第5章 模拟调制

合集下载

第 05 章 模拟调制系统.

第 05 章 模拟调制系统.

5.1 幅度调制 (线性调制) 的原理 SSB
三、单边带调幅 (SSB)
1. SSB 调制:
• 滤波法 • 相移法
m(t) sDSB(t) 单边带 滤波器 sSSB(t)
coswct
频域表示及滤波法
• 功率: • 带宽:BSSB = fH
Sm(w) -wc
通信原理 第 5 章 模拟调制系统
通信原理 第 5 章 模拟调制系统
Page #12 Copyright © 2011 DyNE All rights reserved
5.1 幅度调制 (线性调制) 的原理 DSB
2. DSB 解调 DSB 相干解调:
• c(t):同频同相的本地载波 coswct • sp(t) = sDSB(t)⋅c(t) = m(t)cos2wct
通信原理 第 5 章 模拟调制系统
Page #19
Copyright © 2011 DyNE All rights reserved
希尔伯特变换 (Hilbert Transform)
希尔伯特变换是一个时域变换, 在信号处理等领域有重要意义和实用价值
m(t) hh(t)
^ m(t)
^ M(w) Hh(w) M(w)
Page #3
数字信号 数字调制 ( 7, 8 章) ASK, FSK, PSK 等 脉冲数字调制 ( 9 章) PCM, DM, DPCM 等
Copyright © 2011 DyNE All rights reserved
通信原理 第 5 章 模拟调制系统
5.0 引言
模拟调制系统:
线性调制:幅度调制,Amplitude Modulation
Page #16

第5章模拟调制系统1 OK概要

第5章模拟调制系统1 OK概要

• 已调信号:载波受调制后称为已调信号。 • 解调(检波):调制的逆过程,其作用是将已调信 号中的调制信号恢复出来。
2018/11/2 第四章 模拟调制系统 5
5.2 幅度调制原理及抗噪声性能
• 5.2.1幅度调制原理 • 5.2.2线性调制系统的抗噪声性能
2018/11/2
第四章 模拟调制系统
6
1 1 Amcos(c m ) t Amcos(c m ) t 2 2
1 • 上边带信号为: sUSB (t ) Amcos(c m ) t 2 Am Am cos mt cosct sin mt sinct 2 2 Am Am • 下边带信号为: sLSB (t ) cos mt cosct sin mt sinct
第四章 模拟调制系统
4
调制分类
• 调制信号:指来自信源的基带信号 • 载波信号:未受调制的周期性振荡信号,它可以是正弦波,也 可以是非正弦波。
模拟信号 模拟调制 f (t ) 数字信号 数字调制
c(t ) Acos( wct θ c )
幅度调制 频率调制 相位调制
线性调制 非线性调制
残留边带滤波器的几何解释
2018/11/2 第四章 模拟调制系统 32
满足互补对称特性的滚降形状并不是唯一的,目前应 用最多的是直线滚降和余弦滚降。它们分别在电视信号传 输和数据信号传输中得到应用。
w wc
2018/11/2
第四章 模拟调制系统
33
说明
• 只要残留边带滤波器的截止特性在载 频处具有互补对称特性,则采用同步 解调法解调残留边带信号就能准确地 恢复所需的基带信号。 • 残留边带滤波器的截止特性具有很大 的选择自由度。但有选择自由度并不 意味着对“陡峭程度”就没有制约了。 残留边带信号的带宽与滤波器的实现 之间存在着矛盾,在实际中,需要恰 当处理。

第五章 模拟调制

第五章 模拟调制

AM例题
例1:单频余弦信号的调制效率
mt Am cosωmt θm
例2:已知一个AM广播电台输出功率是50KW,采 用单频余弦信号进行调制,调制指数为0.707
a) 计算调制效率和载波功率 b) 如果天线用50欧姆的电阻负载表示,求载波信
号的峰值幅度
例2的解
a)
AM 0.707
AM
2 AM
m(t) O
A0+ m(t)
O cos wc(t)
O
sAM(t)
O
载波:s(t)
Acos(w t c
) 0
A:振幅
t
ωc=2πfc:角频率
0:初相位
t
M(w)
1
t
s(t)
A(t £wH
)
c0os(wwH c
t
w
(t
)
0 )
SAM(w)
pA0
1 2
pA0
t
t
£wc
0
w
w
c
SFM(t)
正弦波调制的信号波形
wc
)
标准调幅AM(续)
m(t)
图示
O t
Am00+ m(t)
O cos wc(t)
O
sAM (t)
O
M(w) 1
t
w H
0
w H
w
t
载波
p mA00
SAM (w)
p mA00
1 2
w
0
w
w
c
c
t
下边带
上边带
标准调幅AM (续)
说明
1. 调制使频谱搬移,但未改变形状
2.

第五章 模拟调制系统总结

第五章  模拟调制系统总结

原因:
a.信道噪声(n0)相同,但进入解调器的噪声不一样。 b.SSB 带宽窄,对噪声的滤除能力强,NiSSB = n0 Bs , 只为 DSB 时的一半。 c. DSB 由于 G = 2 ,在解调时抑制了一半噪声。
SSB 有效性好,应尽量选用 SSB 方式。
三、AM 系统
大信噪比时: G = 2m2 (t ) A2 + m2 (t )
节 2 线性调制基本原理
一、基本原理方框
调制:
sm
(t
)
=
m(t )cos ω 0t

Sm

)
=
1 2
[M

+
ω0
)+
M


ω0
)]
已调信号的谱是以ω= 0 为轴的基带谱 M (ω) 搬移到以ω0 为中心的某个频域上构
成,谱结构不变,为线性搬移,称为线性调制。
sm
(t )cos ω 0t
=
m(t )cos 2
调制:
sDSB (t )
=
m(t )cos ω 0t

SDSB (ω )
=
1 2
[M

−ω0
)+
M

+ω0
)]
解调方式:相干解调
已调信号带宽与调幅时一致: BDSB = 2 BS 3、单边带信号(SSB)
调制:
相干解调
SSSB(t)只含有一个边带,其带宽与调制信号带宽一致,有利于 扩展容量,提高系
ω0t
=
1 2
m(t
)[1+
cos
2ω 0t ]
相干解调:

《通信原理B》 第5章模拟调制系统 作业

《通信原理B》  第5章模拟调制系统 作业

第5章 模拟调制系统 作业
5-1已知调制信号()()cos 2000m t t π=,载波为42cos10t π,直流信号01A =,(1)分别写出AM 、DSB 、USB 、LSB 信号的时域表达式;
(2)画出AM 、DSB 、USB 、LSB 信号的频谱图;
(3)计算AM 、DSB 、USB 、LSB 信号的带宽。

5-2设模拟调制系统信道和接收端模型如图所示。

已知信道噪声()n t 为加性高斯白噪声,单边谱密度为6010/n w Hz -=,()m s t 为已调信号,载波频率1c f MHz =,对应的调制信号()m t 的最高频率为5H f kHz =。

试分析USB (1i s kw =,相干解
调)、AM (边带功率1s p kw =,载波功率4c p kw =,包络检波)两种情况下的下
列参数:
(1)带通滤波器的中心频率0f 、带宽B ;
(2)解调器输入端的信噪比/i i S N ;
(3)解调器输出端的信噪比/o o S N 。

解:
5-3某二级调制系统,副载波采用DSB 调制,主载波采用FM 调制。

如果有60路等幅的音频输入通路,每路载频限制在3.3kHz 以下,保护频带为0.7kHz 试求:
(1)试画出二级调制原理框图;
(2)FDM 信号带宽;
(3)假设最大频偏为800kHz,试求FM 信号带宽。

第5章思考题:5-2、5-5、5-9、5-11、5-14、5-15、5-18
(i m s t ()t。

第五章模拟调制系统

第五章模拟调制系统

第五章模拟调制系统知识结构-调制的基本概念和作用、分类-幅度调制的主要类型,及各自的调制解调方法、波形、频谱、带宽、及抗噪声性能-角度调制的主要类型,及各自的调制解调方法、功率、带宽、及抗噪声性能教学目的-了解模拟调制及其解调的原理和系统的抗噪声性能-掌握各种已调信号的时域波形和频谱结构,系统的抗噪声性能-了解一些常用的调制解调芯片教学重点-信噪比增益-已调信号表达式的写法及分析、波形画法及分析-卡森公式教学难点-信噪比增益-角度调制中最大频偏的概念和计算教学方法及课时-多媒体授课(6学时)(3个单元)作业-5-4,5-7,5-9,5-16,5-18备注(在上课之前最好让学生复习一下“高频电路”中相关内容)AM和DSB在高频电路中如果已经讲的比较细,此处可略讲。

单元七(2学时)§5.1 引言(调制的作用和分类)知识要点:调制的过程、作用、分类我们在第一章已经学过了模拟通信系统和数字频带通信系统的模型。

从模型图中可以看出,它们都需要进行“调制”。

那么什么是调制?为什么要进行调制?调制有哪些分类呢?我们下面逐一介绍。

§5.1.1 调制的概念(过程)所谓调制,就是在发送端将要传送的信号附加在高频振荡信号上,也就是使高频振荡信号的某一个或几个参数随基带信号的变化而变化。

其中要发送的基带信号又称“调制信号”;高频振荡信号又称“被调制信号”。

§5.1.2 调制的作用调制的主要作用有三个:1、将基带信号转化成利于在信道中传输的信号;2、改善信号传输的性能(如FM具有较好的信噪比性能)3、可实现信道复用,提高频带利用率。

§5.1.3 调制的分类分2大类:正弦波调制、脉冲调制正弦波调制又可分为模拟调制和数字调制。

其中模拟调制又分调幅和调角2类,这是我们本章的主要内容。

§5.2 幅度调制与解调知识要点:AM DSB SSB VSB的原理及波形频谱的画法带宽计算§5.2.1 幅度调制的一般模型幅度调制是用调制信号去控制高频正弦载波的幅度,使其按调制信号的规律变化的过程。

樊昌信《通信原理》(第7版)课后习题(模拟调制系统)【圣才出品】

樊昌信《通信原理》(第7版)课后习题(模拟调制系统)【圣才出品】

第5章模拟调制系统思考题5-1 何谓调制?调制在通信系统中的作用是什么?答:(1)调制是指把信号转换成适合在信道中传输的一种过程。

广义的调制分为基带调制和带通调制(又称载波调制)。

(2)调制在通信系统中的作用:①将基带信号的频谱搬至较高的频率上,提高发射效率;②将多个基带信号分别搬移到不同的载频处,实现信道的多路复用,提高信道利用率;③扩展信号带宽,提高系统抗干扰能力。

5-2 什么是线性调制?常见的线性调制方式有哪些?答:(1)线性调制又称幅度调制,是指由调制信号去控制高频载波的幅度,使之随调制信号作线性变化的过程。

波形上,幅度已调信号的幅度随基带信号的规律而呈正比地变化;在频谱结构上,它的频谱完全是基带信号频谱在频域内的简单搬移(精确到常数因子)。

(2)常见的线性调制有调幅、双边带调制、单边带调制和残留边带调制。

5-3 AM信号的波形和频谱有哪些特点?答:(1)AM信号的波形特点:AM波的包络与调制信号的形状完全一样。

(2)AM信号的频谱特点:①AM信号的频谱有载频分量、上边带和下边带三部分组成;②上边带的频谱结构和原调制信号的频率结构相同,下边带是上边带的镜像;③带宽是基带信号带宽的2倍。

5-4 与未调载波的功率相比,AM信号在调制过程中功率增加了多少?答:由于AM信号的频谱由载频分量、上边带、下边带三部分组成,而只有边带的功率才与带宽相关,也就是说载波分量并不携带信息,因此AM信号在调制过程中功率增加了调制信号的功率。

5-5 为什么要抑制载波?相对AM信号来说,抑制载波的双边带信号可以增加多少功效?答:(1)抑制载波的原因:抑制载波可以提高调制效率,节省载波功率,若不存在载波分量,信号的调制效率是100%,即全部功率都用于信息传输。

(2)对于AM信号,抑制载波的双边带可以使其调制效率提高到100%。

5-6 SSB信号的产生方法有哪些?各有何技术难点?答:(1)SSB信号的产生方法:①滤波法,滤波法是指先产生一个双边带信号,然后让其通过一个边带滤波器,滤除不要的边带,即可得到单边带信号;②相移法,相移法是指利用相移网络,对载波和调制信号进行适当的相移,以便在合成过程中将其中的一个边带抵消而获得SSB信号。

通信原理第四版第5章6

通信原理第四版第5章6
2 J 0 (m f )
2 A2 2 Pm J n (m f ) 谐波功率: 2 n0 P 2 调制效率: m 1 J 0 (m f ) PFM 调制过程只是进行功率的重新分配,而分配的
原则与调频指数mf有关。 调频指数mf大,调制效率高;调频指数mf小, 调制效率低。表明宽带调频效率高。
sd t
鉴频器
输入频率
sFM t
BPF及 限幅
微分 电路
包络 检波
LPF
mo t
即对sFM(t)微分得
sd (t ) A[c K f m(t )]sin[ct K f m( )d ]

t
包络检波器则将其幅度变化检出,并滤去直流,再 经低通滤波后即得解调输出
» 改进途径:采用自动频率控制系统来稳定中心频率。采
用如下锁相环(PLL)调制器(载频稳定度很高,可达到 晶体振荡器的频率稳定度。)
调制信号 FM信号 PD LF VCO
晶振
PD-相位检测器;LF-环路滤波器;VCO-压控振荡器
7
第5章 模拟调制系统
间接调频法[阿姆斯特朗(Armstrong)法]
K f m( )d

t

6
(或0.5)
称为窄带调频(NBFM);反之,称为宽带调频(WBFM) 。
sNBFM (t ) A cos ct [ AK f m( )d ]sin ct
t
调频指数 卡森公式
mf
Am K f
m
m K f mf Am
BFM 2(m f 1) f m 2(f f m )
鉴频特性的鉴频器。 BPF是让调频信号顺利通过,同时滤除带外噪声及

通信原理教程5-模拟调制系统

通信原理教程5-模拟调制系统
相乘结果: s(t)
调制 信号
s(t) H(f)
已调 信号
滤波输出: s(t)
m(t)
s(t)
用“”表示傅里叶变换:
Acos0t
m(t) M ( f ) 式中, m(t) Acos0t S ( f )
M(f)
S (
f
)
A [M ( 2
f
f0)
M(
f
f0 )]
S(f)
f
0
(a) 输入信号频谱密度
-f0
S(
f
)
A[M ( 2
f
f0)
M(
f
f0 )]H (
f
)
现在,求出为了得到VSB信号, H( f )应满足的条件:
若仍用右图解调器, 接收
则接收信号和本地载波相乘
信号 s(t)
r(t)
H’(f)
基带 信号
m(t)
后得到的r (t)的频谱为:
cos0t
1 S( f
2
f0) S( f
f0 )
将已调信号的频谱
r0 ri
E
1 2
m'2 (t) A2
1 m'(t)2
/ nc2 (t) A2 / n2
(t)
E
2m'2 [1 m'
(t) (t)]2
由于m(t) 1,显然上式比值r0/ri小于1,即检波后信噪比下降 了。
这是因为检波前信号中的大部分功率被载波占用,它没 有对检波后的有用信号做贡献.
-2f0
-fm 0 fm
f 2f0
【例】已知线性调制信号表示式如下
(1)
cos t cos w0t

通信原理总结

通信原理总结
3)SSB:优点是功率利用率和频带利用率都较高,抗干扰能力和抗选择性衰落能力均优于AM,而带宽只有AM的一半;缺点是收发设备都复杂。常用于频分多路复用系统中。
4)VSB:抗噪声性能和频带利用率与SSB相当。在电视广播等系统中得到了广泛应用。
5)FM:抗干扰能力强,广泛应用于长距离高质量的通信系统中。缺点是频带利用率低,存在门限效应。
>>角度调制(非线性调制):
或 随m(t)成比例变化,前者称为相位调制,后者称为频率调制。从频谱上来说,已调信号的频谱结构与基带信号的频谱结构不同,出现了新的频率分量,因此也称非线性调制。
2.幅度调制的原理
(1)标准调幅(AM)信号
>>模型图
图2.1
>>表达式
其中 对应载波项, 对应边带项。
为了防止过调制,要求调幅系数
第六章数字基带传输系统
一、概述
本章介绍了数字基带传输结构,数字基带及其频谱特性,包括数字基带的各种类型及它们的特点,基带传输常用的码型以及各种码型的特点和适用范围。了解引起码间干扰的原因以及如何减弱码间干扰。
二、知识点归纳
(1)数字基带系统的组成
(2)常用的基带信号波形
(3)基带传输的常用码型
(4)码间串扰和信道噪声是影响基带传输性能的两个主要因素。因此如何减弱码间串扰和消除噪声是研究两个重点。
4.非线性调制
5.各种模拟调制系统的比较
>>所有系统在“同等条件”下进行比较:
解调器输入信号功率为Si
信道噪声均值为0,单边功率谱密度为n0
基带信号带宽为fm
其中AM的调幅度为100%,正弦型调制信号
1)抗噪声性能:FM最好,DSB/SSB、
VSB次之,AM最差;

第5章模拟调制系统ppt课件

第5章模拟调制系统ppt课件

t
状完全一样,因此用包络检波 A 0 m ( t )
的方法就很容易从已调信号中
O
恢复出原始调制信号;
cos ct
t
O
如果调制信号
m(t) max
A0,
t
就会出现“过调幅”现象,这 s A M ( t )
时用包络检波将会发生失真,
O
需要采用其他的解调方法。
t
s(5t).1T li 幅m T1度TT调/2/2s(制t)d(t线性cos调2c制t )1原co理2s2ct
5.1 幅度调制(线性调制)原理
幅度调制 是 用 调制信号 去控制 高频载波 的 幅 度 ,使之 随 调制信号 作线性 变化的过程 。幅度调制 器 的一般模型 如图所示 :
m(t )
×
h(t )
sm (t )
c(t ) Acos(ct 0 )
图 5-0 幅度调制器的一般模型
图中,m(t) 是 基带信号,h(t) 是 滤波器 的 冲激响应 ;
A0 m(t )
O
cosc t
O
sAM (t )
H
载频
A0
O H
SAM ( )
载频
A0
1
t
c
2 O
下边带
c
t
上边带
O
t
BAM 2fH
图5-2 AM 信号的 波形 和 频谱
5.1 幅度调制(线性调制)原理
通过调制信号的波形可以
看出,如果
m(t) max
A0
,则AM
m (t)
O
பைடு நூலகம்
波的包络与调制信号 m(t)的形
S m ()1 2[M (c)M (c)]

通信原理第5章 模拟调制系统

通信原理第5章  模拟调制系统
c (t) m (t)co (t)s t ((t))
幅度调制:调幅、双边带、单边带和残留边带 角度调制:频率调制、相位调制
.
3
第5章 模拟调制系统
5.1幅度调制(线性调制)的原理
一般原理
表示式: c(t)Acosct0
设:正弦型载波为
式中,A — 载波幅度;
c — 载波角频率; 0 — 载波初始相位(以后假定0 = 0)。
通信原理
.
1
通信原理
第5章 模拟调制系统
.
2
第5章 模拟调制系统
调制的目的 提高无线通信时的天线辐射效率。 把多个基带信号分别搬移到不同的载频处,以实 现信道的多路复用,提高信道利用率。 (调频)扩展信号带宽,提高系统抗干扰、抗衰落 能力,还可实现传输带宽与信噪比之间的互换。
常见的模拟调制
t
时,其包络与调制信号波形相同, A0 mt
因此用包络检波法很容易恢复出原
始调制信号。
t 载波
否则,出现“过调幅”现象。这时用 t
包络检波将发生失真。但是,可以
采用其他的解调方法,如同步检波。sAM t
t
.
7
第5章 模拟调制系统
频谱图 由频谱m 可t 以看出,AM信号的频谱由
载频分量
t
上 下边 边A0 带 带mt
sm t
s p t LPF sd t
c t cosct
.
14
第5章 模拟调制系统
相干解调器性能分析
已调信号的一般表达式为
s m (t) s I(t)c o sc t s Q (t)sinc t
与同频同相的相干载波c(t)相乘后,得
sptsm(t)cosct

第五章模拟调制系统-线性调制原理

第五章模拟调制系统-线性调制原理
(1)时域表达
PAM
2 A0 m2 (t ) + Pc + Ps 2 2
将常规双边带调幅SAM(t)中不携带信息的载波抑制掉 ,即去掉振幅中的直流分量,可得双边带调幅的时域 表达式:
sDSB (t ) m(t ) coswct
sAM (t ) [ Ac + m(t )] coswct
邯郸学院
§ 5.1 幅度调制的原理
已调信号: sm (t ) c(t )m(t ) Am(t ) cos(ct + 0 ) Am(t ) cos wct
频谱分析: 设m(t ) M ( ) A 则:S m ( ) F [u (t )] [ M ( c ) + M ( + c )] 2
H (w) H (w) e j ( w)
无失真传输(理想恒参信道)条件: a、幅频特性为一条水平直线,即
H (w) K (常数)
b、相频特性是一条通过原点的直线,即
(w) wtd
d ( w) td (常数) dw
( w)
回顾
邯郸学院
频率失真、相位失真均属于线性失真,通常可用线性网络补偿, 这种补偿网络通常称为幅度和相位均衡器。 除以上两种线性失真外,还存在其他失真: 非线性失真、频率偏移(deviation)和相位抖动(phase jitter) (2)随参信道对信号传输的影响 传输特性: H (w, t ) H (w, t ) e j ( w,t ) a、对信号的衰耗随时间而变化 b、传输的时延随时间而变化 c、多径传播——对信号产生的影响称为多径效应
-Wc
W
Wc
邯郸学院
§ 5.1 幅度调制的原理
二、幅度调制特点 (1)波形特点: 幅度随基带信号变化呈正比变化 (2)频谱特点: 从基带简单的搬移到频带上——频谱的搬移是 线性的,所以称为线性调制

通信原理第5章(樊昌信第七版)剖析

通信原理第5章(樊昌信第七版)剖析


DSB调制器
sDSB t m t cos ct
条件: m t 0
m t

cos ct
sDSB t
1 SDSB M c M c 2
m
m(t ) max A0
m<1 正常调幅 m>1 过调幅
m=1 临界状态,满调幅(100 )
A m(t )
A
0
A m(t )
A m(t )
A
A
t
0
t
0
t
sAM (t )
sAM (t )
sAM (t )
0
t
t
t
m 1
m 1
m 1
高调幅度的重要性!
AM
Ps m 2 (t ) PAM A02 m 2 (t )
AM
m(t ) max A0 m 2 (t ) „ A0 2 故AM „ 50% AM功率利用率低!
载波 ---不含有用信息 ,却“浪费”大部分的发射功率。 当然,
AM正是利用这种“浪费”去换取解调的“便宜”,即包检。
边带 ---包含有用信息m(t), 满调幅时,边带功率最大。
定义调幅系数 m(用百分比表示时,又称调幅度) ——反映基带信号改变载波幅度的程度:
12

AM信号的缺点
sAM t A0 cos c t m t cos ct

AM信号功率:
PAM
A02 m 2 (t ) Pc Ps 2 2 载波功率 边带功率
Ps m 2 (t ) PAM A02 m 2 (t )

调制效率(功率利用率):

通信原理第5章模拟调制系统

通信原理第5章模拟调制系统
A02 cos2 ct x2 (t) cos2 ct 2A0x(t) cos2 ct
10
第五章 模拟调制系统
当调制信号无直流分量时,x(t)=0,且当x(t)是与
载波无关的较为缓慢变化的信号时, 有
PAM
A02 2
x2 (t) 2
Pc
Ps
式中,Pc=A20/2为载波功率,Ps x2 (t) / 2 为边带功率。 由上式可知,AM信号的平均功率是由载波功率和
的 互 补 对 称 性 就 意 味 着 将 HVSB(ω) 分 别 移 动 - ωc 和 ωc就可以到如图9 (c)所示的HVSB(ω+ωc)和HVSB(ω -ωc),将两者叠加,即
HVSB ( c ) HVSB ( c ) 常数
式中,ωm是调制信号的最高频率。
|ω|≤ωm
30
第五章 模拟调制系统
经双边带调制
i 1
n
sDSB (t) x(t) cosct xi cosit cosct
i 1
如果通过上边带滤波器HUSB(ω), 则得到USB信号
sUSB (t)
n i 1
1 2
xi
cos(i
c )t
1 2
x(t)
cosct
1 2
xˆ(t)
sin
ct
21
第五章 模拟调制系统
如果通过下边带滤波器HLSB(ω), 则得到LSB信号
第五章 模拟调制系统
第五章 模拟调制系统
5.1 模拟信号的线性调制 5.2 模拟信号的非线性调制 5.3 模拟调制方式的性能比较
1
第五章 模拟调制系统
5.1 模拟信号的线性调制
5.1.1 常规双边带调制(AM) 常规双边带调制就是标准幅度调制,它用

第5章模拟调制系统1

第5章模拟调制系统1

由 m(t) 0
c os2
ct
1 2
(c os2 c t
1)
可得: pAM =
A02 + 2
m2 (t) =
2
pc +
ps
边带功率 载波功率
25
定义调制效率:边带功率与总平均功率的
比值,用符号AM表示
AM
Ps
PAM
m2 (t) A02 m2 (t)
一般情况下,AM都小于1,调制效率很低,
载波的振幅随调制信号的变化而变化 设 载波为 c(t) Acos(ct 0 )
式中,A — 载波幅度;c — 载波角频率; 0 — 载波初始相位(以后假定0 = 0)。
调制信号(基带信号)为 m( t )
则 已调信号为: sm (t) Am(t) cos(ct 0 )
频谱 sm (t) Am(t) cosct
M( )
AM 频谱示意图:
0
H
c
0
c
SAM () 下边带
上边带
c H
c
c H
0
c H
c
c H
2 H
从频谱结构上看,SAM ( t ) 的频谱是m( t )的频 谱在频域内的线性搬移,称之为线性调制。
- H 0 H
(t)
M( )
22
SAM( )
1
A0
A0
1
O
2
- H 0 H t
33
功率与效率
功率 PDSB sD2 SB(t) m2 (t) cos2 (ct)
1 2
m2 (t)
1 2
m2 (t) cos(2ct)
1 m2 (t) 2

通信原理第5章(樊昌信第七版)

通信原理第5章(樊昌信第七版)

s p t sVSB t 2 cos ct
sVSB t

sp t
LPF
sd t
S p S VSB c S VSB c
S VSB
c(t ) 2 cos c t
1 M c M c H 2


SSB信号的特点
优点之一是频带利用率高。传输带宽为AM/DSB的一半:
BSSB BAM / 2 f H

因此,在频谱拥挤的通信场合获得了广泛应用,尤其在 短波通信和多路载波电话中占有重要的地位。

优点之二是低功耗特性,因为不需传送载波和另一个边 带而节省了功率。这一点对于移动通信系统尤为重要。
m
m(t ) max A0
m<1 正常调幅 m>1 过调幅
m=1 临界状态,满调幅(100)
A m(t )
A
0
A m(t )
A m(t )
A
A
t
0
t
0
t
sAM (t )
sAM (t )
sAM (t )
0
t
t
t
m 1
m 1
m 1
高调幅度的重要性!
AM
Ps m 2 (t ) PAM A02 m 2 (t )
幅度调制 频率调制 相位调制
m(t )
调制器
sm (t )
按载波信号 c(t)的类型分
连续波调制 脉冲调制
c(t )
7
本章研究的模拟调制方式:
——是以正弦信号 c(t ) A cos(c t ) 作为载波的

通信原理(第五章)模拟调制系统

通信原理(第五章)模拟调制系统

n i =1
mi cos wit
有 m ˆ (t ) = å
n i =1
mi sin wit
二、幅度调制的原理(6)(VSB)

残留边带(VSB) :信号带宽B介于单边带(SSB)信号和双边带 (DSB)信号之间。 如何确定残留边带滤波器的特性H(ω )? 先考虑如何解调,即如何从接收信号中来恢复原基带信号? 设采用同步解调法进行解调,其组成方框图如图5-8 输入信号为 Sm(w) = 1 [ M (w - wc) + M (w +wc)] H (w)
2 (5.1 - 24)
载波为:
s(t ) = cos wct ? S (w) p [d (w +wc) +d (w - wc)]
1 1 [ Sm(w) * S (w)] = [ M (w + 2wc) + M (w)] H (w + wc) 2p 4 1 + [ M (w) + M (w - 2wc )] H (w - wc ) (5.1 - 26) 4
max max
- [ m(t )] min +[ m(t )] min
二、幅度调制的原理(5)(SSB)
SSB信号:
在DSB调制信号的基础上,仅保留一个边带。 将图5-4中的带通滤波器设计成如图5-5b所示的传输特 性。将产生上边带信号,相应的频谱如图5-5c所示。 信号带宽B=fx,其中fx是信号的最高频率)。 如何描述?产生下边带SSB信号的理想低通滤波器可表 示为: ì 1 t >0 ï 1
sm(t ) = A0 cos wct + m(t )cos wct
Sm(w) = p A0[d (w - wc) +d (w +wc)] +

通信原理及System View仿真测试第5章 模拟调制系统

通信原理及System View仿真测试第5章 模拟调制系统

但为了包络检波时不发生失真, 必须保证
A0≥|m(t)|max
(5-7)
第5章 模拟调制系统
图5-3 AM调制的波形和频谱
第5章 模拟调制系统
否则将出现过调制现象而产生失真。 通常定义调幅指 数为
m(t)
ma
max
A0
(5-8)
即当调幅指数ma≤1时, 可以保证包络检波时不会产生失真。 由图5-3(b)可见, AM信号的频谱是由载频分量和上、
第5章 模拟调制系统
图5-29 AM已调信号的频谱
第5章 模拟调制系统
AM信号经包络检波后, 解调输出信号波形如图5-30所 示。 与图5-26所示的调制信号对比, 可发现两者都是单频 正弦信号, 而且频率相同, 可认为无失真恢复了原始调制 信号。
第5章 模拟调制系统
图5-30 包络检波解调输出信号
第5章 模拟调制系统
图5-8 AM调幅仿真图
第5章 模拟调制系统
2) (1) 产生调制信号的信号源参数设置如图5-9所示。
第5章 模拟调制系统
图5-9 信号源参数设置
第5章 模拟调制系统
调制信号波形和频谱分别如图5-10和图5-11所示。
图5-10 调制信号波形
第5章 模拟调制系统
图5-11 调制信号功率谱
第5章 模拟调制系统
图5-2 AM调制系统模型
第5章 模拟调制系统
2. AM
1) AM 由图5-2可以得到AM信号的时域表达式为 sAM(t)=[A0+m(t)]cosωct=A0cosωct+m(t)cosωct (5-5) 根据傅里叶变换的线性性质和频移特性, 可以得到其 频域表达式为
SAM
第5章 模拟调制系统
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

312~552
812~2044 8516~12388
载波电话系统(续)

基群频谱:
60
64
68
108
f/kHz
二、电视
1. 黑白电视信号



图象信号 —VSB 调制,上边带宽 5.5MHz , 下边带宽1.25MHz; 伴音信号 —FM 调制,伴音载频距图象载 频6.5MHz; 二者频分复用,信号总带宽8MHz。
第五章 模拟调制系统Fra bibliotek



引言 幅度调制 频分复用 线性调制应用举例 线性调制系统的抗噪性能分析 角度调制 调频信号的产生和解调 调频应用举例 调频系统的抗噪性能分析 各种模拟调制系统的比较
5.1 引言

关于载波调制的几个概念
调制 信号 调制器 载波

信息源
已调 已调 信道 解调器 信号 信号 噪声源
-f c
0
fc
2fc
f
(c) 载波和上边带信号频谱的卷积结果
单边带调幅SSB(续)
3. 应用 载波通信,短波无线电话 4. 缺点:要求边带滤波器是理想低通或理 想高通。不易实现。
五、残留边带调幅VSB

目的: 信道利用率较高,边带滤波器易实现 1. 调制
m(t) 残留边带 滤波器 H(ω) cosωct SVSB (t)
x(t) 假设信号波形 O t
脉冲高度在变化 PAM 波形 O t
脉冲位置不变宽度变化 PDM波形 O 脉冲宽变不变脉 冲位置在变化 PPM波形 t
O
t
PAM、 PDM、 PPM的信号波形
5.2 幅度调制原理
一、通用模型 二、标准调幅AM 三、抑制载波双边带调幅DSB 四、单边带调幅SSB 五、残留边带调幅VSB
3. 应用 立体声广播
4. 效率 SDSB (t)信号无载频分量,Pc=0 效率ηDSB=100%
5. 缺点:已调信号带宽增大一倍, 信道利用率低
四、单边带调幅SSB

目的:提高信道利用率 1. 调制 (滤波法)
m(t) 边带滤波器 H(ω) cosωct SSSB (t)
1 1 ˆ (t ) sin wc t sSSB (t ) m(t ) cos wc t m 2 2
s (t ) A cos(w t ) 正弦载波:
c 0
m(t) O t
A:振幅 ωc=2πfc:角频率
A0+m(t)
0:初相位
t
1
O wc(t) cos O
M(w)
t wH £0
wH
w
sAM(t)
p A0 1 2
SAM (w)
p A0
t
w
O
t
wc £-
0
wc
SFM(t)
正弦波调制的信号波形
O
coswc(t)
t
- wH
0
wH
w
O
t
载频
SAM (w)
A0 pm 0 pm A 0 0
sAM (t)
1 2
O
t
- wc
0
wc
w
下边带 上边带
标准调幅AM (续)—调制

1. 2. 3. 4. 5.
说明: 调制使频谱搬移,但未改变形状。 AM 频 谱波形关于±ωc对称,分上、下边带 调制使已调信号带宽增加一倍 若 m(t) 为随机信号,频域使用功率谱描述, 结论相同 要求A0 + m(t) ≥ 0,否则,“过调幅”,使 包络失真。称|m(t)|max/A0为调幅指数 要求ωc≥ωH,否则,发生交叠失真
s p t 2sVSB (t )cos wct
sVSB (t ) SVSB w
cos wc t p w wc w wc
根据频域卷积定理可知,乘积sp(t)对应的频谱为
S p w SVSB (w wc ) SVSB (w wc )
调制 信号
受信者
调制—用基带信号的变化规律去控制载波的某些参数 解调—从已调信号的参数中提取基带信号的变化规律



调制信号—来自信源的消息信号(基带信号),模拟/ 数字 载波—未受调制的周期性振荡信号,适合在信道中传 送,正弦波/周期性脉冲 已调信号—载波调制后的信号,含有调制信号的全部 特征
引言(续)
mn(t)
LPF ωn
SBFn
BPFn ωn
LPF
mn(t)
5.4 线性调制应用举例
一、载波电话系统 二、电视 三、立体声广播
一、载波电话系统


在多路载波电话系统中采用:SSB调制, 频分复用传输技术来节省传输频带。 每路电话信号限带 300~3400Hz , SSB 调 制后,为便于接收,另加保护间隔,每 路载波电话取4KHz做为标准频带。
26
五、残留边带调幅VSB
1 M (w ) H (w wc ) H (w wc ) 2 显然,为了保证相干解调的输出无失真地恢复调制信号m(t), 上式中的传递函数必须满足: Sd (w )
H (w wc ) H (w wc ) 常数, w wH 式中,wH - 调制信号的截止角频率。

载波调制的目的



无线传输中,把基带信号的频谱搬到较高的载 波频率上,提高传输性能,降低发送功率,缩 短天线尺寸; 把多个基带信号分别搬移到不同的载频,实现 频分复用,提高信道利用率 扩展信号带宽,实现带宽与信噪比之间的互换, 提高抗干扰、抗衰落能力。

调制对通信系统的有效性和可靠性都有影 响。
H w
1
0.5
(a)
w c
1
wc
w
0.5
(b)
0
w
28
AM例题

已知AM电台的输出功率是50KW,对单 频余弦信号进行调制,调幅指数为0.707。 求: (1)调制效率 (2)载波功率 (3)若天线用50Ω电阻表示,求载波的峰 值幅度。
DSB例题

接收DSB信号时,设本地载波与发送载波有 频差Δω,相位差Δθ,分析对解调结果的影响。
H(ω)满足:关于±ωc点奇对称互补。 ( | w | w H ,ωH为基带信号截止频率)
H (w wc ) H (w wc ) C
五、残留边带调幅VSB

VSB信号解调器方框图
sVSB t

sp t
LPF
sd t
c t 2 cos wct
图中 因为
4. 效率 AM波的平均功率为:
PAM
2 A m (t ) 2 0 S AM (t ) Pc Ps 2 2 2
Pc为载波功率,Ps为边带功率
调制效率:
AM
Ps 1 2 Pc Ps
举例
标准调幅AM(续)
5. 缺点:边带传递有效信息,载波不传,但载 波要占一半以上的功率,发送功率的效率低。
H(w)为理想低通时,提取下边带(+); H(w)为理想高通时,提取上边带(-)
单边带调幅SSB(续)
上边带
下边带
S(f)
上边带

原理:


两个边带包含相同的信息 只需传输一个边带: 上边带或下边带 要求m(t)中无太低频率 上边带 陡峭截止特性的滤波器难 实现 采用多级DSB调制及边带 滤波的方法。先在较低载 频上进行DSB调制,增大 过渡带的归一化值。再在 要求的载频上二次调制
sin
单边带调幅SSB(续)
C(f)
2. 解调——相干解调
SSSB (t) LPF cosωct mo(t)
-f c 0 (a) 载波频谱
S(f) 上边带 1/2 上边带
fc
f
1 mo (t ) m(t ) 4
-2fc
-f c
0 (b) 上边带信号频谱
HL(f) 1/4
fc
2fc
f
M(f)
-2fc
1 [ M (w ) M (w 2wc )] H (w wc ) 2
式中M(w + 2wc)及M(w - 2wc)是搬移到+ 2wc和 -2wc处的频谱,它 们可以由解调器中的低通滤波器滤除。于是,低通滤波器的输 出频谱为
Sd (w ) 1 M (w ) H (w wc ) H (w wc ) 2
一、通用模型
调制信号控制载波的幅度,使之随调制信号呈线性变化
m(t)
h (t) cos ωct
sm(t)
sm (t ) [m(t ) coswct ] * h(t ) 1 S m (w ) [ M (w wc ) M (w wc )]H (w ) 2
乘法器用于基本调制,h(t)控制产生不同的调幅波。
f
-fc
0
(b) 已调信号频谱密度
fc
f
抑制载波双边带调幅DSB(续)
2. 解调——相干解调
1 mo (t ) m(t ) 2
1/2
SDSB (t) SAM (t) cosωct
LPF
mo(t)
a
-fc 0 fc
f
b c
-2fc
-fc
0
fc
f
1/2 1/4
0
2fc
1/2
f
d
-fH 0
fH
f
抑制载波双边带调幅DSB(续)
SSB例题

0~3KHz的基带信号经过20MHz的载波调 制后,生成下边带信号。接收机框图如 下,其中,两级混频器的频点分别为fo和 fd。已知fo高于输入信号的频率,中频放 大器的通频带范围为10~10.003MHz,求 fo和fd。
相关文档
最新文档