从三个方向看物体的形状的教案
《从三个方向看物体的形状》示范教学方案
第一章丰富的图形世界1.4从三个方向看物体的形状一、教学目标1.会画立方体及其简单组合的三种形状图.2.根据从上面看的形状图及其相应位置的立方体的数量,画出从正面看与从左面看的形状图.3.培养学生重视实践、善于观察的习惯,在与他人合作交流时,和谐友好地相处.二、教学重点及难点:重点:会画立方体及其简单组合的三种形状图.难点:根据从上面看的形状图及其相应位置的立方体的数量,画出从正面看与从左面看的形状.三、教学准备正方体模型四、相关资源:相关图片五、教学过程【复习回顾】创设情境,引入新课欣赏诗句以及图片.题西林壁——苏轼横看成岭侧成峰,远近高低各不同.不识庐山真面目,只缘身在此山中.师生活动:教师利用课件展示庐山景观,让学生朗读苏东坡的《题西林壁》,并说说“横看成岭侧成峰”一句中,蕴含了怎样的数学道理.小结:“横看成岭侧成峰”一句中,蕴含的数学道理:横看就是从东面西面看庐山山岭连绵起伏,从侧面看庐山山峰耸立.设计意图:以苏东坡的诗句《题西林壁》营造一个崭新的数学学习氛围,创设实际情境,激发兴趣,使学生集中注意,同时引入课题并从中挖掘藴含的数学道理,让学生感受数学的魅力,培养学生的数学文化素养.板书:4.从三个方向看物体的形状本图片是微课的首页截图,本微课资源讲解了从不同的方向看立体图形,并通过讲解实例与练习,巩固所学的知识点.若需使用,请插入微课【知识点解析】从不同的方向看.【新知讲解】探究一:从三个方向看物体的形状活动1:从不同方向观察实物当我们从不同的方向观察同一物体时,通常可以看到不同的图形,观察下列图片中的同一物体,说一说分别是从哪个方向看到的:思考:每台摄像机拍到的分别是下面的哪张照片?师生活动:教师引导学生思考.A是(2);B是(1);C是(3);D是(4).设计意图:教学中,首先呈现了几张照片,让学生从生活实际中感受到从不同的方向看会有不同的效果,从而引入教学内容,感受不同的方向观察物体的不同性.通过前面的学习,我们发现许多物体从不同方向观察会看到不同的图形(视图),为了研究问题的方便让我们来认识几种特殊的视图:活动2.从三个方向看小正方体组成的几何体师生合作画出如下图形:设计意图:循序渐进地提出问题(活动),让学生逐步感受从不同角度看结果不一样,逐步得到从正前方、正左方、正上方所看到的三种形状图的概念.活动三:小组活动1:现在,我们就以小组为单位,用5个小立方块搭建几何体,要尽可能地搭出不同的几何体,再从不同的方向看一看自己所搭的几何体,并画出几何体的形状图.学生展示搭成的几何体,并画出从三个方向看到的图形.从三个不同方向看几何体(1)(2)(3)(4)形状图.(1)(2)(3)(4)小组活动2:用6个自制小立方块摆出几何体,画出三个方向看到的形状图.要求:每小组至少摆两种;画好后小组之间互相交流批改.设计意图:有五个立方块增加到六个,学生自己先摆后画,进一步巩固画法. 学生动手操作,用几个小正方体搭一搭,学会与人交流、合作,使学生真正成为学习的主体,形成师生互动的课堂氛围.探究二:数几何体中小正方体的个数活动 1.如图是几个小立方块所搭几何体的从上面看的图形形状,小正方形的数字表示该位置小立方块的个数.这个几何体的从正面看和从左面看的形状图.师生活动:让学生动手利用手中的小立方块,尝试独立寻求解决问题的方法,特别要重视利用操作来帮助解决问题,然后同伴进行交流,验证结果.解法一:先摆出这个几何体,再画出它的从正面看和从左面看的形状图.解法二:根据从上面看的图联想确定从正面看到的图有3列,从左面看的图有2列,再根据数字确定每列方块的个数.由此可得形状图如下:活动2.一个几何体由几个大小相同的小立方块搭成,从上面看和从左面看所看到的平面图形如图所示.搭出满足条件的几何体,你搭的几何体由几个小立方块搭成?与同伴交流.从上面看从左面看注意:如果两个几何体从正面看、左面看、上面看所看到的平面图形是相同的,但是物体的形状并不一定相同,甚至几何体A可以由五个小立方块组成,而几何体B是由六个小立方块组成的.【典型例题】例1画出如图所示的几何体从正面、左面和上面看到的图形.分析:从正面看到的图有三列,每列的方块数分别是2,1,1;从左面看到的图有两列,每列的方块数分别是2,1;从上面看到的图有三列,每列的方块数分别是1,1,2.解:几何体的三种形状图如图所示.总结:画几何体的三种形状图关键是确定它们的列数及每列方块的个数.例2用小立方体搭一个几何体,使得它从正面和上面看到的图形如图所示,搭建这样的几何体,最多要用几个小立方块?最少要用几个小立方块?分析:(1)在从上面看到的图中,用小正方形中的数字表示在该位置小立方块的个数.由于从正面看到的图每列的个数即是从上面看到的图中该列小正方形中的最大数字,因此,用的小立方块块数最多的情况是每个小正方形中都填该列的最大数字.如图(1)所示,此种情况共用小立方块17块.(2)搭建这样的几何体,每列只要有一个最大数字,其他小正方形内的填写数字减少到最少的1,即可满足条件,如图(2)所示,这样只需要小立方块11块即可.解:搭建这样的几何体,最多用17块小立方块,最少用11块小立方块.总结:由于从正面看到的图的列数与从上面看到的图的列数相同,从正面看到的图每列方块数是从上面看到的图该列小正方形中的最大数字,因此每行每列最多可摆放3个小的立方块.例3如图是一个几何体的三种形状图(含有数据),则这个几何体的侧面展开图的面积等于().A.2π B.π C.4 D.2分析:由从上面看到的图可以看出该几何体是圆柱或圆锥;由从正面看到的图和从左面看到的图中可以看出该几何体是四棱柱或圆柱.两者结合可以猜测这个几何体是圆柱.由题意,得这个几何体是圆柱,且圆柱的直径为1,高为2.圆柱的侧面展开图是一个长方形,此长方形的长为π,宽为2,则该圆柱的侧面积为2π.答案:A.【随堂练习】1.从正面看如图所示的立体图形得到的图形是().解:B.2.从正面看由一些大小相同的小正方体组成的几何体的形状图如图所示,其中正方形中的数字表示在该位置上的小正方体的个数,那么,从左面看这个几何体的形状图是().解:A.点拨:因为从上面看到的图中,最上面一行小正方形内数字为1,2,所以从左面看到的图最左边一列的小正方形的个数为2;因为从上面看到的图中,中间一行小正方形内数字为3,2,所以从左面看到的图中间一列的小正方形有3个.故选项B,C,D错.3.如图是由若干个大小相同的小正方体堆砌成的几何体,那么其三种形状图中面积最小的是( ).A.从正面看到的图B.从左面看到的图C.从上面看到的图D.三种一样解:B.点拨:从正面看到的图和从上面看到的图的面积一样,有5个小正方形的大小,而从左面看到的图有3个小正方形的大小,故选B.4.有一辆汽车如图所示,小红从楼上往下看这辆汽车,小红看到的形状是图中的().5.分别从正面、左面、上面看一个由若干个正方体组成的立体图形,得到的平面图形如下图所示,你能搭出这个立体图形吗?动手试试看!参考答案:4.解析:小汽车从上面看只能看到驾驶室的顶部和车身的上面,从上面看到的是两个长方形,故选B.5.如图所示.六、课堂小结谈谈你在本节课的收获从本节的例子可知,给定几何体的形状,可以确定从三个不同方向看到的形状图;反过来,能根据从不同方向看到的几何体的形状图确定搭出的几何体的小立方块的个数.设计意图:有师引导学生回顾这节课的新知,让学生大胆发言,从而加深印象.七、板书设计4.从三个方向物体形状一、从三个方向看小正方体组成的几何体1.五个小正方体:2.六个小正方体:二、数小正方体的个数4.如图,是由一些相同的小正方体构成的立体图形的三视图这些相同的小正方体的个数是().主视图左视图俯视图A.4 B.5 C.6 D.75.如图,桌子上放着一个圆锥和一个圆柱,请写出下面三副图中从哪具方向看到的?(1) (2) (3)6.如图两个图形分别是某个几何体的俯视图和主视图,则该几何体是________.俯主7.如图是某几何体的三种形状图.(1)说出这个几何体的名称;(2)画出它的表面展开图;(3)若从正面看到的形状图的长为15 cm,宽为4 cm;从左面看到的形状图的宽为3 cm,从上面看到的形状图的最长边长为5 cm,求这个几何体的所有棱长的和为多少?它的侧面积为多大?它的体积为多大?参考答案1.C.2.A.3.D.4.B.5.(1)左面,(2)上面,(3)前面.6.圆柱.7.分析:由三种形状图可确定该几何体为三棱柱,然后确定出各棱的长,从而可画出它的表面展开图,并计算出它的侧面积和体积.解:(1)这个几何体是三棱柱;(2)它的表面展开图如图所示;(3)它的所有棱长之和为(3+4+5)×2+15×3=69(cm).它的侧面积为3×15+4×15+5×15=180(cm2);它的体积为12×3×4×15=90(cm3).。
七年级数学上册《从三个方向看物体的形状》教案、教学设计
3.作业完成后,及时进行自我检查,发现并纠正错误。
4.教师将对作业进行认真批改,及时给予反馈,指导学生提高。
七年级的学生正处于从小学到初中的过渡阶段,他们在数学学习上已经具备了一定的基础知识和基本的运算能力。然而,对于空间几何知识,尤其是三视图的概念和运用,学生们可能还相对陌生。在学习本章节《从三个方向看物体的形状》时,学生可能会面临以下挑战:
1.空间想象能力的局限:学生可能难以在脑海中形成清晰的三维图像,从而影响对三视图的理解和运用。
c.动手实践:让学生分组进行实际操作,绘制三视图,并在小组内交流讨论,互帮互助。
d.现场指导:教师巡回指导,针对学生遇到的问题进行解答,引导学生掌握关键知识点。
e.总结提升:对本节课的重点知识进行总结,强调三视图在实际生活中的应用。
f.课后作业:布置具有挑战性的课后作业,让学生在课后进一步巩固和提高。
1.教学活动设计:教师展示一组生活中常见的物体图片,如教学楼、桌椅、箱子等,并提问:“同学们,你们能从不同的方向描述这些物体的形状吗?”通过这个问题,引导学生从不同的角度观察物体,为新课的学习做好铺垫。
2.学生参与:学生积极思考,尝试从不同的方向描述物体的形状,激发学生的学习兴趣。
3.教师引导:教师对学生回答进行点评,肯定学生的观察力,并指出本节课我们将学习一种特殊的方法——三视图,来更准确地描述物体的形状。
2.培养学生勇于尝试、善于思考、坚持不懈的学习态度,让学生在解决问题的过程中,体验成功带来的喜悦。
3.通过学习三视图,使学生认识到数学在现实生活中的广泛应用,培养学生的应用意识和创新精神。
教学设计:
1.导入:通过展示生活中的物体,如建筑物、家具等,引导学生从不同方向观察,激发学生对三视图的学习兴趣。
(名师整理)最新北师大版数学7年级上册第1章第4节《从三个方向看物体的形状》精品教案
《从三个方向看物体的形状》教案教学目标:1.理解从不同方向观察物体可能看到不同的图形.2.能识别从不同方向看到的物体的形状图,会画立方体及简单组合体从三个方向看到的形状图.【重点难点】1.能准确画出简单几何体的三视图.2.能根据视图说出小立方体块数.教学内容:【新课导入】教师课件展示一辆汽车从不同方向拍摄的照片,让学生观察并谈感受.【课堂探究】一、从三个方向观察几何体1.一个几何体从三个方向看到的形状图完全相同,则它可以是( C )(A)圆柱(B)圆锥(C)球体(D)长方体2.如图所示的几何体是由4个相同的小立方块组成.其从左面看到的形状图为( D )3.如图,从正面、左面、上面观察这个图形,各能得到什么平面图形? 解:总结过渡:(1)从正面观察所得的图形反映立体图形的列数(纵向)和上下层数;从左面观察,所得的图形反映立体图形前后行数和层数;从上面观察,所得图形反映立体图形前后行数和列数(纵向).(2)由小立方体的不同方向的形状图,怎样判断小立方体的块数呢?二、判断小立方块的个数4.如图是一个用相同的小立方块搭成的几何体从三个不同方向看的形状图,则组成这个几何体的小立方块的个数是( C )(A)2个(B)3个(C)4个(D)5个5.用一些大小相同的小立方块组成的几何体从左面、上面看的形状图如图所示,则组成这个几何体的小立方块的块数最多可能是( C )(A)17 (B)18(C)19 (D)20小结:这节课主要学习了从不同方向看物体,可能看到不同的图形,画简单几何体从不同方向看到的形状图,从中得到了什么启发?有哪些收获?板书设计1.从三个方向观察几何体2.判断小立方块的个数当堂达标1.如图所示的几何体从正面看到的形状图是( A )2.如图是由四个相同的小立方块搭成的几何体,这个几何体从左面看的形状图是( D )3.如图所示是由若干个相同的小立方块搭成的几何体从上面看和从左面看的形状图,则小立方块的个数不可能是( D )(A)6个(B)7个(C)8个(D)9个4.长方体从正面、上面看到的形状图如图所示,则其从左面看到的形状图的面积为( A )(A)3 (B)4(C)12 (D)165.观察图中的几何体,画出从正面、左面、上面三个方向看得到的平面图形.解:如图:。
北师大版七年级上册初中数学《从三个方向看物体的形状》教案
北师大版七年级上册初中数学《从三个方向看物体的形状》教案一、教材分析:本节课是北师大版初中数学七年级上册第一章丰富的图形世界的第4节,题目为《从三个方向看物体的形状》。
本节课主要介绍了物体在不同方向观察时的形状特点,帮助学生理解并掌握从不同角度观察物体的方法和技巧。
二、教学目标:1. 知识目标:-了解物体在不同方向观察时的形状特点。
-掌握从不同角度观察物体的方法和技巧。
2. 能力目标:-能够通过观察物体的不同方向,判断物体的形状特点。
-能够运用所学方法和技巧,从不同角度观察物体。
3. 情感目标:-培养学生对数学的兴趣和好奇心。
-培养学生观察和思考的能力。
三、教学重点和教学难点:1. 教学重点:-物体在不同方向观察时的形状特点。
-从不同角度观察物体的方法和技巧。
2. 教学难点:-培养学生观察和思考的能力。
-运用所学方法和技巧,从不同角度观察物体。
四、学情分析:学生已经学习了图形的基本概念和性质,对几何图形有一定的了解。
但在观察物体的形状时,可能存在一定的困惑和混淆。
因此,本节课需要通过具体的例子和练习,引导学生观察物体的不同方向,提高他们的观察和思考能力。
五、教学过程:第一环节:导入新课1. 老师可以用一张图片或实物引起学生的兴趣,比如一个立方体。
2. 提问学生:你们有没有注意到,同一个物体在不同方向观察时,它的形状会有什么变化呢?请你们举例说明。
3. 让学生自由讨论并分享观察到的现象和例子。
第二环节:概念讲解1. 出示一个立方体的图片,并引导学生观察和描述立方体的形状特点。
可以提问学生:立方体的每个面是什么形状?它们都是相等的吗?2. 引导学生总结:立方体从不同方向观察时,它的形状是一样的。
即使我们从上方、下方、前方、后方、左侧、右侧观察,它的形状都是一个正方形。
3. 引入概念:“从不同方向看物体的形状”。
第三环节:方法和技巧1. 引导学生思考:从不同方向观察物体时,应该注意哪些方面?2. 让学生讨论并总结观察物体的方法和技巧。
《从三个方向看物体的形状》示范课教学设计【数学七年级上册北师大】
《从三个方向看物体的形状》教学设计一、教学目标1.经历从不同方向观察物体的活动过程,初步体会从不同方向观察物体可能看到不同的图形,发展空间观念;2.能辨认从三个方向看到的物体的形状图,会画立方体及其简单组合体从三个方向看到的形状图;3.能够根据从三个方向看到的形状图搭出原来的几何体;4.能在与他人交流的过程中,合理清晰地表达自己的思维过程.二、教学重难点重点:能辨认从三个方向看到的物体的形状图,会画立方体及其简单组合体从三个方向看到的形状图.难点:能够根据从三个方向看到的形状图搭出原来的几何体.三、教学用具电脑、多媒体、课件、教学用具,若干个小立方块等四、教学过程设计结论:当我们从不同的方向观察同一物体时,通常可以看到不同的图形.【合作探究】教师活动:教师提出问题,引导学生思考,并回答问题.问题:说出下面三个平面图形分别是从几何体的哪面看到的?预设答案:从正面看;从上面看;从左面看.【做一做】问题:下图是用小立方块搭成的几何体,你能画出从正面、左面、上面看到的图形吗?预设答案:【合作探究】(1)用6个小立方块搭成不同的几何体,看能怎样搭?(2)分别画出从正面、左面、上面看到的形状图,并与小伙伴交流.预设答案:教师活动:教师演示其中几种方法,同学们自己动手试试其他方法吧!【想一想】一个几何体由几个大小相同的小立方块搭成,从上面和从左面看到的这个几何体的形状图如图所示,请搭出满足条件的几何体.你搭的几何体由几个小立方块组成?预设答案:5个6个【典型例题】例1从正面、左面、上面观察如图所示的几何体,分别画出你所看到的几何体的形状图.分析:从正面看有3列,从左往右,看到小方块的数量分别是1,2,1;从左面看有1列,看到小方块的数量是2;从上面看有3列,从左往右,看到小方块的数量都是1.答案:从正面看从左面看从上面看例2 一个几何体由几个大小相同的小立方块搭成,从上面观察这个几何体,看到的形状如图,其中小正方形中的数字表示在该位置的小立方块的个数.请画出从正面、左面看到的这个几何体的形状图.分析:方法一:先摆出几何体,然后再画从正面看和从左面看到的形状图;方法二:根据从上面看到的形状图及其各位置上小方块的个数,确定从正面看有2列,从左面看有2列,再根据数字确定每列方块的个数,进而画出从正面看和从左面看到的形状图.答案:从正面看从左面看【随堂练习】教师活动:教师给出练习,随时观察学生完成情况并相应指导,最后给出答案,根据学生完成情况适当分析讲解.1.由4个相同的小立方块搭成的几何体如图,它从左面看到的图形是()答案:A解析:从左面看有2列,左边1列有2个小方块,右边1列有1个小方块.2.下图是由一些相同的小立方块构成的几何体从正面、左面、上面看到的平面图形,组成这个几何体的小立方块的个数是()解析:根据题意搭出的几何体如图:搭成这个几何体一共需要5个小立方块.答案:B.3.如图是由几个小立方块所搭成的几何体从上面看到的平面图形,小正方形中的数字表示在该位置的小立方块的个数,从正面看这个几何体的平面图形是()解析:根据从上面看到的形状图及其各位置上小方块的个数可知,从正面看有3列,从左往右小方块的个数应该是2,1,1.答案:B。
北师大版初中数学七年级上册《从三个方向看物体的形状》教学设计
从三个方向看物体的形状教学设计一、教学目标:1、知识与技能(1)能识别并会画出简单物体的三视图.(2)由俯视图会画出主视图和左视图.2、过程与方法经历从不同方向观察同一物体的过程,发展空间观念.3、情感、态度与价值观通过活动体验做数学的快乐,增强学习数学的求知欲和数学活动的经验,并在合作学习中获得成功的体验,增强自信心,提高学习数学的兴趣,培养合作、探究精神.二、教学重难点重点:准确描述观察到的图形,并能够画出简单几何体的三视图难点:由俯视图会画出主视图和左视图三、教学用具:多媒体课件、刻度尺、多个小立方体四、教学过程:(一) 课堂导入横看成岭侧成峰,远近高低各不同不识庐山真面目,只缘身在此山中——苏轼《题西林壁》由《题西林壁》开始引入本节新课.(二)创设情境,揭示课题一辆小汽车从小明的面前经过,请按照汽车被摄入镜头先后顺序给下面的照片编号.这就是我们本节课所要研究的问题:从三个方向看物体的形状(板书)(三)探索尝试,学习新知探索一:观察下列几何体,能否画出分别从正面、从左面、从上面看到的几何图形?学生画出师问:能不能描述一-下你是怎么画出来的?生思考,回答:(1)从正面看,将凸出来的小正方体拿掉,看形成的平面.....(2)先看列,从左到右一共有多少列,再看有多少层.归纳总结得出:从正面看到的图形的形状:先从左到右看有多少列,画出来,再看对应列有多少层,画出来就完成了。
左边看到的图形需注意要从上往下数.探索二:一个几何体用几个大小相同的小正方体搭成,从上面和从左面看到的这个几何体的形状图如图所示,请摆出满足条件的几何体。
你搭的几何体由几个小正方块构成?与同伴进行交流.以小组为单位,进行活动,摆出满足条件的几何体,并思考有几种情况?最少需要多少个小正方体?最多需要多少个小正方体?学生积极进行小组合作,得出结论.探索三:[例1]如图是由几个小立方体块所搭几何体的从上面看到的图形的形状,小正方形中的数字表示在该位置小立块的个数,请画出从正面、左面看到的这个几何体的形状图.解法一:同学相互讨论决定运用手头上的学具摆一摆,摆出正确的形状,然后再画主视图与左视图解法二:画出三视图后寻找不同的解法,发现根据从上面看到的形状图确定从正面看到的形状图有3列,再根据小正方形中的数字确定每列小正方体的个数。
最新版初中数学教案《从三个方向看物体的形状》精品教案(2022年创作)
从三个方向看物体的形状教学目标【知识与技能】能识别简单物体的三种形状图,会画立方体及其简单组合的三种形状图,能根据三种形状图描述根本几何体或实物原形,会根据某几何体的某二种形状图,找出满足条件的小正方块的数量.【过程与方法】1.经历“从不同方向观察物体〞的活动过程,开展学生的空间概念和合理的想象;2.在观察过程中,初步体会从不同方向观察同一物体得到的结果是不一样的;3.通过观察和动手操作,经历和体验组合体及从上面看的形状图中数字的变化导致三种形状图的变化的过程,培养实验操作能力,进一步开展空间观念.【情感态度价值观】培养学生重视实践、善于观察、主动探索、勇于发现、合作交流的品质.教学重难点【教学重点】会画立方体及其简单组合的三种形状图.【教学难点】根据从上面看的形状图及其相应位置的立方体的数量,画出从正面看与从左面看的形状图. 课前准备课件教学过程第二环节活动1:课件出示意图:示范从三个方向看同一几何体形状图的画法.〔1〕学生指出每台摄像机拍到的分别是哪张照片.〔2〕学生用自制小立方块照样子摆放好后,从各个方向去观察,教师请个别同学到黑板上指出从不同方向看到的几何体的面,教师动画示范不同方向的形状图.PPT:(1)播放图片一.〔2〕动画播放从各方向看到的几何体的面,并用不同颜色表示出形状图.活动2:变式训练一〔你摆我画〕意图:学生练习摆法及画法.〔1〕各小组同学将刚刚五个小立方块自己重新摆放,摆出不同的几何体,并画出从三个方向看到的形状图.要求:每小组至少摆出两种.〔2〕请不同小组的学生代表利用白板展示.〔3〕其他同学,小组间互相交流不同的摆法,互相检查画法.PPT:出示问题白板:克隆多个立方块,多个正方形,学生代表在白板上摆和画.活动3:变式训练二〔你画我摆〕意图:能够根据三个方向看到的形状图,得出具体的摆法,由形状图悟立体图形.教师问:哪些小组的摆法与白板上两位同学的不一样,请学生代表画出三个方向看到的形状图,其他同学根据形状图摆出几何体.PPT:出示问题.白板:克隆多个立方块,多个正方形,学生在白板上画和摆.活动4:变式训练三(稳固画法〕意图:有五个立方块增加到六个,学生自己先摆后画,进一步稳固画法.〔1〕用6个自制小立方块摆出几何体,画出三个方向看到的形状图.要求:每小组至少摆两种.〔2〕画好后小组之间互相交流批改.PPT:出示问题.白板:克隆多个立方块,多个正方形,学生在白板上画和摆.活动5:变式训练四〔由形状图悟立体图形)意图:给出从两个方向看到的形状图,学生体验摆出不同几何体的过程. 〔1〕小组合作摆出几何体.〔2〕小组间互相交流有哪些不同的摆法.〔3〕教师示范总结,并在各种摆法中,从上面看的形状图上标上数字.PPT:出示问题.白板:克隆多个立方块,多个正方形,学生在白板上画和摆.追问:拓展延伸意图:让学生体会知道了两个方向的形状图,可摆出不同的几何体,需要的立方块数不同.教师追问:刚刚题目中同学们摆这样的几何体用了几个立方块?至少需要几个立方块?最多需要几个立方块?PPT:出示问题.白板:结合白板讲解归纳.第三环节稳固提高1:你搭我画(1)学生独立完成.(2)小组内互相纠错PPT:出示问题.白板:克隆多个正方形,学生在白板上画出三个方向看到的形状图.稳固提高2:由形状图悟立体图形学生画出:PPT展示:学生写出:最少摆法中其中之一所需个数:3+2+1+1+1+1+1=10最多时所需小立方块个数:3+3+3+2+2+2+1=16PPT:出示问题.白板:示范以下图第四环节小结归纳、拓展深化学生总结:1.通过本节课的学习,你学会了哪些知识?2.通过本节课的学习,你最大的体验是什么?3.通过本节课的学习,你掌握了哪些学习数学的方法?PPT:出示问题.三角形的稳定性【知识与技能】1.通知过观察、实践、想象、推理、交流等活动,让学生了解三角形具有稳定性,四边形没有稳定性,稳定性与没有稳定性在生产、生活中广泛应用.2.培养实事求是的学习作风和学习习惯.【过程与方法】1.通过提问、合作讨论以及小组交流方式探究三角形的稳定性.2.实物演示,激发学习兴趣,活泼课堂气氛.3.探究质疑,总结结果.和学生共同探究三角形稳定性的实例,答复课前提出的疑惑.【情感态度】1.引导学生通过实验探究三角形的稳定性,培养其独立思考的学习习惯和动手能力.2.通过合作交流,养成学生互助合作意识,提高数学交流表达能力.【教学重点】了解三角形稳定性在生产、生活中的实际应用.【教学难点】准确使用三角形稳定性于生产生活之中.一、情境导入,初步认识课前准备:木条〔用硬纸条代替〕假设干、小钉假设干、小黑板.问题1 工程建筑中经常采用三角形的结构,如屋顶钢架,钢架桥,其中道理是什么?问题 2 盖房子时,在窗框未安装好之前.木工师傅常常先在窗框上斜钉一根木条,为什么要这样做呢? 活动挂架为什么做成四边形?【教学说明】问题设立要让学生体会三角形在生产和生活中的应用,并引导思考为什么要在这些地方用三角形,另一些地方又要用到四边形.注意接纳学生其他不同的思路.教师讲课前,先让学生完成“自主预习〞.二、思考探究,获取新知老师演示P6探究内容,也可叫学生亲手实验,通过实际操作加深学生印象,完后请学生们交流讨论后答复得出了什么?教师根据学生们的答复进行简要归纳.【归纳结论】三角形木架形状不会改变,四边形木架形状会改变,这就是说,三角形具有稳定性,四边形没有稳定性.还可以发现,斜钉一根木条的四边形木架的形状不会改变.这是因为斜钉一根木条后,四边形变成了两个三角形,由于三角形有稳定性,窗框在未安装好之前也不会变形.三、运用新知,深化理解1.如图,一扇窗户翻开后,用窗钩BC可将其固定,这里所运用的几何原理是 .2.以以下图形中哪些具有稳定性?【教学说明】本节课的内容较少,题目比较简单,在学生独立完成后,要求学生说明理由.【答案】1.三角形具有稳定性.2.〔1〕〔4〕〔6〕中的图形具有稳定性.四、师生互动,课堂小结三角形具有稳定性,四边形没有稳定性.1.布置作业:从教材“习题”中选取.2.完成练习册中本课时的练习.本节课学习三角形稳定性,并板书课题.完成的教学目标是通过观察、实践、想象、推理、小组交流合作,使同学们了解三角形具有稳定性,四边形没有稳定性,稳定性与没有稳定性在生产、生活中广泛应用,培养同学们实事求是的学习作风和学习习惯,以及自主学习和独立思考的能力.。
最新版初中数学教案《从三个方向看物体的形状 》精品教案(2022年创作)
4 从三个方向看物体的形状【知识与技能】能识别简单物体的三视图,会画立方体及其简单组合的三视图,能根据三视图描述根本几何体或实物原形.【过程与方法】经历“从不同方向观察物体〞的活动过程,开展学生的空间概念和合理的想象;在观察过程中,初步体会从不同方向观察同一物体得到的结果是不一样的;让学生学会用自己的语言,合理清晰地向别人表述自己的思维过程,能画出简单组合物体的三视图.【情感态度】培养学生重视实践、善于观察的习惯,在与他人合作交流时,和谐友好地相处.【教学重点】能画出简单组合物体的三视图.【教学难点】让学生学会用自己的语言,合理清晰地向别人表述自己的思维过程,能画出简单组合物体的三视图.一、情境导入,初步认识教材第16页上方有关“图117〞的内容【教学说明】从学生非常熟悉的摄像、拍照等生活情景入手,有助于学生直观地感受从不同方向看物体的形状.二、思考探究,获取新知问题1如图是由小立方块搭成的几何体,从正面、左面、上面看到的几何体的形状是什么样的?教材第16页下面的图118.【教学说明】学生通过观察,合作交流,尝试画出从正面、左面、上面看到的图形.教材第16页下面的图119.【归纳结论】从正面、左面和上面三个不同方向观察同一物体时看到的物体的形状不一定相同.问题2某几何体从三个不同方向看到的形状图如图,那么该几何体是什么?【教学说明】学生合作交流,激发学生的积极性和主动性,有助于开展学生的空间想象力.【归纳结论】由从不同方向看到的图形想象物体的形状,是一种逆向思维,需要对常见的几何体从不同方向看到的图形有清楚的认识,需要很强的空间想象能力.问题3教材第17页上方的“议一议〞内容.【教学说明】学生动手操作,用几个小正方体搭一搭,学会与人交流、合作,使学生真正成为学习的主体,形成师生互动的课堂气氛.【归纳结论】由从三个方向看到的图形有可能能确定物体的形状,也有可能不能确定物体的形状.三、运用新知,深化理解“随堂练习〞.2.从正面观察以下图所示的两个物体,看到的是〔〕3.如图是一个物体从上面看到的形状图,它所对应的物体是〔〕4.如图是由几个相同的小立方块搭成的几何体从三个不同方向看到的形状图,那么组成这个几何体的小立方块的个数是〔〕【教学说明】学生自主完成,加深对新学知识的理解和检测,教师及时指导.完成上述题目后,教师引导学生完成练习册中本课时练习的课堂作业局部.【答案】1.四、师生互动,课堂小结通过这节课的学习,你掌握了哪些新知识?还有哪些疑问?请与同伴交流.【教学说明】教师引导学生回忆这节课的新知,让学生大胆发言,从而加深印象.【板书设计】1.布置作业::从教材“〞中选取.2.完成练习册中本课时的相应作业.学生通过观察、想象,再到自己动手操作,加深对所学知识的认识,并运用所学知识解决问题,体验应用知识的成就感.【知识与技能】了解正多边形和圆的关系,了解正多边形半径和边长,边心距,中心,中心角等概念.会应用正多边形的有关知识解决圆中的计算问题.会用圆规、量角器和直尺来作圆内接正多边形.【过程与方法】结合生活中的正多边形形状的图案,发现正多边形和圆的关系,然后学会用圆的有关知识,解决正多边形的问题.【情感态度】学生经历观察、发现、探究等数学活动,感受到数学来源于生活、又效劳于生活,表达事物之间是相互联系,相互作用的.【教学重点】正多边形与圆的相关概念及其之间的运算.【教学难点】探索正多边形和圆的关系,正多边形半径,中心角、弦心距,边长之间的关系.一、情境导入,初步认识观察这些美丽的图案,都是在日常生活中,我们经常能看到的利用正多边形得到的物体.〔1〕你能从图案中找出多边形吗?〔2〕你知道正多边形和圆有什么关系吗?怎样就能作出一个正多边形来?【教学说明】学生通过观察美丽的图案,欣赏生活中正多边形形状的物体.让学生感受到数学来源于生活,并从中感受到数学美.问题〔2〕的提出是为了创设一个问题情境,激起学生主动将所学圆的知识与正多边形联系起来,激发学生积极探索、研究的热情,并有意将注意力集中在正多边形和圆的关系上.二、思考探究,获取新知问题1将一个圆分成5等份,依次连接各分点得到一个五边形,这五边形一定是正五边形吗?如果是,请你证明这个结论.教师引导学生根据题意画图,并写出和求证.:如图,在⊙O中,A、B、C、D、E是⊙O的五等分点.依次连接ABCDE形成五边形.问:五边形ABCDE是正五边形吗?如果是,请证明你的结论.答案:五边形ABCDE是正五边形.====,∴AB=BC=CD=DE=EA,证明:在⊙O中,∵AB BC CD DE EABCE CDA AB==,∴∠A=∠B;同理∠B=∠C=∠D=∠E,∴五边形ABCDE 3是正五边形.【教学说明】教师引导学生从正多边形的定义入手证明,即证明多边形各边都相等,各角都相等;引导学生观察、分析,教师带着学生完成证明过程.问题2如果将圆n等分,依次连接各分点得到一个n边形,这个n边形一定是正n边形吗?答案:这个n边形一定是正n边形.【教学说明】在这个问题中,教师重点关注学生是否会仿照证明圆内接正五边形的方法证明圆内接正n边形.从问题1到问题2是将结论由特殊推广到一般,这符合学生的认知规律,并教导学生一种研究问题的方法,由特殊到一般.问题3各边相等的圆内接多边形是正多边形吗?各角相等的圆内接多边形是正多边形吗?如果是,说明理由;如果不是,举出反例.答案:各边相等的圆内接多边形是正多边形.因为:各边相等的圆内接多边形的各角也相等.各角相等的圆内接多边形不是正多边形.如:矩形.【教学说明】问题3的提出是为了稳固所学知识,使学生明确判定圆内接多边形是正多边形,必须满足各边都相等,各内角也都相等,这两个条件缺一不可.同时教会学生学会举反例.培养学生思维的批判性.综合图形,给出正多边形的中心,半径,中心角,边心距等概念.正n边形:中心角为:360°n;内角的度数为:180°〔n-2〕n例1〔课本106页例题〕有一个亭子,它的地基是半径为4m的正六边形,求地基的周长和面积〔结果保存小数点后一位〕.分析:根据题意作图,将实际问题转化为数学问题.解:如图.∵六边形ABCDEF是正六边形,∴∠BOC=360°/6=60°.∴△BOC是等边三角形.∴R=BC=4m,∴这个亭子地基的周长为:4×6=24〔m〕.过O点作OP⊥△OCP中,OC=R=4,CP=1/2BC=2..例2填空.【教学说明】例1是让学生了解有关正多边形的概念后,掌握正多边形的计算.同时,通过例1引导学生将实际问题转化为数学问题,将多边形化归为三角形来解决.例2通过网格来呈现问题,在解决例2时,教师指导学生用数形结合的方法来解决问题,加深对有关概念的理解.画正多边形,通常是通过等分圆周的方法来画的.等分圆周有两种方式:〔1〕用量角器等分圆周.方法一:由于在同圆或等圆中相等的圆心角所对弧相等,因此作相等的圆心角可以等分圆.方法二:先用量角器画一个等于360°/n的圆心角,这个圆心角所对的弧就是圆的1/n,然后在圆上依次截取这条弧的等弧,就得到圆的几等分点.【教学说明】这两种方法可以任意等分圆,但不可防止地存在误差.〔2〕用尺规等分圆正方形的作法:如图〔1)在⊙O中,尺规作两条垂直的直径,把⊙O四等分,从而作出正方形ABCD.再逐次平分各边所对弧,那么可作正八边形、正十六边形等边数逐次倍增的正多边形.正六边形的作法:方法一:如图〔2〕任意作一条直径AB,再分别以A、B 为圆心,以⊙O的半径为半径作弧,与⊙O交于C、D和E、F,那么A、C、E、B、F、D为⊙O的六等分点,顺次连接各等分点,得到正六边形ACEBFD.方法二:如图〔3〕由于正六边形的半径等于边长.所以在圆上依次截取等于半径的弦,就将圆六等分,顺次连接各等分点即可得到正六边形.【教学说明】尺规作图法是一种比较准确的等分圆的方法,但有较大的局限性,它不能将圆任意等分.三、运用新知,深化理解1.如图,圆内接正五边形ABCDE,对角线AC与BD相交于点P,那么∠APB的度数为_______./π的正方形的内切圆与外接圆所组成的圆环的面积为_____.3.如果一个正六边形的面积与一个正三角形的面积相等,求正六边形与正三角形的内切圆的半径之比.4.如图,点M、N分别是⊙O的内接正三角形ABC,正方形ABCD,正五边形ABCDE,……正n边形的边AB、BC上的点,且BM=CN,连接OM、ON.〔1〕求图1中的∠MON的度数;〔2〕在图2中,∠MON的度数为_____,在图3中,∠MON的度数为_____;〔3〕试探索∠MON的度数与正n边形边数n之间的关系.〔直接写出答案〕【教学说明】题1、2可由学生自主探索完成,题3、4可先让学生思考,然后教师加以提示,最后共同解答.完成教材第106页、108页的练习.°4.解:〔1〕连接OB、OC.∵正三角形ABC内接于⊙O,∴∠OBM=∠OCN=30°,∠BOC=120°.又∵BM=CN,OB=OC,∴△BOM≌△CON,∠BOM=∠CON,∴∠MON=∠BOC=120°.(2)90°72°(解法与〔1〕相同)(3)∠MON=360°/n.四、师生互动,课堂小结通过这节课的学习,你知道正多边形和圆有怎样的关系吗?你知道正多边形的半径、边心距、内角、中心角等概念吗?你能画出正多边形吗?【教学说明】教师先提出问题,然后让学生自主思考并回忆,教师再予以补充和点评.1.布置作业:从教材“〞中选取.练习册中本课时练习的“课后作业〞局部.1.本节课首先从复习正多边形的定义入手,通过创设问题情境,将正多边形与圆紧密联系,让学生发现它们之间的密切关系,并将结论由特殊推广到一般,符合学生的认识规律,通过学习正多边形中的一些根本概念,引导学生将实际问题转化为数学问题,表达了化归的思想.其次,在这一根底上,又教给学生用等分圆周的方法作正多边形,这可以开展学生的作图能力.2.等分圆周法是一种作正多边形的常见方法,通过作简单的正三角形、正方形、正六边形,一直推广到作正八边形的情况,可以向学生灌输极限的思想,极限是微积分中最主要、最根本的概念,它从数量上描述变量在变化过程中的变化趋势,在高中数学中,极限思想渗透到函数、数列等章节,又衔接高等数学,起着承上启下的作用.。
从三个方向看物体的形状
从三个方向看物体的形状(教案)一、学生状况分析学生刚从小学升到中学,形象思维较弱,抽象水平较低。
从不同的方向看,也正是立足于此,主要是引导学生从不同的角度观察几何体,因而多为直观的操作、感受,当然也需要进行一定的抽象,如将从某个角度正视物体的结果抽象成形状图,或将从三个方向看的形状图抽象出几何体的形状,因而对学生的抽象能力具有一定的要求。
二、教学任务分析在学生了解生活中的立体图形,立体图形的展开与折叠及截一个几何体等内容之后,安排本节内容《从不同的方向看》,力图拓宽学生的思维,丰富学生对图形世界的认识。
本节的教学任务是:首先初步体会从不同方向观察同一物体可能看到不同结果,能画出简单的三种形状图;然后经历由搭建模型、观察模型、画出三种形状图,到脱离模型、由平面形(从三个方向看到的形状图)到立体图形(立体图形)、搭模验证等过程。
本节教学任务的目的实际上是为了较好地发展学生的空间想象能力、空间观念,而为了实现这个目标,需要让学生进行适当的说理,相对清晰地表达自己的思维,发展学生的表达能力和推理能力,同时,初一阶段的第一章,还兼具着提高学生学习兴趣的任务。
为此,确定以下教学目标:1、知识技能:能识别简单物体的三种形状图,会画立方体及其简单组合的三种形状图,能根据三种形状图描述基本几何体或实物原形,会根据某几何体的某二种或三种形状图,找出满足条件的小正方块的数量。
2、过程目标:①经历“从不同方向观察物体”的活动过程,发展学生的空间概念和合理的想象;②在观察过程中,初步体会从不同方向观察同一物体得到的结果是不一样的;③通过观察和动手操作,经历和体验组合体及从三个方向看的形状图确定几何体,培养实验操作能力,进一步发展空间观念。
3、情感目标:培养学生重视实践、善于观察、主动探索、勇于发现、合作交流的品质。
重点:会画用立方体拼搭简单几何体的三种形状图;难点:根据从三个方向看到的形状图确定几何体的形状。
三、教学过程分析本节课由五个教学环节组成,它们是:①创设情景、激发兴趣,②观察实物、探究新知,③你搭我画,巩固练习④我画你搭、发展深化,⑤课堂小结、布置作业。
1.4.2从三个方向看物体的形状(教案)
2.在实践活动和小组讨论中,要更加灵活地调整时间,确保每个学生都有充分的参与和展示机会。
3.提供分层练习,让不同水平的学生都能得到适当的挑战和成就感。
4.教学中要更多地关注学生的反馈,及时调整教学方法,以提高教学效果。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解三视图的基本概念。三视图包括主视图、左视图和俯视图,它们分别代表从物体的正面、左面和上面看到的形状。三视图是表达物体几何形状的重要工具,它在工程制图、建筑设计等领域具有广泛的应用。
2.案例分析:接下来,我们来看一个具体的案例。通过一个简单物体的三视图,展示如何从这些视图推断出物体的实际形状,以及如何在实际中应用这些视图。
1.4.2从三个方向看物体的形状(教案)
一、教学内容
本节课选自《初中数学》七年级下册1.4.2节“从三个方向看物体的形状”。教学内容主要包括:了解三视图的概念,掌握从正面、左面、上面三个方向观察物体,并能够准确地画出物体的三视图。具体内容包括:
1.认识三视图:主视图、左视图、俯视图;
2.学习从三个方向观察物体,理解物体的形状;
本节课将围绕以上核心素养目标展开教学,旨在培养学生的综合运用能力,提高数学学科素养。
三、教学难点与重点
1.教学重点
(1)掌握三视图的概念:主视图、左视图、俯视图;
(2)学会从正面、左面、上面三个方向观察物体,并能够准确地画出物体的三视图;
(3)能够通过三视图识别和描述物体的形状。
举例:
-重点讲解三视图的定义和作用,强调每个视图所代表的空间方向;
2.培养学生的几何直观:在观察和绘制三视图的过程中,引导学生把握物体的几何特征,增强几何直观能力;
部编版七年级上册数学从三个方向看物体的形状教案
七年级数学上册教案 吧斗 Assistant teacher 为 梦 想 奋1.4从三个方向看物体的形状1.经历从不同方向观察物体的活动过程,发展空间观念.2.在观察的过程中,初步体会从不同方向观察同一物体可能看到不同的形状.3.能识别从三个方向看到的简单物体的形状,会画立方体及简单组合体从三个方向看到的形状,并能根据看到的形状描述基本几何体或实物原型.一、情境导入观察图中不同方向拍摄的庐山美景.你能从苏东坡《题西林壁》诗句:“横看成岭侧成峰,远近高低各不同.不识庐山真面目,只缘身在此山中.”体验出其中的意境吗?你能挖掘出其中蕴含的数学道理吗?让我们一起探索新知吧!二、合作探究探究点一:从不同的方向看物体如图所示的几何体是由一些小正方体组合而成的,从上面看到的平面图形是()解析:这个几何体从上面看,共有2行,第一行能看到3个小正方形,第二行能看到2个小正方形.故选D.方法总结:从不同方向看小正方体组成的几何体的形状时,关键要看清每个方向有几列,每列有几层,然后画出符合实际的图形.沿圆柱体上底面直径截去一部分后的物体如图所示,它从上面看到的图形是()解析:从上面看可得到两个半圆的组合图形.故选D.方法总结:本题考查了从特定的方向观察物体.在解题时要注意,看不见的线画成虚线,看得见的线画成实线.探究点二:画出从不同方向看到的几何体的形状画出如图中的几何体从正面、左面、上面看到的形状图.解析:(1)从正面看有三列,每列正方形的个数分别是1、2、2.(2)从左面看有两列,每列正方形的个数分别为2、1.(3)从上面看有三列,每列正方形的个数分别是1、2、1.解:如图所示:方法总结:画从不同的方向看立体图形的技巧:(1)从正面看立体图形时,可以想象为将几何体从前向后压缩,使看到的面全部落在同一竖直的平面内;(2)从左面看立体图形时,可以想象为将几何体从左向右压缩,使看到的面全部落在同一竖直的平面内;(3)从上面看立体图形时,可以想象为将几何体从上向下压缩,使看到的面全部落在同一水平的平面内.探究点三:由从三个方向看到的形状图判断几何体如图是一个几何体的三视图,则这个几何体的形状是()A.圆锥B.圆柱C.圆台D.长方体解析:由几何体从正面和左面看到的形状图均为等腰三角形,可知该几何体是锥体,又由从上面看到的形状图是带圆心的圆可知该几何体是圆锥.故选A.方法总结:由从三个方向看到的形状描述几何体的一般步骤:(1)确定形状:根据从各个方向看到的形状想象从各个方向看到的几何体(或实物原型)的大致形状,初步确定该几何体(或实物原型)的形状;(2)确定大小:确定轮廓线的位置及各个方向的具体尺寸;(3)综合成型:综合上述两步得到的形状与大小,最后得出几何体(或实物原型)的名称.下图是一个立体图形从三个方向看到的图形,请写出这个立体图形的名称,并计算这个立体图形的体积.(结果保留π)解析:从正面看以及从左面看得到的图形为正方形,而从上面看到的图形为圆形,故可以得出该立体图形为圆柱.由三个视图可知圆柱的半径和高,易求体积.解:该立体图形为圆柱.∵圆柱的底面半径r=5,高h=10,∴圆柱的体积V=πr2h=π×52×10=250π.答:立体图形的体积为250π.方法总结:本题主要考查根据从三个方向看到的图形判断几何体的形状和求圆柱体的体积,同时考查了空间想象能力.探究点四:探究创新题用小立方体搭一个几何体,使得它从正面和上面看到的形状如图所示,搭建这样的几何体只有一种吗?最多需要几个小立方体?最少需要几个小立方体?解析:由于从正面看到的列数与从上面看到的列数相同,从正面看到的每列方块数是从上面看到的该列中的最大数字,所以对于从上面看到的第一列三个方格中至少有一个是3,第二列两个方格中至少有一个是3,而第三列两个方格中必须全是1,所以这样的几何体不唯一,最多需要小立方体的个数如图所示,3×5+2=17(个),最少需要小立方体的个数为3×2+1×5=11(个).解:这样的几何体不唯一.它最多需要17个小正方体,最少需要11个小正方体. 方法总结:解决此类问题要抓住从三个方向看物体的形状和特点,即从正面看到的列数与从上面看到的列数相同,从正面看到每列方块数是从上面看该列中的最大数字.三、板书设计从不同方向看物体的形状⎩⎪⎨⎪⎧从正面看到的形状从左面看到的形状从上面看到的形状本课时先通过创设情景,跨越学科界限,由苏东坡的一首诗《题西林壁》把同学们带入了一个如诗如画的境界,再从诗歌中提炼出隐含的数学知识,激发学生的学习兴趣.再由小组合作,让学生参与,探索新知,充分体现了以学生为主体的新理念.1.4 从三个方向看物体的形状【教学目标】1.经历从不同方向观察物体的活动过程,发展空间观念;能在与他人交流的过程中,合理清晰地表达自己的思维过程.2.在观察的过程中,初步体会从不同方向观察同一物体可能看到不同的图形.3.能识别简单物体的三视图,会画立方体及其简单组合体的三视图.【基础知识精讲】1.主视图、左视图、俯视图的定义从不同方向观察同一物体,从正面看到的图叫主视图,从左面看到的图叫左视图,从上面看到的图叫做俯视图.2.几种几何体的三视图(1)正方体:三视图都是正方形.图1—27(2)球:三视图都是圆.图1—28提醒:在所有几何体中,只有正方体与球这两种几何体的三视图是相同的.(3)圆柱体:图1—29(4)圆锥体:图1—30圆锥的主视图、左视图都是三角形,而俯视图的图中有一个点表示圆锥的顶点,因为从上往下看圆锥时先看到圆锥的顶点,再看到底面的圆.3.如何画三视图当用若干个小正方体搭成新的几何体,如何画这个新的几何体的三视图?(1)由照片画三视图.由照片可以清楚地看到每个小正方体的位置,这样画三视图比较直观.画三视图,都要注意从这个方向看时几何体有几列,每列有几个正方体(即有几层),根据看到的列数、层数,画出相应的图.注意:主视图与左视图中每列的正方形都是从下往上排,底层整齐,不能出现悬空.而俯视图则有可能出现中空的现象.如右图:从正面看,2列,每列一层;从左面看,2列,每列一层;从上面看,2列,左列2层,右列一层.则三视图是:图1—31注意:照片中的几何体为了使大家看清前后情况,因此照片中的物体一般朝左偏的位置是正面.(2)由俯视图画主视图、左视图.解法一:根据俯视图摆出几何体,按照(1)的方法画主视图、左视图.解法二:直接由俯视图确定主视图、左视图的列数、层数,并画出图.①主视图与俯视图列数相同,俯视图中每列的方框内的最大数字即为主视图本列的层数.②左视图的列数与俯视图的行数相同,俯视图每一横行的方框内的最大数字,就是这一横行逆时针转90°所成的左视图中的列的层数.如:俯视图俯视图2列,则主视图也有两列,左列中的三个方框中最大的是3,右列是1,所以主视图左列三层,右列一层;俯视图三行,则左视图有三列,俯视图从上至下三行最大数字分别为1,2,3,则左视图三列从左至右分别有1,2,3层.画图如下.图1—32(3)其他几何体的三视图:从某方向看时,这个几何体最大边缘的形状及能够看到的顶点及棱.【教学方法指导】[例1]根据每组三视图,判断几何体形状:(1)先看什么比较明显呢?图1—33(2)图1—34点拨:(1)中俯视图是六边形,说明是柱或是锥,而主视图、左视图都是矩形,说明是柱即六棱柱.(2)中由主视图、左视图是三角形说明是锥体,而底面是四边形,说明不是圆锥,而是棱锥,是四棱锥.俯视图中的点是锥点,四条线段是锥的四条棱.解答:(1)六棱柱(2)四棱锥[例2]用长∶宽∶高=3∶1∶1的两个长方体如图1—35摆放,画出三视图.图1—35点拨:只要把较长的长方体看作由三个正方体排起来的即可,主视图左部分三份,右部分一份,都只有一层;左视图两列,左列1份,右列两份(挡住一份);俯视图是两个长3份的长方形交叉放.三视图如下:图1—36[例3]用小立方体搭成一个几何体,使它的主视图和俯视图如图所示.搭建这样的几何体,最多要几个小立方体?最少要几个小立方体?图1—37点拨:①由于主视图每列的层数即是俯视图中该列的最大数字,因此,用的方块数最多的情况是每个方框都用该列的最大数字.即如图1—36所示;此种情况共用小立方体17块.图1—36图1—37②而搭建这样的几何体,每列只要有一个最大数字即可满足条件,其他方框内的数字可减少到最少的1,即如图1—37所示;这样的摆法只需立方体11块.解:摆这样的几何体,最多用17块立方体,最少用11块立方体.【拓展训练】某几何体左视图是长方形,说出这个几何体的两种可能性.点拨:对于棱柱,长方体的左视图可以是长方形;而圆柱,也可以符合条件.说明:考虑这类问题,可先从柱、锥、球开始,再往下细分,逐步排除不可能的,缩小思考范围.。
从三个方向看物体的形状教案
⑴学生的需求据我校承担的广东省重点课题“基于双向思维的理解育人模式”的调查报告显示,学生在“理化生实验及拼图、迷宫、和数字”方面存在较大困难。
而本节课是发展学生相关能力的很好素材。
⑵对课程改革的探索怎样突出学生的主体地位,发挥老师的主导作用,让学生活动而不乱动,让学生探索但不能浅入浅出。
一、教材分析u 教材的地位与作用人们生活的空间存在着大量的图形,图形直观是人们理解自然界和社会现象的绝妙工具。
空间与图形的学习将使学生能更好适应生活的空间,同时也给他们带来无穷无尽的直觉源泉,这种直觉是增进数学理解力的有效途径。
发展学生的空间观念是空间与图形学习的核心目标,而能“由实物的形状想象出几何图形,由几何图形想象出实物的形状,进行几何体与其三视图之间的转化”是空间观念的重要方面。
本节课是第一章第4节的第一课时,前三节学习了立体图形的初步认识,学生已基本建立立体图形的概念。
本节课试图让学生建构立体图形与平面图形之间的联系,能够把立体图形转化成为平面图形,并用平面图形来表示立体图形。
这一思想方法不仅是初中数学学习的重点,而且对培养学生的数学素养具有重要意义。
同时也为初三学习“视图与投影”,以及高中学习立体几何奠定必需基础。
u 教学重点难点重点⑴在观察的过程中,初步体验从不同方向观察同一物体可能看到不同的图形;⑵认识到三视图是表示物体形状特征的常用方法。
难点怎样用平面图形表示立体图形。
关键建构立体图形与平面图形之间的联系。
◆学情分析⑴学生刚从小学进入初中,对新的知识、同学和老师都充满了好奇心,有较高的学习热情。
⑵前三节学习了立体图形的初步认识,学生已基本建立立体图形的概念,有较高的学习兴趣,但也有不少片面的认识。
二、教学目标u 知识目标:体验并发现从不同方向观察同一物体可能看到不同的图形,能够识别简单物体的三视图,知道三视图是表示物体形状特征的常用方法;u 能力目标:通过观察立体图形,培养学生的观察能力和空间想象能力,以及能够对观察结果进行对比分析和归纳总结的能力。
1.4 从三个方向看物体的形状 学案与课后习题
1.4从三个方向看物体的形状学案一、学习目标1.能识别简单物体的三种形状图,会画立方体及其简单组合的三种形状图,能根据三种形状图描述基本几何体或实物原形;2.经历“从三个方向观察物体”的活动过程,发展学生的空间概念和想象;二、学习重难点1.重点:会画立方体及其简单组合的三种形状图。
2.难点:根据从上面看的形状图及其相应位置的立方体的数量,画出从正面看与从左面看的形状图。
三、教学方法:生本教学法四、自主学习1.如图1、图2是由若干小正方体搭成的几何体,我们分别从正面看、从左面看和从上面看得到的平面图形分别是怎样的呢?请同学们尝试画一画.图1图2五、课后作业(一)基础练习1.如图是由6个大小相同的小正方体组成的几何体,从上面看到的是()A.B.C.D.2.下列几何体中,从上面看得到的平面图形是三角形的是()A.B.C.D.3.如图,由 5 个相同的小正方体组成的立体图形,分别从正面、左面、上面三个不用方向观察这个立体图形,你看不到哪个平面图形?( )A .B .C .D .4.用若干大小相同的小立方块搭成一个几何体,使得从正面和从上面看到这个几何体的形状如图所示,该几何体至多是用( )个小立方块搭成的.A .5B .6C .7D .8(二)巩固提升5.十个棱长为a 的正方体摆放成如图的形状,这个图形的表面积是( )A .236aB .36aC .26aD .230a6.如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如_________如如如如如π如7.把边长为1厘米的6个相同正方体摆成如图的形式.(1)该几何体的体积是______3cm ,表面积是______2cm ;(2)在格纸中画出该几何体的主视图、左视图、俯视图;(3)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的左视图和俯视图不变,那么最多可以再添加______个小正方体.(三)培优训练8.用相同的小立方体搭一个几何体,从正面、上面看到的形状图如图所示,从上面看到的形状图中小正方形的字母表示在该位置上小立方体的个数,请回答下列问题:(1)a ,b ,c 各表示的数字是几?(2)这个几何体最多由几个小立方体搭成?最少呢?(3)当1d e ==,2f =时,画出这个几何体从左面看得到的形状图.9.如图所示的某种玩具是由两个正方体用胶水粘合而成的,它们的棱长分别为1米和3 米,为了美观,现要在其表面喷涂油漆,已知喷涂1平方米需用油漆30克,那么喷涂这个玩具共需油漆________克.。
《从三个方向看物体的形状》 教案 (公开课)2022年北师大版 (8)
1.4 从三个方向看物体的形状〔第1课时〕〖教学目的〗〖知识与技能目标:〗1.在观察的过程中初步体会从不同方向观察物体可能看到不同的图形.2.能识别简单物体的三视图.〖过程与方法:〗1.经历从不同方向观察物体的活动过程,开展空间观念,积累数学活动经验.2.能在与他人交流的过程中,合理清晰地表达自己的思维过程.〖情感态度与价值观:〗有意识地培养学生学习数学的积极的情感,激发对空间与图形学习的好奇心,初步形成与他人合作交流的意识.〖教学重点、难点:〗重点:1.经历从不同方向观察物体和与他人合作交流,开展空间观念.2.初步体会从不同方向观察同一物体可能看到的不同的图形.3.能识别简单的三视图.难点:识别简单的三视图.〖教学方法:〗发现式教学法.结合一些具体的实物的情境,通过从不同方向观察,发现从不同方向观察同一物体可能看到不同的图形,然后过渡到讨论立方体及其简单组合体的三视图.〖教具准备:〗一个茶杯、一个暖水瓶、一块长方体的橡皮及假设干个长方体、圆锥、圆柱、正方体.〖教学过程:〗Ⅰ.创设现实情景,引入新课Ⅰ.创设问题情境,引入新课问:“横看成岭侧成峰,远近上下各不同.不识庐山真面目,只缘身在此山中.〞这是宋代诗人苏轼的?题西林壁?,谁来告诉我这首诗的意思呢?答:这首诗说的是:从前面看,觉得庐山是一座又开阔又高大的山岭;从侧面看,又觉得庐山是一座险峻陡峭的顶峰;再从远处和近处,从高处和低处看庐山,总觉得它千姿百态,变化无穷.我实在说不出到底什么才是庐山的真面目,因为我自己就在庐山中呀.Ⅱ.讲授新课将实物一个暖水瓶、一个茶杯、一块橡皮按顺序摆放好,暖水瓶放在中间,其余的放在两旁.并将这个实物组合放在教室中间,让同学们从不同方向观察,并将观察得到的画在一张纸上。
同学们通过充分的交流和操作,会发现从不同的方向观察同一物体,可能得到不同的图形.其中我们重点研究三个方向上看到的图。
即主视图:从正面看到的图,左视图:从左面看到的图,俯视图:从上面看到的图.下面我们看几个由小正方体组成的图如以以下列图所示:当我们从正面看就得到主视图;从左面看就得到左视图;从上面看就得到俯视图.(如以以下列图所示)Ⅲ.例题[例1]桌子上放着一个长方体和圆柱(如以以下列图),说出以下三幅图分别是_____.[例2]画出以下几何体的主视图、左视图和俯视图.分析:先由学生板演,并深入学生中去对接受较差的学生以帮助、关心.解:[例3]甲、乙、丙、丁四人分别面对面坐在一个四边形桌子旁边,桌上一张纸上写着数字“9〞,甲说他看到的是“6〞,乙说他看到的是“〞,丙说他看到的是“〞,丁说他看到的是“9〞,那么以下说法正确的选项是( )A.甲在丁的对面,乙在甲的左边,丙在丁的右边B.丙在乙的对面,丙的左边是甲,右边是乙C.甲在乙的对面,甲的右边是丙,左边是丁D.甲在丁的对面,乙在甲的右边,丙在丁的右边解:由图可知应选择D.Ⅳ..随堂练习(课本第十七页)1.一辆汽车从小明面前经过,小明的拍摄了一组照片.请按照汽车被摄入镜头的先后顺序给下面的照片编号,并与同伴进行交流.(图片见课本第十七页最下面) 分析:学生可以自己先想像,然后在小组内交流,教师可深入学生中去,学生的答案可能不惟一,但只要能用自己的语言合理的说明,就应予以鼓励.解:可以是②①⑤④③.2.画出下面几何体的主视图,左视图与俯视图.解:Ⅴ.课时小结这节课经历从不同的方向看物体的活动过程,开展了空间观念,在观察中初步体会从不同方向观察同一物体可能会看到不同图形,从而能够识别和画出简单几何体的三视图.Ⅵ.课后作业课本习题1.6及做一做.〖板书设计:〗§从三个方向看物体的形状一、主视图:从正面看到的图.左视图:从左面看到的图.俯视图:从上面看到的图.二、例题讲解三、课堂练习从三个方向看物体的形状〔第2课时〕〖教学目的:〗〖知识与技能目标:〗1.尽可能地搭出由小立方块组成的不同的几何体,并观察画出这个几何体的三视图.2.能根据每个位置的小立方块的个数及其中一种视图画出另外两种视图.〖过程与方法:〗1.经历搭建几何体的过程,从不同方向观察,并画出三视图,培养学生的空间观念,积累丰富的数学活动实验.2.能够充分地与同学交流、合作,能比较清晰地表达自己的思路,培养解决问题的能力.〖情感态度与价值观:〗有意识培养学生学习数学的信心和克服困难的勇气,从中体味成功的快乐.〖教学重点、难点:〗重点:1.搭建简单的几何体,通过观察画出三视图.2.通过小立方块搭建几何体的俯视图及相应位置上方块的个数,画出这个几何体的主视图和左视图.难点:利用空间想像力,由搭建的几何体的俯视图及相应位置上的小立方块的个数画出这个几何体的主视图和左视图.〖课前准备:〗学生阅读材料?晶体--自然界的多面体?〖教学方法:〗尝试发现法.教师引导学生经过尝试,先尽可能地搭出不同的几何体,然后观察发现几何体的三视图.〖教具准备:〗假设干个小立方块.〖教学过程:〗Ⅰ.提出问题,引入新课我们知道,不同方向观察同一物体可能会看到不同的图形.问:什么是主视图?什么是左视图?什么是俯视图呢?答:从正面看到的图叫主视图;从左面看到的图叫左视图;从上面看到的图叫俯视图.问:现在我们每个桌子上都有5个一样大小的小立方块,你能搭出多少种几何体?观察后,你能画出它们的三视图吗?Ⅱ.讲授新课分组活动:现在,我们就以同桌为单位,用5个小立方块搭建几何体,要尽可能地搭出不同的几何体,再从不同的方向看一看自己所搭的几何体,想一想,它们的三视图如何画?点评:第一种搭法.(如以以下列图所示)画出这个几何体的三视图.下面我们再来看同学们搭成的四种几何体,我们分四组分别画出它们的三视图,然后我们以组为单位,交流、验证画出的三视图是否合理.几何体(1) (2)(3)(4)的三视图。
2 从立体图形到平面图形 第4课时 从三个方向看物体的形状 教案
第4课时从三个方向看物体的形状教学过程设计课题第4课时从三个方向看物体的形状授课人教学目标1.能判断简单物体从三个方向看到的形状图;会画由大小相同的小立方块组成的几何体从三个不同方向看得到的形状图,能根据物体从三个方向看到的形状图描述简单的几何体.2.初步体会从不同方向观察同一物体可能看到不同的结果,提升几何直观,发展空间观念.3.经历“从不同方向观察物体”的活动过程,发展学生的空间概念和合理的想象;在观察过程中,初步体会从不同方向观察同一物体得到的结果是不一样的;让学生学会用自己的语言合理清晰地向别人表述自己的思维过程,能画出简单组合体从三个方向看到的形状图.4.通过创设情境与主动探究,培养学生学习数学的热情和兴趣,体验观察是获得知识的重要途径,形成与他人合作交流的意识,发展学生的审美情趣.教学重点学会从不同方向看实物的方法,画出从不同方向看到的形状图.教学难点根据从不同方向看到的形状图描述几何体.授课类型新授课课时教具多媒体课件教学活动教学步骤师生活动设计意图活动一: 创设【课堂引入】内容:课件展示《题西林壁》:横看成岭侧成峰,远近高低各不同.不识庐山真面目,只缘身在此山中.跨越学科界限,让苏东坡的一首《题西林壁》把同学们带情境导入新课图1-2-97问题:(1)作者苏东坡从不同角度对庐山的面貌进行了仔细观察,那他是从哪些角度对庐山进行观察的呢?(2)诗中蕴含着什么道理,对我们有什么启发呢?从不同方向看山可看到“峰”,看到“岭”,那么从不同方向看几何体又能看到什么呢?你想知道吗?现在就让我们一起来学习“从三个方向看物体的形状”.处理方式:展示《题西林壁》时为了更好地调动学生的情绪,可以教师给出两句,让学生接另外两句.入了一个如诗如画的境界,再从诗中提炼出隐含的数学知识.这样,不但增强了学生的人文意识,还让学生感受到了数学中的“美”.活动二: 探究与应用【探究】画几何体从三个不同方向看到的形状图1.在小学,我们曾经辨认过从正面、左面(或右面)和上面三个不同方向观察同一物体时看到的物体的形状图.例如,图1-2-98是由大小相同的小立方块搭成的几何体,我们从正面看、从左面看和从上面看到的这个几何体的形状图分别是怎样的呢?图1-2-98处理方式:利用实物展示,教师让学生在练习本上独立画图,巡视指导,然后投影展示具有代表性的作业,并规范学生的画法.从正面、左面、上面看到的这个几何体的形状图如图1-2-99所示.图1-2-99师生共同总结:1.让学生感受从不同角度看结果不一样,掌握观察的方法,培养学生从立体图形抽象出平面图形的能力.2.引导学生动手操作,利用小组合作学习进行探究,培养学生的动手操作能力和小组合作学习的能力.3.已知部分形状图及有关数据信息,逆向思考几何体的构成,从而试图使学生逐步脱离实物观察,迫使学生进入真正的从正面看:观察者站在几何体的正面(视线直视几何体的正面),将看到的平面图形画出来(与列及列高有关);从左面看:观察者站在几何体的左面(视线直视几何体的左面),将看到的平面图形画出来(与行及行高有关)(注意与从右面看的区别);从上面看:从上面看几何体(视线直视几何体的上面,相当于航拍),将看到的平面图形画出来(相当于盖房子时打地基).2.请你用6个大小相同的小立方块搭一个几何体,然后请同伴画出从正面、左面、上面看到的这个几何体的形状图.处理方式:请小组同学共同合作,在小组前面一排的同学的桌面上利用六个大小相同的小立方体搭一个几何体,各自画一画它从正面看、从左面看和从上面看得到的形状图,然后小组内形成统一的意见,教师巡视,发现问题并及时指正.注意事项:应鼓励学生尽可能多地搭出不同的几何体,再从不同方向看一看自己所搭成的几何体,并与同伴进行充分的交流.要鼓励学生用不同的方式进行交流,如语言描述、画图等.【尝试·思考】问题:一个几何体由几个大小相同的小立方块搭成,从左面和从上面看到的这个几何体的形状图如图1-2-100所示.请搭出满足条件的几何体.你搭的几何体由几个小立方块构成?图1-2-100处理方式:学生读题,然后开展小组活动,利用手中的小立方块尝试搭出满足条件的几何体.教师巡视,并适时地进行指导,引导学生尝试各种可能,最后组织学生进行交流,最终发现:该几何体是由5个或6个小立方块搭成的,共有三种搭法.【操作·交流】想象层面,提高空间想象能力.在此过程中,通过由问题到模型,由模型再到脱离模型,较为完整地反映出一个问题解决的全貌.4.感受所搭建几何体不同,从各方向看到的图形不一定相同,培养学生多角度考虑问题的思维.用若干大小相同的小立方块搭一个几何体,画出从正面、左面、上面看到的这个几何体的形状图,请同伴根据你画的形状图搭出相应的几何体.与同伴进行交流.处理方式:小组合作分工完成搭建过程,然后再画出从正面、左面、上面看到的几何体的形状图,形成共识.然后教师以小组为单位展示自己的搭建方法以及所画图形,全班讲评.活动二: 探究与应用【应用】例如图1-2-101所示,一个几何体由若干大小相同的小立方块搭成,则从正面看到该几何体的形状图是()图1-2-101图1-2-102变式如图1-2-103是由几个大小相同的小立方块所搭几何体从上面看到的形状图,小正方形中的数字表示在该位置小立方块的个数.请画出相应的几何体从正面看和从左面看得到的形状图.图1-2-103处理方式:学生大胆地进行尝试,独立寻求解决办法,然后再交流、展示.图1-2-104师生共同总结作法:画“从正面看”的形状图时,先看有几列,有几列就横排连续画几个正方形,再确定每列最高有几层,有几层就5.让学生能根据每个位置小立方块的数量,确定从正面、左面、上面观察到的形状图,巩固所学知识,同时培养学生的空间想象能力.【拓展提升】1.画出图1-2-105中的几何体从正面、左面、上面看到的形状图.图1-2-1052.如图1-2-106是由几个大小相同的小立方块所搭几何体从上面看到的形状图,小正方形中的数字表示在该位置小立方块的个数.请画出相应的几何体从正面看和从左面看得到的形状图.图1-2-1063.用小立方块搭一个几何体,使得它从正面看和从上面看得到的形状图如图1-2-107所示,搭成这样的几何体只有一种吗?它最少需要多少个小立方块?最多需要多少个小立方块?图1-2-107(续表) 活动【达标测评】巩固本节课所学三: 课堂总结反思1.如图1-2-108是由六个大小相同的小立方块搭成的几何体,从正面看得到的形状图是()图1-2-108图1-2-1092.由几个大小相同的小立方块搭成的几何体如图1-2-110所示,现拿走一个小立方块,得到的几何体从正面看、从左面看到的形状图均没有变化,则拿走的小立方块是()图1-2-110A.①B.②C.③D.④3.一个几何体从正面、左面看到的形状图如图1-2-111所示,该几何体可以是()图1-2-111图1-2-1124.如图1-2-113是由一些大小相同的小立方块组成的几何体从正面、上面看到的形状图,则组成这个几何体的小立方块的个数至少是()的知识,并检验学习目标的达成度,从而对本课所学知识有一个清楚的认识.图1-2-113A .8B .7C .6D .55.如图1-2-114①是由棱长都为1的6块小正方体组成的简单几何体.图1-2-114(1)请在图②中画出该几何体从正面、左面、上面看到的形状图;(2)如果在这个几何体上再添加一些小正方体,并保持从正面、左面看到的形状图不变,最多可以再添加 块小正方体.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
从正面看 从左面看 从上面看
8.图1.4.4是由几个小立方块所搭几何体从上面看到的图形,
小正方形中的数字表示在该位置的小立方块的个数,
请画分别从正面,左面,上面看到的形状图。.
图1.4.4
9.如图1.4.5所示,这是一个正三棱柱,请你画出分别从正面,左面,上面看到的形状图。.
三、教材拓展6.如图是由几个小立方体块所搭的两个几何体的从上面看到的图形,小正方形中的数字表示在该位置小立块的个数,请画出这两个几何体的从正面看到的图形和从左面看到的图形。
实践练习:1.一个几何体由若干小正方体搭成,它们的从正面、左面、上面三个方向看到的图形如下,你能确定这个几何体用了_____个小正方体.
实践练习:画出下面几何体从三个方向看到的图形:
解:从正面看到的图形是:
从左面看到的图形是:
从上面看到的图形是:
归纳:解决这类问题可以找类似物体实际做一做,将看到的图形与上述图形对照
5.自己试一试,画出下列几种几何体从三个方向看到的图形
(1)正方体:从三个方向看到的图形都是_____________.
(6)几何体
从正面看 从左面看 从上面看
(7)几何体
从正面看 从左面看 从上面看
实践练习:下面是由7块小正方体木块堆成的物体,从三个方向看到的图形如下,请同学们说出哪一个是从正面看到的?哪一个是从左面看到的?哪一个是从上面看到的?
解:(1)是从_____看到的,(2)是从_____看到的,(3)是从_____看到的。
从三个方向看物体的形状
【学习目标】
1、发展学生的空间概念和合理的想象;初步体会从不同方向观察同一物体得到的结果是不一样的;
2.能够熟练地画立方体及其简单组合体的从三个方向看到的图形。
3.会根据从上面看到的图形及其相应位置的立方体的数量,画出其从正面看到的图形与从左面看到的图形。
Байду номын сангаас【学习重难点】重点:从不同的方向观察物体。
从正面看 从左面看 从上面看
(2)球:从三个方向看到的图形都是_____________.
从正面看 从左面看 从上面看
归纳:在所有几何体中,只有正方体与球这两种几何体从三个方向看到的图形是_____的.
(3)圆柱体:
从正面看 从左面看 从上面看
(4)圆锥体:
从正面看 从左面看 从上面看
(5)几何体
从正面看 从左面看 从上面看
10.用小立方块搭一个几何体,使得它的分别从正面,上面,左面看到的形状图。如图1.4.6所示.请思考这样的几何体由多少个小立方块搭成?
模块五 课后反思
模块四 小结评价:
一、课本知识
1、我们可以从正面、、左面三个不同的方向看物体,然后描述出观察所看到的形状,这样就可以把一个立体图形转化为图形。
2、规律:(1)从正面看到的图形和从上面看到的图形的列数相同,其每列方块数是从上面看到的图形中该列正方块的个数;(2)从左面看到的图形和从上面看到的图形的行数相同,其每列方块数是从上面看到的图中该行正方块的个数。
二、本课典型:从正面看几何体的形状
三、课堂检测1. 如图1.4.1所示几何体的俯视图为_______________.
2. 如图1.4.2所示几何体的从正面看到的图为___________________.
3.甲、乙、丙、丁四人分别面对面坐在一张四方形桌子旁边.桌上一张纸上写着数字“9”,甲说他看到的是“6”,乙说他看到的是“”,丙说他看到的是“”,丁说他看到的是“9”,则下列说法正确的是()
难点:能识别从三个方向看到的简单物体的形状,并能根据看到的形状描述基本几何体或实物原型。
【学习方法】自主探究与合作交流相结合
【学习过程】
模块一 预习反馈
一、学习准备
1.用_____去截一个几何体,截出的_____叫做截面。
2.截面的形状与被截的_____有关,还与截面的_____和_____有关。
3.请同学们阅读教材:第4节《从三个方向看物体的形状》,并完成随堂练习和习题
A.甲在丁的对面,乙在甲的左边,丙在丁的右边
B.丙在乙的对面,丙的左边是甲,右边是乙
C.甲在乙的对面,甲的右边是丙,左边是丁
D.甲在丁的对面,乙在甲的右边,丙在丁的右边
5. 请你画一画下面两个实物体的俯视图,左视图与主视图.
6.一个几何体的从正面,从左面看到的都是三角形,从上面看到的是圆,那么这个几何体是( ) A.三角形 B.圆锥 C.三棱柱 D.三棱锥
2、有一个正方体,在它的各个面上分别标上字母A、B、C、D、E、F,甲、乙、丙三位同学从不同的方向去观察其正方体,观察结果如图所示.问这个正方体各个面上的字母对面各是什么字母?
3.如图,这是一个由小立方块搭成的几何体的从上面看到的图,小正方形中的数字表示在该位置的小立方块的个数,请你画出它的从正面看到的图形和从左面看到的图形
模块二 合作探究
7.一个物体从上面看是圆,该物体可能是__________________.
8.桌子上放着一个长方体和圆柱(如下图),说出下列三幅图分别是从哪个方向看到的.
9.画出下图几何体从三个方向看到的图形。
从正面看 从左面看 从上面看
模块三 形成提升
1.有一正方体木块,它的六个面分别标上数字1——6,这是这个正方体木块从不同面所观察到的数字情况。请问数字1和5对面的数字各是多少?
二、教材精读
4.观察下面五幅图,写出它们分别是从什么方向看到的?
(分析:图中得到了5个不同的图形,是从5个不同的方向去看的)
解:(1)是从后面看到的;(2)是从
归纳:我们一般从正面、上面、左面三个不同的方向看物体,得到这个立体图形的正视图、俯视图、侧视图(左),然后描述出观察所看到的形状,这样就可以把一个立体图形转化为图形。