的小正方形的面积为:2(21)1-=, ∴飞镖落在阴影部分的概率是1155÷=, 故选:C . 【点睛】本题考查了几何概率的求法:首先根据题意用代数关系将面积表示出来,一般用阴影区域表示所求事件(A );然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A )发生的概率.8.动物学家通过大量的调查估计:某种动物活到20岁的概率为0.8,活到25岁的概率为0.5,活到30岁的概率为0.3,现在有一只20岁的动物,它活到30岁的概率是( )A .35B .38C .58D .310【答案】B【解析】【分析】先设出所有动物的只数,根据动物活到各年龄阶段的概率求出相应的只数,再根据概率公式解答即可.解:设共有这种动物x只,则活到20岁的只数为0.8x,活到30岁的只数为0.3x,故现年20岁到这种动物活到30岁的概率为0.30.8xx=38.故选:B.【点睛】本题考查概率的简单应用,用到的知识点为:概率=所求情况数与总情况数之比.9.在一个不透明的盒子里装着除颜色外完全相同的黑、白两种小球共40个.小颖做摸球试验,她将盒子里面的球搅匀后从中随机摸出一个并记下颜色后放回,不断重复上述过程,多次试验后,得到表中的数据:并得出了四个结论,其中正确的是()A.试验1500次摸到白球的频率一定比试验800次的更接近0.6B.从该盒子中任意摸出一个小球,摸到白球的概率约为0.6C.当试验次数n为2000时,摸到白球的次数m一定等于1200D.这个盒子中的白球定有28个【答案】B【解析】【分析】观察表格发现:随着试验次数的逐渐增多,摸到白球的频率越来越接近0.6,据此求解即可.解:A. 试验1500次摸到白球的频率不一定比试验800次的更接近0.6,故不正确;B. 观察表格发现:随着试验次数的逐渐增多,摸到白球的频率越来越接近0.6,故正确;C. 当试验次数n为2000时,摸到白球的次数m不一定等于1200,故不正确;D. 这个盒子中的白球定估计有40×0.6=24个,故不正确;故选B.【点睛】此题主要考查了利用频率估计概率,根据大量反复试验下频率稳定值即概率.用到的知识点为:部分的具体数目=总体数目×相应频率.10.如图,小明在操场上做游戏,他在沙地上画了一个面积为15的矩形,并在四个角画上面积不等的扇形,在不远处的固定位置向矩形内部投石子,记录如下(石子不会落在矩形外面和各区域边缘):投石子的总次数50次150次300次600次石子落在空白区域内的次数14次85次199次400次石子落在空白区域内的频率725173019930023依此估计空白比分的面积是()A.6B.8.5C.9.95D.10【答案】D【解析】【分析】根据投在空白区域内的频率得到概率的大小,由此计算空白区域的面积.由表格可知:当投石子的次数越来越多时,石子落在空白区域的频率越接近23,即空白区域的面积占总面积的23,∴空白部分的面积=215103⨯=,故选D.【点睛】此题主要是利用频率估计概率,当实验次数越多时,某事件的频率越接近于该事件的概率,这是利用频率计算概率在实际生活中的运用.二、填空题11.一个事件经过500次的试验,某种结果发生的频率为0.32,那么在这一次试验中,该种结果发生的概率估计值是___________.【答案】0.32【解析】【分析】由题意依据大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率进行分析即可.解:一个事件经过500次的试验,某种结果发生的频率为0.32,那么在这一次试验中,该种结果发生的概率估计值是0.32.故答案为:0.32.【点睛】本题考查利用频率估计概率,解答本题的关键是掌握频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.12.袋子中有20个除颜色外完全相同的小球.在看不到球的条件下,随机地从袋子中摸出一个球,记录颜色后放回,将球摇匀.重复上述过程150次后,共摸到红球30次,由此可以估计口袋中的红球个数是__.【答案】4【解析】【分析】首先求出摸到红球的频率,用频率去估计概率即可求出袋中红球约有多少个.解:∵摸了150次后,发现有30次摸到红球,∴摸到红球的频率=301 1505=,∵袋子中共有20个小球,∴这个袋中红球约有12045⨯=个,故答案为4.【点睛】此题考查利用频率估计概率.大量反复试验下频率稳定值即概率.同时也考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.13.如图,正方形二维码的边长为2cm,为了测算图中黑色部分的面积,在正方形区域内随机掷点,经过大量重复试验,发现点落入黑色部分的频率稳定在0.75左右,据此可估计黑色部分的面积的为___________cm2.【答案】3【解析】【分析】求出正方形二维码的面积,根据题意得到黑色部分的面积占正方形二维码面积的75%,计算即可.解:正方形二维码的边长为2cm,∴正方形二维码的面积为4cm2,∵经过大量重复试验,发现点落入黑色部分的频率稳定在0.75左右,∴黑色部分的面积占正方形二维码面积的75%,∴黑色部分的面积约为:4×75%=3,故答案为:3.【点睛】本题考查的是利用频率估计概率,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.14.如图是计算机中“扫雷"游戏的画面,在99⨯小方格的正方形雷区中,随机埋藏着10颗地雷,每个小方格内最多只能藏1颗地雷.小红在游戏开始时随机踩中一个方格,踩中后出现了如图所示的情况,我们把与标号1的方格相邻的方格记为A区域(画线部分),A区域外的部分记为B区域,数字1表示在A区域中有1颗地雷,那么第二步踩到地雷的概率A区域______B区域(填“>”“<”“=”).【答案】=【解析】【分析】分别求出A 区域踩到地雷的概率和B 区域踩到地雷的概率即可.∵A 区域踩到地雷的概率为18,B 区域踩到地雷的概率为91=728,∴第二步踩到地雷的概率A 区域和B 区域是相等的.故填=.【点睛】本题主要考查了几何概率,在解题时要注意知识的综合应用以及概率的算法是本题的关键. 15.一个不透明的布袋中装有4个红色球、m 个白色球、1个黑色球,其颜色外都相同,每次将球充分搅拌均匀后,任意摸出1个球记下颜色再放回袋中,通过大量摸球试验发现摸到白色球的频率稳定在0.5,可估计这个布袋中白球的个数为______. 【答案】5 【解析】 【分析】根据概率计算公式,用白球的个数除以球的总个数等于摸到白球的概率,列出式子求解即可. 根据题意列式:0.541mm =++,解得5m =,则布袋中白球的个数为5. 故答案为:5. 【点睛】本题主要考查概率计算公式,概率等于所求情况数与总情况数之比,熟练掌握并应用概率计算公式是解答本题的关键.16.小慧在一次用“频率估计概率”的试验中,把“学生知耻处,方知艺不精”中的每个汉字分别写在十张完全相同的卡片上,然后把卡片的背面朝上,随机抽取一张后统计某一个汉字被抽到的频率,并绘制了如图所示的折线统计图,则符合这一结果的汉字是______.【答案】知 【解析】 【分析】利用“频率估计概率”,观察图像,可得抽的此汉字的概率为15,总共有十个汉字,可得此汉字的个数为2,即可求解.解:利用“频率估计概率”,观察图像,可得抽的此汉字的概率为15,在“学生知耻处,方知艺不精”中总共有十个汉字, 可得此汉字的个数为2, 从而得到此汉字为知, 故答案为:知 【点睛】此题考查了利用“频率估计概率”,解题的关键是理解题意,正确求得抽的此汉字的概率. 17.一名男生投实心球,已知球行进的高度y (m )与水平距离x (m )之间的关系为 y=﹣425(x ﹣2)2+8125,那么该男生此次投实心球的成绩是__.【答案】6分 【解析】解:当y=0时,计算得出:x 1=6.5,x 2=-2.5(舍去),由表可以知道当水平距离x=6.5米时,该男生此次投实心球的成绩是6分.18.定义:若自然数n 使得三个数的加法运算“(1)(2)n n n ++++”产生进位现象,则称n 为“连加进位数”.例如,2不是“连加进位数”,因为2349++=不产生进位现象;4是“连加进位数”,因为45615++=产生进位现象;51是“连加进位数”,因为515253156++=产生进位现象.如果从0,1,…,99这100个自然数中任取一个数,那么取到“连加进位数”的概率是_______. 【答案】2225【解析】 【分析】按照定义将数据依次代入(1)(2)n n n ++++进行验证,找出规律,得到“连加进位数”的个数,进而求出概率.当n=0时,(1)(2)=012=3++++++n n n ,不是连加进位数, 当n=1时,(1)(2)=123=6++++++n n n ,不是连加进位数, 当n=2时,(1)(2)=234=9++++++n n n ,不是连加进位数, 当n=3时,(1)(2)=345=12++++++n n n ,是连加进位数, 故0到9中,0、1、2不是连加进位数;当n=10时,(1)(2)=101112=33++++++n n n ,不是连加进位数,当n=11时,(1)(2)=111213=36++++++n n n ,不是连加进位数, 当n=12时,(1)(2)=121314=39++++++n n n ,不是连加进位数, 当n=13时,(1)(2)=131415=42++++++n n n ,是连加进位数, 故10到19中,10、11、12不是连加进位数;以此类推,20到29中,20、21、22不是连加进位数,30到39中,30、31、32不是连加进位数,40以后全部是连加进位数,所以连加进位数总共88个, 故取到“连加进位数”的概率是8822=10025. 【点睛】本题考查概率的算法,根据题意筛选出符合条件的的情况数目是解题的关键. 三、解答题19.在同样的条件下对某种小麦种子进行发芽试验,统计发芽种子数,获得如下频数表.(1)估计该麦种的发芽概率.(2)如果播种该种小麦每公顷所需麦苗数为4000000棵,种子发芽后的成秧率为80%,该麦种的千粒质量为50g .那么播种3公顷该种小麦,估计约需麦种多少千克(精确到1kg )? 【答案】(1)该麦种的发芽概率约为95%; (2)约需麦种790千克 【解析】 【分析】(1)利用频率估计麦种的发芽率,大数次实验,当频率固定到一个稳定值时,可根据频率公式=频数÷总数计算即可;(2)设约需麦种x 千克,根据x 千克转化为克×1000,再转为颗粒÷50×1000,根据发芽率再×95%,根据芽转苗再×80%,等于三公顷地需要的苗总数,例方程x ×1000÷50×1000×95%×80%=4000000×3,解方程即可 (1)解:根据实验数量变大,发芽数也在增大,2850÷3000×100%=95%, 故该麦种的发芽概率约为95%; (2)解:设约需麦种x 千克,x ×1000÷50×1000×95%×80%=4000000×3, 化简得15200x=12000000, 解得x =789919, 答:约需麦种790千克 【点睛】本题考查用频率估计发芽率,一元一次方程解应用题,掌握用频率估计发芽率,一元一次方程解应用题的方法与步骤是解题关键.20.在一个不透明的盒子里装着只有颜色不同的黑、白两种球共5个,小明做摸球实验,他将盒子里面的球搅匀后从中随机摸出一球记下颜色,再把它放回盒子,不断重复上述过程实验n 次,下表是小明“摸到白球”的频数、频率统计表.(1)观察上表,可以推测,摸一次摸到白球的概率为______. (2)请你估计盒子里白球个数.(3)若往盒子中同时放入x 个白球和y 个黑球,从盒子中随机取出一个白球的概率是0.25,求y 与x 之间的函数关系式. 【答案】(1)0.2 (2)1个 (3)31y x =- 【解析】 【分析】(1)观察表格发现摸到白球的频率在0.2左右波动,所以n 很大时摸到白球的概率将会接近0.2;(2)设盒子里白球有m 个,根据题意列出方程m=0.25,解方程即可得出答案; (3)根据等可能事件概率的计算方法,得到等式10.255xx y +=++,化简后即可得答案.(1)观察表格发现摸到白球的频率在0.2左右波动,∴摸到白球的频率为0.2(2)设盒子里白球有m 个,根据题意得,m =0.25解得m =1.答:盒子里白球有1个. (3)解:由题意得:10.255xx y +=++.化简整理得:31y x =-.∴y 与x 之间的函数关系式为:31y x =-.(x 为正整数) 【点睛】本题考查用频率估计概率,理解概率的意义,能根据事件发生的频率来估计该事件的概率是解题的关键.21.根据你所学的概率知识, 回答下列问题:(1)我们知道: 抛掷一枚均匀的硬币, 硬币正面朝上的概率是________. 若抛两枚均匀硬币, 硬币落地后, 求两枚硬币都是正面朝上的概率. (用树状图或列表来说明) (2)小刘同学想估计一枚纪念币正面朝上的概率, 通过试验得到的结果如下表所示:根据上表, 下面有三个推断:①当抛掷次数是1000时, “正面朝上”的频率是0.512, 所以“正面朝上”的概率是0.512; ②随着试验次数的增加, “正面朝上”的频率总是在0.520附近摆动, 显示出一定稳定性, 可以估计“正面朝上”的概率是0.520;③若再做随机抛郑该纪念币的试验, 则当抛掷次数为3000时, 出现“正面朝上”的次数不一定是1558次;其中推断合理的序号是________.【答案】(1)12,14(2)②③ 【解析】【分析】(1)根据概率公式求解抛掷一枚均匀的硬币,硬币正面朝上的概率;根据树状图求两枚均匀硬币时,硬币正面朝上的概率;(2)根据试验次数越大,频率稳定,可用频率估算概率,据此判断即可.(1)抛掷一枚均匀的硬币,硬币正面朝上的概率是12;若抛两枚均匀硬币时,画树状图如下:共有4种等可能的情况数,其中两枚硬币都是正面朝上有1种,则两枚硬币都是正面朝上的概率是14;故答案为:12,14;(2)①当抛掷次数是1000时,“正面向上”的频率是0.512,但“正面向上”的概率不一定是0.512,故本选项错误,不符合题意;②随着试验次数的增加,“正面向上”的频率总在0.520附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.520,故本选项正确,符合题意;③若再次做随机抛掷该纪念币的试验,则当抛掷次数为3000时,出现“正面向上”的次数不一定是1558次,故本选项正确,符合题意;其中推断合理的序号是②③.故答案为:②③.【点睛】本题考查了根据概率公式求概率,利用画树状图求概率,根据频率求概率,掌握求概率的方法是解题的关键.22.童老师在教学《简单事件的概率》时,设计了一个“挑战自我”的环节,即挑战的同学从如图1所示的A,B,C,D四张图片中随机选取一张,老师点击该图片,显示挑战问题,挑战的同学思考并回答.。

人教版九年级上册数学《用频率估计概率》概率初步教学说课复习课件巩固

人教版九年级上册数学《用频率估计概率》概率初步教学说课复习课件巩固

n
n
随着试验次数的增大,频率 m 稳定在0.5的附近。
n
探究一:通过频率估计概率
活动3
m
掷图钉,观察随着抛掷次数的增加,“针尖向上”的频率 n 的变化趋势。
可能有同学会觉得老师用大量重复试验的方法得到掷一枚硬币 出现“正面向上”的概率未免也太大费周章了,而且最终还只是一 个概率的近似值!
谁都知道掷一枚硬币出现“正面向上”的概率为0.5,那么这种
探究一:通过频率估计概率
大家知道随机抛掷一枚图钉出现“针尖向上”的概率是多少 吗?
有的同学回答“针尖向上”概率为0.5,其实由于图钉不是 均匀物体,所以“针尖向上”和“针尖向下”两种事件的结果出 现的可能性不一样大。
你能想办法得到“针尖向上”的概率吗?
探究一:通过频率估计概率
类似抛掷硬币的活动,通过大量重复试验的频率估计“针尖向上”的概率。
200
250
销售人员首先从所有的柑橘中随机 300
抽取若干柑橘,进行“柑橘损坏率”统 350
400
计,并把获得的数据记录在右表中.请 450
你帮忙完成此表.
500
5.50 10.50 15.15 19.42 24.25 30.93 35.32 39.24 44.57 51.54
0.110 0.105 0.101 0.097 0.097 0.103 0.101 0.098 0.099 0.103
探究二:频率估计概率在生活实际问题中的应用
例2:小颖和小红两位同学在学习“概率”时,做投掷骰子(质地 均匀的正方体)试验,她们共做了60次试验,试验的结果如下表:
朝上的点数 1 出现的次数 7
23 98
456 11 15 10
(1)计算“3点朝上”的频率和“5点朝上”的频率; (2)小颖说:“根据试验,一次试验中出现5点朝上的概率最大”。

概率的计算方法与公式

概率的计算方法与公式

概率的计算方法与公式概率是数学中一个重要的概念,用于描述事件发生的可能性。

在现实生活和科学研究中,我们经常需要计算概率来指导决策和推断结论。

本文将介绍几种常见的概率计算方法和相关公式,帮助读者更好地理解和应用概率。

一、频率法频率法是最直观的计算概率的方法,即通过实验或观察的频率来估计概率。

具体而言,假设我们进行了N次实验,事件A发生了n次,那么事件A的概率可以近似地表示为:P(A) = n/N。

例如,我们想知道一枚硬币正面朝上的概率。

我们进行了100次抛硬币的实验,其中正面朝上的次数为70次。

根据频率法,我们可以得到正面出现的概率为P(正面) = 70/100 = 0.7。

频率法可以通过重复实验来逐渐接近真实概率值,但结果受样本容量的影响较大。

当样本容量较小时,估计的概率可能较不准确。

二、古典概率法古典概率法是一种理论上预测概率的方法,适用于具有均匀随机性质的事物。

它假设所有可能的结果是等概率发生的,然后通过计算事件发生的有利结果数目与总结果数目的比值来得到概率。

假设有一副标准扑克牌,共52张,其中有4张A。

我们想知道从中抽一张牌是A的概率。

根据古典概率法,事件A的概率可以表示为:P(A) = 4/52 = 1/13。

古典概率法适用于结构简单、随机性好的情况,但在复杂情况下可能无法准确估计。

三、条件概率与乘法法则条件概率是指在已知某一事件发生的条件下,另一事件发生的概率。

用符号表示为P(B|A),读作“在A发生的条件下,B发生的概率”。

乘法法则是计算条件概率的常用方法,可以表示为P(A∩B) =P(A)P(B|A)。

其中,P(A∩B)表示事件A与事件B同时发生的概率,P(A)表示事件A发生的概率,P(B|A)表示在事件A发生的条件下,事件B发生的概率。

例如,假设一批货物中有10%的次品,现从中随机取出一件进行检验,如果取出的是次品,则再次抽检,第二次抽检中检验合格的概率为80%。

问第一次抽检合格且第二次抽检合格的概率是多少?根据条件概率和乘法法则,设事件A表示第一次抽检合格,事件B表示第二次抽检合格,则所求概率可以表示为:P(A∩B) = P(A)P(B|A)= 0.9 * 0.8 = 0.72。

揭示频率与概率之间的关系

揭示频率与概率之间的关系

揭示频率与概率之间的关系一、频率与概率的区别与联系(1)区别:频率是随着试验次数的改变而改变,即频率是随机的,而试验前是不确定的,而概率是一个确定的常数,是客观存在的,与试验次数无关,是随机事件自身的一个属性。

(2)联系:在相同的条件下,随着试验次数的增加,随机事件发生的频率会在某个常数附近摆动并趋于稳定,所以可用频率作为概率的近似值,当试验次数越来越多时频率向概率靠近,概率是频率的近似值。

二、频率与概率应注意的问题①求一个事件的概率的基本方法是做大量的重复试验。

②只有当频率在某个常数附近摆动时,这个常数才叫做事件A 的概率。

③概率是频率的稳定值,而频率是概率的近似值。

④概率反应了随机事件发生的可能性的大小。

⑤概率的值越接近1表明事件发生的可能性越大,反过来值越接近0,则事件发生的可能性越小。

三、典型例题精析例1:某射击运动员在同一条件下进行练习,结果如下所示射击次数n 10 20 50 100 200 500 击中10环次数m8 19 44 93 178 453 击中10环频率n m(1)计算表中击中10环的各个频率;(2)这名射击运动员射击一次,击中10环的概率为多少?分析:(1)逐个将n 、m 值代入公式n m进行计算.(2)观察各频率能否在一常数附近摆动,用多次试验的频率估测概率。

解:(1)射击次数n 10 20 50 100 200 500 击中10环次数m8194493178453击中10环频率n m0.8 0.95 0.88 0.93 0.89 0.906 (2)这名射击运动员射击一次,击中10环的概率约是0.9.点评:利用概率的统计定义求事件的概率是求一个事件概率的基本方法,通过大量的重复试验,事件发生的频率会逐渐趋近于某一个常数,就用事件发生的频率趋近的常数作为事件的概率。

例2:为迎接2008年奥运会,某工厂大批生产奥运会吉祥物----福娃,该工厂对甲乙两职工生产福娃进行了测试,然后进行了统计,下表是统计结果。

频率与概率的关系公式

频率与概率的关系公式

频率与概率的关系公式
在概率论中,频率与概率之间的关系可以通过大数定律来解释。

大数
定律指出,当重复进行一些随机实验时,频率会逐渐趋近概率。

也就是说,随着实验的次数增加,事件发生的频率会越来越接近其概率。

假设事件A发生的次数为n,总实验次数为N。

频率可以表示为
f(A)=n/N
而概率可以表示为
P(A) = lim(N -> ∞) n/N
这里的lim表示当N趋近于无穷大时,n/N的极限值。

也就是说,当
实验次数足够多时,事件A发生的频率会逐渐趋近于事件A发生的概率。

除了大数定律,还有一些其他的关系公式可以描述频率与概率之间的
关系。

1.绝对频率与相对频率:
绝对频率是指事件发生的实际次数,而相对频率是指事件发生的次数
与总次数的比值。

绝对频率可以表示为
f(A)=n
相对频率可以表示为
f(A)=n/N
2.概率与频率的关系:
当实验次数足够大时,频率会逐渐趋近于概率。

也就是说,频率可以作为概率的估计值。

这可以表示为
P(A)≈f(A)
这个公式说明了频率可以用来估计概率,但是只有当实验次数足够多时才能得到比较准确的结果。

3.几何概率与频率的关系:
在几何概率中,事件的概率可以通过对事件发生的次数进行标准化得到。

这里的标准化是指将事件发生的次数除以总次数。

所以,事件的几何概率可以表示为
P(A)=f(A)/N
这个公式说明了几何概率与频率之间的关系,几何概率可以通过频率来计算。

3.1.3-4频率于概率以及概率的加法公式

3.1.3-4频率于概率以及概率的加法公式

例3.判断下列给出的每对事件,(1)是否 为互斥事件,(2)是否为对立事件,并 说明理由。 从40张扑克牌(红桃、黑桃、方块、梅 花,点数从1~10各4张)中,任取1张: (1)“抽出红桃”与“抽出黑桃”;
是互斥事件,不是对立事件;
(2)“抽出红色牌”与“抽出黑色牌”;
既是互斥事件,又是对立事件;
3.1.3 频率与概率
投掷硬币的试验:
虽然我们不能预先判断出现正面向上, 还是反面向上。但是假定硬币均匀,直观 上可以认为出现正面与反面的机会相等。 即在大量试验中出现正面的频率接近于0.5. 历史上有些学者做过成千上万次的投 掷硬币的试验。结果如下表:
抛硬币试验
实验者 棣莫佛 蒲 丰 出现正面的 试验次数(n) 次数(m) 2048 4040 1061 2048 出现正面的 频率(m/n) 0.5181 0.5069
m n
注意点: 1.随机事件A的概率范围 随机事件发生的概率都满足:0≤P(A)≤1
在n次试验中,事件A发生的频数m满足0 m n, m 所以0 1。即:0 p ( A) 1 n 必然事件时:p ( A) 1;当A是不可能事件时:p ( A) 0
2.频率与概率的关系 (1)联系: 随着试验次数的增加, 频率会在 概率的附近摆动,并趋于稳定. 在实际问题中,若事件的概率未知, 常用 频率作为它的估计值. (2)区别: 频率本身是随机的,在试验前不能 确定, 做同样次数或不同次数的重复试验得 到的事件的频率都可能不同. 而概率是一个确定数,是客观存在的,与每 次试验无关.


10000
12000 24000
4979
6019 12012
0.4979
0.5016 0.5005

概率与频率的关系

概率与频率的关系

概率与频率的关系
频率和概率的关系:频率在一定程度上反映了事件发生的可能性大小,尽管每进行一连串(n次)试验,所得到的频率可以各不相同,但只要n相当大,频率与概率是会非常接近的。

因此,概率是可以通过频率来“测量”的,频率是概率的一个近似。

频率是一个对象出现的频数和总数的比值,概率是一个事件自身的属性。

1) 频率:在n次重复试验中,事件A发生了m(A)次,则称:m(A)/n 为事件A发生的频率;
2) 概率:随机事件A发生可能性大小的度量(非负实数,<=1),称为事件A发生的概率,记做P(A),P是英文Probability(概率)的字头。

在大量重复进行同一试验时,事件A发生的频率m(A)/n总是接近于某个数,在它附近摆动,这个常数就是事件A的概率。

因此只要n相当大,概率是可以通过频率来测量的,或者说频率是概率的一个近似。

因此:
3) 事件A的概率P(A)是对事件A发生可能性大小的一个度量,它是一个确定的数值,其值大于0小于1。

与试验次数n无关。

事件A的频率m(A)/n是一个与试验次数n有关的数,它总是在概率P(A)附近摆动。

当试验次数n相当大的时候,频率可以作为概率的一个近似,或者说概率是可以通过频率来测量。

频率怎么算数学

频率怎么算数学

频率怎么算数学在数学和统计学中,频率是指在给定的数据集合中,某一特定值出现的次数。

频率可以用来表示数据的分布情况,常用来绘制频率分布直方图。

频率的计算公式为:频率= 某一特定值出现的次数/ 总数据数。

例如,在一个给定的数据集合中,数字1出现了5次,总数据数为20,那么数字1的频率就是5/20 = 0.25。

频率可以用来计算概率,概率是频率的一种概括表达,通常将频率转换为0~1之间的数值。

概率的计算公式为:概率= 频率/ 总频率频率分布直方图是一种常用的数据可视化工具,用来展示数据分布的情况。

在频率分布直方图中,横轴表示数据的取值范围,纵轴表示数据的频率或概率。

频率分布直方图通常分为离散型和连续型两种。

离散型频率分布直方图适用于表示离散型数据的分布情况,比如数字、颜色、气象数据等。

连续型频率分布直方图适用于表示连续型数据的分布情况,比如温度、高度、体重等。

频率分布直方图可以通过Excel、R、Python等数据分析工具绘制。

它可以帮助我们快速了解数据的分布情况,比如数据的中心、分散程度、偏态程度等。

频率分布直方图可以与其他数据分析工具配合使用,如箱线图、散点图、折线图等,来更好的了解数据的分布情况和性质。

频率的概念是统计学和数学中的基本概念,在实际中有着广泛的应用,如统计分析,数据挖掘,机器学习等领域都离不开频率的概念。

频率还可以用来计算概率密度函数(Probability Density Function,PDF)。

概率密度函数是连续型随机变量的概率分布函数,表示该变量取某一特定值的概率密度。

如果已知某个连续型随机变量X的概率密度函数f(x),可以通过它来计算X在某一特定区间内取值的概率。

设区间为[a,b],则该区间内取值的概率为∫baf(x)dx另外,频率还可以用来计算累积分布函数(Cumulative Distribution Function,CDF)。

累积分布函数是连续型随机变量的分布函数,表示该变量小于等于某一特定值的概率。

频率与概率(优秀)

频率与概率(优秀)

停在红色区域的概率吗?
对于这些问题,既
可以通过分析用计算的
方法预测概率,也可以
通过重复试验用频率来
估计概率。
1
能,可以通过理论分析,预言概率为 2
练习 (课本147页练习)用力旋转如图的转盘甲和转盘
乙的指针,求两个指针都停在红色区域的概率.
【解】
转盘甲
转盘乙
在转盘甲中,P(指针停在红色区域)=
在转盘乙中,P(指针停在红色区域)=
P(至少一个点. 数为2)= 36
例:抛掷一枚普通的硬币3次.有人说连续掷出三个正面和先掷出
两个正面再掷出一个反面的机会是一样的.你同意吗?
分析:
解:Βιβλιοθήκη 对于第1从上至下每一条路径就是一
种可能的开结始果,而且每种结
果发生的概率相等.
次抛掷,可能
出现的结果是 第一次


正面或反面;
对于第2、3次
抛掷来说也是 第二次
(2)你能用理论分析求出“出现两个正面”的概率吗?
正正 反正 正反 反反
出现均等机会结果有
___4____种,“出现两个 正面”结果有___1___种.
这种方法称为通过列 表来求概率
P(出现两个正面)=
试验得到的频率与理论分析计 算出的概率有何关系?
列表法:事件包含两步时,用表格列出事件所有可能出现的结果
前者停为在红3 色,区后域者的只概有率1和。停在蓝色区域的概率不同,
4
4
请你和同学一起做重复试验,并将结果填入表25.2.4, 两个转盘指针停在蓝色区域的频数、频率统计表
请你和同学一起做重复试验,在图25.2.3中用不同颜 色的笔分别画出相应的两天折线。
观察两个转盘,我们可以发现:转盘甲中的蓝 色区域所对的圆心角为900,说明它占整个转盘的 四分之一;转盘乙尽管大一些,但蓝色区域所对的 圆心角仍为900,说明它还是占整个转盘的四分之 一。你能预测指针停在蓝色区域的概率吗?

频率与概率的应用

频率与概率的应用
气象学家通过分析大量的气象数据,总结出天气变化的规律,并利用这些 规律来预测未来的天气。
天气预报的准确率受到多种因素的影响,如数据来源、模型精度、气象条 件等。
彩票中奖概率
01
彩票中奖概率是频率与概率在实际生活中最直接的应
用之一。
02
每一种彩票游戏都有一定的中奖规则和概率,彩民可
以根据这些规则和概率来计算出中奖的可能性。
遗传变异研究
通过频率与概率的方法,可以对遗传变异进行研究,了解基因突变 的频率和遗传规律。
生态平衡研究
在生态平衡研究中,频率与概率的方法可以帮助科学家了解物种分布 和种群数量的变化规律。
04
频率与概率在金融
投资中的应用
股票市场预测
利用历史数据和统计分析方法, 预测股票价格的走势和波动。
通过分析股票市场的交易量和交 易数据,判断市场的趋势和热点。
利用概率论和统计学方法,评估 股票市场的风险和回报,为投资
决策提供依据。
期货交易策略
根据期货市场的价格波动和交 易量,制定买入或卖出策略。
利用概率论和统计分析方法, 评估期货市场的风险和机会, 制定合理的止损和止盈点。
根据市场走势和基本面分析, 制定长线或短线交易策略,把 握市场机会。源自风险评估与决策判决依据
法院在判决时,可能会 考虑犯罪行为发生的概 率以及类似案件的判决 结果,以做出合理的裁 决。
风险评估
在涉及风险决策的案件 中,频率与概率可以帮 助评估被告人的犯罪可 能性以及未来犯罪的风 险。
社会调查与民意测验
样本代表性
在民意测验和调查中,频率与概率用于评估样本 的代表性和可靠性,以推断总体特征和趋势。
化学反应
反应速率测定

课件1:25.3用频率估计概率

课件1:25.3用频率估计概率
应该可以的
因为500千克柑橘损坏51.54千克,损坏率是0.103, 可以近似的估算是柑橘的损坏概率
练习
某农科所在相同条件下做了某作物种子发芽率的试验,结果如下表所示:
种子个数 100 200 300 400 500 600 700 800 900 1000
发芽种子个数 94 187 282 338 435 530 624 718 814 981
25.3 用频率估计概率
一 . 利用频率估计概率
当试验的可能结果有很多并且各种结果发生的可能性相等时,我们可以用
P
(A)
=
m n
的方式得出概率,当试验的所有可能结果不是有限个,或各种可能
结果发生的可能性不相等时,我们一般还要通过统计频率来估计概率.
在同样条件下,大量重复试验时,根据一个随机事件发生的频率所逐 渐稳定到的常数,可以估计这个事件发生的概率.
成活的频率( m)
n
0.80
50
47
0.94
270
235
0.870
400 750 1500
369 662 1335
0.923 0.883 0.890
3500
3203
0.915
7000 9000 14000
6335 8073 12628
0.905 0.897 0.902
从上表可以发现,幼树移植成活的频率在____9_0_%___左右摆动, 并且随着统计数据的增加,这种规律愈加明显,所以估计幼树 移植成活率的概率为___0_._9___
2 10000 20 2.22元 / 千克
9000
9
设每千克柑橘的销价为x元,则应有(x-2.22)×9 000=5 000
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

从频率到概率------《25.3 用频率估计概率》教学设计与反思统计与概率看似两个独立的学科,实质是互相依托,互相作用的,从统计中的频率到随机事件的概率,让学生逐渐形成随机观念和概率的思想,将通过《用频率估计概率》这一课例,加以说明。

【教学设计】一、内容和内容解析1.内容《用频率估计概率》系人民教育出版社《义务教育课程标准实验教科书`·数学》九年级上册第25章第三节第一课时。

2.内容解析本章属于“统计与概率”领域,对于该领域的内容,本学段分三章,前两章是统计,本章为最后一章,有关概率知识。

一方面概率与统计相对独立,另一方面概率又以统计为依托。

概率是随机事件出现的可能性的量度,是概率论最基本的概念之一。

是统计学中反映数据特征的最基本的统计量。

随着人们遇到问题的复杂程度的增加,等可能性逐渐暴露出它的弱点,特别是对于同一事件,可以从不同的等可能性角度算出不同的概率,从而产生了种种悖论。

另一方面,随着经验的积累,人们逐渐认识到,在做大量重复试验时,随着试验次数的增加,一个事件出现的频率,总在一个固定数的附近摆动,显示一定的稳定性。

R.von米泽斯把这个固定数定义为该事件的概率,这就是概率的频率定义。

从理论上讲,概率的频率定义是不够严谨的。

A.H.柯尔莫哥洛夫于1933年给出了概率的公理化定义,他的公理化方法成为现代概率论的基础,使概率论成为严谨的数学分支,对概率论的迅速发展起了积极的作用。

第25章“概率初步”在具体情景中理解随机事件,了解概率的意义计算简单事件概率的方法,主要是列举法,利用频率估计概率,体会随机观念和概率思想。

前两节对于结果个数有限且每个结果等可能的随机试验中的事件,可以用列举法去求概率。

25.3《用频率估计概率》,从统计试验结果频率的角度去研究一些随机试验中事件的概率,此方法用频率估计概率不受随机试验中可能结果数有限和各种结果发生等可能的限制,适用的范围比列举法更广,为后续利用大量重复试验的频率估计事件发生概率,从而指导实际生活中的事件做决策。

本节课是在学生了解了古典概率,会用列举法求简单的随机事件的概率的基础上,用统计的方式来收集数据和整理数据,获得随机事件的试验概率。

在试验过程中既体会随机事件的不确定性,又理解虽然在一次随机试验中某个事件的发生是带有偶然性的,但那些可在相同条件下大量重复的随机试验却往往呈现出明显的数量规律。

“用频率估计概率”运用了统计的方法,突出了概率的思想。

教学重点:通过对事件发生的频率的分析来估计事件发生的概率,理解频率与概率的区别与联系。

二、目标和目标解析1.目标(1)能够通过试验,获得事件发生的概率,理解试验概率的意义;(2)能够通过试验、统计的方式获得某一随机事件的概率;(3)通过试验体会进而理解用频率估计概率的2个条件——大量重复试验、频率逐渐稳定在的数值;(4)理解频率与概率的区别与联系。

2.目标解析(1)通过试验,发现并体会大数次试验所得到的随机事件的频率与用列举法得到的概率非常接近,即数值上的一致性;(2)当事件的试验结果不是有限个或结果发生的可能性不相等时,无法用列举法得到随机事件的概率,却可以用频率来估计概率。

(3)通过试验,理解当试验次数较大时试验频率稳定于理论概率,进一步发展概率观念。

(4)通过实验及分析试验结果、收集数据、处理数据、得出结论的试验过程,体会频率与概率的联系与区别,发展学生根据频率的集中趋势估计概率的能力。

(5)通过具体情境使学生体会到概率是描述不确定事件规律的有效数学模型,在解决问题中学会用“估计”的方式思考生活中的实际问题。

教学中要突出概率思想的内涵。

概率是针对大量重复试验而言的,大量重复试验反映的规律并非在每次试验中一定反映出来。

频率是统计意义中的量,需要有机的将频率与概率相结合,利用大量重复试验得到的频率估计概率,同时频率、概率两个量要加以区分。

教学难点:体会概率思想的内涵,概率是用大量重复试验中随机事件的频率逐渐稳定在的数值来估计的。

三、教学问题诊断分析经过前段学习,学生对于所有结果是有限个,并且所有结果发生的可能性相等的随机事件的概率有了一定的认识和感知,可以用列举法求出相对简单的概率,但还有许多的随即现象,它们的所有结果有无限多个,或者所有结果中,每个结果发生的可能性不相等,此时列举法预估它们的概率,试验法解决这一问题.在用试验的方法统计随机事件的频率来估计概率的过程中,学生容易产生以下几个错误:1.混淆概率与频率.例如“因为掷硬币正面向上的概率为0.5,所以掷硬币100次,正面向上一定出现50次”。

或者因为在掷一枚硬币50次时,得到正面向上的次数不是25次,从而产生对概率意义的怀疑或对试验的否定.2.对“多次重复试验”的理解.应该包含两层意思,一是每次试验应掷硬币许多次;二是上述的掷硬币许多次的试验进行多次.3.对于用来估计概率的频率的确定.应是多次重复试验所得随机事件频率逐渐趋于平稳的数值所在,而不一定是最大数次试验的结果所在.4.学生在随机事件的问题解决过程中仍然沿用一些代数的运算率,这些运算率在数字运算过程中是可行的,但在原理方面却是不相干的.例如“.甲袋中有1个白球、2个绿球,乙袋中有4个白球、8个绿球,搅匀后从中随机摸出2个小球.在哪个袋中取出的是2个绿球的概率更大一些?”学生因白\绿球数之比都是1:2,而想当然的认为二者概率一样.而这些问题可以通过学生试验收集的数据表,迎刃而解。

教学难点:频率与概率的关系,逐渐形成对随机事件的估计的观念\概率意识。

四、教学过程设计(一)复习导入提出问题问题:1.你会用什么方法获得某一随机事件的概率?2.我们通过列举法知道,抛掷一枚质地均匀的硬币时,“正面向上”和“反面向上”发生的可能性相等,这两个随机事件发生的概率都是0.5.这是否意味着抛掷一枚硬币100次时,就会有50次“正面向上”和50次“反面向上”呢?引入课题设计意图:回忆古典概型的意义,为本课对比试验概率的意义做铺垫.(二)研究实例明确概念试验老对俩为一组,每组同学掷一枚硬币50次整理获得的试验数据,记录在exl.表格中.画出频数分布折线图观察我们的试验结果,想一想“正面向上”的频率有什么规律?历史上有些人也做过该试验,结果见下表:再次体会,掷一枚硬币很多次“正面向上”的频率有什么规律?学生体会、回答思考:随着抛掷次数的增加,“正面向上”的频率变化趋势有什么规律?同样的,“正面向上”的频率变化趋势有什么规律?归纳:一般地,在大量重复试验中,如果事件A发生的频率m/n 会稳定在某个常数附近,那么事件A发生的概率P(A)=p.设计意图:学生通过试验、统计数据,发现(1)试验获得的频率与理论概率非常接近,并且随着试验次数增大,频率趋于稳定.(2)即使试验的结果不是有限个,也可以通过这种方法获得随机事件的频率,从而估计概率.(3)各种结果的可能性不相等,也可以通过这种方法获得随机事件的频率,从而估计概率.思考:对于一个随机事件A,用频率估计的概率P(A)能小于0吗?能大于1吗?为什么?设计意图:进一步体会实验概率与理论概率的一致性.(三)深化理解练习练习1 书142页练习1说明:此练习的目的是使得学生通过频数统计估计投篮命中的概率,进一步体会大量重复试验时频率可作为事件发生概率的估计值,应用这种方法获得随机事件发生的概率,同时进一步体会各种结果的可能性不相等,也可以通过这种方法获得随机事件的频率来估计概率。

练习2 甲乙两个不透明的口袋中分别装有除颜色外其余完全相同的小球.甲袋中有1个白球、2个绿球,乙袋中有4个白球、8个绿球,搅匀后从中随机摸出2个小球.设从甲袋中摸出的是2个绿球记作事件A,从乙袋中摸出的是2个绿球记作事件B,那么P(A)、P(B)哪个更大一些?设计意图:此题为学生几天前的一个选做作业,多数学生认为两袋中的白球与绿球数量之比都是1:2根据长期的数学运算经验,想当然的认为P(A)=P(B).这与本节课的核心知识——用频率估计概率,以及本章的核心知识——概率的意义、本章的核心思想——概率(估计)思想都背道而驰,用列举法求P(A),学生还容易理解,但用列举法求P(B)对学生来说却比较困难,通过这个练习,既让学生巩固本课所学的知识和方法,又让学生从数学思想的高度得到一次提升.(绿字为学生的试验结果)(四)课堂小结学生总结本课所得,注意(1)统计结果的频率与随机事件的概率之间的关系;(2)如何用统计的方法获得随机事件的概率;(3)概率估计的数学思想方法.【反思】本节通过试验估计随机事件发生的概率,以最简单的抛掷一枚硬币得到“正面向上”的事件发生的概率问题为切入点,先通过课堂试验验活动,让学生逐步计算一个随机事件发生的试验验频率,观察其中的规律,归纳出试验频率趋近于理论概率这一规律。

在试验活动中,注重学生的分工合作和交流活动,互相促进,相互弥补,进一步发展合作交流的意识和能力。

利用统计表和折线统计图,将试验的数据加以整理,更加直观的展现了试验数据的特点。

教师的设计如下:教师:统计图的具有哪些特点?学生:随着试验次数的增多,图像越来越稳定;稳定值接近概率。

教师:(归纳规律)。

教师:2n次试验中一定有n次“正面朝上”?学生:不一定。

教师:天气预报说某天降水概率为95%,而这天并未降水,这件事奇怪吗?学生:不。

因为它是随机事件,是否降水都有可能。

教师:请同学们完成书中第142页的练习。

两堂课中,学生的试验结果都非常完美,如掷硬币试验,两班得到“正面向上”的频率分别为0.52和0.51,这两个数值既体现了与理论概率的一致性,又反映出频率不能等同于概率.有部分学生在试验结果出来之后产生怀疑,恰恰说明频率与概率的关系是本课的难点所在。

本课我采用的是让这些同学把多个试验结果进行对比辨析,从而获得频率与概率的关系的体验。

现在反思,让学生的反向体验不足,可以加强些,效果应更好。

以上活动教师引导学生积极参与实验活动,体会频率的稳定性,感受实验频率与理论概率之间的关系,形成对概率的全面理解;同时注意引导学生揭示概率与统计之间的内在联系。

从数学角度而言,统计与概率两个学科互为基础,它们是密不可分的整体。

并且对这两部分来说,都具有较大的现实意义,问题情境和现实素材也很多。

教学时在分组活动中教师应引导学生分工合作,提高实验效果、效率和课堂效益,并且对学生出现的不同方法和想法,应给予鼓励和肯定,以便发展学生的发散思维和创新意识。

但是得到规律后的一系列小的问题的设计不是对规律的直接应用,可以直接完成书中的练习,通过解决“篮球运动员投篮的命中率”问题,通过生活实际中的问题,更加直接的加深用频率估计概率的应用,感受统计与概率的和谐之美。

相关文档
最新文档