人教版九年级数学上册 圆 几何综合(篇)(Word版 含解析)
人教版数学九年级上册 圆 几何综合单元测试与练习(word解析版)
人教版数学九年级上册 圆 几何综合单元测试与练习(word 解析版)一、初三数学 圆易错题压轴题(难)1.已知:如图,梯形ABCD 中,AD//BC ,AD 2=,AB BC CD 6===,动点P 在射线BA 上,以BP 为半径的P 交边BC 于点E (点E 与点C 不重合),联结PE 、PC ,设x BP =,PC y =.(1)求证:PE //DC ;(2)求y 关于x 的函数解析式,并写出定义域;(3)联结PD ,当PDC B ∠=∠时,以D 为圆心半径为R 的D 与P 相交,求R 的取值范围.【答案】(1)证明见解析;(2)2436(09)y x x x =-+<<;(3)3605R <<【解析】 【分析】()1根据梯形的性质得到B DCB ∠=∠,根据等腰三角形的性质得到B PEB ∠∠=,根据平行线的判定定理即可得到结论;()2分别过P 、A 、D 作BC 的垂线,垂足分别为点H 、F 、.G 推出四边形ADGF 是矩形,//PH AF ,求得2BF FG GC ===,根据勾股定理得到22226242AF AB BF =-=-=,根据平行线分线段成比例定理得到223PH x =,13BH x =,求得163CH x =-,根据勾股定理即可得到结论; ()3作//EM PD 交DC 于.M 推出四边形PDME 是平行四边形.得到PE DM x ==,即 6MC x =-,根据相似三角形的性质得到1218655PD EC ==-=,根据相切两圆的性质即可得到结论. 【详解】()1证明:梯形ABCD ,AB CD =,B DCB ∠∠∴=,PB PE =, B PEB ∠∠∴=,DCB PEB ∠∠∴=, //PE CD ∴;()2解:分别过P 、A 、D 作BC 的垂线,垂足分别为点H 、F 、G .梯形ABCD 中,//AD BC , ,BC DG ⊥,BC PH ⊥,∴四边形ADGF 是矩形,//PH AF ,2AD =,6BC DC ==, 2BF FG GC ∴===,在Rt ABF 中,22226242AF AB BF =-=-=,//PH AF ,PH BP BHAF AB BF∴==6242x BH ==,223PH x ∴=,13BH x =, 163CH x ∴=-,在Rt PHC 中,22PC PH CH =+22221()(6)33y x x ∴=+-2436(09)y x x x =-+<<, ()3解:作//EM PD 交DC 于M .//PE DC ,∴四边形PDME 是平行四边形.PE DM x ∴==,即 6MC x =-,PD ME ∴=,PDC EMC ∠∠=, 又PDC B ∠∠=,B DCB ∠=∠, DCB EMC PBE PEB ∠∠∠∠∴===.PBE∴∽ECM,PB BEEC MC∴=,即232663xxxx=--,解得:185x=,即125BE=,1218655PD EC∴==-=,当两圆外切时,PD r R=+,即0(R=舍去);当两圆内切时,-PD r R=,即10(R=舍去),2365R=;即两圆相交时,365R<<.【点睛】本题属于圆综合题,梯形的性质,平行四边形的性质,勾股定理,相似三角形的判定和性质,正确的作出辅助线是解题的关键.2.如图所示,CD为⊙O的直径,点B在⊙O上,连接BC、BD,过点B的切线AE与CD 的延长线交于点A,OE//BD,交BC于点F,交AB于点E.(1)求证:∠E=∠C;(2)若⊙O的半径为3,AD=2,试求AE的长;(3)在(2)的条件下,求△ABC的面积.【答案】(1)证明见解析;(2)10;(3)485.【解析】试题分析:(1)连接OB,利用已知条件和切线的性质证明:OE∥BD,即可证明:∠E=∠C;(2)根据题意求出AB的长,然后根据平行线分线段定理,可求解;(3)根据相似三角形的面积比等于相似比的平方可求解.试题解析:(1)如解图,连接OB,∵CD 为⊙O 的直径,∴∠CBD =∠CBO +∠OBD =90°, ∵AB 是⊙O 的切线,∴∠ABO =∠ABD +∠OBD =90°, ∴∠ABD =∠CBO . ∵OB 、OC 是⊙O 的半径, ∴OB =OC ,∴∠C =∠CBO . ∵OE ∥BD ,∴∠E =∠ABD , ∴∠E =∠C ;(2)∵⊙O 的半径为3,AD =2, ∴AO =5,∴AB =4. ∵BD ∥OE , ∴=, ∴=,∴BE =6,AE =6+4=10 (3)S △AOE ==15,然后根据相似三角形面积比等于相似比的平方可得S △ABC =S △AOE ==3.如图,矩形ABCD 中,BC =8,点F 是AB 边上一点(不与点B 重合)△BCF 的外接圆交对角线BD 于点E ,连结CF 交BD 于点G . (1)求证:∠ECG =∠BDC .(2)当AB =6时,在点F 的整个运动过程中. ①若BF =22时,求CE 的长.②当△CEG 为等腰三角形时,求所有满足条件的BE 的长.(3)过点E 作△BCF 外接圆的切线交AD 于点P .若PE ∥CF 且CF =6PE ,记△DEP 的面积为S 1,△CDE 的面积为S 2,请直接写出12S S 的值.【答案】(1)详见解析;(2)①1825;②当BE 为10,395或445时,△CEG 为等腰三角形;(3)724. 【解析】 【分析】(1)根据平行线的性质得出∠ABD =∠BDC ,根据圆周角定理得出∠ABD =∠ECG ,即可证得结论;(2)根据勾股定理求得BD =10,①连接EF ,根据圆周角定理得出∠CEF =∠BCD =90°,∠EFC =∠CBD .即可得出sin ∠EFC=sin ∠CBD ,得出35CE CD CF BD ==,根据勾股定理得到CF =CE ; ②分三种情况讨论求得:当EG =CG 时,根据等腰三角形的性质和圆周角定理即可得到∠GEC =∠GCE =∠ABD =∠BDC ,从而证得E 、D 重合,即可得到BE =BD =10;当GE =CE 时,过点C 作CH ⊥BD 于点H ,即可得到∠EGC =∠ECG =∠ABD =∠GDC ,得到CG =CD =6.根据三角形面积公式求得CH =245,即可根据勾股定理求得GH ,进而求得HE ,即可求得BE =BH +HE =395; 当CG =CE 时,过点E 作EM ⊥CG 于点M ,由tan ∠ECM =43EM CM =.设EM =4k ,则CM =3k ,CG =CE =5k .得出GM =2k ,tan ∠GEM =2142GM k EM k ==,即可得到tan ∠GCH =GH CH =12.求得HE =GH =125,即可得到BE =BH +HE =445;(3)连接OE 、EF 、AE 、EF ,先根据切线的性质和垂直平分线的性质得出EF =CE ,进而证得四边形ABCD 是正方形,进一步证得△ADE ≌△CDE ,通过证得△EHP ∽△FBC ,得出EH =16BF ,即可求得BF =6,根据勾股定理求得CF =10,得出PE =106,根据勾股定理求得PH ,进而求得PD ,然后根据三角形面积公式即可求得结果. 【详解】 (1)∵AB ∥CD . ∴∠ABD =∠BDC , ∵∠ABD =∠ECG , ∴∠ECG =∠BDC .(2)解:①∵AB =CD =6,AD =BC =8,∴BD =10,如图1,连结EF ,则∠CEF =∠BCD =90°, ∵∠EFC =∠CBD . ∴sin ∠EFC =sin ∠CBD ,∴35 CE CD CF BD==∴CF∴CE②Ⅰ、当EG=CG时,∠GEC=∠GCE=∠ABD=∠BDC.∴E与D重合,∴BE=BD=10.Ⅱ、如图2,当GE=CE时,过点C作CH⊥BD于点H,∴∠EGC=∠ECG=∠ABD=∠GDC,∴CG=CD=6.∵CH=BC CD24 BD5⋅=,∴GH185 =,在Rt△CEH中,设HE=x,则x2+(245)2=(x+185)2解得x=75,∴BE=BH+HE=325+75=395;Ⅲ、如图2,当CG=CE时,过点E作EM⊥CG于点M.∵tan∠ECM=43 EMCM=.设EM=4k,则CM=3k,CG=CE=5k.∴GM=2k,tan∠GEM=2142 GM kEM k==,∴tan∠GCH=GHCH=tan∠GEM=12.∴HE=GH=12412 255⨯=,∴BE=BH+HE=321244 555+=,综上所述,当BE为10,395或445时,△CEG为等腰三角形;(3)解:∵∠ABC=90°,∴FC是△BCF的外接圆的直径,设圆心为O,如图3,连接OE、EF、AE、EF,∵PE是切线,∴OE⊥PE,∵PE∥CF,∴OE⊥CF,∵OC=OF,∴CE=EF,∴△CEF是等腰直角三角形,∴∠ECF=45°,EF=2FC,∴∠ABD=∠ECF=45°,∴∠ADB=∠BDC=45°,∴AB=AD=8,∴四边形ABCD是正方形,∵PE∥FC,∴∠EGF=∠PED,∴∠BGC=∠PED,∴∠BCF=∠DPE,作EH⊥AD于H,则EH=DH,∵∠EHP=∠FBC=90°,∴△EHP∽△FBC,∴16 EH PEBF FC==,∴EH=16 BF,∵AD=CD,∠ADE=∠CDE,∴△ADE≌△CDE,∴AE=CE,∴AE=EF,∴AF=2EH=13 BF,∴13BF+BF=8,∴BF=6,∴EH=DH=1,CF10,∴PE=16FC=53,∴PH4 3 =,∴PD=47133+=,∴12773824S PDS AD===.【点睛】本题是四边形的综合题,考查了矩形的性质,圆周角定理、三角形的面积以及相似三角形的判定和性质,作出辅助线构建直角三角形是解题的关键.4.如图①,已知Rt△ABC中,∠ACB=90°,AC=8,AB=10,点D是AC边上一点(不与C 重合),以AD为直径作⊙O,过C作CE切⊙O于E,交AB于F.(1)若⊙O半径为2,求线段CE的长;(2)若AF=BF,求⊙O的半径;(3)如图②,若CE=CB,点B关于AC的对称点为点G,试求G、E两点之间的距离.【答案】(1)CE=2;(2)⊙O的半径为3;(3)G、E两点之间的距离为9.6【解析】【分析】(1)根据切线的性质得出∠OEC=90°,然后根据勾股定理即可求得;(2)由勾股定理求得BC,然后通过证得△OEC∽△BCA,得到OE OCBC BA=,即8610r r-=解得即可;(3)证得D和M重合,E和F重合后,通过证得△GBE∽△ABC,GB GEAB AC=,即12108GE =,解得即可. 【详解】解:(1)如图①,连接OE ,∵CE 切⊙O 于E , ∴∠OEC =90°,∵AC =8,⊙O 的半径为2, ∴OC =6,OE =2,∴CE =2242OC OE -= ; (2)设⊙O 的半径为r ,在Rt △ABC 中,∠ACB =90°,AB =10,AC =8, ∴BC 22AB A C -=6, ∵AF =BF , ∴AF =CF =BF , ∴∠ACF =∠CAF , ∵CE 切⊙O 于E , ∴∠OEC =90°, ∴∠OEC =∠ACB , ∴△OEC ∽△BCA ,∴OE OC BC BA =,即8610r r-= 解得r =3,∴⊙O 的半径为3;(3)如图②,连接BG ,OE ,设EG 交AC 于点M ,由对称性可知,CB=CG,∵CE=CG,∴∠EGC=∠GEC,∵CE切⊙O于E,∴∠GEC+∠OEG=90°,∵∠EGC+∠GMC=90°,∴∠OEG=∠GMC,∵∠GMC=∠OME,∴∠OEG=∠OME,∴OM=OE,∴点M和点D重合,∴G、D、E三点在同一直线上,连接AE、BE,∵AD是直径,∴∠AED=90°,即∠AEG=90°,又CE=CB=CG,∴∠BEG=90°,∴∠AEB=∠AEG+∠BEG=180°,∴A、E、B三点在同一条直线上,∴E、F两点重合,∵∠GEB=∠ACB=90°,∠B=∠B,∴△GBE∽△ABC,∴GB GEAB AC=,即12108GE=∴GE=9.6,故G、E两点之间的距离为9.6.【点睛】本题考查了切线的判定,轴的性质,勾股定理的应用以及三角形相似的判定和性质,证得G、D、E三点共线以及A、E、B三点在同一条直线上是解题的关5.如图,在△ABC中,∠C=90°,∠CAB=30°,AB=10,点D在线段AB上,AD=2.点P,Q以相同的速度从D 点同时出发,点P 沿DB 方向运动,点Q 沿DA 方向到点A 后立刻以原速返回向点B 运动.以PQ 为直径构造⊙O ,过点P 作⊙O 的切线交折线AC ﹣CB 于点E ,将线段EP 绕点E 顺时针旋转60°得到EF ,过F 作FG ⊥EP 于G ,当P 运动到点B 时,Q 也停止运动,设DP=m .(1)当2<m≤8时,AP=,AQ=.(用m 的代数式表示)(2)当线段FG 长度达到最大时,求m 的值;(3)在点P ,Q 整个运动过程中,①当m 为何值时,⊙O 与△ABC 的一边相切?②直接写出点F 所经过的路径长是.(结果保留根号)【答案】(1)2+m ,m ﹣2;(2)m=5.5;(3)①当m=1或4或10433与△ABC 的边相切.②点F 1136572 【解析】试题分析:(1)根据题意可得AP =2+m ,AQ =m −2.(2)如图1中在Rt △EFG 中, 30,90EFG A EGF ∠=∠=∠=, 推出3cos30cos30FG EF PE EP =⋅=⋅=,所以当点E 与点C 重合时,PE 的值最大,求出此时EP 的长即可解决问题.(3)①当02t <≤ (Q 在往A 运动)时,如图2中,设O 切AC 于H ,连接OH . 当28m <≤(Q 从A 向B 运动)时,则PQ =(2+m )−(m −2)=4,如图3中,设O 切AC 于H .连接OH .如图4中,设O 切BC 于N ,连接ON .分别求解即可. ②如图5中,点F 的运动轨迹是F 1→F 2→B .分别求出122F F F B ,即可解决问题.试题解析:(1)当28m <≤时,AP =2+m ,AQ =m −2.故答案为2+m ,m −2.(2)如图1中,在Rt △EFG 中, 30,90EFG A EGF ∠=∠=∠=,3cos30cos30FG EF PE EP ∴=⋅=⋅=, ∴当点E 与点C 重合时,PE 的值最大,易知此时53553AC BC EP AB ⨯⨯===, 3tan30(2)3EP AP m =⋅=+⋅, 533(2)m ∴=+⋅, ∴m =5.5(3)①当02t <≤ (Q 在往A 运动)时,如图2中,设O 切AC 于H ,连接OH .则有AD =2DH =2,∴DH =DQ =1,即m =1.当28m <≤(Q 从A 向B 运动)时,则PQ =(2+m )−(m −2)=4,如图3中,设O 切AC 于H .连接OH .则AO =2OH =4,AP =4+2=6,∴2+m =6,∴m =4.如图4中,设O 切BC 于N ,连接ON .在Rt △OBN 中, 43sin60OB ON == 4310AO ∴=-4312AP ∴=- 43212m ∴+= 3103m ∴=- 综上所述,当m =1或4或4310O 与△ABC 的边相切。
人教版九年级上册数学 圆 几何综合单元测试与练习(word解析版)
人教版九年级上册数学圆几何综合单元测试与练习(word解析版)一、初三数学圆易错题压轴题(难)1.在平面直角坐标系xOy中,已知 A(-2,0),B(2,0),AC⊥AB于点A,AC=2,BD⊥AB于点B,BD=6,以AB为直径的半圆O上有一动点P(不与A、B两点重合),连接PD、PC,我们把由五条线段AB、BD、DP、PC、CA所组成的封闭图形ABDPC叫做点P的关联图形,如图1所示.(1)如图2,当P运动到半圆O与y轴的交点位置时,求点P的关联图形的面积.(2)如图3,连接CD、OC、OD,判断△OCD的形状,并加以证明.(3)当点P运动到什么位置时,点P的关联图形的面积最大,简要说明理由,并求面积的最大值.【答案】(1)12;(2)判断△OCD是直角三角形,证明见解析;(3)连接OC,交半圆O于点P,这时点P的关联图形的面积最大,理由风解析,82+【解析】试题分析:(1)判断出四边形AOPC是正方形,得到正方形的面积是4,根据BD⊥AB,BD=6,求出梯形OPDB的面积=()(26)2822OP DB OB+⨯+⨯==,二者相加即为点P的关联图形的面积是12.(2)根据CF=DF=4,∠DCF=45°,求出∠OCD=90°,判断出△OCD是直角三角形.(3)要使点P的关联图形的面积最大,就要使△PCD的面积最小,确定关联图形的最大面积是梯形ACDB的面积﹣△PCD的面积,根据此思路,进行解答.试题解析:(1)∵A(﹣2,0),∴OA=2,∵P是半圆O上的点,P在y轴上,∴OP=2,∠AOP=90°,∴AC=2,∴四边形AOPC是正方形,∴正方形的面积是4,又∵BD⊥AB,BD=6,∴梯形OPDB的面积=()(26)2822OP DB OB+⨯+⨯==,∴点P的关联图形的面积是12.(2)判断△OCD是直角三角形.证明:延长CP 交BD 于点F ,则四边形ACFB 为矩形,∴CF=DF=4,∠DCF=45°,∴∠OCD=90°,∴OC ⊥CD ,∴△OCD 是直角三角形.(3)连接OC 交半圆O 于点P ,则点P 即为所确定的点的位置.理由如下:连接CD ,梯形ACDB 的面积=()(26)41622AC DB AB +⨯+⨯==为定值, 要使点P 的关联图形的面积最大,就要使△PCD 的面积最小,∵CD 为定长,∴P 到CD 的距离就要最小,连接OC ,设交半圆O 于点P ,∵AC ⊥OA ,AC=OA ,∴∠AOC=45°,过C 作CF ⊥BD 于F ,则ACFB 为矩形, ∴CF=DF=4,∠DCF=45°,∴OC ⊥CD ,OC=22,∴PC 在半圆外,设在半圆O 上的任意一点P′到CD 的距离为P′H ,则P′H+P′O >OH >OC , ∵OC=PC+OP ,∴P′H >PC ,∴当点P 运动到半圆O 与OC 的交点位置时,点P 的关联图形的面积最大.∵CD=42,CP=222-,∴△PCD 的面积=()(26)41622AC DB AB +⨯+⨯==, ∴点P 的关联图形的最大面积是梯形ACDB 的面积﹣△PCD 的面积=16(842)842--=+.考点:圆的综合题.2.四边形ABCD内接于⊙O,连接AC、BD,2∠BDC+∠ADB=180°.(1)如图1,求证:AC=BC;(2)如图2,E为⊙O上一点,AE=BE,F为AC上一点,DE与BF相交于点T,连接AT,若∠BFC=∠BDC+12∠ABD,求证:AT平分∠DAB;(3)在(2)的条件下,DT=TE,AD=8,BD=12,求DE的长.【答案】(1)见解析;(2)见解析;(3)82【解析】【分析】(1)只要证明∠CAB=∠CBA即可.(2)如图2中,作TH⊥AD于H,TR⊥BD于R,TL⊥AB于L.想办法证明TL=TH即可解决问题.(3)如图3中,连接EA,EB,作EG⊥AB,TH⊥AD于H,TR⊥BD于R,TL⊥AB于L,AQ⊥BD于Q.证明△EAG≌△TDH(AAS),推出AG=DH,证明Rt△TDR≌Rt△TDH(HL),推出DH=DR,同理可得AL=AH,BR=BL,设DH=x,则AB=2x,由S△ADB=12•BD•AQ=12•AD•h+12•AB•h+12•DB•h,可得AQ=52h,再根据sin∠BDE=sin∠ADE,sin∠AED=sin∠ABD,构建方程组求出m即可解决问题.【详解】解:(1)如图1中,∵四边形ABCD内接于⊙O,∴∠ADC+∠ABC=180°,即∠ADB+∠BDC+∠ABC=180°,∵2∠BDC+∠ADB=180°,∴∠ABC=∠BDC,∵∠BAC=∠BDC,∴∠BAC=∠ABC,∴AC=BC.(2)如图2中,作TH⊥AD于H,TR⊥BD于R,TL⊥AB于L.∵∠BFC=∠BAC+∠ABF,∠BAC=∠BDC,∴∠BFC=∠BDC+∠ABF,∵∠BFC=∠BDC+12∠ABD,∴∠ABF=12∠ABD,∴BT平分∠ABD,∵AE=BE∴∠ADE=∠BDE,∴DT平分∠ADB,∵TH⊥AD于H,TR⊥BD于R,TL⊥AB于L.∴TR=TL,TR=TH,∴TL=TH,∴AT平分∠DAB.(3)如图3中,连接EA,EB,作EG⊥AB,TH⊥AD于H,TR⊥BD于R,TL⊥AB于L,AQ⊥BD于Q.∵AE=BE∴∠EAB=∠EDB=∠EDA,AE=BE,∵∠TAE=∠EAB+∠TAB,∠ATE=∠EDA+∠DAT,∴∠TAE=∠ATE,∴AE=TE,∵DT=TE,∴AE=DT,∵∠AGE=∠DHT=90°,∴△EAG≌△TDH(AAS),∴AG=DH,∵AE=EB,EG⊥AB,∴AG=BG,∴2DH=AB,∵Rt△TDR≌Rt△TDH(HL),∴DH=DR,同理可得AL=AH,BR=BL,设DH=x,则AB=2x,∵AD=8,DB=12,∴AL=AH=8﹣x,BR=12﹣x,AB=2x=8﹣x+12﹣x,∴x=5,∴DH=5,AB=10,设TR=TL=TH=h,DT=m,∵S△ADB=12•BD•AQ=12•AD•h+12•AB•h+12•DB•h,∴12AQ=(8+12+10)h,∴AQ=52 h,∵sin∠BDE=sin∠ADE,可得hm=APAD=AP8,sin∠AED=sin∠ABD,可得APm=AQAB=AQ10=5210h,∴APm=52810mAP,解得m=或﹣(舍弃),∴DE=2m=.【点睛】本题属于圆综合题,考查了圆内接四边形的性质,圆周角定理,锐角三角函数,全等三角形的判定和性质,角平分线的性质定理和判定定理等知识,解题的关键是学会添加常用辅助线,学会利用参数构建方程组解决问题,属于中考压轴题.3.四边形ABCD 的对角线交于点E ,有AE =EC ,BE =ED ,以AB 为直径的O 过点E .(1)求证:四边形ABCD 是菱形.(2)若CD 的延长线与圆相切于点F ,已知直径AB =4.求阴影部分的面积.【答案】(1)证明见解析;(2)513π-【解析】 试题分析:(1)先由AE=EC 、BE=ED 可判定四边形为平行四边形,再根据∠AEB=90°可判定该平行四边形为菱形;(2)连接OF ,过点D 作DP ,AB P E EQ AB ⊥⊥于过点作于Q ,分别求出扇形BOE 、△AOE、半圆O 的面积,即可得出答案.试题解析:(1)AE =EC ,BE =ED∴ABCD 四边形为平行四边形∵90AB AEB ∠∴=︒是直径∴ABCD 平行四边形是菱形(2)连接OF ,过点D 作DP ,AB P E EQ AB ⊥⊥于过点作于QCF 切O 于点F∴90OFC ∠=︒∵ABCD 四边形是菱形,∴,90CD AB BOF OFD DPO ∠∠∠∴===︒∴FOPD DP OF ∴=四边形是矩形ABCD 四边形是菱形,AB AD ∴=∵11,3022OF AB DP AD DAB ∠=∴=∴=︒ ∴ABCD 四边形是菱形∴1152CAB DAB ∠=∠=︒ ∴180215150AOE ∠=︒-⨯︒=︒∴3090EOB EQO ∠∠=︒=︒ ∴112EQ OE == 21502360S 阴影π⨯∴=-1521123π⨯⨯=- 点睛:本题主要考查菱形的判定即矩形的判定与性质、切线的性质,熟练掌握其判定与性质并结合题意加以灵活运用是解题的关键.4.我们把“有两条边和其中一边的对角对应相等的两个三角形”叫做“同族三角形”,如图1,在△ABC 和△ABD 中,AB=AB ,AC=AD ,∠B=∠B ,则△ABC 和△ABD 是“同族三角形”.(1)如图2,四边形ABCD 内接于圆,点C 是弧BD 的中点,求证:△ABC 和△ACD 是同族三角形;(2)如图3,△ABC 内接于⊙O ,⊙O 的半径为32AB=6,∠BAC=30°,求AC 的长; (3)如图3,在(2)的条件下,若点D 在⊙O 上,△ADC 与△ABC 是非全等的同族三角形,AD >CD ,求AD CD的值. 【答案】(1)详见解析;(2)3;(3)AD CD 62+6 【解析】【分析】(1)由点C 是弧BD 的中点,根据弧与弦的关系,易得BC=CD ,∠BAC=∠DAC ,又由公共边AC ,可证得:△ABC 和△ACD 是同族三角形;(2)首先连接0A ,OB ,作点B 作BE ⊥AC 于点E ,易得△AOB 是等腰直角三角形,继而求得答案;(3)分别从当CD=CB 时与当CD=AB 时进行分析求解即可求得答案.【详解】(1)证明:∵点C 是弧BD 的中点,即BC CD =,∴BC=CD ,∠BAC=∠DAC ,∵AC=AC ,∴△ABC 和△ACD 是同族三角形. (2)解:如图1,连接OA ,OB ,作点B 作BE ⊥AC 于点E ,∵OA=OB=32,AB=6,∴OA 2+OB 2=AB 2,∴△AOB 是等腰直角三角形,且∠AOB=90°,∴∠C=∠AOB=45°,∵∠BAC=30°,∴BE=AB=3,∴AE=22AB BE -=33,∵CE=BE=3,∴AC=AE+CE=33+3.(3)解:∵∠B=180°﹣∠BAC ﹣∠ACB=180°﹣30°﹣45°=105°,∴∠ADC=180°﹣∠B=75°,如图2,当CD=CB 时,∠DAC=∠BAC=30°,∴∠ACD=75°,∴AD=AC=33+3,CD=BC=2BE=32,∴AD 333CD 32+==622+; 如图3,当CD=AB 时,过点D 作DF ⊥AC ,交AC 于点F ,则∠DAC=∠ACB=45°,∴∠ACD=180°﹣∠DAC ﹣∠ADC=60°,∴DF=CD•sin60°=6×32=33, ∴AD=2DF=36,∴AD 36CD 6==62. 综上所述:AD CD =622+或62. 【点睛】本题考查圆的综合应用问题,综合运用弧与弦的关系,等腰三角形的性质结合图形作辅助线进行分析证明以及求解,难度较大.5.如图①、②、③是两个半径都等于2的⊙O 1和⊙O 2,由重合状态沿水平方向运动到互相外切过程中的三个位置,⊙O 1和⊙O 2相交于A 、B 两点,分别连结O 1A 、O 1B 、O 2A 、O 2B 和AB .(1)如图②,当∠AO 1B =120°时,求两圆重叠部分图形的周长l ;(2)设∠AO 1B 的度数为x ,两圆重叠部分图形的周长为y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围;(3)在(2)中,当重叠部分图形的周长时,则线段O 2A 所在的直线与⊙O 1有何位置关系?请说明理由.除此之外,它们是否还有其它的位置关系?如果有,请直接写出其它位置关系时的x 的取值范围.【答案】(1)83π(2)(0≤x ≤180) (3)O 2A 与⊙O 1相切;当0≤x ≤90和0≤x ≤180时,线段O 2A 所在的直线与⊙O 1相交【解析】试题分析:(1)解法一、依对称性得,∠AO 2B =∠AO 1B =120°,∴解法二、∵O 1A=O 1B=O 2A=O 2B∴AO 1BO 2是菱形 ∴∠AO 2B =∠AO 1B =120° ∴l =2׈A=(2)∵由(1)知,菱形AO 1BO 2中∠AO 2B =∠AO 1B=x 度,∴重叠图形的周长, 即(0≤x≤180)(3) 当时,线段O2A所在的直线与⊙O1相切!理由如下:∵,由(2)可知:,解之x=90度∴AO1B=90°,因此菱形AO1BO2是正方形,∴O1AO2=90°,即O2A⊥O1A,而O1A是⊙O1的半径,且A为半径之外端;∴O2A与⊙O1相切.还有如下位置关系:当0≤x≤90和0≤x≤180时,线段O2A所在的直线与⊙O1相交考点:直线与圆的位置关系点评:本题主要考查直线与圆的位置关系,掌握判定直线与圆的位置关系是解本题的关键,会求函数的解析式,本题难度比较大6.如图,四边形ABCD内接于⊙O,AC为直径,AC和BD交于点E,AB=BC.(1)求∠ADB的度数;(2)过B作AD的平行线,交AC于F,试判断线段EA,CF,EF之间满足的等量关系,并说明理由;(3)在(2)条件下过E,F分别作AB,BC的垂线,垂足分别为G,H,连接GH,交BO 于M,若AG=3,S四边形AGMO:S四边形CHMO=8:9,求⊙O的半径.【答案】(1)45°;(2)EA2+CF2=EF2,理由见解析;(3)2【解析】【分析】(1)由直径所对的圆周角为直角及等腰三角形的性质和互余关系可得答案;(2)线段EA,CF,EF之间满足的等量关系为:EA2+CF2=EF2.如图2,设∠AB E=α,∠CBF=β,先证明α+β=45°,再过B作BN⊥BE,使BN=BE,连接NC,判定△AEB≌△CNB (SAS)、△BFE≌△BFN(SAS),然后在Rt△NFC中,由勾股定理得:CF2+CN2=NF2,将相关线段代入即可得出结论;(3)如图3,延长GE,HF交于K,由(2)知EA2+CF2=EF2,变形推得S△ABC=S矩形BGKH,S△BGM=S四边形COMH,S△BMH=S四边形AGMO,结合已知条件S四边形AGMO:S四边形CHMO=8:9,设BG=9k,BH=8k,则CH=3+k,求得AE的长,用含k的式子表示出CF和EF,将它们代入EA2+CF2=EF2,解得k的值,则可求得答案.【详解】解:(1)如图1,∵AC为直径,∴∠ABC=90°,∴∠ACB+∠BAC=90°,∵AB=BC,∴∠ACB=∠BAC=45°,∴∠ADB=∠ACB=45°;(2)线段EA,CF,EF之间满足的等量关系为:EA2+CF2=EF2.理由如下:如图2,设∠ABE=α,∠CBF=β,∵AD∥BF,∴∠EBF=∠ADB=45°,又∠ABC=90°,∴α+β=45°,过B作BN⊥BE,使BN=BE,连接NC,∵AB=CB,∠ABE=∠CBN,BE=BN,∴△AEB≌△CNB(SAS),∴AE=CN,∠BCN=∠BAE=45°,∴∠FCN=90°.∵∠FBN=α+β=∠FBE,BE=BN,BF=BF,∴△BFE≌△BFN(SAS),∴EF=FN,∵在Rt△NFC中,CF2+CN2=NF2,∴EA2+CF2=EF2;(3)如图3,延长GE,HF交于K,由(2)知EA 2+CF 2=EF 2,∴12EA 2+12CF 2=12EF 2, ∴S △AGE +S △CFH =S △EFK ,∴S △AGE +S △CFH +S 五边形BGEFH =S △EFK +S 五边形BGEFH ,即S △ABC =S 矩形BGKH ,∴12S △ABC =12S 矩形BGKH , ∴S △GBH =S △ABO =S △CBO ,∴S △BGM =S 四边形COMH ,S △BMH =S 四边形AGMO ,∵S 四边形AGMO :S 四边形CHMO =8:9,∴S △BMH :S △BGM =8:9,∵BM 平分∠GBH ,∴BG :BH =9:8,设BG =9k ,BH =8k ,∴CH =3+k ,∵AG =3,∴AE =2,∴CF 2(k+3),EF 2(8k ﹣3),∵EA 2+CF 2=EF 2, ∴222(32)2(3)]2(83)]k k ++=-,整理得:7k 2﹣6k ﹣1=0,解得:k 1=﹣17(舍去),k 2=1. ∴AB =12,∴AO =22AB =2, ∴⊙O 的半径为2.【点睛】本题属于圆的综合题,考查了圆的相关性质及定理、全等三角形的判定与性质、多边形的面积公式、勾股定理及解一元二次方程等知识点,熟练运用相关性质及定理是解题的关键.7.已知AB 是O 的一条弦,点C 在O 上,联结CO 并延长,交弦AB 于点D ,且CD CB =.(1)如图1,如果BO 平分ABC ∠,求证:AB BC =;(2)如图2,如果AO OB ⊥,求:AD DB 的值;(3)延长线段AO 交弦BC 于点E ,如果EOB ∆是等腰三角形,且O 的半径长等于2,求弦BC 的长.【答案】(1)证明见解析;(2)3(3)51+和22 【解析】【分析】(1)由题意利用弦心距即可求证结果,(2)此题关键先求出AO ,做辅助线构造特殊三角形,并求证出∠AOD ,再根据平行线分线段成比例求出比值即可,(3)分情况讨论两种情况:OE=BE 时或OB=BE 时两种情况,利用三角形相似即△COE ~△CBO 找到相似比,利用相似比求解即可.【详解】(1)过点O 作OP ⊥AB ,垂足为点P ;OQ ⊥BC ,垂足为点Q ,∵BO 平分∠ABC ,∴OP=OQ ,∵OP ,OQ 分别是弦AB 、BC 的弦心距,∴AB= BC ;(2)∵OA=OB ,∴∠A=∠OBD ,∵CD=CB ,∴∠CDB =∠CBD ,∴∠A+∠AOD =∠CBO +∠OBD ,∴∠AOD =∠CBO ,∵OC=OB ,∴∠C =∠CBO ,∴∠DOB =∠C +∠CBO = 2∠CBO = 2∠AOD ,∵AO ⊥OB ,∴∠ AOB =∠AOD +∠BOD =3∠AOD = 90°,∴∠AOD=30°,过点D 作DH ⊥AO ,垂足为点H ,∴∠AHD=∠DHO=90°,∴tan ∠AOD =HD OH ∵∠AHD=∠AOB=90°,∴HD ‖OB , ∴D AOB H AH O = , ∵OA=OB ,∴HD=AH ,∵HD ‖OB ,∴3AH HD OH O AH DB H ===; (3)∵∠C=∠CBO ,∴∠OEB =∠C+∠COE >∠CBO ,∴OE≠OB ;若OB = EB =2时,∵∠C=∠C ,∠COE =∠AOD =∠CBO ,∴△COE ~△CBO , ∴CO CE BC CO=, ∴222BC BC =-, ∴2BC -2BC -4=0,∴BC =舍去)或,∴BC =5+1;若OE = EB 时,∵∠EOB =∠CBO ,∵∠OEB =∠C+∠COE =2∠C =2∠CBO 且∠OEB +∠CBO +∠EOB = 180°,∴4∠CBO=180°,∠CBO=45°,∴∠OEB=90°,∴cos ∠CBO=22EB OB =, ∵OB=2,∴EB =2 ,∵OE 过圆心,OE ⊥BC ,∴BC =2EB =22.【点睛】此题考查圆的相关知识:圆心距及圆内三角形相似的相关知识,属于综合题型,难度较高.8.AB 是O 直径,,C D 分别是上下半圆上一点,且弧BC =弧BD ,连接,AC BC ,连接CD 交AB 于E ,(1)如图(1)求证:90AEC ∠=︒;(2)如图(2)F 是弧AD 一点,点,M N 分别是弧AC 和弧FD 的中点,连接FD ,连接MN 分别交AC ,FD 于,P Q 两点,求证:MPC NQD ∠=∠(3)如图(3)在(2)问条件下,MN 交AB 于G ,交BF 于L ,过点G 作GH MN ⊥交AF 于H ,连接BH ,若,6,BG HF AG ABH ==∆的面积等于8,求线段MN 的长度【答案】(1)证明见解析;(2)证明见解析;(3)2410MN =. 【解析】【分析】(1)由垂径定理即可证明; (2)利用等弧所对的圆周角相等和三角形外角性质即可得到结论;(3)由∠MPC=∠NQD 可得:∠BGL=∠BLG ,BL=BG ,作BR ⊥MN ,GT ⊥AF ,HK ⊥AB ,证明:GH 平分∠AGT ,利用相似三角形性质和角平分线性质求得△AGT 三边关系,再求出HK 与GH ,OS ⊥MN ,再利用相似三角形性质求出OS ,利用勾股定理求MN 即可.【详解】解:()1证明:∵BC BD =,AB 为直径,∴AB ⊥CD∴∠AEC=90°;()2连接,OM ON ,∵点M 是弧AC 的中点,点N 是弧DF 的中点,∴AM CM =,FN DN =,∴,OM AC ON FD ⊥⊥, ∵OM=ON ,∴M N ∠=∠,∵90M MPC N NQB ∠+∠=∠+∠=︒,MPC NQD ∴∠=∠;()3如图3,过G 作GT ⊥AF 于T ,过H 作HK ⊥AB 于K ,过B 作BR ⊥MN 于R ,过O 作OS ⊥MN 于S ,连接OM ,设BG=m ,∵△ABH 的面积等于8,AG=6∴HK=166m +, ∵BC BD =,∴∠BAC=∠BFD ,由(2)得∠MPC=∠NQD∴∠AGM=∠FLN∴∠BGL=∠BLG∴BL=BG ,∵BR ⊥MN∴∠ABR=∠FBR∵GH ⊥MN∴GH ∥BR∴∠AGH=∠ABR∵AB 是直径,GT ⊥AF∴∠AFB=∠ATG=90°∴GT ∥BF ,又∵GH ∥BR∴∠TGH=∠FBR∴∠AGH=∠TGH ,又∵HK ⊥AG ,HT ⊥GT ,∴HT=HK=166m +, ∵FH=BG=m , ∴FT=16(8)(2)66m m m m m +--=++, ∵GT ∥BF , ∴AT AG FT BG=, ∴6(8)(2)(6)m m AT m m +-=+,616m AH m -=,48(6)(38)m KG TG m m ==+-, ∵222AT TG AG +=,代入解得:m=4;∴AB=10,OM=5,GK=245,HK=85,OG=1∴GH=5, ∵OS ⊥MN∴∠OSG=∠GKH=90°,GH ∥OS∴∠HGK=∠GOS∴△HGK ∽△GOS , ∴OS GK OG GH=,∴OS =∴222410MG OM OG =-=, ∴24105MN =; 【点睛】 本题考查了圆的性质,圆周角定理,垂径定理,相似三角形判定和性质,勾股定理等,综合性较强,尤其是第(3)问难度很大,计算量大,解题的关键是熟练掌握所学的知识,正确作出辅助线,运用数形结合的思想进行解题.9.如图,在梯形ABCD 中,AD//BC ,AB=CD=AD=5,cos 45B =,点O 是边BC 上的动点,以OB 为半径的O 与射线BA 和边BC 分别交于点E 和点M ,联结AM ,作∠CMN=∠BAM ,射线MN 与边AD 、射线CD 分别交于点F 、N .(1)当点E 为边AB 的中点时,求DF 的长;(2)分别联结AN 、MD ,当AN//MD 时,求MN 的长; (3)将O 绕着点M 旋转180°得到'O ,如果以点N 为圆心的N 与'O 都内切,求O 的半径长.【答案】(1)DF 的长为158;(2)MN 的长为5;(3)O 的半径长为258. 【解析】【分析】(1)作EH BM ⊥于H ,根据中位线定理得出四边形BMFA 是平行四边形,从而利用cos 45B =解直角三角形即可求算半径,再根据平行四边形的性质求FD 即可;(2)先证AMB CNM ∠=∠,再证MAD CNM ∠=∠,从而证明AFM NFD ∆~∆,得到AF MF AF DF NF MF NF DF=⇒=,再通过平行证明AFN DFM ∆~∆,从而得到AF NF AF MF NF DF DF MF=⇒=,通过两式相乘得出AF NF =再根据平行得出NF DF =, 从而得出答案.(3)通过图形得出MN 垂直平分'OO ,从而得出90BAM CMN ∠=∠=︒,再利用cos 45B =解三角函数即可得出答案.【详解】(1)如图,作EH BM ⊥于H :∵E 为AB 中点,45,cos 5AB AD DC B ==== ∴52AE BE ==∴cos 45BH B BE == ∴2BH = ∴2253222EH ⎛⎫=-= ⎪⎝⎭设半径为r ,在Rt OEH ∆中: ()222322r r ⎛⎫=-+ ⎪⎝⎭ 解得:2516r =∵,E O 分别为,BA BM 中点 ∴BAM BEO OBE ∠=∠=∠又∵CMN BAM ∠=∠∴CMN OBE ∠=∠∴//MF AB∴四边形BMFA 是平行四边形 ∴2528AF BM r === ∴2515588FD AD AF =-=-= (2)如图:连接MD AN ,∵,B C BAM CMN ∠=∠∠=∠ ∴AMB CNM ∠=∠又∵AMB MAD ∠=∠∴MAD CNM ∠=∠又∵AFM NFD ∠=∠∴AFM NFD ∆~∆∴AF MF AF DF NF MF NF DF=⇒=① 又∵//MD AN∴AFN DFM ∆~∆ ∴AF NF AF MF NF DF DF MF=⇒=② 由①⨯②得; 22AF NF AF NF =⇒= ∴NF DF =∴5MN AD ==故MN 的长为5;(3)作如图:∵圆O 与圆'O 外切且均与圆N 内切 设圆N 半径为R ,圆O 半径为r ∴'=NO R r NO -=∴N 在'OO 的中垂线上∴MN 垂直平分'OO∴90NMC ∠=︒∵90BAM CMN ∠=∠=︒∴A 点在圆上 ∴54cos 5AB B BM BM === 解得:254BM = O 的半径长为258【点睛】 本题是一道圆的综合题目,难度较大,掌握相似之间的关系转化以及相关线段角度的关系转化是解题关键.10.如图,二次函数y =﹣56x 2+bx +c 与x 轴的一个交点A 的坐标为(﹣3,0),以点A 为圆心作圆A ,与该二次函数的图象相交于点B ,C ,点B ,C 的横坐标分别为﹣2,﹣5,连接AB ,AC ,并且满足AB ⊥AC .(1)求该二次函数的关系式;(2)经过点B 作直线BD ⊥AB ,与x 轴交于点D ,与二次函数的图象交于点E ,连接AE ,请判断△ADE 的形状,并说明理由;(3)若直线y =kx +1与圆A 相切,请直接写出k 的值.【答案】(1)y =﹣56x 2﹣376x ﹣11;(2)△ADE 是等腰三角形,理由见解析;(3)k 的值为﹣12或2 【解析】【分析】(1)利用三垂线判断出()ACN BAM AAS ∆≅∆,进而得出(2,2)B --,(5,1)C --,最后将点B ,C 坐标代入抛物线解析式中即可得出结论;(2)先判断出ABM BDM ∆∆∽,得出点D 坐标,进而求出直线BD 的解析式,求出点E 坐标,即可得出结论;(3)分两种情况,Ⅰ、切点在x 轴上方,利用三垂线判断出()AQG FPG AAS ∆≅∆,得出AQ PF =,GQ PG =,设成点G 坐标,进而得出3AQ m =+,PF km =,PG m =-,1GQ km =+,即可得出结论;Ⅱ、切点在x轴下方,同Ⅰ的方法即可得出结论.【详解】解:(1)如图1,过点B作BM x⊥轴于M,过点C作CN x⊥轴于N,90ANC BMA∴∠=∠=︒,90ABM BAM∴∠+∠=︒,AC AB⊥,90CAN BAM∴∠+∠=︒,ABM CAN∴∠=∠,A过点B,C,AC AB∴=,()ACN BAM AAS∴∆≅∆,2(3)1CN AM∴==---=,3(5)2BM AN==---=,(2,2)B∴--,(5,1)C--,点B,C在抛物线上,∴54226525516b cb c⎧-⨯-+=-⎪⎪⎨⎪-⨯-+=-⎪⎩,∴37611bc⎧=-⎪⎨⎪=-⎩,∴抛物线的解析式为25371166y x x=---,(2)ADE∆是等腰三角形,理由如下:如图1,BD AB ⊥,90ABD ∴∠=︒,90ABM DBM ∴∠+∠=︒,过点B 作BM x ⊥轴于M ,90BMD AMB ∴∠=∠=︒,90BDM DBM ∴∠+∠=︒,ABM BDM ∴∠=∠,ABM BDM ∴∆∆∽, ∴AM BM BM DM=, ∴122DM=, 4DM ∴=,2()2D ∴,, 5AD ∴=,(2,2)B --,∴直线BD 的解析式为112y x =-, 联立,21125371166y x y x x ⎧=-⎪⎪⎨⎪=---⎪⎩, ∴22x y =-⎧⎨=-⎩(舍)或61x y =-⎧⎨=-⎩, (6,4)E ∴--,22(63)(40)5AE ∴=-++--=,AD AE ∴=,ADE ∴∆是等腰三角形;(3)如图2,点(2,2)B --在A 上,AB ∴ 记直线1y kx =+与y 轴相交于F ,令0x =,则1y =,(0,1)F ∴,1OF ∴=,Ⅰ、当直线1y kx =+与A 的切点在x 轴上方时,记切点为G ,则AG AB ==90AGF ∠=︒,连接AF ,在Rt AOF ∆中,3OA =,1OF =,AF ∴=,在Rt AGF ∆中,根据勾股定理得,FG AG ===,如图2,过点G 作GP y ⊥轴于P ,过点G 作GQ x ⊥轴于Q ,90AQG FPG POQ ∴∠=∠=︒=∠,∴四边形POQG 是矩形,90PGQ ∴∠=︒, FG 是A 的切线,AGQ FGP ∴∠=∠,()AQG FPG AAS ∴∆≅∆,AQ PF ∴=,GQ PG =,设点(,1)G m km +,3AQ m ∴=+,PF km =,PG m =-,1GQ km =+,3m km ∴+=①,1km m +=-②, 联立①②解得,212m k =-⎧⎪⎨=-⎪⎩, Ⅱ、当切点在x 轴下方时,同Ⅰ的方法得,2k =,即:直线1y kx =+与圆A 相切,k 的值为12-或2. 【点睛】此题是二次函数综合题,主考查了待定系数法,三垂线判定两三角形全等,解方程组,判断出FG AG =是解本题的关键.。
人教版数学九年级上册24.1.4圆周角的概念和圆周角的定理(教案)
1.分组讨论:学生们将分成若干小组,每组讨论一个与圆周角相关的实际问题,如如何计算某个特定圆周角的度数。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如使用量角器和圆规来测量和验证圆周角定理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《圆周角的概念和圆周角的定理》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算圆上角度的情况?”比如,在制作圆形桌面或设计轮子时。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索圆周角的奥秘。
三、教学难点与重点
1.教学重点
-圆周角的概念:确保学生理解圆周角的定义,即顶点在圆上,两边分别与圆相交的角。
-圆周角定理:强调圆周角等于其所对圆心角的一半,这是本节课的核心知识点。
-定理的应用:培养学生将圆周角定理应用于解决具体问题,如计算圆周角或圆心角的度数。
举例:通过图形展示,让学生观察并总结出圆周角的定义,进而引导他们理解圆周角定理。在实际例题中,如给出一个圆和其上的圆周角,要求学生计算圆周角或圆心角的度数,强化定理的应用。
首先,关于导入新课的部分,我通过提出与生活相关的问题来激发学生的兴趣,这是一个很好的开始。我发现学生们对这个问题产生了浓厚的兴趣,积极思考圆周角在日常生活中的应用。但在今后的教学中,我还可以尝试更多元化的导入方式,比如利用多媒体展示一些实际案例,让学生更直观地感受到圆周角的应用。
其次,在新课讲授环节,我注意到有些学生对圆周角定理的证明过程理解得不够透彻。在今后的教学中,我需要更加注重引导学生逐步推导和证明圆周角定理,让他们在这个过程中锻炼逻辑思维能力。此外,对于重点难点的讲解,我要更加耐心和细致,尽可能用简单的语言让学生明白。
人教版初三数学九年级上册 第24章 《圆》教材分析 课件(共38张PPT)
能利用垂径定理解决有关简单问题; 能利用圆周角定理及其推论解决有关 简单问题
运用圆的性质的有关 内容解决有关问题
点和圆 的
位置关系
了解点与圆的位置关系
尺规作图(利用基本作图完成):过 不在同一直线上的三点作圆;能利用 点与圆的位置关系解决有关简单问题
图图 形形 与的 几性 何质
直线和圆 的
位置关系
了解直线和圆的位置关系;会判断直 线和圆的位置关系;理解切线与过切 点的半径的关系;会用三角尺过圆上 一点画圆的切线
三角形的内切圆;了解三角形的内心; 有关简单问题;尺规作图(利用基本
了解正多边形的概念及正多边形与圆 作图完成):作三角形的外接圆、内
的关系
切圆,作圆的内接正方形和正六边形
弧长、扇形面 会计算圆的弧长和扇形的面积;会计
积 算圆锥的侧面积和全面积
和圆锥
能利用圆的弧长和扇形的面积解决一 些简单的实际问题
O
O
适当补充“知二推三”,灵活运用所学 知识,特别是体会如何证明圆心在弦上 (某弦是直径)。
O
C
A
B
例. 根据条件求解:
D
(1)已知⊙O半径为5,弦长为6,求弦心距和弓形高.
(2)已知⊙O半径为4,弦心距为3,求弦长和弓形高.
(3)已知⊙O半径为5,劣弧所对的弓形高为2,求弦长和 弦心距.
(4)已知⊙O弦长为2,弦心距为,求⊙O半径及弓形高.
A
B
半径为5dm。则水深______dm.
5.注重数学核心素养的培养
本章的教学内容能进一步发展学生的几何 直观、推理能力等数学核心素养。
在教学过程中引导学生多画图、敢画图, 借助对几何图形直观的感知、分析问题, 并在此基础之上,在解决问题的过程中, 运用合情推理探索思路,发现结论,运用 演绎推理用于证明结论。
九年级数学上册旋转几何综合综合测试卷(word含答案)
九年级数学上册旋转几何综合综合测试卷(word含答案)一、初三数学旋转易错题压轴题(难)1.(1)观察猜想如图(1),在△ABC中,∠BAC=90°,AB=AC,点D是BC的中点.以点D为顶点作正方形DEFG,使点A,C分别在DG和DE上,连接AE,BG,则线段BG和AE的数量关系是_____;(2)拓展探究将正方形DEFG绕点D逆时针方向旋转一定角度后(旋转角度大于0°,小于或等于360°),如图2,则(1)中的结论是否仍然成立?如果成立,请予以证明;如果不成立,请说明理由.(3)解决问题若BC=DE=2,在(2)的旋转过程中,当AE为最大值时,直接写出AF的值.【答案】(1)BG=AE.(2)成立.如图②,连接AD.∵△ABC是等腰三直角角形,∠BAC=90°,点D是BC的中点.∴∠ADB=90°,且BD=AD.∵∠BDG=∠ADB-∠ADG=90°-∠ADG=∠ADE,DG=DE.∴△BDG≌△ADE,∴BG=AE.…………………………………………7分(3)由(2)知,BG=AE,故当BG最大时,AE也最大.正方形DEFG绕点D逆时针方向旋转270°时,BG最大,如图③.若BC=DE=2,则AD=1,EF=2.在Rt△AEF中,AF2=AE2+EF2=(AD+DE)2+EF2=(1+2)2+22=13.∴AF=【解析】解:(1)BG=AE.(2)成立.如图②,连接AD.∵△ABC是等腰三直角角形,∠BAC=90°,点D是BC的中点.∴∠ADB=90°,且BD=AD.∵∠BDG=∠ADB-∠ADG=90°-∠ADG=∠ADE,DG=DE.∴△BDG≌△ADE,∴BG=AE.(3)由(2)知,BG=AE,故当BG最大时,AE也最大.Z+X+X+K]因为正方形DEFG在绕点D旋转的过程中,G点运动的图形是以点D为圆心,DG为半径的圆,故当正方形DEFG旋转到G点位于BC的延长线上(即正方形DEFG绕点D逆时针方向旋转270°)时,BG最大,如图③.若BC=DE=2,则AD=1,EF=2.在Rt△AEF中,AF2=AE2+EF2=(AD+DE)2+EF2=(1+2)2+22=13.∴AF=.即在正方形DEFG旋转过程中,当AE为最大值时,AF=.2.在△AOB中,C,D分别是OA,OB边上的点,将△OCD绕点O顺时针旋转到△OC′D′.(1)如图1,若∠AOB=90°,OA=OB,C,D分别为OA,OB的中点,证明:①AC′=BD′;②AC′⊥BD′;(2)如图2,若△AOB为任意三角形且∠AOB=θ,CD∥AB,AC′与BD′交于点E,猜想∠AEB=θ是否成立?请说明理由.【答案】(1)证明见解析;(2)成立,理由见解析【解析】试题分析:(1)①由旋转的性质得出OC=OC′,OD=OD′,∠AOC′=∠BOD′,证出OC′=OD′,由SAS证明△AOC′≌△BOD′,得出对应边相等即可;②由全等三角形的性质得出∠OAC′=∠OBD′,又由对顶角相等和三角形内角和定理得出∠BEA=90°,即可得出结论;(2)由旋转的性质得出OC=OC′,OD=OD′,∠AOC′=∠BOD′,由平行线得出比例式,得出,证明△AOC′∽△BOD′,得出∠OAC′=∠OBD′再由对顶角相等和三角形内角和定理即可得出∠AEB=θ.试题解析:(1)证明:①∵△OCD旋转到△OC′D′,∴OC=OC′,OD=OD′,∠AOC′=∠BOD′,∵OA=OB,C、D为OA、OB的中点,∴OC=OD,∴OC′=OD′,在△AOC′和△BOD′中,,∴△AOC′≌△BOD′(SAS),∴AC′=BD′;②延长AC′交BD′于E,交BO于F,如图1所示:∵△AOC′≌△BOD′,∴∠OAC′=∠OBD′,又∠AFO=∠BFE,∠OAC′+∠AFO=90°,∴∠OBD′+∠BFE=90°,∴∠BEA=90°,∴AC′⊥BD′;(2)解:∠AEB=θ成立,理由如下:如图2所示:∵△OCD旋转到△OC′D′,∴OC=OC′,OD=OD′,∠AOC′=∠BOD′,∵CD∥AB,∴,∴,∴,又∠AOC′=∠BOD′,∴△AOC′∽△BOD′,∴∠OAC′=∠OBD′,又∠AFO=∠BFE,∴∠AEB=∠AOB=θ.考点:相似三角形的判定与性质;全等三角形的判定与性质;旋转的性质.3.如图1,正方形ABCD与正方形AEFG的边AB、AE(AB<AE)在一条直线上,正方形AEFG以点A为旋转中心逆时针旋转,设旋转角为. 在旋转过程中,两个正方形只有点A 重合,其它顶点均不重合,连接BE、DG.(1)当正方形AEFG旋转至如图2所示的位置时,求证:BE=DG;(2)当点C在直线BE上时,连接FC,直接写出∠FCD 的度数;(3)如图3,如果=45°,AB =2,AE=,求点G到BE的距离.【答案】(1)证明见解析;(2)45°或135°;(3).【解析】试题分析:(1)根据正方形的性质可得AB=AD,AE=AG,∠BAD=∠EAG=90°,再求出∠BAE=∠DAG,然后利用“边角边”证明△ABE和△ADG全等,根据全等三角形对应边相等证明即可.(2)当点C在直线BE上时,可知点E与C重合或G点C与重合,据此求解即可.(3)根据和求解即可.试题解析:(1)如图2,∵四边形ABCD是正方形,∴AB=AD,∠BAE+∠EAD=90°.∵四边形AEFG是正方形,∴AE=AG,∠EAD+∠DAG=90°.∴∠BAE=∠DAG..∴△ABE≌△ADG(SAS).∴BE=DG..(2)如图,当点C在直线BE上时,可知点E与C重合或G点C与重合,此时∠FCD 的度数为45°或135°.(3)如图3,连接GB、GE.由已知α=45°,可知∠BAE=45°.又∵GE为正方形AEFG的对角线,∴∠AEG=45°.∴AB∥GE.∵,∴GE =8.∴.过点B作BH⊥AE于点H.∵AB=2,∴. ∴..设点G到BE的距离为h.∴.∴.∴点G到BE的距离为.考点:1.旋转的性质;2.正方形的性质;3.全等三角形的判定和性质;4.平行的判定和性质;5.勾股定理;6.分类思想的应用.4.(1)问题发现如图1,△ACB和△DCE均为等腰直角三角形,∠ACB=90°,B,C,D在一条直线上.填空:线段AD,BE之间的关系为 .(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,请判断AD,BE的关系,并说明理由.(3)解决问题如图3,线段PA=3,点B是线段PA外一点,PB=5,连接AB,将AB绕点A逆时针旋转90°得到线段AC,随着点B的位置的变化,直接写出PC的范围.【答案】(1) AD=BE,AD⊥BE.(2) AD=BE,AD⊥BE.22.【解析】【分析】(1)根据等腰三角形性质证△ACD ≌△BCE (SAS ),得AD=BE ,∠EBC=∠CAD ,延长BE 交AD 于点F ,由垂直定义得AD ⊥BE .(2)根据等腰三角形性质证△ACD ≌△BCE (SAS ),AD=BE ,∠CAD=∠CBE ,由垂直定义得∠OHB=90°,AD ⊥BE ;(3)作AE ⊥AP ,使得AE=PA ,则易证△APE ≌△ACP ,PC=BE ,当P 、E 、B 共线时,BE 最小,最小值=PB-PE ;当P 、E 、B 共线时,BE 最大,最大值=PB+PE ,故5-32≤BE≤5+32. 【详解】(1)结论:AD=BE ,AD ⊥BE . 理由:如图1中,∵△ACB 与△DCE 均为等腰直角三角形, ∴AC=BC ,CE=CD , ∠ACB=∠ACD=90°, 在Rt △ACD 和Rt △BCE 中AC BC ACD BCE CD CE ⎧⎪∠∠⎨⎪⎩=== ∴△ACD ≌△BCE (SAS ), ∴AD=BE ,∠EBC=∠CAD 延长BE 交AD 于点F , ∵BC ⊥AD , ∴∠EBC+∠CEB=90°, ∵∠CEB=AEF , ∴∠EAD+∠AEF=90°, ∴∠AFE=90°,即AD ⊥BE . ∴AD=BE ,AD ⊥BE . 故答案为AD=BE ,AD ⊥BE . (2)结论:AD=BE ,AD ⊥BE .理由:如图2中,设AD 交BE 于H ,AD 交BC 于O .∵△ACB 与△DCE 均为等腰直角三角形, ∴AC=BC ,CE=CD ,∠ACB=∠ECD=90°, ∴ACD=∠BCE , 在Rt △ACD 和Rt △BCE 中AC BC ACD BCE CD CE ⎧⎪∠∠⎨⎪⎩===, ∴△ACD ≌△BCE (SAS ), ∴AD=BE ,∠CAD=∠CBE ,∵∠CAO+∠AOC=90°,∠AOC=∠BOH , ∴∠BOH+∠OBH=90°, ∴∠OHB=90°, ∴AD ⊥BE , ∴AD=BE ,AD ⊥BE .(3)如图3中,作AE ⊥AP ,使得AE=PA ,则易证△APE ≌△ACP , ∴PC=BE ,图3-1中,当P 、E 、B 共线时,BE 最小,最小值2, 图3-2中,当P 、E 、B 共线时,BE 最大,最大值2, ∴22, 即22【点睛】本题是几何变换综合题,考查了旋转的性质、等腰直角三角形的性质、全等三角形的判定和性质等知识,解题的关键是正确寻找三角形全等的条件,学会添加辅助线,构造全等三角形解决问题,学会用转化的思想思考问题,属于中考压轴题.5.请认真阅读下面的数学小探究系列,完成所提出的问题:()1探究1:如图1,在等腰直角三角形ABC 中,90ACB ∠=,BC a =,将边AB 绕点B顺时针旋转90得到线段BD ,连接.CD 求证:BCD 的面积为21.(2a 提示:过点D 作BC 边上的高DE ,可证ABC ≌)BDE()2探究2:如图2,在一般的Rt ABC 中,90ACB ∠=,BC a =,将边AB 绕点B 顺时针旋转90得到线段BD ,连接.CD 请用含a 的式子表示BCD 的面积,并说明理由.()3探究3:如图3,在等腰三角形ABC 中,AB AC =,BC a =,将边AB 绕点B 顺时针旋转90得到线段BD ,连接.CD 试探究用含a 的式子表示BCD 的面积,要有探究过程.【答案】(1)详见解析;(2)BCD 的面积为212a ,理由详见解析;(3)BCD 的面积为214a . 【解析】 【分析】()1如图1,过点D 作BC 的垂线,与BC 的延长线交于点E ,由垂直的性质就可以得出ABC ≌BDE ,就有DE BC a.==进而由三角形的面积公式得出结论;()2如图2,过点D 作BC 的垂线,与BC 的延长线交于点E ,由垂直的性质就可以得出ABC ≌BDE ,就有DE BC a.==进而由三角形的面积公式得出结论;()3如图3,过点A 作AF BC ⊥与F ,过点D 作DE BC ⊥的延长线于点E ,由等腰三角形的性质可以得出1BF BC 2=,由条件可以得出AFB ≌BED 就可以得出BF DE =,由三角形的面积公式就可以得出结论. 【详解】()1如图1,过点D 作DE CB ⊥交CB 的延长线于E ,BED ACB90∠∠∴==,由旋转知,AB AD =,ABD 90∠=,ABC DBE 90∠∠∴+=,A ABC 90∠∠+=, A DBE ∠∠∴=, 在ABC 和BDE 中, ACB BED A DBE AB BD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ABC ∴≌()BDE AAS BC DE a ∴==,BCD 1S BC DE 2=⋅,2BCD 1S a 2∴=;()2BCD 的面积为21a 2,理由:如图2,过点D 作BC 的垂线,与BC 的延长线交于点E ,BED ACB 90∠∠∴==,线段AB 绕点B 顺时针旋转90得到线段BE ,AB BD ∴=,ABD 90∠=,ABC DBE 90∠∠∴+=,A ABC 90∠∠+=, A DBE ∠∠∴=, 在ABC 和BDE 中, ACB BED A DBE AB BD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ABC ∴≌()BDE AAS ,BC DE a ∴==,BCD1S BC DE2=⋅,2BCD1S a2∴=;()3如图3,过点A作AF BC⊥与F,过点D作DE BC⊥的延长线于点E,AFB E90∠∠∴==,11BF BC a22==,FAB ABF90∠∠∴+=,ABD90∠=,ABF DBE90∠∠∴+=,FAB EBD∠∠∴=,线段BD是由线段AB旋转得到的,AB BD∴=,在AFB和BED中,AFB EFAB EBDAB BD∠=∠⎧⎪∠=∠⎨⎪=⎩,AFB∴≌()BED AAS,1BF DE a2∴==,2BCD1111S BC DE a a a2224=⋅=⋅⋅=,BCD∴的面积为21a4.【点睛】本题考查了旋转的性质、直角三角形的性质、等腰三角形的性质、全等三角形的判定与性质、三角形的面积等,综合性较强,有一定的难度,正确添加辅助线、熟练掌握和灵活运用相关的性质与定理是解题的关键.6.已知,如图:正方形ABCD,将Rt△EFG斜边EG的中点与点A重合,直角顶点F落在正方形的AB边上,Rt△EFG的两直角边分别交AB、AD边于P、Q两点,(点P与点F重合),如图1所示:(1)求证:EP2+GQ2=PQ2;(2)若将Rt△EFG绕着点A逆时针旋转α(0°<α≤90°),两直角边分别交AB、AD边于P、Q两点,如图2所示:判断四条线段EP、PF、FQ、QG之间是否存在什么确定的相等关系?若存在,证明你的结论.若不存在,请说明理由;(3)若将Rt△EFG绕着点A逆时针旋转α(90°<α<180°),两直角边所在的直线分别交BA、AD两边延长线于P、Q两点,并判断四条线段EP、PF、FQ、QG之间存在何种确定的相等关系?按题意完善图3,请直接写出你的结论(不用证明).【答案】(1)见解析;(2)PF2+FQ2=EP2+GQ2;(3)四条线段EP、PF、FQ、QG之间的关系为PF2+GQ2=PE2+FQ2.【解析】【分析】(1)过点E作EH∥FG,由此可证△EAH≌△GAQ,然后根据全等三角形的性质得到EH=QG,又PQ=PH,在Rt△EPH中,EP2+EH2=PH2,由此可以得到EP2+GQ2=PQ2;(2)过点E作EH∥FG,交DA的延长线于点H,连接PQ、PH,由此可证△EAH≌△GAQ,然后根据全等三角形的性质得到EH=QG,又PH=PQ,在Rt△EPH中,EP2+EH2=PH2,即EP2+GQ2=PH2,在Rt△PFQ中,PF2+FQ2=PQ2,故PF2+FQ2=EP2+GQ2;(3)四条线段EP、PF、FQ、QG之间的关系为PE2+GQ2=PF2+FQ2,证明方法同上.【详解】(1)过点E作EH∥FG,连接AH、FH,如图所示:∵EA=AG,∠HEA=∠AGQ,∠HAE=∠GAD,∴△EAH≌△GAQ,∴EH=QG,HA=AQ,∵FA⊥AD,∴PQ=PH.在Rt△EPH中,∵EP2+EH2=PH2,∴EP2+GQ2=PQ2;(2)过点E作EH∥FG,交DA的延长线于点H,连接PQ、PH,∵EA=AG,∠HEA=∠AGQ,∠HAE=∠GAD,∴△EAH≌△GAQ,∴EH=QG,HA=AQ,∵PA⊥AD,∴PQ=PH.在Rt△EPH中,∵EP2+EH2=PH2,∴EP2+GQ2=PH2.在Rt△PFQ中,∵PF2+FQ2=PQ2,∴PF2+FQ2=EP2+GQ2.(3)四条线段EP、PF、FQ、QG之间的关系为PF2+GQ2=PE2+FQ2.【点睛】本题主要考查了旋转的性质,全等三角形的判定与性质,三线合一,勾股定理,正确作出辅助线是解答本题的关键.7.如图1,在平面直角坐标系xOy中,抛物线C:y=ax2+bx+c与x轴相交于A,B两点,顶点为D(0,4),AB=42,设点F(m,0)是x轴的正半轴上一点,将抛物线C绕点F 旋转180°,得到新的抛物线C′.(1)求抛物线C的函数表达式;(2)若抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,求m的取值范围.(3)如图2,P是第一象限内抛物线C上一点,它到两坐标轴的距离相等,点P在抛物线C′上的对应点P′,设M是C上的动点,N是C′上的动点,试探究四边形PMP′N能否成为正方形?若能,求出m的值;若不能,请说明理由.【答案】(1)2142y x=-+;(2)2<m<223)m=6或m17﹣3.【解析】【分析】(1)由题意抛物线的顶点C(0,4),A(20),设抛物线的解析式为24y ax=+,把A(220)代入可得a=12-,由此即可解决问题;(2)由题意抛物线C′的顶点坐标为(2m,﹣4),设抛物线C′的解析式为()21242y x m=--,由()221421242y xy x m⎧=-+⎪⎪⎨⎪=--⎪⎩,消去y得到222280x mx m-+-=,由题意,抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,则有()222(2)428020280m mmm⎧--->⎪⎪>⎨⎪->⎪⎩,解不等式组即可解决问题;(3)情形1,四边形PMP′N能成为正方形.作PE⊥x轴于E,MH⊥x轴于H.由题意易知P(2,2),当△PFM是等腰直角三角形时,四边形PMP′N是正方形,推出PF=FM,∠PFM=90°,易证△PFE≌△FMH,可得PE=FH=2,EF=HM=2﹣m,可得M(m+2,m﹣2),理由待定系数法即可解决问题;情形2,如图,四边形PMP′N是正方形,同法可得M(m﹣2,2﹣m),利用待定系数法即可解决问题.【详解】(1)由题意抛物线的顶点C (0,4),A (22,0),设抛物线的解析式为24y ax =+,把A (22,0)代入可得a =12-, ∴抛物线C 的函数表达式为2142y x =-+.(2)由题意抛物线C ′的顶点坐标为(2m ,﹣4),设抛物线C ′的解析式为()21242y x m =--, 由()221421242y x y x m ⎧=-+⎪⎪⎨⎪=--⎪⎩,消去y 得到222280x mx m -+-= ,由题意,抛物线C ′与抛物线C 在y 轴的右侧有两个不同的公共点,则有()222(2)428020280m m m m ⎧--->⎪⎪>⎨⎪->⎪⎩, 解得2<m <22,∴满足条件的m 的取值范围为2<m <22. (3)结论:四边形PMP ′N 能成为正方形.理由:1情形1,如图,作PE ⊥x 轴于E ,MH ⊥x 轴于H .由题意易知P (2,2),当△PFM 是等腰直角三角形时,四边形PMP ′N 是正方形,∴PF =FM ,∠PFM =90°,易证△PFE ≌△FMH ,可得PE =FH =2,EF =HM =2﹣m ,∴M (m +2,m ﹣2),∵点M 在2142y x =-+上,∴()212242m m -=-++,解得m =17﹣3或﹣17﹣3(舍弃),∴m =17﹣3时,四边形PMP ′N 是正方形.情形2,如图,四边形PMP ′N 是正方形,同法可得M (m ﹣2,2﹣m ),把M (m ﹣2,2﹣m )代入2142y x =-+中,()212242m m -=--+,解得m =6或0(舍弃),∴m =6时,四边形PMP ′N 是正方形.综上所述:m =6或m =17﹣3时,四边形PMP ′N 是正方形.8.两块等腰直角三角板△ABC 和△DEC 如图摆放,其中∠ACB=∠DCE=90°,F 是DE 的中点,H 是AE 的中点,G 是BD 的中点.(1)如图1,若点D 、E 分别在AC 、BC 的延长线上,通过观察和测量,猜想FH 和FG 的数量关系为______和位置关系为______;(2)如图2,若将三角板△DEC 绕着点C 顺时针旋转至ACE 在一条直线上时,其余条件均不变,则(1)中的猜想是否还成立,若成立,请证明,不成立请说明理由; (3)如图3,将图1中的△DEC 绕点C 顺时针旋转一个锐角,得到图3,(1)中的猜想还成立吗?直接写出结论,不用证明.【答案】(1)相等,垂直.(2)成立,证明见解析;(3)成立,结论是FH=FG ,FH ⊥FG . 【解析】试题分析:(1)证AD=BE ,根据三角形的中位线推出FH=12AD ,FH∥AD,FG=12BE ,FG∥BE,即可推出答案;(2)证△ACD≌△BCE,推出AD=BE ,根据三角形的中位线定理即可推出答案; (3)连接BE 、AD ,根据全等推出AD=BE ,根据三角形的中位线定理即可推出答案. 试题解析:(1)解:∵CE=CD ,AC=BC ,∠ECA=∠DCB=90°, ∴BE=AD ,∵F 是DE 的中点,H 是AE 的中点,G 是BD 的中点,∴FH=12AD ,FH ∥AD ,FG=12BE ,FG ∥BE , ∴FH=FG , ∵AD ⊥BE , ∴FH ⊥FG ,故答案为相等,垂直. (2)答:成立,证明:∵CE=CD ,∠ECD=∠ACD=90°,AC=BC , ∴△ACD ≌△BCE ∴AD=BE ,由(1)知:FH=12AD ,FH ∥AD ,FG=12BE ,FG ∥BE , ∴FH=FG ,FH ⊥FG ,∴(1)中的猜想还成立.(3)答:成立,结论是FH=FG ,FH ⊥FG . 连接AD ,BE ,两线交于Z ,AD 交BC 于X , 同(1)可证 ∴FH=12AD ,FH ∥AD ,FG=12BE ,FG ∥BE , ∵三角形ECD 、ACB 是等腰直角三角形, ∴CE=CD ,AC=BC ,∠ECD=∠ACB=90°, ∴∠ACD=∠BCE , 在△ACD 和△BCE 中AC BC ACD BCE CE CD ⎧⎪∠∠⎨⎪⎩=== ,∴△ACD ≌△BCE , ∴AD=BE ,∠EBC=∠DAC ,∵∠DAC+∠CXA=90°,∠CXA=∠DXB , ∴∠DXB+∠EBC=90°, ∴∠EZA=180°﹣90°=90°, 即AD ⊥BE , ∵FH ∥AD ,FG ∥BE , ∴FH ⊥FG , 即FH=FG ,FH ⊥FG , 结论是FH=FG ,FH ⊥FG.【点睛】运用了等腰直角三角形的性质、全等三角形的性质和判定、三角形的中位线定理,旋转的性质等知识点的理解和掌握,能熟练地运用这些性质进行推理是解此题的关键.9.在矩形ABCD 中,2AB =,1BC =,以点A 为旋转中心,逆时针旋转矩形ABCD ,旋转角为(0180)αα<<,得到矩形AEFG ,点B 、点C 、点D 的对应点分别为点E 、点F 、点G .()1如图①,当点E 落在DC 边上时,直写出线段EC 的长度为______; ()2如图②,当点E 落在线段CF 上时,AE 与DC 相交于点H ,连接AC ,①求证:ACD ≌CAE ; ②直接写出线段DH 的长度为______.()3如图③设点P 为边FG 的中点,连接PB ,PE ,在矩形ABCD 旋转过程中,BEP 的面积是否存在最大值?若存在请直接写出这个最大值;若不存在请说明理由.【答案】(1)23;(2)①见解析;34②;(3)存在,PBE 的面积的最大值为21,理由见解析 【解析】 【分析】()1如图①中,在RtADE 中,利用勾股定理即可解决问题;()2①证明:如图②中,根据HL 即可证明ACD ≌CAE ;②如图②中,由ACD ≌CAE ,推出ACD CAE ∠∠=,推出AH HC =,设AH HC m ==,在Rt ADH 中,根据222AD DH AH +=,构建方程即可解决问题; ()3存在.如图③中,连接PA ,作BM PE ⊥交PE 的延长线于M.由题意:PF PC 1==,由AG EF 1==,G F 90∠∠==,推出PA PE ==PBE1SPE BM 22=⋅⋅=,推出当BM 的值最大时,PBE 的面积最大,求出BM 的最大值即可解决问题; 【详解】()1四边形ABCD 是矩形,AB CD 2∴==,BC AD 1==,D 90∠=,矩形AEFG 是由矩形ABCD 旋转得到,AE AB 2∴==,在Rt ADE 中,DE ==CE 2∴=,故答案为2.()2①当点E 落在线段CF 上,AEC ADC 90∠∠∴==,在Rt ADC 和Rt AEC 中,{AC CACD AE ==,Rt ACD ∴≌()Rt CAE HL ;ACD ②≌CAE ,ACD CAE ∠∠∴=,AH HC ∴=,设AH HC m ==,在Rt ADH 中,222AD DH AH +=,2221(2m)m ∴+-=,5m 4∴=, 53DH 244∴=-=, 故答案为34; ()3存在.理由如下:如图③中,连接PA ,作BM PE ⊥交PE 的延长线于M ,由题意:PF PC1==,AG EF1==,G F90∠∠==,PA PE2∴==PBE 12S PE BM BM22∴=⋅⋅=,∴当BM的值最大时,PBE的面积最大,BM PB≤,PB AB PA≤+,PB22∴≤,BM22∴≤BM∴的最大值为22+PBE∴21.【点睛】本题是四边形综合题,考查了矩形的性质,旋转变换,全等三角形的判定和性质,勾股定理,三角形的面积,三角形的三边关系等知识,解题的关键是正确寻找全等三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.10.(问题提出)如图①,已知△ABC是等边三角形,点E在线段AB上,点D在直线BC上,且ED=EC,将△BCE绕点C顺时针旋转60°至△ACF连接EF试证明:AB=DB+AF(类比探究)(1)如图②,如果点E在线段AB的延长线上,其他条件不变,线段AB,DB,AF之间又有怎样的数量关系?请说明理由(2)如果点E在线段BA的延长线上,其他条件不变,请在图③的基础上将图形补充完整,并写出AB,DB,AF之间的数量关系,不必说明理由.【答案】证明见解析;(1)AB=BD﹣AF;(2)AF=AB+BD.【解析】【分析】(1)根据旋转的性质得出△EDB与FEA全等的条件BE=AF,再结合已知条件和旋转的性质推出∠D=∠AEF,∠EBD=∠EAF=120°,得出△EDB≌FEA,所以BD=AF,等量代换即可得出结论.(2)先画出图形证明∴△DEB≌△EFA,方法类似于(1);(3)画出图形根据图形直接写出结论即可.【详解】(1)证明:DE=CE=CF,△BCE由旋转60°得△ACF,∴∠ECF=60°,BE=AF,CE=CF,∴△CEF是等边三角形,∴EF=CE,∴DE=EF,∠CAF=∠BAC=60°,∴∠EAF=∠BAC+∠CAF=120°,∵∠DBE=120°,∴∠EAF=∠DBE,又∵A,E,C,F四点共圆,∴∠AEF=∠ACF,又∵ED=DC,∴∠D=∠BCE,∠BCE=∠ACF,∴∠D=∠AEF,∴△EDB≌FEA,∴BD=AF,AB=AE+BF,∴AB=BD+AF.类比探究(1)DE=CE=CF,△BCE由旋转60°得△ACF,∴∠ECF=60°,BE=AF,CE=CF,∴△CEF是等边三角形,∴EF=CE,∴DE=EF,∠EFC=∠BAC=60°,∠EFC=∠FGC+∠FCG,∠BAC=∠FGC+∠FEA,∴∠FCG=∠FEA,又∠FCG=∠EAD∠D=∠EAD,∴∠D=∠FEA,由旋转知∠CBE=∠CAF=120°,∴∠DBE=∠FAE=60°∴△DEB≌△EFA,∴BD=AE, EB=AF,∴BD=FA+AB.即AB=BD-AF.(2)AF=BD+AB(或AB=AF-BD)如图③,,ED=EC=CF,∵△BCE绕点C顺时针旋转60°至△ACF,∴∠ECF=60°,BE=AF,EC=CF,BC=AC,∴△CEF是等边三角形,∴EF=EC,又∵ED=EC,∴ED=EF,∵AB=AC,BC=AC,∴△ABC是等边三角形,∴∠ABC=60°,又∵∠CBE=∠CAF,∴∠CAF=60°,∴∠EAF=180°-∠CAF-∠BAC=180°-60°-60°=60°∴∠DBE=∠EAF;∵ED=EC ,∴∠ECD=∠EDC ,∴∠BDE=∠ECD+∠DEC=∠EDC+∠DEC , 又∵∠EDC=∠EBC+∠BED ,∴∠BDE=∠EBC+∠BED+∠DEC=60°+∠BEC , ∵∠AEF=∠CEF+∠BEC=60°+∠BEC ,∴∠BDE=∠AEF ,在△EDB 和△FEA 中,DBE EAF BDE AEF ED EF ∠∠⎧⎪∠∠⎨⎪⎩=== ∴△EDB ≌△FEA (AAS ),∴BD=AE ,EB=AF ,∵BE=AB+AE ,∴AF=AB+BD ,即AB ,DB ,AF 之间的数量关系是: AF=AB+BD .考点:旋转变化,等边三角形,三角形全等,。
九年级数学圆 几何综合易错题(Word版 含答案)
九年级数学圆 几何综合易错题(Word 版 含答案)一、初三数学 圆易错题压轴题(难)1.如图,以A (0,3)为圆心的圆与x 轴相切于坐标原点O ,与y 轴相交于点B ,弦BD 的延长线交x 轴的负半轴于点E ,且∠BEO =60°,AD 的延长线交x 轴于点C .(1)分别求点E 、C 的坐标;(2)求经过A 、C 两点,且以过E 而平行于y 轴的直线为对称轴的抛物线的函数解析式;(3)设抛物线的对称轴与AC 的交点为M ,试判断以M 点为圆心,ME 为半径的圆与⊙A 的位置关系,并说明理由.【答案】(1)点C 的坐标为(-3,0)(2)2343333y x x =++3)⊙M 与⊙A 外切【解析】试题分析:(1)已知了A 点的坐标,即可得出圆的半径和直径,可在直角三角形BOE 中,根据∠BEO 和OB 的长求出OE 的长进而可求出E 点的坐标,同理可在直角三角形OAC 中求出C 点的坐标;(2)已知了对称轴的解析式,可据此求出C 点关于对称轴对称的点的坐标,然后根据此点坐标以及C ,A 的坐标用待定系数法即可求出抛物线的解析式;(3)两圆应该外切,由于直线DE ∥OB ,因此∠MED=∠ABD ,由于AB=AD ,那么∠ADB=∠ABD ,将相等的角进行置换后可得出∠MED=∠MDE ,即ME=MD ,因此两圆的圆心距AM=ME+AD ,即两圆的半径和,因此两圆外切.试题解析:(1)在Rt△EOB 中,3cot60232EO OB =⋅︒==, ∴点E 的坐标为(-2,0).在Rt△COA 中,tan tan60333OC OA CAO OA =⋅∠=⋅︒==,∴点C 的坐标为(-3,0).(2)∵点C 关于对称轴2x =-对称的点的坐标为F (-1,0),点C 与点F (-1,0)都在抛物线上.设()()13y a x x =++,用(03A ,代入得 ()()30103a =++,∴33a =. ∴()()3133y x x =++,即 2343333y x x =++. (3)⊙M 与⊙A 外切,证明如下:∵ME ∥y 轴,∴MED B ∠=∠.∵B BDA MDE ∠=∠=∠,∴MED MDE ∠=∠.∴ME MD =.∵MA MD AD ME AD =+=+,∴⊙M 与⊙A 外切.2.如图,∠ABC=45°,△ADE 是等腰直角三角形,AE=AD ,顶点A 、D 分别在∠ABC 的两边BA 、BC 上滑动(不与点B 重合),△ADE 的外接圆交BC 于点F ,点D 在点F 的右侧,O 为圆心.(1)求证:△ABD ≌△AFE(2)若AB=42,82<BE ≤413,求⊙O 的面积S 的取值范围.【答案】(1)证明见解析(2)16π<S ≤40π【解析】试题分析:(1)利用同弧所对的圆周角相等得出两组相等的角,再利用已知AE=AD ,得出三角形全等;(2)利用△ABD ≌△AFE ,和已知条件得出BF 的长,利用勾股定理和2<BE 13EF,DF 的取值范围,24S DE π=,所以利用二次函数的性质求出最值.试题解析:(1)连接EF ,∵△ADE 是等腰直角三角形,AE=AD ,∴∠EAD=90°,∠AED=∠ADE=45°,∵AE AE = ,∴∠ADE=∠AFE=45°,∵∠ABD=45°,∴∠ABD=∠AFE ,∵AF AF =,∴∠AEF=∠ADB ,∵AE=AD ,∴△ABD ≌△AFE ;(2)∵△ABD ≌△AFE ,∴BD=EF ,∠EAF=∠BAD ,∴∠BAF=∠EAD=90°, ∵42AB = , ∴BF=42cos cos45AB ABF =∠=8, 设BD=x ,则EF=x ,DF=x ﹣8, ∵BE 2=EF 2+BF 2, 82<BE ≤413 , ∴128<EF 2+82≤208,∴8<EF ≤12,即8<x ≤12,则()222844S DE x x ππ⎡⎤==+-⎣⎦=()2482x ππ-+, ∵2π>0, ∴抛物线的开口向上,又∵对称轴为直线x=4,∴当8<x ≤12时,S 随x 的增大而增大,∴16π<S ≤40π.点睛:本题的第一问解题关键是找到同弧所对的圆周角,第二问的解题关键是根据第一问的结论计算得出有关线段的长度,由于出现线段的取值范围,所以在这个问题中要考虑勾股定理的问题,还要考虑圆的面积问题,得出二次函数,利用二次函数的性质求出最值.3.如图,矩形ABCD 中,BC =8,点F 是AB 边上一点(不与点B 重合)△BCF 的外接圆交对角线BD 于点E ,连结CF 交BD 于点G .(1)求证:∠ECG =∠BDC .(2)当AB =6时,在点F 的整个运动过程中.①若BF =2时,求CE 的长.②当△CEG 为等腰三角形时,求所有满足条件的BE 的长.(3)过点E 作△BCF 外接圆的切线交AD 于点P .若PE ∥CF 且CF =6PE ,记△DEP 的面积为S 1,△CDE 的面积为S 2,请直接写出12S S 的值.【答案】(1)详见解析;(2)①1825;②当BE 为10,395或445时,△CEG 为等腰三角形;(3)724. 【解析】【分析】 (1)根据平行线的性质得出∠ABD =∠BDC ,根据圆周角定理得出∠ABD =∠ECG ,即可证得结论;(2)根据勾股定理求得BD =10,①连接EF ,根据圆周角定理得出∠CEF =∠BCD =90°,∠EFC =∠CBD .即可得出sin ∠EFC =sin ∠CBD ,得出35CE CD CF BD ==,根据勾股定理得到CF =62CE 1825; ②分三种情况讨论求得: 当EG =CG 时,根据等腰三角形的性质和圆周角定理即可得到∠GEC =∠GCE =∠ABD =∠BDC ,从而证得E 、D 重合,即可得到BE =BD =10;当GE =CE 时,过点C 作CH ⊥BD 于点H ,即可得到∠EGC =∠ECG =∠ABD =∠GDC ,得到CG =CD =6.根据三角形面积公式求得CH =245,即可根据勾股定理求得GH ,进而求得HE ,即可求得BE =BH +HE =395; 当CG =CE 时,过点E 作EM ⊥CG 于点M ,由tan ∠ECM =43EM CM =.设EM =4k ,则CM =3k ,CG =CE =5k .得出GM =2k ,tan ∠GEM =2142GM k EM k ==,即可得到tan ∠GCH =GH CH =12.求得HE =GH =125,即可得到BE =BH +HE =445; (3)连接OE 、EF 、AE 、EF ,先根据切线的性质和垂直平分线的性质得出EF =CE ,进而证得四边形ABCD 是正方形,进一步证得△ADE ≌△CDE ,通过证得△EHP ∽△FBC ,得出EH =1 6BF,即可求得BF=6,根据勾股定理求得CF=10,得出PE=106,根据勾股定理求得PH,进而求得PD,然后根据三角形面积公式即可求得结果.【详解】(1)∵AB∥CD.∴∠ABD=∠BDC,∵∠ABD=∠ECG,∴∠ECG=∠BDC.(2)解:①∵AB=CD=6,AD=BC=8,∴BD=10,如图1,连结EF,则∠CEF=∠BCD=90°,∵∠EFC=∠CBD.∴sin∠EFC=sin∠CBD,∴35 CE CD CF BD==∴CF∴CE②Ⅰ、当EG=CG时,∠GEC=∠GCE=∠ABD=∠BDC.∴E与D重合,∴BE=BD=10.Ⅱ、如图2,当GE=CE时,过点C作CH⊥BD于点H,∴∠EGC=∠ECG=∠ABD=∠GDC,∴CG=CD=6.∵CH=BC CD24 BD5⋅=,∴GH185 =,在Rt△CEH中,设HE=x,则x2+(245)2=(x+185)2解得x=75,∴BE=BH+HE=325+75=395;Ⅲ、如图2,当CG=CE时,过点E作EM⊥CG于点M.∵tan∠ECM=43 EMCM=.设EM=4k,则CM=3k,CG=CE=5k.∴GM=2k,tan∠GEM=2142 GM kEM k==,∴tan∠GCH=GHCH=tan∠GEM=12.∴HE=GH=12412 255⨯=,∴BE=BH+HE=321244 555+=,综上所述,当BE为10,395或445时,△CEG为等腰三角形;(3)解:∵∠ABC=90°,∴FC是△BCF的外接圆的直径,设圆心为O,如图3,连接OE、EF、AE、EF,∵PE是切线,∴OE⊥PE,∵PE∥CF,∴OE⊥CF,∵OC=OF,∴CE=EF,∴△CEF是等腰直角三角形,∴∠ECF=45°,EF FC,∴∠ABD=∠ECF=45°,∴∠ADB=∠BDC=45°,∴AB=AD=8,∴四边形ABCD是正方形,∵PE∥FC,∴∠EGF=∠PED,∴∠BGC=∠PED,∴∠BCF=∠DPE,作EH⊥AD于H,则EH=DH,∵∠EHP=∠FBC=90°,∴△EHP∽△FBC,∴16 EH PEBF FC==,∴EH=16 BF,∵AD=CD,∠ADE=∠CDE,∴△ADE≌△CDE,∴AE=CE,∴AE=EF,∴AF=2EH=13 BF,∴13BF+BF=8,∴BF=6,∴EH=DH=1,CF=22BF BC+=10,∴PE=16FC=53,∴PH=224PE EH3-=,∴PD=47133 +=,∴1277 3824S PDS AD===.【点睛】本题是四边形的综合题,考查了矩形的性质,圆周角定理、三角形的面积以及相似三角形的判定和性质,作出辅助线构建直角三角形是解题的关键.4.四边形ABCD内接于⊙O,连接AC、BD,2∠BDC+∠ADB=180°.(1)如图1,求证:AC=BC;(2)如图2,E为⊙O上一点,AE=BE,F为AC上一点,DE与BF相交于点T,连接AT,若∠BFC=∠BDC+12∠ABD,求证:AT平分∠DAB;(3)在(2)的条件下,DT=TE,AD=8,BD=12,求DE的长.【答案】(1)见解析;(2)见解析;(3)82【解析】【分析】(1)只要证明∠CAB=∠CBA即可.(2)如图2中,作TH⊥AD于H,TR⊥BD于R,TL⊥AB于L.想办法证明TL=TH即可解决问题.(3)如图3中,连接EA,EB,作EG⊥AB,TH⊥AD于H,TR⊥BD于R,TL⊥AB于L,AQ⊥BD于Q.证明△EAG≌△TDH(AAS),推出AG=DH,证明Rt△TDR≌Rt△TDH(HL),推出DH=DR,同理可得AL=AH,BR=BL,设DH=x,则AB=2x,由S△ADB=12•BD•AQ=12•AD•h+12•AB•h+12•DB•h,可得AQ=52h,再根据sin∠BDE=sin∠ADE,sin∠AED=sin∠ABD,构建方程组求出m即可解决问题.【详解】解:(1)如图1中,∵四边形ABCD内接于⊙O,∴∠ADC+∠ABC=180°,即∠ADB+∠BDC+∠ABC=180°,∵2∠BDC+∠ADB=180°,∴∠ABC=∠BDC,∵∠BAC=∠BDC,∴∠BAC=∠ABC,∴AC=BC.(2)如图2中,作TH⊥AD于H,TR⊥BD于R,TL⊥AB于L.∵∠BFC=∠BAC+∠ABF,∠BAC=∠BDC,∴∠BFC=∠BDC+∠ABF,∵∠BFC=∠BDC+12∠ABD,∴∠ABF=12∠ABD,∴BT平分∠ABD,∵AE=BE∴∠ADE=∠BDE,∴DT平分∠ADB,∵TH⊥AD于H,TR⊥BD于R,TL⊥AB于L.∴TR=TL,TR=TH,∴TL=TH,∴AT平分∠DAB.(3)如图3中,连接EA,EB,作EG⊥AB,TH⊥AD于H,TR⊥BD于R,TL⊥AB于L,AQ⊥BD于Q.∵AE=BE∴∠EAB=∠EDB=∠EDA,AE=BE,∵∠TAE=∠EAB+∠TAB,∠ATE=∠EDA+∠DAT,∴∠TAE=∠ATE,∴AE=TE,∵DT=TE,∴AE=DT,∵∠AGE=∠DHT=90°,∴△EAG≌△TDH(AAS),∴AG=DH,∵AE=EB,EG⊥AB,∴AG=BG,∴2DH=AB,∵Rt△TDR≌Rt△TDH(HL),∴DH=DR,同理可得AL=AH,BR=BL,设DH=x,则AB=2x,∵AD=8,DB=12,∴AL=AH=8﹣x,BR=12﹣x,AB=2x=8﹣x+12﹣x,∴x=5,∴DH=5,AB=10,设TR=TL=TH=h,DT=m,∵S△ADB=12•BD•AQ=12•AD•h+12•AB •h+12•DB•h,∴12AQ=(8+12+10)h,∴AQ=52 h,∵sin∠BDE=sin∠ADE,可得hm=APAD=AP8,sin ∠AED=sin∠ABD,可得APm=AQAB=AQ10=5210h,∴APm=52810mAP,解得m=42或﹣42(舍弃),∴DE=2m=82.【点睛】本题属于圆综合题,考查了圆内接四边形的性质,圆周角定理,锐角三角函数,全等三角形的判定和性质,角平分线的性质定理和判定定理等知识,解题的关键是学会添加常用辅助线,学会利用参数构建方程组解决问题,属于中考压轴题.5.如图1,四边形ABCD中,、为它的对角线,E为AB边上一动点(点E不与点A、B重合),EF∥AC交BC于点F,FG∥BD交DC于点G,GH∥AC交AD于点H,连接HE.记四边形EFGH的周长为,如果在点的运动过程中,的值不变,则我们称四边形ABCD为“四边形”,此时的值称为它的“值”.经过探究,可得矩形是“四边形”.如图2,矩形ABCD中,若AB=4,BC=3,则它的“值”为.(1)等腰梯形(填“是”或“不是”)“四边形”;(2)如图3,是⊙O的直径,A是⊙O上一点,,点为上的一动点,将△沿的中垂线翻折,得到△.当点运动到某一位置时,以、、、、、中的任意四个点为顶点的“四边形”最多,最多有个.【答案】“值”为10;(1)是;(2)最多有5个.【解析】试题分析:仔细分析题中“四边形”的定义结合矩形的性质求解即可;(1)根据题中“四边形”的定义结合等腰梯形的性质即可作出判断;(2)根据题中“四边形”的定义结合中垂线的性质、圆的基本性质即可作出判断.矩形ABCD中,若AB=4,BC=3,则它的“值”为10;(1)等腰梯形是“四边形”;(2)由题意得当点运动到某一位置时,以、、、、、中的任意四个点为顶点的“四边形”最多,最多有5个.考点:动点问题的综合题点评:此类问题综合性强,难度较大,在中考中比较常见,一般作为压轴题,题目比较典型.6.如图,点A在直线l上,点Q沿着直线l以3厘米/秒的速度由点A向右运动,以AQ为边作Rt△ABQ,使∠BAQ=90°,tan∠ABQ= 34,点C在点Q右侧,CQ=1厘米,过点C作直线m⊥l,过△ABQ的外接圆圆心O作OD⊥m于点D,交AB右侧的圆弧于点E.在射线CD上取点F,使DF=13CD,以DE、DF为邻边作矩形DEGF.设运动时间为t秒.(1)直接用含t的代数式表示BQ、DF;(2)当0<t<1时,求矩形DEGF的最大面积;(3)点Q在整个运动过程中,当矩形DEGF为正方形时,求t的值.【答案】(1)BQ=5t ,DF=23t;(2)16;(3)t 的值为35或3. 【解析】试题分析:(1)AB 与OD 交于点H ,根据题中的比例关系和勾股定理可表示出BQ 的长;根据垂直于同一条直线的两直线平行和三角形的中位线定理可求得AH 的长,再根据矩形的判定定理和矩形的性质可求CD 的长,即可表示出FD ;(2)根据题意表示出矩形的长和宽,然后构造二次函数,通过二次函数的最值可求解; (3)当矩形为正方形时,分别让其长与宽相等,列方程求解即可. 试题解析:(1)5t BQ =,2DF=t 3; (2)DE=OD-OE=32t+1-52t=1-t ,()22211·t 13326S DF DE t t ⎛⎫==-=--+ ⎪⎝⎭,∴当t=12时,矩形DEGF 的最大面积为16; (3)当矩形DEGF 为正方形时,221133t t t t -=-=或,解得335t t ==或.7.如图,∠ACL =90°,AC =4,动点B 在射线CL ,CH ⊥AB 于点H ,以H 为圆心,HB 为半径作圆交射线BA 于点D ,交直线CD 于点F ,交直线BC 于点E .设BC =m .(1)当∠A =30°时,求∠CDB 的度数; (2)当m =2时,求BE 的长度; (3)在点B 的整个运动过程中,①当BC =3CE 时,求出所有符合条件的m 的值. ②连接EH ,FH ,当tan ∠FHE =512时,直接写出△FHD 与△EFH 面积比. 【答案】(1)60°;(2)45;(3)①m =2或2;②262【解析】 【分析】(1)根据题意由HB =HD ,CH ⊥BD 可知:CH 是BD 的中垂线,再由∠A =30°得:∠CDB =∠ABC =60°;(2)由题意可知当m=2时,由勾股定理可得:AB=25,cos∠ABC=55,过点H作HK⊥BC于点K,利用垂径定理可得结论;(3))①要分两种情况:I.当点E在C右侧时,II.当点E在C左侧时;根据相似三角形性质和勾股定理即可求得结论;②根据题意先证明EF∥BD,根据平行线间距离相等可得:△FHD与△EFH高相等,面积比等于底之比,再由tan∠FHE=512可求得DHEF的值即可.【详解】解:(1)∵∠A=30°,∠ACB=90°,∴∠ABC=60°,∵HB=HD,CH⊥BD,∴CH是BD的中垂线,∴CB=CD,∴∠CDB=∠ABC=60°;(2)如图1,过点H作HK⊥BC于点K,当m=2时,BC=2,∴AB22AC BC5,∴cos∠ABC=BCAB 5,∴BH=BC•cos∠ABC25,∴BK=BH•cos∠ABC=25,∴BE=2BK=45;(3)①分两种情况:I.当点E在C右侧时,如图2,连结DE,由BD是直径,得DE⊥BC,∵BC=3CE=m,∴CE=13m,BE=23m,∵DE∥AC,∴△DEB~△ACB,∴DEAC =BEBC=23,∴DE=23AC=83,∵CD=CB=m,∴Rt△CDE中,由勾股定理得:2281m33⎛⎫⎛⎫⎪⎭⎝+⎪⎝⎭=m2,∵m>0,∴m=22;II.当点E在C左侧时,如图3,连结DE,由BD是直径,得DE⊥BC,∵BC=3CE,∴CE=13m,BE=32m,∵DE∥AC,∴△DEB~△ACB,∴DEAC =BEBC=32,∴DE =32AC =6, ∵CD =CB =m ,∴Rt △CDE 中,由勾股定理得:62+21m 3⎛⎫ ⎪⎝⎭=m 2, ∵m >0, ∴m =42;综上所述,①当BC =3CE 时,m =22或42. ②如图4,过F 作FG ⊥HE 于点G ,∵CH ⊥AB ,HB =HD , ∴CB =CD , ∴∠CBD =∠CDB ,∴DFE BEF =,即DF EF BE EF +=+, ∴DF BE =, ∴EF ∥BD ,∴FHD EFHS S=DHEF, ∵在Rt △FHG 中,FG HG =tan ∠FHE =512, 设FG =5k ,HG =12k ,则FH 22FG HG +22(5)(12)k k +=13k , ∴DH =HE =FH =13k ,EG =HE ﹣HG =13k ﹣12k =k , ∴EF 22FG EG +22(5)k k +26k , ∴FHD EFHSS=26k 26. 【点睛】本题考查的是圆的几何综合题,主要考查圆的性质,垂径定理,勾股定理,相似三角形判定及性质,解直角三角形知识等;综合性较强,有一定难度,解题要求对所学知识点熟练掌握和运用数形结合思维分析.8.△ABC内接于⊙O,AB=AC,BD⊥AC,垂足为点D,交⊙O于点E,连接AE.(1)如图1,求证:∠BAC=2∠CAE;(2)如图2,射线AO交线段BD于点F,交BC边于点G,连接CE,求证:BF=CE;(3)如图3,在(2)的条件下,连接CO并延长,交线段BD于点H,交⊙O于点M,连接FM,交AB边于点N,若BH=DH,四边形BHOG的面积为2,求线段MN的长.【答案】(1)见详解;(2)见详解;(3)6MN【解析】【分析】(1)先依据等腰三角形的性质和三角形的内角和定理证明∠BAC+2∠C=180°,然后得到2∠CAE+2∠E=180°,然后根据同弧所对的圆周角相等得到∠E=∠C,即可得到结论;(2)连接OB、OC.先依据SSS证明△ABO≌△ACO,从而得到∠BAO=∠CAO,然后在依据ASA证明△ABF≌△ACE,最后根据全等三角形的性质可证明BF=CE;(3)连接HG、BM.由三线合一的性质证明BG=CG,从而得到HG是△BCD的中位线,则∠FHO=∠AFD=∠HFO,于是可得到HO=OF,然后得到∠OGH=∠OHG,从而得到OH=OG,则OF=OG,接下来证明四边形MFGB是矩形,然后由MF∥BC证明△MFH∽△CBH,从而可证明HF=FD.接下来再证明△ADF≌△GHF,由全等三角形的性质的到AF=FG,然后再证明△MNB≌△NAF,于是得到MN=NF.设S△OHF=S△OHG=a,则S△FHG=2a,S△BHG=4a,然后由S四边形BHOG2,可求得2,设HF=x,则BH=2x,然后证明△GFH∽△BFG,由相似三角形的性质可得到2x,然后依据S△BHG=122,可求得x=2,故此可得到HB、GH的长,然后依据勾股定理可求得BG的长,于是容易求得MN的长.【详解】解:(1)∵AB=AC,∴∠ABC=∠ACB.∴∠BAC+2∠C=180°.∵BD⊥AC,∴∠ADE=90°.∴∠E+∠CAE=90°.∴2∠CAE+2∠E=180°.∵∠E=∠ACB,∴2∠CAE+2∠ACB=180°.∴∠BAC=2∠CAE.(2)连接OB 、OC .∵AB=AC ,AO=AO ,OB=OC , ∴△ABO ≌△ACO . ∴∠BAO=∠CAO . ∵∠BAC=2∠CAE , ∴∠BAO=∠CAE . 在△ABF 和△ACE 中,ABF ACE AB ACBAF CAE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABF ≌△ACE . ∴BF=CE .(3)连接HG 、BM .∵AB=AC ,∠BAO=∠CAO , ∴AG ⊥BC ,BG=CG . ∵BH=DH ,∴HG 是△BCD 的中位线. ∴HG ∥CD . ∴∠GHF=∠CDE=90°. ∵OA=OC , ∴∠OAC=∠OCA .∵∠OAC+∠AFD=90°,∠OCA+∠FHO=90°, ∴∠FHO=∠AFD=∠HFO . ∴HO=OF .∵∠HFO+∠OGH=90°,∠OHF+∠OHG=90°,∴∠OGH=∠OHG . ∴OH=OG . ∴OF=OG . ∵OM=OC ,∴四边形MFCG 是平行四边形. 又∵MC 是圆O 的直径, ∴∠CBM=90°. ∴四边形MFGB 是矩形. ∴MB=FG ,∠FMB=∠AFN=90°. ∵MF ∥BC , ∴△MFH ∽△CBH .∴12HF MF BH CB ==. ∴HF :HD=1:2. ∴HF=FD .在△ADF 和△GHF 中,AFD GFH ADF GHF FH FD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ADF ≌△GHF . ∴AF=FG . ∴MB=AF .在△MNB 和△NAF 中,90BMF AFN ANF BNM MB AF ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, ∴△MNB ≌△NAF . ∴MN=NF .设S △OHF =S △OHG =a ,则S △FHG =2a ,S △BHG =4a , ∴S 四边形BHOG. ∴. 设HF=x ,则BH=2x .∵∠HHG=∠GFB ,∠GHF=∠FGB , ∴△GFH ∽△BFG . ∴HF GH HG BH =,即2x HGHG x=. ∴.∴S △BHG =12BH•HG=12×2x•2x =42, 解得:x=2. ∴HB=4,GH=22. 由勾股定理可知:BG=26. ∴MF=26. ∴MN=NF=6. 【点睛】本题主要考查的是圆的综合应用,解答本题主要应用了圆周角定理、全等三角形的性质和判定、相似三角形的性质和判断、勾股定理的应用、矩形的性质和判定,找出图中相似三角形和全等三角形是解题的关键.9.如图,在梯形ABCD 中,AD//BC ,AB=CD=AD=5,cos 45B =,点O 是边BC 上的动点,以OB 为半径的O 与射线BA 和边BC 分别交于点E 和点M ,联结AM ,作∠CMN=∠BAM ,射线MN 与边AD 、射线CD 分别交于点F 、N .(1)当点E 为边AB 的中点时,求DF 的长;(2)分别联结AN 、MD ,当AN//MD 时,求MN 的长; (3)将O 绕着点M 旋转180°得到'O ,如果以点N 为圆心的N 与'O 都内切,求O 的半径长.【答案】(1)DF 的长为158;(2)MN 的长为5;(3)O 的半径长为258. 【解析】 【分析】 (1)作EHBM ⊥于H ,根据中位线定理得出四边形BMFA 是平行四边形,从而利用cos 45B =解直角三角形即可求算半径,再根据平行四边形的性质求FD 即可;(2)先证AMB CNM ∠=∠,再证MAD CNM ∠=∠,从而证明AFM NFD ∆~∆,得到AF MFAF DF NF MF NF DF=⇒=,再通过平行证明AFN DFM ∆~∆,从而得到AF NFAF MF NF DF DF MF=⇒=,通过两式相乘得出AF NF =再根据平行得出NF DF =, 从而得出答案.(3)通过图形得出MN 垂直平分'OO ,从而得出90BAM CMN ∠=∠=︒,再利用cos 45B =解三角函数即可得出答案. 【详解】 (1)如图,作EHBM ⊥于H :∵E 为AB 中点,45,cos 5AB AD DC B ====∴52AE BE ==∴cos 45BH B BE == ∴2BH =∴2253222EH ⎛⎫=-= ⎪⎝⎭设半径为r ,在Rt OEH ∆中:()222322r r ⎛⎫=-+ ⎪⎝⎭解得:2516r =∵,E O 分别为,BA BM 中点∴BAM BEO OBE ∠=∠=∠ 又∵CMN BAM ∠=∠ ∴CMN OBE ∠=∠ ∴//MF AB∴四边形BMFA 是平行四边形∴2528AF BM r ===∴2515588FD AD AF =-=-= (2)如图:连接MD AN ,∵,B C BAM CMN ∠=∠∠=∠∴AMB CNM ∠=∠又∵AMB MAD ∠=∠∴MAD CNM ∠=∠又∵AFM NFD ∠=∠∴AFM NFD ∆~∆ ∴AF MF AF DF NF MF NF DF=⇒=① 又∵//MD AN∴AFN DFM ∆~∆ ∴AF NF AF MF NF DF DF MF=⇒=② 由①⨯②得; 22AF NF AF NF =⇒=∴NF DF =∴5MN AD ==故MN 的长为5;(3)作如图:∵圆O 与圆'O 外切且均与圆N 内切设圆N 半径为R ,圆O 半径为r∴'=NO R r NO -=∴N 在'OO 的中垂线上∴MN 垂直平分'OO∴90NMC ∠=︒∵90BAM CMN ∠=∠=︒∴A 点在圆上 ∴54cos 5AB B BM BM === 解得:254BM = O 的半径长为258【点睛】 本题是一道圆的综合题目,难度较大,掌握相似之间的关系转化以及相关线段角度的关系转化是解题关键.10.在O 中,AB 为直径,CD 与AB 相较于点H ,弧AC=弧AD(1)如图1,求证:CD AB ⊥;(2)如图2,弧BC 上有一点E ,若弧CD=弧CE ,求证:3EBA ABD ∠=∠;(3)如图3,在(2)的条件下,点F 在上,连接,//FH FH DE ,延长FO 交DE 于点K ,若165,55FK DB BE ==,求AB .【答案】(1)证明见解析;(2)证明见解析;(3)1855AB =. 【解析】【分析】 (1)连接,OC OD ,根据AC AD = 得出COA DOA ∠=再根据OC OD =得出OCD ODC ∠=∠,从而得证;(2)连接,BC BD ,根据AC AD =得出,BC BD BA CD =⊥,CBA ABD ∠=∠,再根据CE CD =,得出CBE CBD ∠=∠,从而得出结论;(3)作,CM DB CN BE ⊥⊥,过点P 作,PT BE PS BD ⊥⊥,,5BE BP a DB a ===先证CDM CEN ∆≅∆,DM EN =,再证,CMB CNB BM BN ∆≅∆=,设DM b =,得出2b a =,再算出,CM CD 得出CPD ∆为等腰三角形,再根据BP 是角平分线利用角平分线定理得出BCP EBP S DP BD S PE BE∆==,从而算出,PE DE ,再根据三角函数值算出BG ,,,,AB r OG OH ,再根据//FH DE 得出HO OF GO OK=,从而计算AB .【详解】(1)连接OC ,CD因为AC AD =,所以COA DOA ∠=∠OC OD =,,OA CD CD AB ∴⊥∴⊥;(2)连接BC ,,BC BD BA CD =⊥所以AB 平分CBD ∠,设ABD ABC α∠=∠=2CBD α∴∠=CD CE ∴=2CBE CBD α∴∠=∠=,3EBA α∴∠=3EBA ABD ∴∠=∠.(3) 2,90EBC BPE PEB αα︒∠=∠=∠=-设,5BE BP a DB a ===作,CM DB CN BE ⊥⊥,可证:CDM CEN ∆≅∆,DM EN =,再证:,CMB CNB BM BN ∆≅∆=设,5,2DM EN b a b a b b a ==+=-∴=在CBM ∆中勾股4CM a =在CDM ∆中勾股25CD a =得CPD ∆为等腰三角形25DP DC a ==因为BP 为角平分线,过点P 作,PT BE PS BD ⊥⊥可证:5BCP EBP S DP BD S PE BE ∆=== 2525,53PE a DE a ∴== 14tan ,tan 223αα== 2555,32BG a AB a ∴== 557535,,4124r a OG a OH a === //FH DE97HO OF GO OK ∴== 995185,1655OF KF AB ===【点睛】本题是一道圆的综合题目,难度较大,考查了圆相关的性质以及与三角形综合,掌握相关的线段与角度转化是解题关键.。
人教版数学九年级上册 圆 几何综合(篇)(Word版 含解析)
人教版数学九年级上册 圆 几何综合(篇)(Word 版 含解析)一、初三数学 圆易错题压轴题(难)1.已知:如图,梯形ABCD 中,AD//BC ,AD 2=,AB BC CD 6===,动点P 在射线BA 上,以BP 为半径的P 交边BC 于点E (点E 与点C 不重合),联结PE 、PC ,设x BP =,PC y =.(1)求证:PE //DC ;(2)求y 关于x 的函数解析式,并写出定义域;(3)联结PD ,当PDC B ∠=∠时,以D 为圆心半径为R 的D 与P 相交,求R 的取值范围.【答案】(1)证明见解析;(2)2436(09)y x x x =-+<<;(3)3605R <<【解析】 【分析】()1根据梯形的性质得到B DCB ∠=∠,根据等腰三角形的性质得到B PEB ∠∠=,根据平行线的判定定理即可得到结论;()2分别过P 、A 、D 作BC 的垂线,垂足分别为点H 、F 、.G 推出四边形ADGF 是矩形,//PH AF ,求得2BF FG GC ===,根据勾股定理得到22226242AF AB BF =-=-=,根据平行线分线段成比例定理得到223PH x =,13BH x =,求得163CH x =-,根据勾股定理即可得到结论; ()3作//EM PD 交DC 于.M 推出四边形PDME 是平行四边形.得到PE DM x ==,即 6MC x =-,根据相似三角形的性质得到1218655PD EC ==-=,根据相切两圆的性质即可得到结论. 【详解】()1证明:梯形ABCD ,AB CD =,B DCB ∠∠∴=,PB PE =, B PEB ∠∠∴=, DCB PEB ∠∠∴=,//PE CD ∴;()2解:分别过P 、A 、D 作BC 的垂线,垂足分别为点H 、F 、G .梯形ABCD 中,//AD BC , ,BC DG ⊥,BC PH ⊥,∴四边形ADGF 是矩形,//PH AF ,2AD =,6BC DC ==, 2BF FG GC ∴===,在Rt ABF 中,22226242AF AB BF =-=-=,//PH AF ,PH BP BHAF AB BF∴==6242x BH ==,223PH x ∴=,13BH x =, 163CH x ∴=-,在Rt PHC 中,22PC PH CH =+22221()(6)33y x x ∴=+-2436(09)y x x x =-+<<, ()3解:作//EM PD 交DC 于M .//PE DC ,∴四边形PDME 是平行四边形.PE DM x ∴==,即 6MC x =-,PD ME ∴=,PDC EMC ∠∠=, 又PDC B ∠∠=,B DCB ∠=∠, DCB EMC PBE PEB ∠∠∠∠∴===. PBE ∴∽ECM ,PB BE EC MC ∴=,即232663xx x x =--, 解得:185x =,即125BE =,1218655PD EC ∴==-=, 当两圆外切时,PD r R =+,即0(R =舍去); 当两圆内切时,-PD r R =,即10(R =舍去),2365R =; 即两圆相交时,3605R <<. 【点睛】本题属于圆综合题,梯形的性质,平行四边形的性质,勾股定理,相似三角形的判定和性质,正确的作出辅助线是解题的关键.2.如图所示,CD 为⊙O 的直径,点B 在⊙O 上,连接BC 、BD ,过点B 的切线AE 与CD 的延长线交于点A ,OE//BD ,交BC 于点F ,交AB 于点E. (1)求证:∠E=∠C ;(2)若⊙O 的半径为3,AD=2,试求AE 的长; (3)在(2)的条件下,求△ABC 的面积.【答案】(1)证明见解析;(2)10;(3)485. 【解析】试题分析:(1)连接OB ,利用已知条件和切线的性质证明:OE∥BD,即可证明:∠E=∠C;(2)根据题意求出AB 的长,然后根据平行线分线段定理,可求解; (3)根据相似三角形的面积比等于相似比的平方可求解. 试题解析:(1)如解图,连接OB , ∵CD 为⊙O 的直径,∴∠CBD=∠CBO+∠OBD=90°,∵AB是⊙O的切线,∴∠ABO=∠ABD+∠OBD=90°,∴∠ABD=∠CBO.∵OB、OC是⊙O的半径,∴OB=OC,∴∠C=∠CBO.∵OE∥BD,∴∠E=∠ABD,∴∠E=∠C;(2)∵⊙O的半径为3,AD=2,∴AO=5,∴AB=4.∵BD∥OE,∴=,∴=,∴BE=6,AE=6+4=10(3)S △AOE==15,然后根据相似三角形面积比等于相似比的平方可得S△ABC= S△AOE==3.已知:在△ABC中,AB=6,BC=8,AC=10,O为AB边上的一点,以O为圆心,OA长为半径作圆交AC于D点,过D作⊙O的切线交BC于E.(1)若O为AB的中点(如图1),则ED与EC的大小关系为:ED EC(填“”“”或“”)(2)若OA<3时(如图2),(1)中的关系是否还成立?为什么?(3)当⊙O过BC中点时(如图3),求CE长.【答案】(1)ED=EC;(2)成立;(3)3【解析】试题分析:(1)连接OD,根据切线的性质可得∠ODE=90°,则∠CDE+∠ADO=90°,由AB=6,BC=8,AC=10根据勾股定理的逆定理可证得∠ABC=90°,则∠A+∠C=90°,根据圆的基本性质可得∠A=∠ADO,即可得到∠CDE=∠C,从而证得结论;(2)证法同(1);(3)根据直角三角形的性质结合圆的基本性质求解即可.(1)连接OD∵DE为⊙O的切线∴∠ODE=90°∴∠CDE+∠ADO=90°∵AB=6,BC=8,AC=10∴∠ABC=90°∴∠A+∠C=90°∵AO=DO∴∠A=∠ADO∴∠CDE=∠C∴ED=EC;(2)连接OD∵DE为⊙O的切线∴∠ODE=90°∴∠CDE+∠ADO=90°∵AB=6,BC=8,AC=10∴∠ABC=90°∴∠A+∠C=90°∵AO=DO∴∠A=∠ADO∴∠CDE=∠C∴ED=EC;(3)CE=3.考点:圆的综合题点评:此类问题综合性强,难度较大,在中考中比较常见,一般作为压轴题,题目比较典型.4.如图,△ABC内接于⊙O,AB是直径,过点A作直线MN,且∠MAC=∠ABC.(1)求证:MN是⊙O的切线.(2)设D是弧AC的中点,连结BD交AC于点G,过点D作DE⊥AB于点E,交AC于点F.①求证:FD=FG.②若BC=3,AB=5,试求AE的长.【答案】(1)见解析;(2)①见解析;②AE=1【解析】【分析】(1)由AB为直径知∠ACB=90°,∠ABC+∠CAB=90°.由∠MAC=∠ABC可证得∠MAC+∠CAB=90°,则结论得证;(2)①证明∠BDE=∠DGF即可.∠BDE=90°﹣∠ABD;∠DGF=∠CGB=90°﹣∠CBD.因为D是弧AC的中点,所以∠ABD=∠CBD.则问题得证;②连接AD、CD,作DH⊥BC,交BC的延长线于H点.证明Rt△ADE≌Rt△CDH,可得AE=CH.根据AB=BH可求出答案.【详解】(1)证明:∵AB是直径,∴∠ACB=90°,∴∠CAB+∠ABC=90°;∵∠MAC=∠ABC,∴∠MAC+∠CAB=90°,即MA⊥AB,∴MN是⊙O的切线;(2)①证明:∵D是弧AC的中点,∴∠DBC=∠ABD,∵AB是直径,∴∠CBG+∠CGB =90°, ∵DE ⊥AB ,∴∠FDG+∠ABD =90°, ∵∠DBC =∠ABD , ∴∠FDG =∠CGB =∠FGD , ∴FD =FG ;②解:连接AD 、CD ,作DH ⊥BC ,交BC 的延长线于H 点.∵∠DBC =∠ABD ,DH ⊥BC ,DE ⊥AB , ∴DE =DH ,在Rt △BDE 与Rt △BDH 中,DH DEBD BD =⎧⎨=⎩, ∴Rt △BDE ≌Rt △BDH (HL ), ∴BE =BH , ∵D 是弧AC 的中点, ∴AD =DC ,在Rt △ADE 与Rt △CDH 中,DE DHAD CD =⎧⎨=⎩, ∴Rt △ADE ≌Rt △CDH (HL ). ∴AE =CH .∴BE =AB ﹣AE =BC+CH =BH ,即5﹣AE =3+AE , ∴AE =1. 【点睛】本题是圆的综合题,考查了切线的判定,圆周角定理,全等三角形的判定与性质,等腰三角形的判定,正确作出辅助线来构造全等三角形是解题的关键.5.如图1,四边形ABCD 中,、为它的对角线,E 为AB 边上一动点(点E 不与点A 、B 重合),EF ∥AC 交BC 于点F ,FG ∥BD 交DC 于点G ,GH ∥AC 交AD 于点H ,连接HE .记四边形EFGH 的周长为,如果在点的运动过程中,的值不变,则我们称四边形ABCD 为“四边形”, 此时的值称为它的“值”.经过探究,可得矩形是“四边形”.如图2,矩形ABCD中,若AB=4,BC=3,则它的“值”为.(1)等腰梯形(填“是”或“不是”)“四边形”;(2)如图3,是⊙O的直径,A是⊙O上一点,,点为上的一动点,将△沿的中垂线翻折,得到△.当点运动到某一位置时,以、、、、、中的任意四个点为顶点的“四边形”最多,最多有个.【答案】“值”为10;(1)是;(2)最多有5个.【解析】试题分析:仔细分析题中“四边形”的定义结合矩形的性质求解即可;(1)根据题中“四边形”的定义结合等腰梯形的性质即可作出判断;(2)根据题中“四边形”的定义结合中垂线的性质、圆的基本性质即可作出判断.矩形ABCD中,若AB=4,BC=3,则它的“值”为10;(1)等腰梯形是“四边形”;(2)由题意得当点运动到某一位置时,以、、、、、中的任意四个点为顶点的“四边形”最多,最多有5个.考点:动点问题的综合题点评:此类问题综合性强,难度较大,在中考中比较常见,一般作为压轴题,题目比较典型.6.四边形ABCD内接于⊙O,AC为对角线,∠ACB=∠ACD(1)如图1,求证:AB=AD;(2)如图2,点E在AB弧上,DE交AC于点F,连接BE,BE=DF,求证:DF=DC;(3)如图3,在(2)的条件下,点G在BC弧上,连接DG,交CE于点H,连接GE,GF,若DE=BC,EG=GH=5,S△DFG=9,求BC边的长.【答案】(1)见解析;(2)见解析;(3)70【解析】【分析】(1)如图1,连接OA,OB,OD,由∠ACB=∠ACD,可得AD AB,可得AB=AD;(2)连接AE,由“SAS”可证△ABE≌△ADF,可得∠BAE=∠DAC,可证BE=CD=DF;(3)如图3,过点F作FN⊥GD于N,过点C作CM⊥GD于M,连接GC,通过证明△FDN≌△DCM,可得FN=DM,CM=DN,由面积公式可求FN=2,DM=2,DH=4,通过证明△EGC∽△DMC,△GEH∽△CHD,可得EC=52CD,CD2=403,由勾股定理可求解.【详解】证明:(1)如图1,连接OA,OB,OD,∵∠ACB=∠ACD,∠AOD=2∠ACD,∠AOB=2∠ACB ∴∠AOD=∠AOB∴AD AB∴AD=AB;(2)如图2,连接AE,∵AE AE∴∠ABE=∠ADE在△ABE和△ADF中AB ADABE ADFBE DF∴△ABE≌△ADF(SAS)∴∠BAE=∠DAC∴BE CD∴BE=DC∵BE=DF∴DF=DC;(3)如图3,过点F作FN⊥GD于N,过点C作CM⊥GD于M,连接GC,∵DE=BC,BE=CD,∴四边形BCDE是平行四边形,∴∠EBC=∠EDC,∵四边形BEDC是圆内接四边形,∴∠EBC+∠EDC=180°,∴∠EDC=∠EBC=90°,∴EC是直径,∴∠FGC=∠EDC=90°∴∠FDN+∠MDC=90°,且∠MDC+∠MCD=90°,∴∠FDN=∠MCD,且∠FND=∠CMD=90°,DF=DC,∴△FDN≌△DCM(AAS)∴FN=DM,CM=DN,∵EG=GH=5,∴∠GEH=∠GHE,且∠GHE=∠DHC,∠GEH=∠GDC,∴∠HDC=∠CHD,∴CH=CD,且CM⊥DH,∴DM=MH=FN,∵S△DFG=9,∴12DG×FN=9,∴12×(5+2FN )×FN =9, ∴FN =2,∴DM =2,DH =4, ∵∠GEC =∠GDC ,∠EGC =∠DMC ,∴△EGC ∽△DMC , ∴52ECEG CD DM , ∴EC =52CD ,且HC =CD , ∴EH =32CD , ∵∠EGD =∠ECD ,∠GEC =∠GDC , ∴△GEH ∽△CHD , ∴EGEH CH DH, ∴3524CD CD, ∴2403CD , ∵EC 2﹣CD 2=DE 2,∴222254CD CD DE , ∴2214043DE ,∴DE∴BC【点睛】本题是圆的综合题,考查了圆的有关知识,全等三角形的判定和性质,平行四边形的判定和性质,相似三角形的判定和性质,勾股定理等知识,添加恰当辅助线是本题的难点.7.阅读材料:“最值问题”是数学中的一类较具挑战性的问题.其实,数学史上也有不少相关的故事,如下即为其中较为经典的一则:海伦是古希腊精通数学、物理的学者,相传有位将军曾向他请教一个问题﹣﹣如图1,从A 点出发,到笔直的河岸l 去饮马,然后再去B 地,走什么样的路线最短呢?海伦轻松地给出了答案:作点A 关于直线l 的对称点A ′,连接A ′B 交l 于点P ,则PA +PB =A ′B 的值最小.解答问题:(1)如图2,⊙O 的半径为2,点A 、B 、C 在⊙O 上,OA ⊥OB ,∠AOC =60°,P 是OB 上一动点,求PA +PC 的最小值;(2)如图3,已知菱形ABCD的边长为6,∠DAB=60°.将此菱形放置于平面直角坐标系中,各顶点恰好在坐标轴上.现有一动点P从点A出发,以每秒2个单位的速度,沿A→C 的方向,向点C运动.当到达点C后,立即以相同的速度返回,返回途中,当运动到x轴上某一点M时,立即以每秒1个单位的速度,沿M→B的方向,向点B运动.当到达点B 时,整个运动停止.①为使点P能在最短的时间内到达点B处,则点M的位置应如何确定?②在①的条件下,设点P的运动时间为t(s),△PAB的面积为S,在整个运动过程中,试求S与t之间的函数关系式,并指出自变量t的取值范围.【答案】(1)PA+PC的最小值是23;(2)①点M的位置是(3,0)时,用时最少;②S与t之间的函数关系式是当33<t≤43时,S=183﹣3t;当0<t≤33时,S =3t.当43<t≤63时,S=﹣3t+183.【解析】【分析】(1)延长AO交圆O于M,连接CM交OB于P,连接AC,AP+PC=PC+PM=CM最小;(2)①根据运动速度不同以及运动距离,得出当PB⊥AB时,点P能在最短的时间内到达点B处;②根据三角形的面积公式求出从A到C时,s与t的关系式和从C到(3,0)以及到B 的解析式.【详解】解:(1)延长AO交圆O于M,连接CM交OB于P,连接AC,则此时AP+PC=PC+PM=CM最小,∵AM是直径,∠AOC=60°,∴∠ACM=90°,∠AMC=30°,∴AC=12AM=2,AM=4,由勾股定理得:CM22AM AC3答:PA+PC的最小值是23.(2)①根据动点P从点A出发,以每秒2个单位的速度,沿A→C的方向,向点C运动.当到达点C后,立即以相同的速度返回,返回途中,当运动到x轴上某一点M时,立即以每秒1个单位的速度,沿M→B的方向,向点B运动,即为使点P能在最短的时间内到达点B处,∴当PB⊥AB时,根据垂线段最短得出此时符合题意,∵菱形ABCD,AB=6,∠DAB=60°,∴∠BAO=30°,AB=AD,AC⊥BD,∴△ABD是等边三角形,∴BD=6,BO=3,由勾股定理得:AO=3在Rt△APB中,AB=6,∠BAP=30°,BP=12AP,由勾股定理得:AP=3,BP=3,∴点M30)时,用时最少.②当0<t3AP=2t,∵菱形ABCD,∴∠OAB=30°,∴OB=12AB=3,由勾股定理得:AO=CO=3,∴S=12AP×BO=12×2t×3=3t;③当3t3AP=32t﹣332t,∴S=12AP×BO=12×(32t)×3=3﹣3t.当3t3S=12AB×BP=123﹣(t﹣3]=﹣3t3答:S与t之间的函数关系式是当3<t3时,S=33t;当0<t3S=3t.当3t3S=﹣3t3【点睛】本题主要考查对含30度角的直角三角形,勾股定理,三角形的面积,轴对称-最短问题,圆周角定理等知识点的理解和掌握,能综合运用性质进行计算是解此题的关键.8.△ABC内接于⊙O,AB=AC,BD⊥AC,垂足为点D,交⊙O于点E,连接AE.(1)如图1,求证:∠BAC=2∠CAE;(2)如图2,射线AO交线段BD于点F,交BC边于点G,连接CE,求证:BF=CE;(3)如图3,在(2)的条件下,连接CO并延长,交线段BD于点H,交⊙O于点M,连接FM,交AB边于点N,若BH=DH,四边形BHOG的面积为2,求线段MN的长.【答案】(1)见详解;(2)见详解;(3)6MN【解析】【分析】(1)先依据等腰三角形的性质和三角形的内角和定理证明∠BAC+2∠C=180°,然后得到2∠CAE+2∠E=180°,然后根据同弧所对的圆周角相等得到∠E=∠C,即可得到结论;(2)连接OB、OC.先依据SSS证明△ABO≌△ACO,从而得到∠BAO=∠CAO,然后在依据ASA证明△ABF≌△ACE,最后根据全等三角形的性质可证明BF=CE;(3)连接HG、BM.由三线合一的性质证明BG=CG,从而得到HG是△BCD的中位线,则∠FHO=∠AFD=∠HFO,于是可得到HO=OF,然后得到∠OGH=∠OHG,从而得到OH=OG,则OF=OG,接下来证明四边形MFGB是矩形,然后由MF∥BC证明△MFH∽△CBH,从而可证明HF=FD.接下来再证明△ADF≌△GHF,由全等三角形的性质的到AF=FG,然后再证明△MNB≌△NAF,于是得到MN=NF.设S△OHF=S△OHG=a,则S△FHG=2a,S△BHG=4a,然后由S四边形BHOG2,可求得2,设HF=x,则BH=2x,然后证明△GFH∽△BFG,由相似三角形的性质可得到2x,然后依据S△BHG=122,可求得x=2,故此可得到HB、GH的长,然后依据勾股定理可求得BG的长,于是容易求得MN的长.【详解】解:(1)∵AB=AC,∴∠ABC=∠ACB.∴∠BAC+2∠C=180°.∵BD⊥AC,∴∠ADE=90°.∴∠E+∠CAE=90°.∴2∠CAE+2∠E=180°.∵∠E=∠ACB,∴2∠CAE+2∠ACB=180°.∴∠BAC=2∠CAE.(2)连接OB、OC.∵AB=AC,AO=AO,OB=OC,∴△ABO≌△ACO.∴∠BAO=∠CAO.∵∠BAC=2∠CAE,∴∠BAO=∠CAE.在△ABF和△ACE中,ABF ACEAB ACBAF CAE∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABF≌△ACE.∴BF=CE.(3)连接HG、BM.∵AB=AC,∠BAO=∠CAO,∴AG⊥BC,BG=CG.∵BH=DH,∴HG是△BCD的中位线.∴HG∥CD.∴∠GHF=∠CDE=90°.∵OA=OC,∴∠OAC=∠OCA.∵∠OAC+∠AFD=90°,∠OCA+∠FHO=90°,∴∠FHO=∠AFD=∠HFO .∴HO=OF .∵∠HFO+∠OGH=90°,∠OHF+∠OHG=90°,∴∠OGH=∠OHG .∴OH=OG .∴OF=OG .∵OM=OC ,∴四边形MFCG 是平行四边形.又∵MC 是圆O 的直径,∴∠CBM=90°.∴四边形MFGB 是矩形.∴MB=FG ,∠FMB=∠AFN=90°.∵MF ∥BC ,∴△MFH ∽△CBH . ∴12HF MF BH CB ==. ∴HF :HD=1:2.∴HF=FD . 在△ADF 和△GHF 中,AFD GFH ADF GHF FH FD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADF ≌△GHF .∴AF=FG .∴MB=AF .在△MNB 和△NAF 中,90BMF AFN ANF BNM MB AF ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△MNB ≌△NAF .∴MN=NF .设S △OHF =S △OHG =a ,则S △FHG =2a ,S △BHG =4a ,∴S 四边形BHOG.∴.设HF=x ,则BH=2x .∵∠HHG=∠GFB ,∠GHF=∠FGB ,∴△GFH ∽△BFG .∴HF GH HG BH =,即2x HG HG x=. ∴HG=2x . ∴S △BHG =12BH•HG=12×2x•2x =42, 解得:x=2.∴HB=4,GH=22.由勾股定理可知:BG=26.∴MF=26.∴MN=NF=6.【点睛】本题主要考查的是圆的综合应用,解答本题主要应用了圆周角定理、全等三角形的性质和判定、相似三角形的性质和判断、勾股定理的应用、矩形的性质和判定,找出图中相似三角形和全等三角形是解题的关键.9.如图,在O 中,AB 为直径,过点A 的直线l 与O 相交于点C ,D 是弦CA 延长线上一点,BAC ∠,BAD ∠的平分线与O 分别相交于点E ,F ,G 是BF 的中点,过点G 作MN AE ,与AF ,EB 的延长线分别交于点M ,N .(1)求证:MN 是O 的切线; (2)若24AE =,18AM =. ①求O 的半径;②连接MC ,求tan MCD ∠的值. 【答案】(1)见解析;(2)①13;②2741 【解析】【分析】(1)如图1,连接 GO 、GA ,先根据角平分线的定义证明∠MAE=12(∠BAC+∠BAD )=90°,由圆周角定理和同圆的半径相等得∠OGA=∠FAG ,则OG ∥AM ,所以∠MGO=180-∠M=90,从而得结论;(2)①延长GO 交AE 于点P ,证明四边形 MGPA 为矩形,得GP=MA=18,∠GPA=90°,设OA=OG=r ,则OP=18-r ,根据勾股定理列方程解出即可;②如图3,过M 作MH ⊥l ,连接BC ,延长NE 交l 于I ,连接GO 交延长交AE 于P ,tan ∠MAH=tan ∠ABE=tan ∠BIA=125,BI=2BE=20,根据三角函数计算MH ,AH ,CI 的长,最后计算MH 和HC 的长,代入tan ∠MCD=MH HC,可得结论. 【详解】(1)证明:如图1,连接GO ,GA ,∵BAC ∠,BAD ∠的平分线与O 分别相交于点E ,F , ∴1()902MAE BAC BAD ∠=∠+∠=︒. ∵MN AE ,∴18090M MAE ∠=︒-∠=︒.∵G 是BF 的中点,∴FG BG =,∴FAG BAG ∠=∠.∵OA OG =,∴OGA BAG ∠=∠,∴OGA FAG ∠=∠,∴OG AM ∥,∴18090MGO M ∠=︒-∠=︒.∵OG 为O 半径, ∴MN 是O 的切线.(2)解:①如图2,连接GO 并延长交AE 于点P ,∵90MGO M MAE ∠=∠=∠=︒,∴四边形MGPA 为矩形,∴18GP MA ==,90GPA ∠=︒,即OP AE ⊥,∴1122AP AE ==. 设OA OG r ==,则18OP r =-,在Rt OAP △中,∵222OA OP AP =+,∴222(18)12r r =-+,解得:13r =, 故O 的半径是13.②如图3,过M 作MH l ⊥,连接BC ,延长NE 交l 于I ,连接GO 并延长交AE 于P ,由①知:13OG =,18PG =,∴5OP =.∵AB 是O 的直径,∴90AEB AEI ∠=∠=︒.∵BAE EAC ∠=∠,∴ABE AIB ∠=∠,∵AM NI ∥,∴MAH BIA ABE ∠=∠=∠,∴12tan tan tan 5MAH ABE BIA ∠=∠=∠=,220BI BE ==. ∵12cos 13HM AMH AM ∠==,5sin 13AH AMH AM ∠==,5sin 13CI CBI BI ∠==, ∴181********MH ⨯==,185901313AH ⨯==,5100201313CI =⨯=, ∴100238261313AC AI CI =-=-=, ∴23890328131313HC AH AC =+=+=, ∴21627tan 32841MH MCD HC ∠===.【点睛】本题考查了切线的判定,圆周角定理,解直角三角形,勾股定理,矩形的性质和判定,正确作出辅助线是解题的关键.10.在O中,AB为直径,CD与AB相较于点H,弧AC=弧AD(1)如图1,求证:CD AB⊥;(2)如图2,弧BC上有一点E,若弧CD=弧CE,求证:3EBA ABD∠=∠;(3)如图3,在(2)的条件下,点F在上,连接,//FH FH DE,延长FO交DE于点K,若165,55FK DB BE==,求AB.【答案】(1)证明见解析;(2)证明见解析;(3)1855AB=.【解析】【分析】(1)连接,OC OD,根据AC AD=得出COA DOA∠=再根据OC OD=得出OCD ODC∠=∠,从而得证;(2)连接,BC BD,根据AC AD=得出,BC BD BA CD=⊥,CBA ABD∠=∠,再根据CE CD=,得出CBE CBD∠=∠,从而得出结论;(3)作,CM DB CN BE⊥⊥,过点P作,PT BE PS BD⊥⊥,,5BE BP a DB a===先证CDM CEN∆≅∆,DM EN=,再证,CMB CNB BM BN∆≅∆=,设DM b=,得出2b a=,再算出,CM CD得出CPD∆为等腰三角形,再根据BP是角平分线利用角平分线定理得出BCPEBPS DP BDS PE BE∆==,从而算出,PE DE,再根据三角函数值算出BG,,,,AB r OG OH,再根据//FH DE得出HO OFGO OK=,从而计算AB.【详解】(1)连接OC,CD因为AC AD=,所以COA DOA∠=∠OC OD=,,OA CD CD AB∴⊥∴⊥;(2)连接BC ,,BC BD BA CD =⊥所以AB 平分CBD ∠,设ABD ABC α∠=∠=2CBD α∴∠=CD CE ∴=2CBE CBD α∴∠=∠=,3EBA α∴∠=3EBA ABD ∴∠=∠.(3) 2,90EBC BPE PEB αα︒∠=∠=∠=-设,5BE BP a DB a ===作,CM DB CN BE ⊥⊥,可证:CDM CEN ∆≅∆,DM EN =,再证:,CMB CNB BM BN ∆≅∆=设,5,2DM EN b a b a b b a ==+=-∴=在CBM ∆中勾股4CM a =在CDM ∆中勾股25CD a =得CPD ∆为等腰三角形25DP DC a ==因为BP 为角平分线,过点P 作,PT BE PS BD ⊥⊥ 可证:5BCP EBP S DP BD S PE BE∆=== 2525,PE DE ∴==14tan ,tan 223αα== 2555,BG a AB a ∴== 557535,,4124r a OG a OH a === //FH DE97HO OF GO OK ∴== 995185,16OF KF AB ===【点睛】本题是一道圆的综合题目,难度较大,考查了圆相关的性质以及与三角形综合,掌握相关的线段与角度转化是解题关键.。
模型25 圆综合之中点弧模型(解析版)-2023年中考数学重难点解题大招复习讲义-几何模型篇
模型介绍【模型解读】类型一中点弧与相似点P 是优弧AB上一动点,则∠1=∠2,∠PCB为公共角,子母型相似【补充】⑥PE •PC =PA •PB【以下五个条件知一推四】1点C 是AB 的中点2AC =BC 3OC ⊥AB 4PC 平分∠APB52CE CP CB ⋅=(即~CPB CBE △△)类型二中点弧与旋转【模型解读】点P 是优弧AB 上一动点,且点C 是 AB 的中点邻边相等+对角互补旋转相似模型,一般用来求圆中三条线段之间的数量关系.由于对角互补,即180PBC PAC ∠∠︒+=,显然'PAP 共线,且'PC P C =,通过导角不难得出相似.类型三中点弧+内心可得等腰【模型讲解】外接圆+内心⇒得等腰如图,圆O 是△ABC 外接圆圆心,I 是三角形ABC 模型25圆综合之中点弧模型(原卷版)-2023年中考数学重难点解题大招复习讲义-几何模型篇内心,延长AI 交圆O 于D ,证DI =DC =BD【简证】∠1=∠4+∠5,∠4=∠3,∠2=∠5∴∠1=∠2+∠3类型四弧中点与垂径定理【模型解读】知1推51AD平分∠CAB 2D是 CB的中点3DO⊥CB4CE EB=5//AC OD612 OE AC=例题精讲考点一:中点弧与相似三角形的综合【例1】.如图,A、B、C、D是⊙O上的四个点,AB=AC,AD交BC于点E,AE=3,ED =4,则AB的长为_______解:∵AB=AC,∴∠ACB=∠ABC=∠D,∵∠BAD=∠BAD,∴△ABD∽△AEB,∴,∴AB2=3×7=21,∴AB=.变式训练【变式1-1】.如图,四边形ABCD内接于⊙O,对角线AC、BD交于点P,且AB=AD,若AC=7,AB=3,则BC•CD=40.解:∵AB=AD=3,∴=,∴∠ADP=∠ACD,∵∠DAP=∠CAD,∴△ADP∽△ACD,∴=,∴=,∴AP=,PC=AC﹣PA=7﹣=,∵∠CBP=∠CAD,∠BCP=∠ACD,∴△CBP∽△CAD,∴=,∴BC•CD=CA•CP=7×=40.故答案为:40.【变式1-2】.如图,四边形ABCD内接于⊙O,AB为直径,AD=CD,过点D作DE⊥AB于点E,连接AC交DE于点F.若sin∠CAB=,DF=5,则BC的长为_______解:连接BD,如图,∵AB为直径,∴∠ADB=∠ACB=90°,∵AD=CD,∴∠DAC=∠DCA,而∠DCA=∠ABD,∴∠DAC=∠ABD,∵DE⊥AB,∴∠ABD+∠BDE=90°,而∠ADE+∠BDE=90°,∴∠ABD=∠ADE,∴∠ADE=∠DAC,∴FD=FA=5,在Rt△AEF中,∵sin∠CAB==,∴EF=3,∴AE==4,DE=5+3=8,∵∠ADE=∠DBE,∠AED=∠BED,∴△ADE∽△DBE,∴DE:BE=AE:DE,即8:BE=4:8,∴BE=16,∴AB=4+16=20,在Rt△ABC中,∵sin∠CAB==,∴BC=20×=12.考点二中点弧与旋转的综合【例2】.在OBAD∠=︒,点C为弧BD的AB=,10AD=,60的内接四边形ABCD中,6中点,则AC的长是.解:如图,过C 作CE AB ⊥于E ,CF AD ⊥于F ,则90E CFD CFA ∠=∠=∠=︒, 点C 为弧BD 的中点,∴ BC CD =,BAC DAC ∴∠=∠,BC CD =,CE AB ⊥ ,CF AD ⊥,CE CF ∴=,A 、B 、C 、D 四点共圆,D CBE ∴∠=∠,在CBE ∆和CDF ∆中CBE D E CFD CE CF ∠=∠⎧⎪∠=∠⎨⎪=⎩,CBE CDF ∴∆≅∆,BE DF ∴=,在AEC ∆和AFC ∆中,E AFC EAC FAC AC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,AEC AFC ∴∆≅∆,AE AF ∴=,设BE DF x ==,6AB = ,10AD =,3AE AF x ∴==+,106x x ∴-=+,解得:2x =,即8AE =,163cos303AE AC ∴==︒1633.变式训练【变式2-1】.如图,已知AB 是O 的弦,点C 是弧AB 的中点,D 是弦AB 上一动点,且不与A 、B 重合,CD 的延长线交于O 点E ,连接AE 、BE ,过点A 作AF BC ⊥,垂足为F ,30ABC ∠=︒.(1)求证:AF 是O 的切线;(2)若6BC =,3CD =,求DE 的长;(3)当点D 在弦AB 上运动时,CEAE BE+的值是否发生变化?如果变化,请写出其变化范围;如果不变,请求出其值.(1)证明:如图,连接AC ,OA ,OC ,OC 交AB 于H ,260AOC ABC ∠=∠=︒ ,OA OC =,AOC ∴∆是等边三角形,60CAO ACO ∴∠=∠=︒, 点C 是弧AB 的中点,∴ BC AC =,30ABC BAC ∴∠=∠=︒,180180603090CHA OCA CAB ∴∠=-∠-∠=︒-︒-︒=︒,AB OC ∴⊥,1302OAD OAC ∴∠=∠=︒,30ABC ∠=︒ ,ABC OAD ∴∠=∠,//OA BF ∴,AF BF ⊥ ,OA AF ∴⊥,AF ∴是O 的切线;(2)解: BCAC =,CBD BEC ∴∠=∠,BCD BCE ∠=∠ ,BCD ECB ∴∆∆∽,∴BC CD EC CB =,∴636EC =,12EC ∴=,1239DE EC CD ∴=-=-=;(3)结论:3CE AE BE =+,CEAE BE+的值不变.理由:如图,连接AC ,OC ,OC 交AB 于H ,作//AN EC 交BE 的延长线于N , BCAC =,CB CA ∴=,由(1)得,OC AB ⊥,12BH AH AB ∴==,30ABC ∠=︒ ,30ABC BAC BEC AEC ∴∠=∠=∠=∠=︒,cos302BH BC ∴=︒=,∴122AB AC =,//CE AN ,30N CEB ∴∠=∠=︒,30EAN AEC ∠=∠=︒,EAN N ∴∠=∠,N AEC ∴∠=∠,AE EN =,ACE ABN ∠=∠ ,ACE ABN ∴∆∆∽,∴3CE AC BN AB ==,∴CE CE EN BE AE BE ==++,∴CE AE BE +的值不变.考点三:中点弧+内心可得等腰三角形【例3】.如图,已知⊙O 是△ABC 的外接圆,点I 是△ABC 的内心,延长AI 交BC 于点E ,交⊙O 于点D ,连接BD 、DC 、BI .求证:DB =DC =DI .证明:∵点I 是△ABC 的内心,∴∠BAD =∠DAC ,∠ABI =∠IBC ,∵⊙O 是△ABC 的外接圆,∠BAD =∠DAC ,∴=,∴BD =CD ,∵=,∴∠CAD =∠CBD ,∵∠DBI =∠IBC +∠CBD ,∠BID =∠ABI +∠BAI ,∴∠DBI =∠BID ,∴DB =DI ,∴DB =DC =DI .变式训练【变式3-1】.如图,点I是△ABC的内心,BI的延长线与△ABC的外接圆⊙O交于点D,与AC交于点E,延长CD、BA相交于点F,∠ADF的平分线交AF于点G.(1)求证:DG∥CA;(2)求证:AD=ID;(3)若DE=4,BE=5,求BI的长.(1)证明:∵点I是△ABC的内心,∴∠2=∠7,∵DG平分∠ADF,∴∠1=∠ADF,∵∠ADF=∠ABC,∴∠1=∠2,∵∠3=∠2,∴∠1=∠3,∴DG∥AC;(2)证明:∵点I是△ABC的内心,∴∠5=∠6,∵∠4=∠7+∠5=∠3+∠6,即∠4=∠DAI,∴DA=DI;(3)解:∵∠3=∠7,∠ADE =∠BDA ,∴△DAE ∽△DBA ,∴AD :DB =DE :DA ,即AD :9=4:AD ,∴AD =6,∴DI =6,∴BI =BD ﹣DI =9﹣6=3.【变式3-2】.如图1,在△ABC 中,AB =AC ,⊙O 是△ABC 的外接圆,过点C 作∠BCD =∠ACB 交⊙O 于点D ,连接AD 交BC 于点E ,延长DC 至点F ,使CF =AC ,连接AF .(1)求证:ED =EC ;(2)求证:AF 是⊙O 的切线;(3)如图2,若点G 是△ACD 的内心,BC ·BE =25,求BG 的长.解:(1)∵AB =AC ,∴∠ABC =∠ACB ,又∵∠ACB =∠BCD ,∠ABC =∠ADC ,∴∠BCD =∠ADC ,∴ED =EC ;(2)如图,连接OA ,∵AB =AC ,∴ AB AC ,∴OA ⊥BC ,∵CA =CF ,∴∠CAF =∠CFA ,∴∠ACD =∠CAF +∠CFA =2∠CAF ,∵∠ACB =∠BCD ,∴∠ACD =2∠ACB ,∴∠CAF =∠ACB ,∴AF ∥BC ,∴OA ⊥AF ,∴AF 为⊙O 的切线;(3)∵∠ABE =∠CBA ,∠BAD =∠BCD =∠ACB ,∴△ABE ∽△CBA ,∴AB BE BC AB=,∴AB 2=BC •BE ,∵BC •BE =25,∴AB =5,如图,连接AG ,∴∠BAG =∠BAD +∠DAG ,∠BGA =∠GAC +∠ACB ,∵点G 为内心,∴∠DAG =∠GAC ,又∵∠BAD +∠DAG =∠GAC +∠ACB ,∴∠BAG =∠BGA ,∴BG =AB =5.考点四:弧中点与垂径定理【例4】.如图,AB 为O 的直径,C ,D 为圆上的两点,//OC BD ,弦AD ,BC 相交于点E .(1)求证: AC CD=;(2)若2CE =,6EB =,求O 的半径.(1)证明:OC OB = ,OBC OCB ∴∠=∠,//OC BD ,OCB CBD ∴∠=∠,OBC CBD ∴∠=∠,∴AC CD =;(2)连接AC ,2CE = ,6EB =,8BC ∴=,AC CD =,CAD ABC ∴∠=∠,ACB ACB ∠=∠ ,ACE BCA ∴∆∆∽,∴AC CB CE AC =,即82AC AC=,解得,4AC =,AB 是直径,90ACB ∴∠=︒,AB ∴==,O ∴ 的半径为.变式训练【变式4-1】.如图,AB 是⊙O 的直径,点C 为的中点,CF 为⊙O 的弦,且CF ⊥AB ,垂足为E ,连接BD 交CF 于点G ,连接CD ,AD ,BF .(1)求证:△BFG ≌△CDG ;(2)若AD =BE =4,求BF 的长.(1)证明:∵C 是中点,∴=,∵AB 是⊙O 的直径,且CF ⊥AB ,∴=,∴=,∴CD =BF ,在△BFG 和△CDG 中,,∴△BFG ≌△CDG (AAS );(2)解:如图,连接OF ,设⊙O 的半径为r ,Rt △ADB 中,BD 2=AB 2﹣AD 2,即BD 2=(2r )2﹣42,Rt △OEF 中,OF 2=OE 2+EF 2,即EF 2=r 2﹣(r ﹣4)2,∵==,∴=,∴BD=CF,∴BD2=CF2=(2EF)2=4EF2,即(2r)2﹣42=4[r2﹣(r﹣4)2],解得:r=2(舍)或6,∴BF2=EF2+BE2=62﹣(6﹣4)2+42=48,∴BF=4.【变式4-2】.如图,AB是⊙O的直径,点E为弧AC的中点,AC、BE交于点D,过A的切线交BE的延长线于F.(1)求证:AD=AF;(2)若,求tan∠ODA的值.解:(1)连接AE,OE交AC于H,∵AB是直径,∴∠AEB=90°,∴∠B+∠BAE=90°,∵AF是⊙O的切线,∴∠BAF=90°,∴∠BAE+∠FAE=90°,∴∠B=∠FAE,∵点E为弧AC的中点,∴=,∴∠B =∠CAE ,∴∠CAE =∠FAE ,在△ADE 和△AFE 中,,∴△ADE ≌△AFE (ASA ),∴AD =AF ;(2)∵,∴设AO =2x ,AF =3x ,∴AB =4x ,∴BF ===5x ,∵S △ABF =×AB ×AF =×BF ×AE ,∴AE =x ,∴EF ==x ,∵点E 为弧AC 的中点,∴OE ⊥AC ,AH =CH ,∵∠DAE =∠EAF ,∠AEF =∠AHE =90°,∴△AEH ∽△AFE ,∴,∴==,∴AH =x ,HE =x ,∴OH =x ,HD =x ,∴tan ∠ODA ==.考点五弧中点与垂径模型(三等弧模型)【例5】.如图,AB 是O 的直径,点C 为 BD的中点,CF 为O 的弦,且CF AB ,垂足为E ,连接BD 交CF 于点G ,连接CD ,AD ,BF .(1)求证:BFG CDG ∆≅∆;(2)若2AD BE ==,求BF的长.证明:(1)C 是 BD的中点,∴ CD BC =,AB 是O 的直径,且CF AB ⊥,∴ BCBF =,∴ CD BF =,CD BF ∴=,在BFG ∆和CDG ∆中,F CDG FGB DGC BF CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,()BFG CDG AAS ∴∆≅∆;(2)如图,连接OF ,设O 的半径为r ,Rt ADB ∆中,222BD AB AD =-,即222(2)2BD r =-,Rt OEF ∆中,222OF OE EF =+,即222(2)EF r r =--,CDBC BF ==,∴ BD CF =,BD CF ∴=,2222(2)4BD CF EF EF ∴===,即2222(2)24[(2)]r r r -=--,解得:1r =(舍)或3,2222223(32)212BF EF BE ∴=+=--+=,BF ∴=;1.如图,在⊙O 中AB 为直径,C 为弧AB 的中点,EF ∥AB ,连接AC 交EF 于点D ,若已知DF =2DE ,则CD :AD 的值为()A.1:3B.1:2C.1:2D.1:4解:如图,连接CO交EF于H,连接AE,CF,BC,∵DF=2DE,∴设DE=x,DF=2x,∴EF=3x,∵C为弧AB的中点,∴OC⊥AB,∠CAB=∠CBA=45°,∵EF∥AB,∴OC⊥EF,∠CDH=45°,∴EH=HF=x,∴DH=x=CH,∴CD=x,∵∠EAD=∠CFD,∠ADE=∠CDF,∴△ADE∽△FDC,∴,∴,∴AD=2x,∴CD:AD=1:4.故选:D.2.如图,已知点A是以MN为直径的半圆上一个三等分点,点B是的中点,点P是半径ON上的点.若⊙O的半径为1,则AP+BP的最小值为()A.2B.C.D.1解:作点A关于MN的对称点A′,连接A′B,交MN于点P,则PA+PB最小,连接OA′,AA′,OB,∵点A与A′关于MN对称,点A是半圆上的一个三等分点,∴∠A′ON=∠AON=60°,PA=PA′,∵点B是弧的中点,∴∠BON=30°,∴∠A′OB=∠A′ON+∠BON=90°,又∵OA=OA′=1,∴A′B=.∴PA+PB=PA′+PB=A′B=.故选:C.3.在⊙O的内接四边形ABCD中,AB=6,AD=10,∠BAD=60°,点C为弧BD的中点,则AC的长是.解:如图2中,过C作CE⊥AB于E,CF⊥AD于F,则∠E=∠CFD=∠CFA=90°,∵点C为弧BD的中点,∴=,∴∠BAC=∠DAC,BC=CD,∵CE⊥AB,CF⊥AD,∴CE=CF,∵A、B、C、D四点共圆,∴∠D=∠CBE,在△CBE和△CDF中,∴△CBE≌△CDF,∴BE=DF,在△AEC和△AFC中,,∴△AEC≌△AFC,∴AE=AF,设BE=DF=x,∵AB=6,AD=10,∴AE=AF=x+3,∴10﹣x=6+x,解得:x=2,即AE=8,∴AC==,故答案为.4.如图,∠BAC的平分线交△ABC的外接圆于点D,∠ABC的平分线交AD于点E.(1)求证:DE=DB;(2)若∠BAC=90°,BD=4,求△ABC外接圆的半径.(1)证明:∵AD平分∠BAC,BE平分∠ABC,∴∠BAD=∠CAD,∠ABE=∠CBE,∵∠BED=∠BAE+∠ABE,∠DBE=∠EBC+∠CBD,∠CBD=∠CAD,∴∠BED=∠EBD,∴DE=DB;(2)解:连接CD,∵∠BAC=90°,∴BC是直径,∴∠BDC=90°,∵AD平分∠BAC,∴∠BAD=∠CAD,∴,∴BD=CD,∵BD=4,∴BC==4,∴△ABC外接圆的半径为2.5.如图,AB是⊙O的直径,AC为弦,D是的中点,过点D作EF⊥AC,交AC的延长线于E,交AB的延长线于F.(1)求证:EF是⊙O的切线;(2)若sin∠F=,AE=4,求⊙O的半径和AC的长.(1)证明:连接OD,OC.∵D是的中点,∴∠BOD=∠BOC,∵∠A=∠BOC,∴∠BOD=∠A,∴OD∥AC,∵EF⊥AC,∴∠E=90°,∴∠ODF=90°,即EF是⊙O的切线;(2)解:在△AEF中,∵∠E=90°,sin∠F=,AE=4,∴AF==12.设⊙O的半径为R,则OD=OA=OB=R,AB=2R.在△ODF中,∵∠ODF=90°,sin∠F=,∴OF=3OD=3R.∵OF+OA=AF,∴3R+R=12,∴R=3.连接BC,则∠ACB=90°.∵∠E=90°,∴BC∥EF,∴AC:AE=AB:AF,∴AC:4=2R:4R,∴AC=2.故⊙O的半径为3,AC的长为2.6.如图,已知AC,BD为⊙O的两条直径,连接AB,BC,OE⊥AB于点E,点F是半径OC的中点,连接EF.(1)设⊙O的半径为1,若∠BAC=30°,求线段EF的长.(2)连接BF,DF,设OB与EF交于点P,①求证:PE=PF.②若DF=EF,求∠BAC的度数.(1)解:∵OE⊥AB,∠BAC=30°,OA=1,∴∠AOE=60°,OE=OA=,AE=EB=OE=,∵AC是直径,∴∠ABC=90°,∴∠C=60°,∵OC=OB,∴△OCB是等边三角形,∵OF=FC,∴BF⊥AC,∴∠AFB=90°,∵AE=EB,∴EF=AB=.(2)①证明:过点F作FG⊥AB于G,交OB于H,连接EH.∵∠FGA=∠ABC=90°,∴FG∥BC,∴△OFH∽△OCB,∴==,同理=,∴FH=OE,∵OE⊥AB.FH⊥AB,∴OE∥FH,∴四边形OEHF是平行四边形,∴PE=PF.解法二:可以作OB中点G,连接FG,EG,证明OEFG是平行四边形即可,得对角线互相平分.②∵OE∥FG∥BC,∴==1,∴EG=GB,∴EF=FB,∵DF=EF,∴DF=BF,∵DO=OB,∴FO⊥BD,∴∠AOB=90°,∵OA=OB,∴△AOB是等腰直角三角形,∴∠BAC=45°.解法二:可以过E点作EG∥OB交AC于点G,连接DG.∵EG∥OB,AE=EB,∴AG=OG∵OF=FC,∴OG=OF,∴OD=FG,∵AE⊥OE,AG=OG,∴EG=AO=OG,∵∠DOG=∠FGE,∴DOG≌△FGE(SAS),∴DG=EF,∵DF=EF,∴DG=DF,∴DO⊥FG,∴EG⊥AO,∴EA=EO,∴∠BAC=45°7.如图,△ABC内接于⊙O,AB是⊙O的直径,C是中点,弦CE⊥AB于点H,连接AD,分别交CE、BC于点P、Q,连接BD.(1)求证:P是线段AQ的中点;(2)若⊙O的半径为5,D是的中点,求弦CE的长.(1)证明:∵CE⊥AB,AB是直径,∴,又∵∴,∴∠CAD=∠ACE,∴AP=CP,∵AB是⊙O的直径,∴∠ACB=90˚,∴∠ACE+∠BCP=90°,∠CAD+∠CQA=90°,∴∠BCP=∠CQA,∴CP=PQ,∴AP=PQ,即P是线段AQ的中点;(2)解:∵,AB是直径,∴∠ACB=90˚,∠ABC=30˚,又∵AB=5×2=10,∴AC=5,BC=5,∴CH=BC=,又∵CE⊥AB,∴CH=EH,∴CE=2CH=2×=5.8.如图,已知AB是⊙O的弦,点C是弧AB的中点,D是弦AB上一动点,且不与A、B 重合,CD的延长线交于⊙O点E,连接AE、BE,过点A作AF⊥BC,垂足为F,∠ABC =30°.(1)求证:AF是⊙O的切线;(2)若BC=6,CD=3,求DE的长.(3)当点D在弦AB上运动时,的值是否发生变化?如果变化,请写出其变化范围;如果不变,请求出其值.(1)证明:如图,连接AC,OA,OC,OC交AB于H,∵∠AOC=2∠ABC=60°,OA=OC,∴△AOC是等边三角形,∴∠CAO=∠ACO=60°,∵点C是弧AB的中点,∴,∴∠ABC=∠BAC=30°,∴∠CHA=180﹣∠OCA﹣∠CAB=180°﹣60°﹣30°=90°,∴AB⊥OC,∴∠OAD=∠OAC=30°,∵∠ABC=30°,∴∠ABC=∠OAD,∴OA∥BF,∵AF⊥BF,∴OA⊥AF,∴AF是⊙O的切线;(2)解:∵,∴∠CBD=∠BEC,∵∠BCD=∠BCE,∴△BCD∽△ECB,∴,∴,∴EC=12,∴DE=EC﹣CD=12﹣3=9;(3)结论:,的值不变.理由:如图,连接AC,OC,OC交AB于H,作AN∥EC交BE的延长线于N,∵,∴CB=CA,由(1)得,OC⊥AB,∴BH=AH=,∵∠ABC=30°,∴∠ABC=∠BAC=∠BEC=∠AEC=30°,∴BH=BC cos30°=BC,∴,∵CE∥AN,∴∠N=∠CEB=30°,∠EAN=∠AEC=30°,∴∠EAN=∠N,∴∠N=∠AEC,AE=EN,∵∠ACE=∠ABN,∴△ACE∽△ABN,∴,∴=,∴的值不变.解法二:连接AC,可知BC=AC,∠BCA=120°,可得BC:AC:AB=1:1:,再利用相似三角形的性质解决问题.9.已知△ABC内接于⊙O,∠BAC的平分线交⊙O于点D,连接DB,DC.(1)如图①,当∠BAC=120°时,请直接写出线段AB,AC,AD之间满足的等量关系式AB+AC=AD;(2)如图②,当∠BAC=90°时,试探究线段AB,AC,AD之间满足的等量关系,并证明你的结论;(3)如图③,若BC=m,BD=n,求的值(用含m,n的式子表示).解:(1)如图①在AD上截取AE=AB,连接BE,∵∠BAC=120°,∠BAC的平分线交⊙O于点D,∴∠DBC=∠DAC=60°,∠DCB=∠BAD=60°,∴△ABE和△BCD都是等边三角形,∴∠ABE=∠DBC=60°,∴∠DBE=∠ABC,又∵AB=BE,BC=BD,∴△BED≌△BAC(SAS),∴DE=AC,∴AD=AE+DE=AB+AC;故答案为:AB+AC=AD.(2)AB+AC=AD.理由如下:如图②,延长AB至点M,使BM=AC,连接DM,∵四边形ABDC内接于⊙O,∴∠MBD=∠ACD,∵∠BAD=∠CAD=45°,∴BD=CD,∴△MBD≌△ACD(SAS),∴MD=AD,∠M=∠CAD=45°,∴MD⊥AD.∴AM=AD,即AB+BM=AD,∴AB+AC=AD;(3)如图③,延长AB至点N,使BN=AC,连接DN,∵四边形ABDC内接于⊙O,∴∠NBD=∠ACD,∵∠BAD=∠CAD,∴BD=CD,∴△NBD≌△ACD(SAS),∴ND=AD,∠N=∠CAD,∴∠N=∠NAD=∠DBC=∠DCB,∴△NAD∽△CBD,∴,∴,又AN=AB+BN=AB+AC,BC=m,BD=n,∴=.10.如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB.(1)求证:PC是⊙O的切线;(2)求证:BC=AB;(3)点M是弧AB的中点,CM交AB于点N,若AB=8,求MN•MC的值.(1)证明:∵OA=OC,∴∠A=∠ACO.又∵∠COB=2∠A,∠COB=2∠PCB,∴∠A=∠ACO=∠PCB.又∵AB是⊙O的直径,∴∠ACO+∠OCB=90°.∴∠PCB+∠OCB=90°.即OC⊥CP,∵OC是⊙O的半径.∴PC是⊙O的切线.(2)证明:∵AC=PC,∴∠A=∠P,∴∠A=∠ACO=∠PCB=∠P.又∵∠COB=∠A+∠ACO,∠CBO=∠P+∠PCB,∴∠COB=∠CBO,∴BC=OC.∴BC=AB.(3)解:连接MA,MB,∵点M是的中点,∴=,∴∠ACM=∠BCM.∵∠ACM=∠ABM,∴∠BCM=∠ABM.∵∠BMN=∠BMC,∴△MBN∽△MCB.∴=.∴BM2=MN•MC.又∵AB是⊙O的直径,=,∴∠AMB=90°,AM=BM.∵AB=8,∴BM=4.∴MN•MC=BM2=32.11.如图,已知⊙O的半径为2,AB为直径,CD为弦.AB与CD交于点M,将沿CD翻折后,点A与圆心O重合,延长OA至P,使AP=OA,连接PC(1)求CD的长;(2)求证:PC是⊙O的切线;(3)点G为的中点,在PC延长线上有一动点Q,连接QG交AB于点E.交于点F(F与B、C不重合).问GE•GF是否为定值?如果是,求出该定值;如果不是,请说明理由.(1)解:如图,连接OC,∵沿CD翻折后,点A与圆心O重合,∴OM=OA=×2=1,CD⊥OA,∵OC=2,∴CD=2CM=2=2=2;(2)证明:∵PA=OA=2,AM=OM=1,CM=CD=,∠CMP=∠OMC=90°,∴PC===2,∵OC=2,PO=2+2=4,∴PC2+OC2=(2)2+22=16=PO2,∴∠PCO=90°,∴PC是⊙O的切线;(3)解:GE•GF是定值,证明如下,连接GO并延长,交⊙O于点H,连接HF∵点G为的中点∴∠GOE=90°,∵∠HFG=90°,且∠OGE=∠FGH∴△OGE∽△FGH∴=∴GE•GF=OG•GH=2×4=8.12.如图1,在平面直角坐标系xOy中,点A(﹣,0),B(3,0),以AB为直径的⊙G交y轴于C、D两点.(1)填空:请直接写出⊙G的半径r、圆心G的坐标:r=;G(,);(2)如图2,直线y=﹣x+5与x,y轴分别交于F,E两点,且经过圆上一点T(2,m),求证:直线EF是⊙G的切线.(3)在(2)的条件下,如图3,点M是⊙G优弧上的一个动点(不包括A、T两点),连接AT、CM、TM,CM交AT于点N.试问,是否存在一个常数k,始终满足CN•CM =k?如果存在,求出k的值,如果不存在,请说明理由.解:(1)∵A(﹣,0),B(3,0),AB是直径,∵AB=4,∴⊙G的半径为2,G(,0),故答案为r=2,,0.(2)如图2中,连接GT,过点T作TH⊥x轴于H,∵直线y=﹣x+5与x、y轴交于E、F两点,则E(0,5),F(5,0),∵直线y=﹣x+5经过T(2,m),则m=﹣×2+5=3,∴T(2,3),故TH=3.GH=,HF=3,在Rt△HGT中,GT=r=2,∴GH=GT,∴∠GTH=30°,在Rt△THF中,tan∠FTH===,∴∠FTH=60°,∴∠GTF=∠GTH+∠HTF=30°+60°=90°,∴GT⊥EF,∴直线EF是⊙G的切线.(3)如图3中,连接CG、TG、TC.在Rt△COG中,OG=,CG=r=2,∴OC=3,∠CGO=60°.∵C(0,3),T(2,3),∴CT∥x轴,∴CT=2,即CT=CG=GT=2,∴△CGT是等边三角形,∴∠CGT=∠TCG=∠CGA=60°,∴∠CTA=∠CGA=30°,∠M=∠CGT=30°,∴∠CTA=∠M,在△CNT和△CTM中,∵∠TCN=∠MTC,∠CTN=∠M,∴△CNT∽△CTM,∴=,∴CN•CM=CT2=(2)2=12.∴k=CN•CM=12.13.已知:如图,抛物线y=x2﹣x+m与x轴交于A、B两点,与y轴交于C点,∠ACB=90°,(1)求m的值及抛物线顶点坐标;(2)过A、B、C的三点的⊙M交y轴于另一点D,连接DM并延长交⊙M于点E,过E 点的⊙M的切线分别交x轴、y轴于点F、G,求直线FG的解析式;(3)在条件(2)下,设P为上的动点(P不与C、D重合),连接PA交y轴于点H,问是否存在一个常数k,始终满足AH•AP=k?如果存在,请写出求解过程;如果不存在,请说明理由.解:(1)由抛物线可知,点C的坐标为(0,m),且m<0.设A(x1,0),B(x2,0).则有x1•x2=3m又OC是Rt△ABC的斜边上的高,∴△AOC∽△COB∴∴,即x1•x2=﹣m2∴﹣m2=3m,解得m=0或m=﹣3而m<0,故只能取m=﹣3(3分)这时,y=x2﹣x﹣3=﹣4故抛物线的顶点坐标为(,﹣4).(2)由已知可得:M(,0),A(﹣,0),B(3,0),C(0,﹣3),D(0,3)∵抛物线的对称轴是直线x=,也是⊙M的对称轴,连接CE∵DE是⊙M的直径,∴∠DCE=90°,∴直线x=,垂直平分CE,∴E点的坐标为(2,﹣3)∵,∠AOC=∠DOM=90°,∴∠ACO=∠MDO=30°,∴AC∥DE∵AC⊥CB,∴CB⊥DE又∵FG⊥DE,∴FG∥CB由B(3,0)、C(0,﹣3)两点的坐标易求直线CB的解析式为:y=﹣3可设直线FG的解析式为y=+n,把(2,﹣3)代入求得n=﹣5故直线FG的解析式为y=﹣5.(3)存在常数k=12,满足AH•AP=12,假设存在常数k,满足AH•AP=k连接CP,∵AB⊥CD,∴=∴∠P=∠ACH(或利用∠P=∠ABC=∠ACO),又∵∠CAH=∠PAC,∴△ACH∽△APC,=,∴即AC2=AH•AP,在Rt△AOC中,AC2=AO2+OC2=()2+(3)2=12,∴AH•AP=k=12;(也可以证明△AOH∽△APB,可得AH•AP=AO•AB,由此即可解决问题)。
数学九年级上册 圆 几何综合(篇)(Word版 含解析)
数学九年级上册圆几何综合(篇)(Word版含解析)一、初三数学圆易错题压轴题(难)1.如图,抛物线的对称轴为轴,且经过(0,0),()两点,点P在抛物线上运动,以P为圆心的⊙P经过定点A(0,2),(1)求的值;(2)求证:点P在运动过程中,⊙P始终与轴相交;(3)设⊙P与轴相交于M,N(<)两点,当△AMN为等腰三角形时,求圆心P的纵坐标.【答案】(1)a=,b=c=0;(2)证明见解析;(3)P的纵坐标为0或4+2或4﹣2.【解析】试题分析:(1)根据题意得出二次函数一般形式进而将已知点代入求出a,b,c的值即可;(2)设P(x,y),表示出⊙P的半径r,进而与x2比较得出答案即可;(3)分别表示出AM,AN的长,进而分别利用当AM=AN时,当AM=MN时,当AN=MN 时,求出a的值,进而得出圆心P的纵坐标即可.试题解析:(1)∵抛物线y=ax2+bx+c(a,b,c是常数,a≠0)的对称轴为y轴,且经过(0,0)和(,)两点,∴抛物线的一般式为:y=ax2,∴=a()2,解得:a=±,∵图象开口向上,∴a=,∴抛物线解析式为:y=x2,故a=,b=c=0;(2)设P(x,y),⊙P的半径r=,又∵y=x2,则r=,化简得:r=>x2,∴点P在运动过程中,⊙P始终与x轴相交;(3)设P(a,a2),∵PA=,作PH⊥MN于H,则PM=PN=,又∵PH=a2,则MH=NH==2,故MN=4,∴M(a﹣2,0),N(a+2,0),又∵A(0,2),∴AM=,AN=,当AM=AN时,=,解得:a=0,当AM=MN时,=4,解得:a=2±2(负数舍去),则a2=4+2;当AN=MN时,=4,解得:a=﹣2±2(负数舍去),则a2=4﹣2;综上所述,P的纵坐标为0或4+2或4﹣2.考点:二次函数综合题.2.如图①,已知Rt △ABC 中,∠ACB =90°,AC =8,AB =10,点D 是AC 边上一点(不与C 重合),以AD 为直径作⊙O ,过C 作CE 切⊙O 于E ,交AB 于F .(1)若⊙O 半径为2,求线段CE 的长;(2)若AF =BF ,求⊙O 的半径;(3)如图②,若CE =CB ,点B 关于AC 的对称点为点G ,试求G 、E 两点之间的距离.【答案】(1)CE =2;(2)⊙O 的半径为3;(3)G 、E 两点之间的距离为9.6【解析】【分析】(1)根据切线的性质得出∠OEC=90°,然后根据勾股定理即可求得;(2)由勾股定理求得BC ,然后通过证得△OEC ∽△BCA ,得到OE OC BC BA =,即8610r r -= 解得即可;(3)证得D 和M 重合,E 和F 重合后,通过证得△GBE ∽△ABC ,GB GE AB AC =,即12108GE =,解得即可. 【详解】解:(1)如图①,连接OE ,∵CE切⊙O于E,∴∠OEC=90°,∵AC=8,⊙O的半径为2,∴OC=6,OE=2,∴CE=2242OC OE-=;(2)设⊙O的半径为r,在Rt△ABC中,∠ACB=90°,AB=10,AC=8,∴BC=22AB A C-=6,∵AF=BF,∴AF=CF=BF,∴∠ACF=∠CAF,∵CE切⊙O于E,∴∠OEC=90°,∴∠OEC=∠ACB,∴△OEC∽△BCA,∴OE OCBC BA=,即8610r r-=解得r=3,∴⊙O的半径为3;(3)如图②,连接BG,OE,设EG交AC于点M,由对称性可知,CB=CG,∵CE=CG,∴∠EGC=∠GEC,∵CE切⊙O于E,∴∠GEC+∠OEG=90°,∵∠EGC+∠GMC=90°,∴∠OEG=∠GMC,∵∠GMC=∠OME,∴∠OEG=∠OME,∴OM=OE,∴点M和点D重合,∴G、D、E三点在同一直线上,连接AE、BE,∵AD是直径,∴∠AED=90°,即∠AEG=90°,又CE=CB=CG,∴∠BEG=90°,∴∠AEB=∠AEG+∠BEG=180°,∴A、E、B三点在同一条直线上,∴E、F两点重合,∵∠GEB=∠ACB=90°,∠B=∠B,∴△GBE∽△ABC,∴GB GEAB AC=,即12108GE=∴GE=9.6,故G、E两点之间的距离为9.6.【点睛】本题考查了切线的判定,轴的性质,勾股定理的应用以及三角形相似的判定和性质,证得G、D、E三点共线以及A、E、B三点在同一条直线上是解题的关3.如图,点A在直线l上,点Q沿着直线l以3厘米/秒的速度由点A向右运动,以AQ为边作Rt△ABQ,使∠BAQ=90°,tan∠ABQ= 34,点C在点Q右侧,CQ=1厘米,过点C作直线m⊥l,过△ABQ的外接圆圆心O作OD⊥m于点D,交AB右侧的圆弧于点E.在射线CD上取点F,使DF=13CD,以DE、DF为邻边作矩形DEGF.设运动时间为t秒.(1)直接用含t 的代数式表示BQ 、DF ; (2)当0<t <1时,求矩形DEGF 的最大面积;(3)点Q 在整个运动过程中,当矩形DEGF 为正方形时,求t 的值.【答案】(1)BQ=5t ,DF=23t;(2)16;(3)t 的值为35或3. 【解析】试题分析:(1)AB 与OD 交于点H ,根据题中的比例关系和勾股定理可表示出BQ 的长;根据垂直于同一条直线的两直线平行和三角形的中位线定理可求得AH 的长,再根据矩形的判定定理和矩形的性质可求CD 的长,即可表示出FD ;(2)根据题意表示出矩形的长和宽,然后构造二次函数,通过二次函数的最值可求解;(3)当矩形为正方形时,分别让其长与宽相等,列方程求解即可.试题解析:(1)5t BQ =,2DF=t 3; (2)DE=OD-OE=32t+1-52t=1-t ,()22211·t 13326S DF DE t t ⎛⎫==-=--+ ⎪⎝⎭,∴当t=12时,矩形DEGF 的最大面积为16; (3)当矩形DEGF 为正方形时,221133t t t t -=-=或,解得335t t ==或.4.如图,在Rt △ABC 中,∠B=90°,∠BAC 的平分线交BC 于点D ,以D 为圆心,D 长为半径作作⊙D .⑴求证:AC 是⊙D 的切线.⑵设AC 与⊙D 切于点E ,DB=1,连接DE ,BF ,EF.①当∠BAD= 时,四边形BDEF 为菱形;②当AB= 时,△CDE 为等腰三角形.【答案】(1)见解析;(2)①30°,②2+1【解析】【分析】(1) 作DE⊥AC于M,由∠ABC=90°,进一步说明DM=DB,即DB是⊙D的半径,即可完成证明;(2)①先说明△BDF是等边三角形,再运用直角三角形的内角和定理解答即可;②先说明DE=CE=BD=1,再设AB=x,则AE=x,分别表示出AC、BC、AB的长,然后再运用勾股定理解答即可.【详解】⑴证明:如图:作DE⊥AC于M,∵∠ABC=90°,∠BAC的平分线交BC于点D,∴DE=DB.∴DM是⊙D的半径,∴AC是⊙D的切线;⑵①如图:∵四边形BDEF为菱形;∴△BDF是等边三角形∴∠ADB=60° ∴∠BAD=90°-60°=30°∴当∠BAD=30°时,四边形BDEF 为菱形;②∵△CDE 为等腰三角形.∴DE=CE=BD=1,∴DC=2设AB=x ,则AE=x∴在Rt △ABC 中,AB=x ,AC=1+x ,BC=1+2 ∴()222(12)1x x ++=+ ,解得x=2+1 ∴当AB=2+1时,△CDE 为等腰三角形. 【点睛】本题考查的是切线的判定、菱形的性质和判定、等腰三角形的判定与性质以及勾股定理的灵活运用;熟练掌握切线的判定方法和灵活应该勾股定理是解答本题的关键.5.已知:ABC 内接于O ,过点B 作O 的切线,交CA 的延长线于点D ,连接OB .(1)如图1,求证:DAB DBC ∠=∠;(2)如图2,过点D 作DM AB ⊥于点M ,连接AO ,交BC 于点N ,BM AM AD =+,求证:BN CN =;(3)如图3,在(2)的条件下,点E 为O 上一点,过点E 的切线交DB 的延长线于点P ,连接CE ,交AO 的延长线于点Q ,连接PQ ,PQ OQ ⊥,点F 为AN 上一点,连接CF ,若90DCF CDB ∠+∠=︒,tan 2ECF ∠=,12ON OQ =,10PQ OQ +=求CF 的长.【答案】(1)详见解析;(2)详见解析;(3)10=CF【解析】【分析】(1)延长BO 交O 于G ,连接CG ,根据切线的性质可得可证∠DBC +∠CBG=90°,然后根据直径所对的圆周角是直角可证∠CBG+∠G=90°,再根据圆的内接四边形的性质可得∠DAB=∠G,从而证出结论;(2)在MB上截取一点H,使AM=MH,连接DH,根据垂直平分线性质可得DH=AD,再根据等边对等角可得∠DHA=∠DAH,然后根据等边对等角和三角形外角的性质证出∠ABC=∠C,可得AB=AC,再根据垂直平分线的判定可得AO垂直平分BC,从而证出结论;(3)延长CF交BD于M,延长BO交CQ于G,连接OE,证出tan∠BGE=tan∠ECF=2,然后利用AAS证出△CFN≌△BON,可设CF=BO=r,ON=FN=a,则OE=r,根据锐角三角函数和相似三角形即可证出四边形OBPE为正方形,利用r和a表示出各线段,最后根据+=,即可分别求出a和CF.PQ OQ610【详解】解:(1)延长BO交O于G,连接CG∵BD是O的切线∴∠OBD=90°∴∠DBC+∠CBG=90°∵BG为直径∴∠BCG=90°∴∠CBG+∠G=90°∴∠DBC=∠G∵四边形ABGC为O的内接四边形∴∠DAB=∠G∴∠DAB=∠DBC(2)在MB上截取一点H,使AM=MH,连接DH∴DM 垂直平分AH∴DH=AD∴∠DHA=∠DAH∵BM AM AD =+,=+BM MH BH∴AD=BH∴DH=BH∴∠HDB=∠HBD∴∠DHA=∠HDB +∠HBD=2∠HBD由(1)知∠DAB=∠DBC∴∠DHA=∠DAB=∠DBC∴∠DBC =2∠HBD∵∠DBC =∠HBD +∠ABC∴∠HBD=∠ABC ,∠DBC=2∠ABC∴∠DAB=2∠ABC∵∠DAB=∠ABC +∠C∴∠ABC=∠C∴AB=AC∴点A 在BC 的垂直平分线上∵点O 也在BC 的垂直平分线上∴AO 垂直平分BC∴BN CN =(3)延长CF 交BD 于M ,延长BO 交CQ 于G ,连接OE ,∵90DCF CDB ∠+∠=︒∴∠DMC=90°∵∠OBD=90°∴∠DMC=∠OBD∴CF ∥OB∴∠BGE=∠ECF ,∠CFN=∠BON ,∴tan ∠BGE=tan ∠ECF=2由(2)知OA 垂直平分BC∴∠CNF=∠BNO=90°,BN=CN∴△CFN ≌△BON∴CF=BO ,ON=FN ,设CF=BO=r ,ON=FN=a ,则OE=r∵12ON OQ = ∴OQ=2a∵CF ∥OB∴△QGO ∽△QCF∴=OG QO CF QF 即2122==++OG a r a a a ∴OG=12r 过点O 作OE ′⊥BG ,交PE 于E ′∴OE ′=OG ·tan ∠BGE=r=OE∴点E ′与点E 重合∴∠EOG=90°∴∠BOE=90°∵PB 和PE 是圆O 的切线∴∠OBP=∠OEP=∠BOE=90°,OB=OE=r∴四边形OBPE 为正方形∴∠BOE=90°,PE=OB=r∴∠BCE=12∠BOE==45°∴△NQC为等腰直角三角形∴NC=NQ=3a,∴BC=2NC=6a在Rt△CFN中,CF=2210+=NC FN a∵PQ OQ⊥∴PQ∥BC∴∠PQE=∠BCG∵PE∥BG∴∠PEQ=∠BGC∴△PQE∽△BCG∴=PQ PEBC BG即126=+PQ rra r解得:PQ=4a∵610PQ OQ+=,∴4a+2a=610解得:a=10∴CF=1010⨯=10【点睛】此题考查的是圆的综合大题,难度较大,掌握圆的相关性质、相似三角形的判定及性质、锐角三角函数、勾股定理、全等三角形的判定及性质、等腰三角形的判定及性质、正方形的判定及性质是解决此题的关键.6.如图,PA,PB分别与O相切于点A和点B,点C为弧AB上一点,连接PC并延长交O于点F,D为弧AF上的一点,连接BD交FC于点E,连接AD,且2180APB PEB∠+∠=︒.(1)如图1,求证://PF AD;(2)如图2,连接AE ,若90APB ∠=︒,求证:PE 平分AEB ∠;(3)如图3,在(2)的条件下,连接AB 交PE 于点H ,连接OE ,8AD =,4sin 5ABD ∠=,求PH 的长. 【答案】(1)见解析;(2)见解析;(3)257 【解析】【分析】(1)连接OA 、OB ,由切线的性质可得90OAP OBP ∠=∠=︒,由四边形内角和是360︒,得180∠+∠=︒P AOB ,由同弧所对的圆心角是圆周角的一半,得到2AOB ADB ∠=∠,等量代换得到ADB PEB ∠=∠,由同位角相等两直线平行,得到//PF AD ;(2)过点P 做PK PF ⊥交EB 延长线于点K ,由90APB ∠=︒得290PEB ∠=︒,从而45PEB ∠=︒,由切线的性质,得PA PB =,由PK PE ⊥,45PEK ∠=︒,得PE PK =,从而90APE EPB ︒∠=-∠,进而APE BPK ∠=∠,即可证得APE BPK ∆∆≌由此45K AEP ∠=∠=︒,得到AEP PEB ∠=∠,即可证得PE 平分AEB ∠;(3)连接AO 并延长交圆O 于点M ,连接OB 、OH 、OP 、OD 、DM ,由45ADE ∠=︒,90AED ∠=︒,可得DE AE =,由OA 、OD 为半径,可得OA OD =,即可证出DEO AEO ∆∆≌,由直径所对的圆周角是直角,可得90ADM ∠=︒,在Rt ADM ∆中,由正弦定义可得10AM =,由此5OA OB ==,由OAPB 为正方形,对角线AB 垂直平分OP ,从而,OH PH =.在Rt OAP ∆中,252OP OA ==.延长EO 交AD 于K ,在Rt OEP ∆中,由勾股定理得7PE =,在Rt OEH ∆中,由勾股定理得257PH =. 【详解】 (1)连接OA 、OB∵PA 、PB 与圆O 相切于点A 、B ,且OA 、OB 为半径,∴OA AP ⊥,OB BP ⊥,∴90OAP OBP ∠=∠=︒,∴在四边形AOBP 中,360180180P AOB ∠+∠=︒-︒=︒,∵AB AB =,∴2AOB ADB ∠=∠,∴2180P ADB ∠+∠=︒,∵2180P PEB ∠+∠=︒,∴ADB PEB ∠=∠,∴//PF AD(2)过点P 做PK PF ⊥交EB 延长线于点K∵90APB ∠=︒,∴21809090PEB ∠=︒-︒=︒,∴45PEB ∠=︒,∵PA 、PB 为圆O 的切线,∴PA PB =,∵PK PE ⊥,45PEK ∠=︒,∴PE PK = ,∵9090APE EPB KPB EPB ︒︒∠=-∠=∠=-∠,∴APE BPK ∠=∠, ∴APE BPK ∆∆≌,∴45K AEP ∠=∠=︒,∴AEP PEB ∠=∠,∴PE 平分AEB ∠;(3)连接AO 并延长交圆O 于点M ,连接OB 、OH 、OP 、OD 、DM∵45ADE ∠=︒,90AED ∠=︒,∴DE AE =,∵OA 、OD 为半径,∴OA OD =,∵OE OE =,∴DEO AEO ∆∆≌,∴1452AEO OED AED ∠=∠=∠=︒, ∴90OEP ∠=︒, ∵AM 为圆O 的直径,∴90ADM ∠=︒,∵弧AD =弧AD ,∴ABD AMD ∠=∠,在Rt ADM ∆中,8AD =,4sin 5AMD ∠=,则10AM =, ∴5OA OB ==,由题易证四边形OAPB 为正方形,∴对角线AB 垂直平分OP ,AB OP =,∵H 在AB 上,∴OH PH =,在Rt OAP ∆中,OP ==延长EO 交AD 于K ,∵DE AE =,可证OK AD ⊥,DOK ABD ∠=∠,∴4DK KE ==,3OK =,1OE =∴在Rt OEP ∆中,7PE ==在Rt OEH ∆中,222OH OE EH =+∵OH PH =,7EH PE HP PH =-=-∴()22217PH PH =+- ∴257PH =. 【点睛】 本题考查了圆的综合题,圆的性质,等腰三角形的性质,相交弦定理,正弦定理,勾股定理,灵活运用这些性质定理解决问题是本题的关键.7.(1)如图1,A 是⊙O 上一动点,P 是⊙O 外一点,在图中作出PA 最小时的点A . (2)如图2,Rt △ABC 中,∠C =90°,AC =8,BC =6,以点C 为圆心的⊙C 的半径是3.6,Q 是⊙C 上一动点,在线段AB 上确定点P 的位置,使PQ 的长最小,并求出其最小值. (3)如图3,矩形ABCD 中,AB =6,BC =9,以D 为圆心,3为半径作⊙D ,E 为⊙D 上一动点,连接AE ,以AE 为直角边作Rt △AEF ,∠EAF =90°,tan ∠AEF =13,试探究四边形ADCF 的面积是否有最大或最小值,如果有,请求出最大或最小值,否则,请说明理由.【答案】(1)作图见解析;(2)PQ长最短是1.2;(3)四边形ADCF面积最大值是81313+,最小值是81313-.【解析】【分析】(1)连接线段OP交⊙C于A,点A即为所求;(2)过C作CP⊥AB于Q,P,交⊙C于Q,这时PQ最短,根据勾股定理以及三角形的面积公式即可求出其最小值;(3)△ACF的面积有最大和最小值,取AB的中点G,连接FG,DE,证明△FAG~△EAD,进而证明点F在以G为圆心1为半径的圆上运动,过G作GH⊥AC于H,交⊙G于F1,GH 反向延长线交⊙G于F2,①当F在F1时,△ACF面积最小,分别求出△ACD的面积和△ACF 的面积的最小值即可得出四边形ADCF的面积的最小值;②当F在F2时,四边形ADCF的面积有最大值,在⊙G上任取异于点F2的点P,作PM⊥AC于M,作GN⊥PM于N,利用矩形的判定与性质以及三角形的面积公式即可得出得出四边形ADCF的面积的最大值.【详解】解:(1)连接线段OP交⊙C于A,点A即为所求,如图1所示;(2)过C作CP⊥AB于Q,P,交⊙C于Q,这时PQ最短.理由:分别在线段AB,⊙C上任取点P',点Q',连接P',Q',CQ',如图2,由于CP⊥AB,根据垂线段最短,CP≤CQ'+P'Q',∴CO+PQ≤CQ'+P'Q',又∵CQ=CQ',∴PQ <P 'Q ',即PQ 最短. 在Rt △ABC 中22228610AB AC BC =+=+=,1122ABC S AC BC AB CP ∆=•=•, ∴68 4.810AC BC CP AB •⨯===, ∴PQ =CP ﹣CQ =6.8﹣3.6=1.2,∴22226 4.8 3.6BP BC CP =-=-=.当P 在点B 左侧3.6米处时,PQ 长最短是1.2.(3)△ACF 的面积有最大和最小值.如图3,取AB 的中点G ,连接FG ,DE .∵∠EAF =90°,1tan 3AEF ∠=, ∴13AF AE = ∵AB =6,AG =GB ,∴AC =GB =3,又∵AD =9,∴3193AG AD ==, ∴DAF AE AG A = ∵∠BAD =∠B =∠EAF =90°,∴∠FAG =∠EAD ,∴△FAG ~△EAD ,∴13FG AF DE AE ==, ∵DE =3,∴FG =1,∴点F 在以G 为圆心1为半径的圆上运动,连接AC ,则△ACD 的面积=692722CD AD ⨯=⨯=, 过G 作GH ⊥AC 于H ,交⊙G 于F 1,GH 反向延长线交⊙G 于F 2,①当F 在F 1时,△ACF 面积最小.理由:由(2)知,当F 在F 1时,F 1H 最短,这时△ACF 的边AC 上的高最小,所以△ACF 面积有最小值,在Rt △ABC 中,AC ===∴sinBC BAC AC ∠===在Rt △ACH 中,sin 3GH AG BAC =•∠==∴111F H GH GF =-=-,∴△ACF 面积有最小值是:11127(1)22132AC F H -•=⨯-=;∴四边形ADCF 面积最小值是:27812722--+=; ②当F 在F 2时,F 2H 最大理由:在⊙G 上任取异于点F 2的点P ,作PM ⊥AC 于M ,作GN ⊥PM 于N ,连接PG ,则四边形GHMN 是矩形,∴GH =MN ,在Rt △GNP 中,∠NGF 2=90°,∴PG >PN ,又∵F 2G =PG ,∴F 2G +GH >PN +MN ,即F 2H >PM ,∴F 2H 是△ACF 的边AC 上的最大高,∴面积有最大值,∵221F H GH GF =+=+,∴△ACF 面积有最大值是2111)22AC F H •=⨯+=;∴四边形ADCF 面积最大值是27812722+++=综上所述,四边形ADCF 面积最大值是812+,最小值是812- 【点睛】本题为圆的综合题,考查了矩形,圆,相似三角形的判定和性质,两点之间线段最短等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考填空题中的压轴题.8.如图,在ABC ∆中,90C ∠=︒,30CAB ∠=︒,10AB =,点D 在线段AB 上,2AD =.点P 从D 点出发,沿DB 方向运动,以DP 为直径作O ,当P 运动到点B 时停止运动,设DP m =.(1)AO =___________,BP =___________.(用m 的代数式表示)(2)当m 为何值时,O 与ABC ∆的一边相切? (3)在点P 整个运动过程中,过点P 作O 的切线交折线AC CB -于点E ,将线段EP 绕点E 顺时针旋转60︒得到EF ,过F 作FG EP ⊥于G .①当线段FG 长度达到最大时,求m 的值;②直接写出点F 所经过的路径长是________.(结果保留根号)【答案】(1)22m AO =+,8BP m =-;(2)4m =或32348m =;(3)①1121153762【解析】【分析】(1)观察图中AO 和DP 的数量关系可得22DP AO =+,而BP AB AP =-,将DP m =代入即可.(2)O 与ABC ∆的一边相切有两种情况,先与AC 相切,再与BC 相切;两种情况的解答方法都是连接圆心与切点,构造直角三角形,根据条件所给的特殊角的三角函数解答. (3)①根据旋转的性质可得PF PE =,在Rt EFG ∆中根据三角函数可得cos30FG PE ︒=⋅,故当E 点与C 点重合,PE 取得最大值时,FG 有最大值,解之即可. ②明显以E 点与C 点重合前后为节点,点F 的运动轨迹分两部分,第一部分为从P 开始运动到E 点与C 点重合,即图中的12F F ,根据1212F F AC AF CF =--求解;第二部分,根据tan EF EP EBF EB EB ∠==为定值可知其轨迹为图中的2F B ,在2Rt F BC 中用勾股定理求解即可.【详解】(1)2222DP m AO =+=+,8BP AB AP m =-=-(2)情况1:与AC 相切时,Rt AOH ∆中,∵30A ∠=︒∴2AO OH =∴22m m +=解得4m =情况2:与BC 相切时,Rt BON ∆中,∵60B ∠=︒∴3cos 2ON B OB ==即3282mm =- 解得32348m =-(3)①在Rt EFG ∆中,∵30EFG A ∠=∠=︒,90EGF ∠=︒, ∴3cos30cos302FG EF PE EP ︒︒=⋅=⋅=, ∴当FG 最大时即PE 最大当点E 与点C 重合时,PE 的值最大.易知此时53553AC BC EP AB ⨯⨯===. 在Rt EAP ∆中,∵30A ∠=︒∴1532AP EP ==∴1511222m DP ==-= (3)F 轨迹如图:从1F 到2F 到B1133233233AF AE EF AD PE =-=-==, 253CF CP ==, 故1212235311353326F F AC AF CF =--=-=, 2F 到B 轨迹是线段理由如下:∵60FEP ∠=︒,30PEB ∠=︒,∴90FEB ∠=︒. ∴tan EF EP EBF EB EB∠==为定值, ∴点F 的第二段的轨迹是线段2BF . 在2Rt F BC 中,2222225357522BF BC F C ⎛⎫=+=+= ⎪ ⎪⎝⎭, 所以点F 1153762【点睛】本题是综合了圆的性质,直线与圆相切的条件,锐角三角函数,勾股定理以及旋转的性质等知识的动点动图问题,熟练掌握各个知识点是基础,充分理解题意并作图,化动为静是解答关键.9.阅读材料:“最值问题”是数学中的一类较具挑战性的问题.其实,数学史上也有不少相关的故事,如下即为其中较为经典的一则:海伦是古希腊精通数学、物理的学者,相传有位将军曾向他请教一个问题﹣﹣如图1,从A点出发,到笔直的河岸l去饮马,然后再去B 地,走什么样的路线最短呢?海伦轻松地给出了答案:作点A关于直线l的对称点A′,连接A′B交l于点P,则PA+PB=A′B的值最小.解答问题:(1)如图2,⊙O的半径为2,点A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一动点,求PA+PC的最小值;(2)如图3,已知菱形ABCD的边长为6,∠DAB=60°.将此菱形放置于平面直角坐标系中,各顶点恰好在坐标轴上.现有一动点P从点A出发,以每秒2个单位的速度,沿A→C 的方向,向点C运动.当到达点C后,立即以相同的速度返回,返回途中,当运动到x轴上某一点M时,立即以每秒1个单位的速度,沿M→B的方向,向点B运动.当到达点B 时,整个运动停止.①为使点P能在最短的时间内到达点B处,则点M的位置应如何确定?②在①的条件下,设点P的运动时间为t(s),△PAB的面积为S,在整个运动过程中,试求S与t之间的函数关系式,并指出自变量t的取值范围.【答案】(1)PA+PC的最小值是32)①点M30)时,用时最少;②S与t之间的函数关系式是当3t3S=3﹣3t;当0<t3S =3t.当3t3S=﹣3t3【解析】【分析】(1)延长AO交圆O于M,连接CM交OB于P,连接AC,AP+PC=PC+PM=CM最小;(2)①根据运动速度不同以及运动距离,得出当PB⊥AB时,点P能在最短的时间内到达点B处;②根据三角形的面积公式求出从A到C时,s与t的关系式和从C3,0)以及到B 的解析式.【详解】解:(1)延长AO交圆O于M,连接CM交OB于P,连接AC,则此时AP+PC=PC+PM=CM最小,∵AM是直径,∠AOC=60°,∴∠ACM=90°,∠AMC=30°,∴AC=12AM=2,AM=4,由勾股定理得:CM=22AM AC=23.答:PA+PC的最小值是23.(2)①根据动点P从点A出发,以每秒2个单位的速度,沿A→C的方向,向点C运动.当到达点C后,立即以相同的速度返回,返回途中,当运动到x轴上某一点M时,立即以每秒1个单位的速度,沿M→B的方向,向点B运动,即为使点P能在最短的时间内到达点B处,∴当PB⊥AB时,根据垂线段最短得出此时符合题意,∵菱形ABCD,AB=6,∠DAB=60°,∴∠BAO=30°,AB=AD,AC⊥BD,∴△ABD是等边三角形,∴BD=6,BO=3,由勾股定理得:AO=3在Rt△APB中,AB=6,∠BAP=30°,BP=12AP,由勾股定理得:AP=3,BP=3,∴点M30)时,用时最少.②当0<t3AP=2t,∵菱形ABCD,∴∠OAB=30°,∴OB=12AB=3,由勾股定理得:AO=CO=3,∴S =12AP ×BO =12×2t ×3=3t ;③当t AP =2t ﹣2t ,∴S =12AP ×BO =12×(2t )×3=﹣3t .当tS =12AB ×BP =12﹣(t ﹣]=﹣3t答:S 与t 之间的函数关系式是当<t 时,S =3t ;当0<t S =3t .当t S =﹣3t【点睛】本题主要考查对含30度角的直角三角形,勾股定理,三角形的面积,轴对称-最短问题,圆周角定理等知识点的理解和掌握,能综合运用性质进行计算是解此题的关键.10.在平面直角坐标系xOy 中,对于两个点A ,B 和图形ω,如果在图形ω上存在点P ,Q (P ,Q 可以重合),使得AP =2BQ ,那么称点A 与点B 是图形ω的一对“倍点”. 已知⊙O 的半径为1,点B (0,3).(1)①点B 到⊙O 的最大值,最小值;②在A 1(5,0),A 2(0,10),A 3)这三个点中,与点B 是⊙O 的一对“倍点”的是 ;(2)在直线y =x +b 上存在点A 与点B 是⊙O 的一对“倍点”,求b 的取值范围; (3)正方形MNST 的顶点M (m ,1),N (m +1,1),若正方形上的所有点与点B 都是⊙O 的一对“倍点”,直接写出m 的取值范围.【答案】(1)①点B 到⊙O 的最大值是4,最小值是2;②A 1;(2)b -≤≤;(3)3≤m ≤1或≤m ≤﹣4【解析】【分析】(1)①根据点与圆的位置关系求解即可;②先求出123,,A A A 三个点到⊙O 的最大值与最小值,再根据“倍点”的定义求解即可; (2)如图1(见解析),过点O 作OD l ⊥,先求428BQ ≤≤,再求出直线:l y x b =+上的点到⊙O 的最小值,只要这个最小值小于等于8即可满足题意,然后求解即可;(3)根据正方形的位置,可分20,01,1,2m m m m -≤<≤≤><-四种情况,分别求出每种情况下,正方形最近顶点、最远顶点到⊙O 的最大值与最小值,然后根据“倍点”的定义列出不等式组求解即可.【详解】(1)①点B 到⊙O 的最大值是314BO r +=+=点B 到⊙O 的最小值是312BO r -=-=;②1A 到⊙O 的最大值6,最小值4;2A 到⊙O 的最大值11,最小值9;3A 到⊙O 的最大值3,最小值1由(1)知,点B 到⊙O 的最大值是4,最小值是2因此,在⊙O 上存在点P ,Q ,使得12A P BQ =,则1A 与B 是⊙O 的一对“倍点”故答案为1A ;(2)∵点B 到⊙O 的最大值是4,最小值是2428BQ ∴≤≤如图1,过点O 作OD l ⊥由直线:3l y x b =+的解析式可知:60,DCO OC b ∠=︒=由直角三角形的性质可得:1,2CD b OD === 则点D 到⊙O1-,即直线:l y b =+上的点到⊙O的最小值为1-要使直线:3l y x b =+上存在点A 与点B 是⊙O 的一对“倍点”18-≤解得:b ≤b -≤≤;(3)由(2)知,428BQ ≤≤依题意,需分20,01,1,2m m m m -≤<≤≤><-四种情况讨论:①当20m -≤<时,顶点(1,1)N m +到⊙O14<,此时顶点N 不符题意②当01m ≤≤时,顶点(,1)M m 到⊙O14<,此时顶点M 不符题意③当1m ,如图2,正方形MNST 处于1号正方形位置时则顶点S 和T 的坐标为(1,0),(,0)S m T m +此时,点T 到⊙O 的最小值为1m -,最大值为1m +;点N 到⊙O的最小值为11则1418m +≥⎧≤,解得:31m ≤≤ 当正方形MNST 处于2号正方形位置时则顶点S 和T 的坐标为(1,2),(,2)S m T m + 此时,点M 到⊙O 的最小值为2211m +-,最大值为2211m ++;点S 到⊙O 的最小值为22(1)21m ++-,最大值为22(1)21m +++则2222114(1)218m m ⎧++≥⎪⎨++-≤⎪⎩,解得:22771m ≤≤-或77122m --≤≤-(舍去) 故当1m 时,m 的取值范围为3771m ≤≤-④当2m <-时,正方形MNST 处于3号正方形位置时则顶点S 和T 的坐标为(1,0),(,0)S m T m +此时,点S 到⊙O 的最小值为2m --,最大值为m -;点M 到⊙O 的最小值为2211m +-,最大值为2211m ++则224118m m -≥⎧⎨+-≤⎪⎩,解得:454m -≤≤- 当正方形MNST 处于4号正方形位置时则顶点S 和T 的坐标为(1,2),(,2)S m T m +此时,点N 到⊙O 的最小值为22(1)11m ++-,最大值为22(1)11m +++;点T 到⊙O 的最小值为2221m +-,最大值为2221m ++则2222(1)114218m m ⎧+++≥⎪⎨+-≤⎪⎩,解得:77122m -≤≤--或22177m -≤≤(舍去) 故当2m <-时,m 的取值范围为774m -≤≤-综上,m 的取值范围为3771m ≤≤-或774m -≤≤-.【点睛】本题考查了直线与圆的的位置关系、点与圆的位置关系、正方形的性质,较难的是(3),根据点与圆的位置关系分四种情况讨论是解题关键.。
九年级上册数学 圆 几何综合(篇)(Word版 含解析)
九年级上册数学 圆 几何综合(篇)(Word 版 含解析)一、初三数学 圆易错题压轴题(难)1.如图,在直角体系中,直线AB 交x 轴于点A(5,0),交y 轴于点B,AO 是⊙M 的直径,其半圆交AB 于点C,且AC=3.取BO 的中点D,连接CD 、MD 和OC . (1)求证:CD 是⊙M 的切线;(2)二次函数的图象经过点D 、M 、A,其对称轴上有一动点P,连接PD 、PM,求△PDM 的周长最小时点P 的坐标;(3)在(2)的条件下,当△PDM 的周长最小时,抛物线上是否存在点Q ,使S △PDM =6S △QAM ?若存在,求出点Q 的坐标;若不存在,请说明理由.【答案】解:(1)证明:连接CM ,∵OA 为⊙M 直径,∴∠OCA=90°.∴∠OCB=90°. ∵D 为OB 中点,∴DC=DO .∴∠DCO=∠DOC . ∵MO=MC ,∴∠MCO=∠MOC . ∴.又∵点C 在⊙M 上,∴DC 是⊙M 的切线. (2)∵A 点坐标(5,0),AC=3 ∴在Rt △ACO 中,.∴545(x )x 5)12152-=--(,∴,解得10OD 3=. 又∵D 为OB 中点,∴15524+∴D 点坐标为(0,154).连接AD ,设直线AD 的解析式为y=kx+b ,则有解得.∴直线AD 为.∵二次函数的图象过M (56,0)、A(5,0), ∴抛物线对称轴x=154. ∵点M 、A 关于直线x=154对称,设直线AD 与直线x=154交于点P , ∴PD+PM 为最小.又∵DM 为定长,∴满足条件的点P 为直线AD 与直线x=154的交点. 当x=154时,45y (x )x 5)152=--(. ∴P 点的坐标为(154,56). (3)存在. ∵,5y a(x )x 5)2=--(又由(2)知D (0,154),P (154,56), ∴由,得,解得y Q =±103.∵二次函数的图像过M(0,56)、A(5,0), ∴设二次函数解析式为,又∵该图象过点D (0,154),∴,解得a=512. ∴二次函数解析式为.又∵Q 点在抛物线上,且y Q =±103. ∴当y Q =103时,,解得x=1552-或x=1552+;当y Q =512-时,,解得x=154.∴点Q 的坐标为(15524-,103),或(15524+,103),或(154,512-).【解析】试题分析:(1)连接CM ,可以得出CM=OM ,就有∠MOC=∠MCO ,由OA 为直径,就有∠ACO=90°,D 为OB 的中点,就有CD=OD ,∠DOC=∠DCO ,由∠DOC+∠MOC=90°就可以得出∠DCO+∠MCO=90°而得出结论.(2)根据条件可以得出2222OC OA AC 534=-=-=和OC OBtan OAC AC OA∠==,从而求出OB 的值,根据D 是OB 的中点就可以求出D 的坐标,由待定系数法就可以求出抛物线的解析式,求出对称轴,根据轴对称的性质连接AD 交对称轴于P ,先求出AD 的解析式就可以求出P 的坐标. (3)根据PDM DAM PAM S S S ∆∆∆=-,求出Q 的纵坐标,求出二次函数解析式即可求得横坐标.2.如图,以A (0,3)为圆心的圆与x 轴相切于坐标原点O ,与y 轴相交于点B ,弦BD 的延长线交x 轴的负半轴于点E ,且∠BEO =60°,AD 的延长线交x 轴于点C .(1)分别求点E 、C 的坐标;(2)求经过A 、C 两点,且以过E 而平行于y 轴的直线为对称轴的抛物线的函数解析式; (3)设抛物线的对称轴与AC 的交点为M ,试判断以M 点为圆心,ME 为半径的圆与⊙A 的位置关系,并说明理由.【答案】(1)点C 的坐标为(-3,0)(2)2343333y x x =++3)⊙M 与⊙A 外切 【解析】试题分析:(1)已知了A 点的坐标,即可得出圆的半径和直径,可在直角三角形BOE 中,根据∠BEO 和OB 的长求出OE 的长进而可求出E 点的坐标,同理可在直角三角形OAC 中求出C 点的坐标;(2)已知了对称轴的解析式,可据此求出C 点关于对称轴对称的点的坐标,然后根据此点坐标以及C ,A 的坐标用待定系数法即可求出抛物线的解析式;(3)两圆应该外切,由于直线DE ∥OB ,因此∠MED=∠ABD ,由于AB=AD ,那么∠ADB=∠ABD ,将相等的角进行置换后可得出∠MED=∠MDE ,即ME=MD ,因此两圆的圆心距AM=ME+AD ,即两圆的半径和,因此两圆外切.试题解析:(1)在Rt△EOB 中,cot602EO OB =⋅︒==, ∴点E 的坐标为(-2,0).在Rt△COA 中,tan tan603OC OA CAO OA =⋅∠=⋅︒==, ∴点C 的坐标为(-3,0).(2)∵点C 关于对称轴2x =-对称的点的坐标为F (-1,0), 点C 与点F (-1,0)都在抛物线上.设()()13y a x x =++,用(0A 代入得()()0103a =++,∴3a =.∴)()13y x x =++,即23y x =++ (3)⊙M 与⊙A 外切,证明如下: ∵ME ∥y 轴,∴MED B ∠=∠.∵B BDA MDE ∠=∠=∠, ∴MED MDE ∠=∠. ∴ME MD =.∵MA MD AD ME AD =+=+, ∴⊙M 与⊙A 外切.3.在平面直角坐标系xOy 中,已知 A(-2,0),B(2,0),AC ⊥AB 于点A ,AC=2,BD ⊥AB 于点B ,BD=6,以AB 为直径的半圆O 上有一动点P (不与A 、B 两点重合),连接PD 、PC ,我们把由五条线段AB 、BD 、DP 、PC 、CA 所组成的封闭图形ABDPC 叫做点P 的关联图形,如图1所示.(1)如图2,当P 运动到半圆O 与y 轴的交点位置时,求点P 的关联图形的面积. (2)如图3,连接CD 、OC 、OD,判断△OCD 的形状,并加以证明.(3)当点P 运动到什么位置时,点P 的关联图形的面积最大,简要说明理由,并求面积的最大值.【答案】(1)12;(2)判断△OCD是直角三角形,证明见解析;(3)连接OC,交半圆O于点P,这时点P的关联图形的面积最大,理由风解析,842+.【解析】试题分析:(1)判断出四边形AOPC是正方形,得到正方形的面积是4,根据BD⊥AB,BD=6,求出梯形OPDB的面积=()(26)2822OP DB OB+⨯+⨯==,二者相加即为点P的关联图形的面积是12.(2)根据CF=DF=4,∠DCF=45°,求出∠OCD=90°,判断出△OCD是直角三角形.(3)要使点P的关联图形的面积最大,就要使△PCD的面积最小,确定关联图形的最大面积是梯形ACDB的面积﹣△PCD的面积,根据此思路,进行解答.试题解析:(1)∵A(﹣2,0),∴OA=2,∵P是半圆O上的点,P在y轴上,∴OP=2,∠AOP=90°,∴AC=2,∴四边形AOPC是正方形,∴正方形的面积是4,又∵BD⊥AB,BD=6,∴梯形OPDB的面积=()(26)2822OP DB OB+⨯+⨯==,∴点P的关联图形的面积是12.(2)判断△OCD是直角三角形.证明:延长CP交BD于点F,则四边形ACFB为矩形,∴CF=DF=4,∠DCF=45°,∴∠OCD=90°,∴OC⊥CD,∴△OCD是直角三角形.(3)连接OC 交半圆O 于点P ,则点P 即为所确定的点的位置.理由如下:连接CD ,梯形ACDB 的面积=()(26)41622AC DB AB +⨯+⨯==为定值,要使点P 的关联图形的面积最大,就要使△PCD 的面积最小, ∵CD 为定长,∴P 到CD 的距离就要最小, 连接OC ,设交半圆O 于点P ,∵AC ⊥OA ,AC=OA ,∴∠AOC=45°,过C 作CF ⊥BD 于F ,则ACFB 为矩形,∴CF=DF=4,∠DCF=45°,∴OC ⊥CD ,OC=22,∴PC 在半圆外,设在半圆O 上的任意一点P′到CD 的距离为P′H ,则P′H+P′O >OH >OC , ∵OC=PC+OP ,∴P′H >PC ,∴当点P 运动到半圆O 与OC 的交点位置时,点P 的关联图形的面积最大.∵CD=42,CP=222-, ∴△PCD 的面积=()(26)41622AC DB AB +⨯+⨯==,∴点P 的关联图形的最大面积是梯形ACDB 的面积﹣△PCD 的面积=16(842)842--=+.考点:圆的综合题.4.已知:在△ABC 中,AB=6,BC=8,AC=10,O 为AB 边上的一点,以O 为圆心,OA 长为半径作圆交AC 于D 点,过D 作⊙O 的切线交BC 于E.(1)若O为AB的中点(如图1),则ED与EC的大小关系为:ED EC(填“”“”或“”)(2)若OA<3时(如图2),(1)中的关系是否还成立?为什么?(3)当⊙O过BC中点时(如图3),求CE长.【答案】(1)ED=EC;(2)成立;(3)3【解析】试题分析:(1)连接OD,根据切线的性质可得∠ODE=90°,则∠CDE+∠ADO=90°,由AB=6,BC=8,AC=10根据勾股定理的逆定理可证得∠ABC=90°,则∠A+∠C=90°,根据圆的基本性质可得∠A=∠ADO,即可得到∠CDE=∠C,从而证得结论;(2)证法同(1);(3)根据直角三角形的性质结合圆的基本性质求解即可.(1)连接OD∵DE为⊙O的切线∴∠ODE=90°∴∠CDE+∠ADO=90°∵AB=6,BC=8,AC=10∴∠ABC=90°∴∠A+∠C=90°∵AO=DO∴∠A=∠ADO∴∠CDE=∠C∴ED=EC;(2)连接OD∵DE为⊙O的切线∴∠ODE=90°∴∠CDE+∠ADO=90°∵AB=6,BC=8,AC=10∴∠ABC=90°∴∠A+∠C=90°∵AO=DO∴∠A=∠ADO∴∠CDE=∠C∴ED=EC;(3)CE=3.考点:圆的综合题点评:此类问题综合性强,难度较大,在中考中比较常见,一般作为压轴题,题目比较典型.5.在△ABC中,∠A=90°,AB=4,AC=3,M是AB上的动点(不与A,B重合),过M点作MN∥BC交AC于点N.(1)如图1,把△AMN沿直线MN折叠得到△PMN,设AM=x.i.若点P正好在边BC上,求x的值;ii.在M的运动过程中,记△MNP与梯形BCNM重合的面积为y,试求y关于x的函数关系式,并求y的最大值.(2)如图2,以MN为直径作⊙O,并在⊙O内作内接矩形AMQN.试判断直线BC与⊙O的位置关系,并说明理由.【答案】(1)i.当x=2时,点P恰好落在边BC上;ii. y=,当x=时,重叠部分的面积最大,其值为2;(2)当x=时,⊙O与直线BC相切;当x<时,⊙O与直线BC相离;x>时,⊙O与直线BC相交.【解析】试题分析:(1)i.根据轴对称的性质,可求得相等的线段与角,可得点M是AB中点,即当x=AB=2时,点P恰好落在边BC上;ii.分两种情况讨论:①当0<x≤2时,△MNP与梯形BCNM重合的面积为△MNP的面积,根据轴对称的性质△MNP的面积等于△AMN的面积,易见y=x2②当2<x<4时,如图2,设PM,PN分别交BC于E,F,由i.知ME=MB=4-x∴PE=PM-ME=x-(4-x)=2x-4,由题意知△PEF∽△ABC,利用相似三角形的性质即可求得.(2)利用分类讨论的思想,先求的直线BC与⊙O相切时,x的值,然后得到相交,相离时x的取值范围.试题解析:(1)i.如图1,由轴对称性质知:AM=PM,∠AMN=∠PMN,又MN∥BC,∴∠PMN=∠BPM,∠AMN=∠B,∴∠B=∠BPM,∴AM=PM=BM,∴点M是AB中点,即当x=AB=2时,点P恰好落在边BC上.ii.以下分两种情况讨论:①当0<x≤2时,∵MN∥BC,∴△AMN∽△ABC,∴,∴,∴AN=,△MNP与梯形BCNM重合的面积为△MNP的面积,∴,②当2<x<4时,如图2,设PM,PN分别交BC于E,F,由(2)知ME=MB=4-x,∴PE=PM-ME=x-(4-x)=2x-4,由题意知△PEF∽△ABC,∴,∴S△PEF=(x-2)2,∴y=S△PMN-S△PEF=,∵当0<x≤2时,y=x2,∴易知y最大=,又∵当2<x<4时,y=,∴当x=时(符合2<x<4),y最大=2,综上所述,当x=时,重叠部分的面积最大,其值为2.(2))如图3,设直线BC与⊙O相切于点D,连接AO,OD,则AO=OD=MN.在Rt△ABC中,BC==5;由(1)知△AMN∽△ABC,∴,即,∴MN=x∴OD=x,过M点作MQ⊥BC于Q,则MQ=OD=x,在Rt △BMQ 与Rt △BCA 中,∠B 是公共角,∴△BMQ ∽△BCA ,∴, ∴BM=,AB=BM+MA=x+x=4 ∴x=,∴当x=时,⊙O 与直线BC 相切; 当x <时,⊙O 与直线BC 相离; x >时,⊙O 与直线BC 相交.考点:圆的综合题.6.如图,点A 在直线l 上,点Q 沿着直线l 以3厘米/秒的速度由点A 向右运动,以AQ 为边作Rt△ABQ,使∠BAQ=90°,tan∠ABQ= 34,点C 在点Q 右侧,CQ=1厘米,过点C 作直线m⊥l,过△ABQ 的外接圆圆心O 作OD⊥m 于点D ,交AB 右侧的圆弧于点E .在射线CD 上取点F ,使DF=13CD ,以DE 、DF 为邻边作矩形DEGF .设运动时间为t 秒.(1)直接用含t 的代数式表示BQ 、DF ;(2)当0<t <1时,求矩形DEGF 的最大面积;(3)点Q 在整个运动过程中,当矩形DEGF 为正方形时,求t 的值.【答案】(1)BQ=5t ,DF=23t;(2)16;(3)t 的值为35或3. 【解析】试题分析:(1)AB 与OD 交于点H ,根据题中的比例关系和勾股定理可表示出BQ 的长;根据垂直于同一条直线的两直线平行和三角形的中位线定理可求得AH 的长,再根据矩形的判定定理和矩形的性质可求CD 的长,即可表示出FD ;(2)根据题意表示出矩形的长和宽,然后构造二次函数,通过二次函数的最值可求解;(3)当矩形为正方形时,分别让其长与宽相等,列方程求解即可.试题解析:(1)5t BQ ,2DF=t 3;(2)DE=OD-OE=32t+1-52t=1-t ,()22211·t 13326S DF DE t t ⎛⎫==-=--+ ⎪⎝⎭,∴当t=12时,矩形DEGF 的最大面积为16; (3)当矩形DEGF 为正方形时,221133t t t t -=-=或,解得335t t ==或.7.我们把“有两条边和其中一边的对角对应相等的两个三角形”叫做“同族三角形”,如图1,在△ABC 和△ABD 中,AB=AB ,AC=AD ,∠B=∠B ,则△ABC 和△ABD 是“同族三角形”.(1)如图2,四边形ABCD 内接于圆,点C 是弧BD 的中点,求证:△ABC 和△ACD 是同族三角形;(2)如图3,△ABC 内接于⊙O ,⊙O 的半径为32AB=6,∠BAC=30°,求AC 的长; (3)如图3,在(2)的条件下,若点D 在⊙O 上,△ADC 与△ABC 是非全等的同族三角形,AD >CD ,求AD CD的值. 【答案】(1)详见解析;(2)3;(3)AD CD =622或62 【解析】【分析】(1)由点C 是弧BD 的中点,根据弧与弦的关系,易得BC=CD ,∠BAC=∠DAC ,又由公共边AC ,可证得:△ABC 和△ACD 是同族三角形;(2)首先连接0A ,OB ,作点B 作BE ⊥AC 于点E ,易得△AOB 是等腰直角三角形,继而求得答案;(3)分别从当CD=CB 时与当CD=AB 时进行分析求解即可求得答案.【详解】(1)证明:∵点C 是弧BD 的中点,即BC CD =,∴BC=CD ,∠BAC=∠DAC ,∵AC=AC ,∴△ABC 和△ACD 是同族三角形.(2)解:如图1,连接OA ,OB ,作点B 作BE ⊥AC 于点E ,∵OA=OB=32,AB=6,∴OA 2+OB 2=AB 2,∴△AOB 是等腰直角三角形,且∠AOB=90°,∴∠C=∠AOB=45°, ∵∠BAC=30°,∴BE=AB=3,∴AE=22AB BE -=33,∵CE=BE=3,∴AC=AE+CE=33+3.(3)解:∵∠B=180°﹣∠BAC ﹣∠ACB=180°﹣30°﹣45°=105°,∴∠ADC=180°﹣∠B=75°,如图2,当CD=CB 时,∠DAC=∠BAC=30°,∴∠ACD=75°,∴AD=AC=33+3,CD=BC=2BE=32,∴AD 333CD 32+==622+; 如图3,当CD=AB 时,过点D 作DF ⊥AC ,交AC 于点F ,则∠DAC=∠ACB=45°,∴∠ACD=180°﹣∠DAC ﹣∠ADC=60°,∴DF=CD•sin60°=6×323∴DF=∴AD CD =综上所述:AD CD 【点睛】本题考查圆的综合应用问题,综合运用弧与弦的关系,等腰三角形的性质结合图形作辅助线进行分析证明以及求解,难度较大.8.在平面直角坐标系xOy 中,对于两个点A ,B 和图形ω,如果在图形ω上存在点P ,Q (P ,Q 可以重合),使得AP =2BQ ,那么称点A 与点B 是图形ω的一对“倍点”. 已知⊙O 的半径为1,点B (0,3).(1)①点B 到⊙O 的最大值,最小值;②在A 1(5,0),A 2(0,10),A 3)这三个点中,与点B 是⊙O 的一对“倍点”的是 ;(2)在直线y =x +b 上存在点A 与点B 是⊙O 的一对“倍点”,求b 的取值范围; (3)正方形MNST 的顶点M (m ,1),N (m +1,1),若正方形上的所有点与点B 都是⊙O 的一对“倍点”,直接写出m 的取值范围.【答案】(1)①点B 到⊙O 的最大值是4,最小值是2;②A 1;(2)b -≤≤;(3)3≤m ≤1或≤m ≤﹣4【解析】【分析】(1)①根据点与圆的位置关系求解即可;②先求出123,,A A A 三个点到⊙O 的最大值与最小值,再根据“倍点”的定义求解即可; (2)如图1(见解析),过点O 作OD l ⊥,先求428BQ ≤≤,再求出直线:3l y x b =+上的点到⊙O 的最小值,只要这个最小值小于等于8即可满足题意,然后求解即可;(3)根据正方形的位置,可分20,01,1,2m m m m -≤<≤≤><-四种情况,分别求出每种情况下,正方形最近顶点、最远顶点到⊙O 的最大值与最小值,然后根据“倍点”的定义列出不等式组求解即可.【详解】(1)①点B 到⊙O 的最大值是314BO r +=+=点B 到⊙O 的最小值是312BO r -=-=;②1A 到⊙O 的最大值6,最小值4;2A 到⊙O 的最大值11,最小值9;3A 到⊙O 的最大值3,最小值1由(1)知,点B 到⊙O 的最大值是4,最小值是2因此,在⊙O 上存在点P ,Q ,使得12A P BQ =,则1A 与B 是⊙O 的一对“倍点”故答案为1A ;(2)∵点B 到⊙O 的最大值是4,最小值是2428BQ ∴≤≤如图1,过点O 作OD l ⊥由直线:3l y x b =+的解析式可知:60,DCO OC b ∠=︒=由直角三角形的性质可得:1,2CD b OD === 则点D 到⊙O1-,即直线:l y b =+上的点到⊙O的最小值为1-要使直线:3l y x b =+上存在点A 与点B 是⊙O 的一对“倍点”18-≤解得:b ≤b -≤≤;(3)由(2)知,428BQ ≤≤依题意,需分20,01,1,2m m m m -≤<≤≤><-四种情况讨论:①当20m -≤<时,顶点(1,1)N m +到⊙O14<,此时顶点N 不符题意②当01m ≤≤时,顶点(,1)M m 到⊙O14<,此时顶点M 不符题意③当1m ,如图2,正方形MNST 处于1号正方形位置时则顶点S 和T 的坐标为(1,0),(,0)S m T m +此时,点T 到⊙O 的最小值为1m -,最大值为1m +;点N 到⊙O的最小值为11则1418m +≥⎧≤,解得:31m ≤≤ 当正方形MNST 处于2号正方形位置时则顶点S 和T 的坐标为(1,2),(,2)S m T m +此时,点M 到⊙O1-1;点S 到⊙O 的最小11则2222114 (1)218mm⎧++≥⎪⎨++-≤⎪⎩,解得:22771m≤≤-或77122m--≤≤-(舍去)故当1m时,m的取值范围为3771m≤≤-④当2m<-时,正方形MNST处于3号正方形位置时则顶点S和T的坐标为(1,0),(,0)S m T m+此时,点S到⊙O的最小值为2m--,最大值为m-;点M到⊙O的最小值为2211m+-,最大值为2211m++则224118mm-≥⎧⎨+-≤⎪⎩,解得:454m-≤≤-当正方形MNST处于4号正方形位置时则顶点S和T的坐标为(1,2),(,2)S m T m+此时,点N到⊙O的最小值为22(1)11m++-,最大值为22(1)11m+++;点T到⊙O的最小值为2221m+-,最大值为2221m++则2222(1)114218mm⎧+++≥⎪⎨+-≤⎪⎩,解得:77122m-≤≤--或22177m-≤≤(舍去)故当2m<-时,m的取值范围为774m-≤≤-综上,m的取值范围为3771m≤≤-或774m-≤≤-.【点睛】本题考查了直线与圆的的位置关系、点与圆的位置关系、正方形的性质,较难的是(3),根据点与圆的位置关系分四种情况讨论是解题关键.9.如图,平行四边形ABCD中,AB=5,BC=8,cosB=45,点E是BC边上的动点,以C为圆心,CE长为半径作圆C,交AC于F,连接AE,EF.(1)求AC的长;(2)当AE与圆C相切时,求弦EF的长;(3)圆C与线段AD没有公共点时,确定半径CE的取值范围.【答案】(1)AC=5;(2)4105EF=;(3)03CE≤<或58CE<≤.【解析】【分析】(1)过A作AG⊥BC于点G,由cos45B=,得到BG=4,AG=3,然后由勾股定理即可求出AC的长度;(2)当点E与点G重合时,AE与圆C相切,过点F作FH⊥CE,则CE=CF=4,则CH=3.2,FH=2.4,得到EH=0.8,由勾股定理,即可得到EF的长度;(3)根据题意,可分情况进行讨论:①当圆C与AD相离时;②当CE>CA时;分别求出CE的取值范围,即可得到答案.【详解】解:(1)过A作AG⊥BC于点G,如图:在Rt△ABG中,AB=5,4 cos5BGBAB==,∴BG=4,∴AG=3,∴844CG=-=,∴点G是BC的中点,在Rt△ACG中,22345AC+=;(2)当点E与点G重合时,AE与圆C相切,过点F作FH⊥CE,如图:∴CE=CF=4,∵AB=AC=5,∴∠B=∠ACB ,∴4cos cos 5CH B ACB CF =∠==, ∴CH=3.2,在Rt △CFH 中,由勾股定理,得FH=2.4,∴EH=0.8,在Rt △EFH 中,由勾股定理,得 224100.8 2.4EF =+=; (3)根据题意,圆C 与线段AD 没有公共点时,可分为以下两种情况:①当圆C 与AD 相离时,则CE<AE ,∴半径CE 的取值范围是:03CE ≤<;②当CE>CA 时,点E 在线段BC 上,∴半径CE 的取值范围是:58CE <≤;综合上述,半径CE 的取值范围是:03CE ≤<或58CE <≤.【点睛】本题考查了解直角三角形,直线与圆的位置关系,平行四边形的性质,勾股定理,以及线段的动点问题,解题的关键是熟练掌握所学的知识,正确作出辅助线,正确确定动点的位置,从而进行解题.10.如图,二次函数y =﹣56x 2+bx +c 与x 轴的一个交点A 的坐标为(﹣3,0),以点A 为圆心作圆A ,与该二次函数的图象相交于点B ,C ,点B ,C 的横坐标分别为﹣2,﹣5,连接AB ,AC ,并且满足AB ⊥AC .(1)求该二次函数的关系式;(2)经过点B 作直线BD ⊥AB ,与x 轴交于点D ,与二次函数的图象交于点E ,连接AE ,请判断△ADE 的形状,并说明理由;(3)若直线y =kx +1与圆A 相切,请直接写出k 的值.【答案】(1)y =﹣56x 2﹣376x ﹣11;(2)△ADE 是等腰三角形,理由见解析;(3)k 的值为﹣12或2 【解析】【分析】(1)利用三垂线判断出()ACN BAM AAS ∆≅∆,进而得出(2,2)B --,(5,1)C --,最后将点B ,C 坐标代入抛物线解析式中即可得出结论;(2)先判断出ABM BDM ∆∆∽,得出点D 坐标,进而求出直线BD 的解析式,求出点E 坐标,即可得出结论;(3)分两种情况,Ⅰ、切点在x 轴上方,利用三垂线判断出()AQG FPG AAS ∆≅∆,得出AQ PF =,GQ PG =,设成点G 坐标,进而得出3AQ m =+,PF km =,PG m =-,1GQ km =+,即可得出结论;Ⅱ、切点在x 轴下方,同Ⅰ的方法即可得出结论.【详解】解:(1)如图1,过点B 作BM x ⊥轴于M ,过点C 作CN x ⊥轴于N ,90ANC BMA ∴∠=∠=︒, 90ABM BAM ∴∠+∠=︒, AC AB ⊥,90CAN BAM ∴∠+∠=︒, ABM CAN ∴∠=∠,A 过点B ,C ,AC AB ∴=,()ACN BAM AAS ∴∆≅∆, 2(3)1CN AM ∴==---=,3(5)2BM AN ==---=, (2,2)B ∴--,(5,1)C --, 点B ,C 在抛物线上, ∴54226525516b c b c ⎧-⨯-+=-⎪⎪⎨⎪-⨯-+=-⎪⎩, ∴37611b c ⎧=-⎪⎨⎪=-⎩, ∴抛物线的解析式为25371166y x x =---,(2)ADE ∆是等腰三角形, 理由如下:如图1,BD AB ⊥,90ABD ∴∠=︒,90ABM DBM ∴∠+∠=︒,过点B 作BM x ⊥轴于M ,90BMD AMB ∴∠=∠=︒,90BDM DBM ∴∠+∠=︒,ABM BDM ∴∠=∠,ABM BDM ∴∆∆∽, ∴AM BM BM DM=, ∴122DM=, 4DM ∴=,2()2D ∴,, 5AD ∴=,(2,2)B --,∴直线BD 的解析式为112y x =-, 联立,21125371166y x y x x ⎧=-⎪⎪⎨⎪=---⎪⎩, ∴22x y =-⎧⎨=-⎩(舍)或61x y =-⎧⎨=-⎩, (6,4)E ∴--,22(63)(40)5AE ∴=-++--=,AD AE ∴=,ADE ∴∆是等腰三角形;(3)如图2,点(2,2)B --在A 上,AB ∴ 记直线1y kx =+与y 轴相交于F ,令0x =,则1y =,(0,1)F ∴,1OF ∴=,Ⅰ、当直线1y kx =+与A 的切点在x 轴上方时,记切点为G ,则AG AB ==90AGF ∠=︒,连接AF ,在Rt AOF ∆中,3OA =,1OF =,AF ∴=,在Rt AGF ∆中,根据勾股定理得,FG AG ===,如图2,过点G 作GP y ⊥轴于P ,过点G 作GQ x ⊥轴于Q ,90AQG FPG POQ ∴∠=∠=︒=∠,∴四边形POQG 是矩形,90PGQ ∴∠=︒, FG 是A 的切线,AGQ FGP ∴∠=∠,()AQG FPG AAS ∴∆≅∆,AQ PF ∴=,GQ PG =,设点(,1)G m km +,3AQ m ∴=+,PF km =,PG m =-,1GQ km =+,3m km ∴+=①,1km m +=-②, 联立①②解得,212m k =-⎧⎪⎨=-⎪⎩, Ⅱ、当切点在x 轴下方时,同Ⅰ的方法得,2k =,即:直线1y kx =+与圆A 相切,k 的值为12-或2. 【点睛】此题是二次函数综合题,主考查了待定系数法,三垂线判定两三角形全等,解方程组,判断出FG AG =是解本题的关键.。
人教版九年级上册数学 圆 几何综合(培优篇)(Word版 含解析)
人教版九年级上册数学 圆 几何综合(培优篇)(Word 版 含解析)一、初三数学 圆易错题压轴题(难)1.如图,二次函数y=x 2-2mx+8m 的图象与x 轴交于A 、B 两点(点A 在点B 的左边且OA≠OB ),交y 轴于点C ,且经过点(m ,9m ),⊙E 过A 、B 、C 三点。
(1)求这条抛物线的解析式;(2)求点E 的坐标;(3)过抛物线上一点P (点P 不与B 、C 重合)作PQ ⊥x 轴于点Q ,是否存在这样的点P 使△PBQ 和△BOC 相似?如果存在,求出点P 的坐标;如果不存在,说明理由【答案】(1)y=x 2+2x-8(2)(-1,-72)(3)(-8,40),(-154,-1316),(-174,-2516) 【解析】分析:(1)把(),9m m 代入解析式,得:22289m m m m -+=,解这个方程可求出m 的值;(2)分别令y =0和x =0,求出OA ,OB ,O C 及AB 的长,过点E 作EG x ⊥轴于点G ,EF y ⊥轴于点F ,连接CE ,AE ,设OF =GE =a ,根据AE CE = ,列方过程求出a 的值,从而求出点E 的坐标;(3)设点P (a , a 2+2a -8), 则228,2PQ a a BQ a =+-=-,然后分PBQ ∽CBO 时和PBQ ∽BCO 时两种情况,列比例式求出a 的值,从而求出点P 的坐标.详解:(1)把(),9m m 代入解析式,得:22289m m m m -+=解得:121,0m m =-=(舍去)∴228y x x =+-(2)由(1)可得:228y x x =+-,当0y =时,124,2x x =-=;∵点A 在点B 的左边 ∴42OA OB ,== ,∴6AB OA OB =+=,当0x =时,8y =-,∴8OC =过点E 作EG x ⊥轴于点G ,EF y ⊥轴于点F ,连接CE ,, 则116322AG AB ==⨯= ,设,则,在Rt AGE ∆中,,在中, ()222218CE EF CF a =+=+-,∵AE CE = ,∴()22918a a +=+- , 解得:72a = , ∴712E ⎛⎫-- ⎪⎝⎭, ; (3)设点()2,28a a a P +-,则228,2PQ a a BQ a =+-=-,a.当PBQ ∆∽CBO ∆时, PQ CO BQ OB =,即228822a a a +-=-, 解得:10a =(舍去);22a =(舍去);38a =- , ∴()18,40P - ;b.当PBQ ∆∽BCO ∆时,PQ BO BQ CO =,即228228a a a +-=-, 解得:12a =(舍去),2154a =-;3174a =- , ∴21523,416P ⎛⎫-- ⎪⎝⎭;31725416P ⎛⎫- ⎪⎝⎭, ; 综上所述,点P 的坐标为:()18,40P -,21523,416P ⎛⎫--⎪⎝⎭,31725416P ⎛⎫- ⎪⎝⎭, 点睛:本题考查了二次函数的图像与性质,二次函数与坐标轴的交点,垂径定理,勾股定理,相似三角形的性质和分类讨论的数学思想,熟练掌握二次函数与一元二次方程的关系、相似三角形的性质是解答本题的关键.2.已知圆O 的半径长为2,点A 、B 、C 为圆O 上三点,弦BC=AO ,点D 为BC 的中点,(1)如图,连接AC 、OD ,设∠OAC=α,请用α表示∠AOD ;(2)如图,当点B 为AC 的中点时,求点A 、D 之间的距离:(3)如果AD 的延长线与圆O 交于点E ,以O 为圆心,AD 为半径的圆与以BC 为直径的圆相切,求弦AE 的长.【答案】(1)1502AOD α∠=︒-;(2)7AD =3331331+- 【解析】【分析】(1)连接OB 、OC ,可证△OBC 是等边三角形,根据垂径定理可得∠DOC 等于30°,OA=OC 可得∠ACO=∠CAO=α,利用三角形的内角和定理即可表示出∠AOD 的值.(2)连接OB 、OC ,可证△OBC 是等边三角形,根据垂径定理可得∠DOB 等于30°,因为点D 为BC 的中点,则∠AOB=∠BOC=60°,所以∠AOD 等于90°,根据OA=OB=2,在直角三角形中用三角函数及勾股定理即可求得OD 、AD 的长.(3)分两种情况讨论:两圆外切,两圆内切.先根据两圆相切时圆心距与两圆半径的关系,求出AD 的长,再过O 点作AE 的垂线,利用勾股定理列出方程即可求解.【详解】(1)如图1:连接OB、OC.∵BC=AO∴OB=OC=BC∴△OBC是等边三角形∴∠BOC=60°∵点D是BC的中点∴∠BOD=130 2BOC∠=︒∵OA=OC∴OAC OCA∠=∠=α∴∠AOD=180°-α-α-30︒=150°-2α(2)如图2:连接OB、OC、OD.由(1)可得:△OBC是等边三角形,∠BOD=130 2BOC∠=︒∵OB=2,∴OD=OB∙cos30︒=3∵B为AC的中点,∴∠AOB=∠BOC=60°∴∠AOD=90°根据勾股定理得:227AO OD+=(3)①如图3.圆O 与圆D 相内切时:连接OB 、OC ,过O 点作OF ⊥AE∵BC 是直径,D 是BC 的中点∴以BC 为直径的圆的圆心为D 点由(2)可得:OD=3,圆D 的半径为1∴AD=31+设AF=x在Rt △AFO 和Rt △DOF 中,2222OA AF OD DF -=-即()2222331x x -=-+- 解得:331x 4+= ∴AE=3312AF +=②如图4.圆O 与圆D 相外切时:连接OB 、OC ,过O 点作OF ⊥AE∵BC 是直径,D 是BC 的中点∴以BC 为直径的圆的圆心为D 点由(2)可得:OD=3,圆D 的半径为1∴AD=31-在Rt △AFO 和Rt △DOF 中,2222OA AF OD DF -=-即()2222331x x -=--+解得:331x -= ∴AE=3312AF -=【点睛】本题主要考查圆的相关知识:垂径定理,圆与圆相切的条件,关键是能灵活运用垂径定理和勾股定理相结合思考问题,另外需注意圆相切要分内切与外切两种情况.3.如图,矩形ABCD 中,BC =8,点F 是AB 边上一点(不与点B 重合)△BCF 的外接圆交对角线BD 于点E ,连结CF 交BD 于点G .(1)求证:∠ECG =∠BDC .(2)当AB =6时,在点F 的整个运动过程中.①若BF =2时,求CE 的长.②当△CEG 为等腰三角形时,求所有满足条件的BE 的长.(3)过点E 作△BCF 外接圆的切线交AD 于点P .若PE ∥CF 且CF =6PE ,记△DEP 的面积为S 1,△CDE 的面积为S 2,请直接写出12S S 的值.【答案】(1)详见解析;(2182当BE为10,395或445时,△CEG为等腰三角形;(3)7 24.【解析】【分析】(1)根据平行线的性质得出∠ABD=∠BDC,根据圆周角定理得出∠ABD=∠ECG,即可证得结论;(2)根据勾股定理求得BD=10,①连接EF,根据圆周角定理得出∠CEF=∠BCD=90°,∠EFC=∠CBD.即可得出sin∠EFC=sin∠CBD,得出35CE CDCF BD==,根据勾股定理得到CF=62CE1825;②分三种情况讨论求得:当EG=CG时,根据等腰三角形的性质和圆周角定理即可得到∠GEC=∠GCE=∠ABD=∠BDC,从而证得E、D重合,即可得到BE=BD=10;当GE=CE时,过点C作CH⊥BD于点H,即可得到∠EGC=∠ECG=∠ABD=∠GDC,得到CG=CD=6.根据三角形面积公式求得CH=245,即可根据勾股定理求得GH,进而求得HE,即可求得BE=BH+HE=395;当CG=CE时,过点E作EM⊥CG于点M,由tan∠ECM=43EMCM=.设EM=4k,则CM=3k,CG=CE=5k.得出GM=2k,tan∠GEM=2142GM kEM k==,即可得到tan∠GCH=GH CH =12.求得HE=GH=125,即可得到BE=BH+HE=445;(3)连接OE、EF、AE、EF,先根据切线的性质和垂直平分线的性质得出EF=CE,进而证得四边形ABCD是正方形,进一步证得△ADE≌△CDE,通过证得△EHP∽△FBC,得出EH=1 6BF,即可求得BF=6,根据勾股定理求得CF=10,得出PE=106,根据勾股定理求得PH,进而求得PD,然后根据三角形面积公式即可求得结果.【详解】(1)∵AB∥CD.∴∠ABD=∠BDC,∵∠ABD=∠ECG,∴∠ECG=∠BDC.(2)解:①∵AB=CD=6,AD=BC=8,∴BD=10,如图1,连结EF,则∠CEF=∠BCD=90°,∵∠EFC=∠CBD.∴sin∠EFC=sin∠CBD,∴35 CE CD CF BD==∴CF∴CE②Ⅰ、当EG=CG时,∠GEC=∠GCE=∠ABD=∠BDC.∴E与D重合,∴BE=BD=10.Ⅱ、如图2,当GE=CE时,过点C作CH⊥BD于点H,∴∠EGC=∠ECG=∠ABD=∠GDC,∴CG=CD=6.∵CH=BC CD24 BD5⋅=,∴GH185 =,在Rt△CEH中,设HE=x,则x2+(245)2=(x+185)2解得x=75,∴BE=BH+HE=325+75=395;Ⅲ、如图2,当CG=CE时,过点E作EM⊥CG于点M.∵tan∠ECM=43 EMCM=.设EM=4k,则CM=3k,CG=CE=5k.∴GM=2k,tan∠GEM=2142 GM kEM k==,∴tan∠GCH=GHCH=tan∠GEM=12.∴HE=GH=12412 255⨯=,∴BE=BH+HE=321244 555+=,综上所述,当BE为10,395或445时,△CEG为等腰三角形;(3)解:∵∠ABC=90°,∴FC是△BCF的外接圆的直径,设圆心为O,如图3,连接OE、EF、AE、EF,∵PE是切线,∴OE⊥PE,∵PE∥CF,∴OE⊥CF,∵OC=OF,∴CE=EF,∴△CEF是等腰直角三角形,∴∠ECF=45°,EF FC,∴∠ABD=∠ECF=45°,∴∠ADB=∠BDC=45°,∴AB=AD=8,∴四边形ABCD是正方形,∵PE∥FC,∴∠EGF=∠PED,∴∠BGC=∠PED,∴∠BCF=∠DPE,作EH⊥AD于H,则EH=DH,∵∠EHP=∠FBC=90°,∴△EHP∽△FBC,∴16 EH PEBF FC==,∴EH=16 BF,∵AD=CD,∠ADE=∠CDE,∴△ADE≌△CDE,∴AE=CE,∴AE=EF,∴AF=2EH=13 BF,∴13BF+BF=8,∴BF=6,∴EH=DH=1,CF =22BF BC+=10,∴PE =16FC=53,∴PH =224PE EH3-=,∴PD=47133 +=,∴1277 3824S PDS AD===.【点睛】本题是四边形的综合题,考查了矩形的性质,圆周角定理、三角形的面积以及相似三角形的判定和性质,作出辅助线构建直角三角形是解题的关键.4.选做题:从甲乙两题中选作一题,如果两题都做,只以甲题计分题甲:已知矩形两邻边的长、是方程的两根.(1)求的取值范围;(2)当矩形的对角线长为时,求的值;(3)当为何值时,矩形变为正方形?题乙:如图,是直径,于点,交于点,且.(1)判断直线和的位置关系,并给出证明;(2)当,时,求的面积.【答案】题甲(1)(2)(3)题乙:(1)BD是切线;证明所以OB⊥BD,BD是切线(2)S=【解析】试题分析:题甲:(1)、是方程的两根,则其;由得(2)矩形两邻边的长、,矩形的对角线的平方=;矩形两邻边的长、是方程的两根,则;因为,所以;解得由得(3)矩形变为正方形,则a=b;、是方程的两根,所以方程有两个相等的实数根,即,由得题乙:(1)BD是切线;如图所示,是弧AC所对的圆周角,;因为,所以;于点,,所以,,在三角形OBD中,所以OB⊥BD;BD是切线(2),AB是圆的直径,所以OB=5;于点,交于点,F是BC的中点;,BF=4;在直角三角形OBF中由勾股定理得OF=;根据题意,,则,所以,从而,解得DF=,的面积=考点:直线与圆相切,相似三角形点评:本题考查直线与圆相切,相似三角形;解本题的关键是会判断直线与圆是否相切,能判定两个三角形相似5.四边形ABCD内接于⊙O,连接AC、BD,2∠BDC+∠ADB=180°.(1)如图1,求证:AC=BC;(2)如图2,E为⊙O上一点,AE=BE,F为AC上一点,DE与BF相交于点T,连接AT,若∠BFC=∠BDC+12∠ABD,求证:AT平分∠DAB;(3)在(2)的条件下,DT=TE,AD=8,BD=12,求DE的长.【答案】(1)见解析;(2)见解析;(3)82【解析】【分析】(1)只要证明∠CAB=∠CBA即可.(2)如图2中,作TH⊥AD于H,TR⊥BD于R,TL⊥AB于L.想办法证明TL=TH即可解决问题.(3)如图3中,连接EA,EB,作EG⊥AB,TH⊥AD于H,TR⊥BD于R,TL⊥AB于L,AQ⊥BD于Q.证明△EAG≌△TDH(AAS),推出AG=DH,证明Rt△TDR≌Rt△TDH(HL),推出DH=DR,同理可得AL=AH,BR=BL,设DH=x,则AB=2x,由S△ADB=12•BD•AQ=12•AD•h+12•AB•h+12•DB•h,可得AQ=52h,再根据sin∠BDE=sin∠ADE,sin∠AED=sin∠ABD,构建方程组求出m即可解决问题.【详解】解:(1)如图1中,∵四边形ABCD内接于⊙O,∴∠ADC+∠ABC=180°,即∠ADB+∠BDC+∠ABC=180°,∵2∠BDC+∠ADB=180°,∵∠BAC=∠BDC,∴∠BAC=∠ABC,∴AC=BC.(2)如图2中,作TH⊥AD于H,TR⊥BD于R,TL⊥AB于L.∵∠BFC=∠BAC+∠ABF,∠BAC=∠BDC,∴∠BFC=∠BDC+∠ABF,∵∠BFC=∠BDC+12∠ABD,∴∠ABF=12∠ABD,∴BT平分∠ABD,∵AE=BE∴∠ADE=∠BDE,∴DT平分∠ADB,∵TH⊥AD于H,TR⊥BD于R,TL⊥AB于L.∴TR=TL,TR=TH,∴TL=TH,∴AT平分∠DAB.(3)如图3中,连接EA,EB,作EG⊥AB,TH⊥AD于H,TR⊥BD于R,TL⊥AB于L,AQ⊥BD于Q.∵AE=BE∴∠EAB=∠EDB=∠EDA,AE=BE,∵∠TAE=∠EAB+∠TAB,∠ATE=∠EDA+∠DAT,∴AE=TE,∵DT=TE,∴AE=DT,∵∠AGE=∠DHT=90°,∴△EAG≌△TDH(AAS),∴AG=DH,∵AE=EB,EG⊥AB,∴AG=BG,∴2DH=AB,∵Rt△TDR≌Rt△TDH(HL),∴DH=DR,同理可得AL=AH,BR=BL,设DH=x,则AB=2x,∵AD=8,DB=12,∴AL=AH=8﹣x,BR=12﹣x,AB=2x=8﹣x+12﹣x,∴x=5,∴DH=5,AB=10,设TR=TL=TH=h,DT=m,∵S△ADB=12•BD•AQ=12•AD•h+12•AB•h+12•DB•h,∴12AQ=(8+12+10)h,∴AQ=52 h,∵sin∠BDE=sin∠ADE,可得hm=APAD=AP8,sin∠AED=sin∠ABD,可得APm=AQAB=AQ10=5210h,∴APm=52810mAP,解得m=或﹣(舍弃),∴DE=2m=.【点睛】本题属于圆综合题,考查了圆内接四边形的性质,圆周角定理,锐角三角函数,全等三角形的判定和性质,角平分线的性质定理和判定定理等知识,解题的关键是学会添加常用辅助线,学会利用参数构建方程组解决问题,属于中考压轴题.6.如图,在平面直角坐标系中,O为坐标原点,△ABC的边BC在y轴的正半轴上,点A在x轴的正半轴上,点C的坐标为(0,8),将△ABC沿直线AB折叠,点C落在x轴的负半轴D(−4,0)处.(1)求直线AB的解析式;(2)点P从点A出发以每秒45个单位长度的速度沿射线AB方向运动,过点P作PQ⊥AB,交x轴于点Q,PR∥AC交x轴于点R,设点P运动时间为t(秒),线段QR长为d,求d与t的函数关系式(不要求写出自变量t的取值范围);(3)在(2)的条件下,点N是射线AB上一点,以点N为圆心,同时经过R、Q两点作⊙N,⊙N交y轴于点E,F.是否存在t,使得EF=RQ?若存在,求出t的值,并求出圆心N的坐标;若不存在,说明理由.【答案】(1)132y x=-+(2)d=5t (3)故当 t=85,或815,时,QR=EF,N(-6,6)或(2,2).【解析】试题分析:(1)由C(0,8),D(-4,0),可求得OC,OD的长,然后设OB=a,则BC=8-a,在Rt△BOD中,由勾股定理可得方程:(8-a)2=a2+42,解此方程即可求得B的坐标,然后由三角函数的求得点A的坐标,再利用待定系数法求得直线AB的解析式;(2)在Rt△AOB中,由勾股定理可求得AB的长,继而求得∠BAO的正切与余弦,由PR//AC 与折叠的性质,易证得RQ=AR,则可求得d与t的函数关系式;(3)首先过点分别作NT⊥RQ于T,NS⊥EF于S,易证得四边形NTOS是正方形,然后分别从点N在第二象限与点N在第一象限去分析求解即可求解;试题解析:(1)∵C(0,8),D(-4,0),∴OC=8,OD=4,设OB=a,则BC=8-a,由折叠的性质可得:BD=BC=8-a,在Rt△BOD中,∠BOD=90°,DB2=OB2+OD2,则(8-a)2=a2+42,解得:a=3,则OB=3,则B(0,3),tan∠ODB=34 OBOD=,在Rt△AOC 中,∠AOC=90°,tan ∠ACB=34OA OC = , 则OA=6, 则A (6,0),设直线AB 的解析式为:y=kx+b ,则60{3k b b +== ,解得:1{23k b =-= , 故直线AB 的解析式为:y=-12x +3; (2)如图所示:在Rt △AOB 中,∠AOB=90°,OB=3,OA=6, 则22135,tan 2OB OB OA BAO OA +=∠== ,255OAcos BAO AB∠==, 在Rt △PQA 中,905APQ AP t ∠=︒=,则AQ=10cos APt BAO =∠ ,∵PR ∥AC ,∴∠APR=∠CAB ,由折叠的性质得:∠BAO=∠CAB , ∴∠BAO=∠APR , ∴PR=AR ,∵∠RAP+∠PQA=∠APR+∠QPR=90°, ∴∠PQA=∠QPR , ∴RP=RQ , ∴RQ=AR ,∴QR=12 AQ=5t, 即d=5t;(3)过点分别作NT ⊥RQ 于T ,NS ⊥EF 于S , ∵EF=QR , ∴NS=NT ,∴四边形NTOS 是正方形,则TQ=TR=1522QR t = , ∴1115151022224NT AT AQ TQ t t t ==-=-=()() , 分两种情况,若点N 在第二象限,则设N (n ,-n ),点N 在直线132y x =-+ 上, 则132n n -=-+ , 解得:n=-6,故N (-6,6),NT=6, 即1564t = , 解得:85t =; 若点N 在第一象限,设N (N ,N ), 可得:132n n =-+ , 解得:n=2, 故N (2,2),NT=2,即1524t =, 解得:t=815∴当 t =85,或815,时,QR =EF ,N (-6,6)或(2,2)。
九年级数学上册 旋转几何综合单元试卷(word版含答案)
九年级数学上册 旋转几何综合单元试卷(word 版含答案)一、初三数学 旋转易错题压轴题(难)1.如图1,在Rt ABC △中,90A ∠=︒,AB AC =,点D ,E 分别在边AB ,AC 上,AD AE =,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点.(1)观察猜想:图1中,线段PM 与PN 的数量关系是_________,位置关系是_________;(2)探究证明:把ADE 绕点A 逆时针方向旋转到图2的位置,连接MN ,BD ,CE ,判断PMN 的形状,并说明理由;(3)拓展延伸:把ADE 绕点A 在平面内自由旋转,若4=AD ,10AB =,请直接写出PMN 面积的最大值.【答案】(1)PM PN =,PM PN ⊥;(2)等腰直角三角形,见解析;(3)492【解析】【分析】(1)由三角形中位线定理及平行的性质可得PN 与PM 等于DE 或CE 的一半,又△ABC 为等腰直角三角形,AD=AE ,所以得PN=PM ,且互相垂直; (2)由旋转可推出BAD CAE ∆∆≌,再利用PM 与PN 皆为中位线,得到PM=PN ,再利用角度间关系推导出垂直即可;(3)找到面积最大的位置作出图形,由(2)可知PM=PM ,且PM ⊥PN ,利用三角形面积公式求解即可.【详解】(1)PM PN =,PM PN ⊥;已知点M ,P ,N 分别为DE ,DC ,BC 的中点,根据三角形的中位线定理可得 12PM EC =,12PN BD =,//PM EC ,//PN BD 根据平行线性质可得DPM DCE ∠=∠,NPD ADC ∠=∠在Rt ABC ∆中,90A ∠=︒,AB AC =,AD AE =可得BD EC =,90DCE ADC ∠+∠=︒即得PM PN =,PM PN ⊥故答案为:PM PN =;PM PN ⊥.(2)等腰直角三角形,理由如下:由旋转可得BAD CAE ∠=∠,又AB AC =,AD AE =∴BAD CAE ∆∆≌∴BD CE =,ABD ACE ∠=∠, ∵点M ,P 分别为DE ,DC 的中点∴PM 是DCE ∆的中位线∴12PM CE =,且//PM CE , 同理可证12PN BD =,且//PN BD ∴PM PN =,MPD ECD ∠=∠,PNC DBC ∠=∠,∴MPD ECD ACD ACE ACD ABD ∠=∠=∠+∠=∠+∠,DPN PNC PCN DBC PCN ∠=∠+∠=∠+∠,∴90MPN MPD DPN ACD ABD DBC PCN ABC ACB ∠=∠+∠=∠+∠+∠+∠=∠+∠=︒,即PMN ∆为等腰直角三角形.(3)把ADE ∆绕点A 旋转的如图的位置,此时1()72PN AD AB =+=,1()72PM AE AC =+= 且PN 、PM 的值最长,由(2)可知PM PN =,PM PN ⊥ 所以PMN ∆面积最大值为1497722⨯⨯=. 【点睛】本题主要考查三角形中位线的判定及性质、全等三角形的判定及性质、等腰直角三角形的判定及性质、旋转的性质等相关知识,解题关键在于找到图形中各角度之间的数量关系.2.在△ABC 中,∠C =90°,AC =BC =6.(1)如图1,若将线段AB绕点B逆时针旋转90°得到线段BD,连接AD,则△ABD的面积为.(2)如图2,点P为CA延长线上一个动点,连接BP,以P为直角顶点,BP为直角边作等腰直角△BPQ,连接AQ,求证:AB⊥AQ;(3)如图3,点E,F为线段BC上两点,且∠CAF=∠EAF=∠BAE,点M是线段AF上一个动点,点N是线段AC上一个动点,是否存在点M,N,使CM+NM的值最小,若存在,求出最小值:若不存在,说明理由.【答案】(1)36;(2)详见解析;(3)存在,最小值为3.【解析】【分析】(1)根据旋转的性质得到△ABD是等腰直角三角形,求得AD=2BC=12,根据三角形的面积公式即可得到结论;(2)如图2,过Q作QH⊥CA交CA的延长线于H,根据等腰直角三角形的性质,得到PQ =PB,∠BPQ=90°,根据全等三角形的性质得到PH=BC,QH=CP,求得CP=AH,得到∠HAQ=45°,于是得到∠BAQ=180°﹣45°﹣45°=90°,即可得到结论;(3)根据已知条件得到∠CAF=∠EAF=∠BAE=15°,求得∠EAC=30°,如图3,作点C关于AF的对称点D,过D作DN⊥AC于N交AF于M,则此时,CM+NM的值最小,且最小值=DN,求得AD=AC=6,根据直角三角形的性质即可得到结论.【详解】解:(1)∵将线段AB绕点B逆时针旋转90°得到线段BD,∴△ABD是等腰直角三角形,∵∠ACB=90°,∴BC⊥AD,∴AD=2BC=12,∴△ABD的面积=12AD•BC=1212×6=36,故答案为:36;(2)如图,过Q作QH⊥CA交CA的延长线于H,∴∠H=∠C=90°,∵△BPQ是等腰直角三角形,∴PQ=PB,∠BPQ=90°,∴∠HPQ+∠BPC=∠QPH+∠PQH=90°,∴∠PQH=∠BPC,∴△PQH≌△BPC(AAS),∴PH=BC,QH=CP,∵AC=BC,∴PH=AC,∴CP=AH,∴QH=AH,∴∠HAQ=45°,∵∠BAC=45°,∴∠BAQ=180°﹣45°﹣45°=90°,∴AB⊥AQ;(3)如图,作点C关于AF的对称点D,过D作DN⊥AC于N交AF于M,∵∠CAF=∠EAF=∠BAE,∠BAC=45°,∴∠CAF=∠EAF=∠BAE=15°,∴∠EAC=30°,则此时,CM+NM的值最小,且最小值=DN,∵点C和点D关于AF对称,∴AD=AC=6,∵∠AND=90°,∴DN=12AD=126=3,∴CM+NM最小值为3.【点睛】本题是几何变换综合题,考查了全等三角形的判定与性质,旋转的性质,等腰直角三角形的性质,含30°角的直角三角形的性质,正确的作出作辅助线构造全等三角形是解题的关键.3.综合与探究:如图1,Rt AOB 的直角顶点O 在坐标原点,点A 在y 轴正半轴上,点B 在x 轴正半轴上,4OA =,2OB =,将线段AB 绕点B 顺时针旋转90︒得到线段BC ,过点C 作CD x ⊥轴于点D ,抛物线23y ax x c =++经过点C ,与y 轴交于点(0,2)E ,直线AC 与x 轴交于点H .(1)求点C 的坐标及抛物线的表达式;(2)如图2,已知点G 是线段AH 上的一个动点,过点G 作AH 的垂线交抛物线于点F (点F 在第一象限),设点G 的横坐标为m .①点G 的纵坐标用含m 的代数式表示为________;②如图3,当直线FG 经过点B 时,求点F 的坐标,判断四边形ABCF 的形状并证明结论;③在②的前提下,连接FH ,点N 是坐标平面内的点,若以F ,H ,N 为顶点的三角形与FHC 全等,请直接写出点N 的坐标.【答案】(1)点C 的坐标为(6,2),21322y x x =-++;(2)①143m -+;②点F 的坐标为(4,6),四边形ABCF 为正方形,证明见解析;③点N 的坐标为(10,4)或4226,55⎛⎫ ⎪⎝⎭或384,55⎛⎫ ⎪⎝⎭. 【解析】【分析】(1)根据已知条件与旋转的性质证明ABO BCD ≌,根据全等三角形的性质得出点C 的坐标,结合点E 的坐标,根据待定系数法求出抛物线的表达式;(2)①设直线AC 的表达式为y kx b =+,由点A 、C 的坐标求出直线AC 的表达式,进而得解;②过点G 作GM x ⊥轴于点M ,过点F 作FP y ⊥轴,垂足为点P ,PF 的延长线与DC 的延长线交于点Q ,根据等腰三角形三线合一得出AG CG =,结合①由平行线分线段成比例得出点G 的坐标,根据待定系数法求出直线BG 的表达式,结合抛物线的表达式求出点F ;利用勾股定理求出AB BC CF FA ===,结合90ABC ︒∠=可得出结论; ③根据直线AC 的表达式求出点H 的坐标,设点N 坐标为(,)s t ,根据勾股定理分别求出2FC ,2CH ,2FN ,2NH ,然后分两种情况考虑:若△FHC ≌△FHN ,则FN =FC ,NH =CH ,若△FHC ≌△HFN ,则FN =CH ,NH =FC ,分别列式求解即可.【详解】解:(1)4=OA ,2OB =,∴点A 的坐标为(0,4),点B 的坐标为(2,0),线段AB 绕点B 顺时针旋转90︒得到线段BC ,AB BC ∴=,90ABC ︒∠=,90ABO DBC ︒∴∠+∠=,在Rt AOB 中,90ABO OAB ︒∴∠+∠=,=OAB DBC ∴∠∠,CD x ⊥轴于点D ,90BDC ︒∴∠=,90AOB BDC ︒∴∠=∠=.AB BC =,ABO BCD ∴△≌△,2CD OB ∴==,4BD OA ==,6OB BD ∴+=,∴点C 的坐标为(6,2),∵抛物线23y ax x c =++的图象经过点C ,与y 轴交于点(0,2)E , 236182c a c =⎧∴⎨++=⎩, 解得,122a c ⎧=-⎪⎨⎪=⎩, ∴抛物线的表达式为21322y x x =-++; (2)①设直线AC 的表达式为y kx b =+,∵直线AC 经过点()6,2C ,(0,4)A ,∴624k b b +=⎧⎨=⎩, 解得,134k b ⎧=-⎪⎨⎪=⎩,即143y x =-+,∴点G 的纵坐标用含m 的代数式表示为:143m -+, 故答案为:143m -+.②过点G 作GM x ⊥轴于点M , OM m ∴=,143GM m =-+, AB BC =,BG AC ⊥,AG CG ∴=,90AOB GMH CDH ︒∠=∠=∠=,OA GMCD ∴, 1OM AG MD GC∴==, 132OM MD OD ∴===, 3m ∴=,1433m -+=,∴点G 为(3,3), 设直线BG 的表达式为y kx b =+,将(3,3)G 和(2,0)B 代入表达式得,2033k b k b +=⎧⎨+=⎩, 36k b =⎧∴⎨=-⎩,即表达式为36y x =-, 点F 为直线BG 和抛物线的交点,∴得2132362x x x -++=-, 14x ∴=,24x =-(舍去),∴点F 的坐标为(4,6),过点F 作FP y ⊥轴,垂足为点P ,PF 的延长线与DC 的延长线交于点Q ,4PF ∴=,2AP =,2FQ =,4CQ =,在Rt AFP △中和Rt FCQ △中,根据勾股定理,得AF FC ==同理可得AB BC ==,AB BC CF FA ∴===,∴四边形ABCF 为菱形,90ABC ︒∠=,∴菱形ABCF 为正方形;③∵直线AC :143y x =-+与x 轴交于点H , ∴1403x -+=, 解得,x =12,∴(12,0)H , ∴222(64)(26)20FC =-+-=,222(126)(02)40CH =-+-=,设点N 坐标为(,)s t ,∴222(4)(6)FN s t =-+-,222(12)(0)NH s t =-+-,第一种情况:若△FHC ≌△FHN ,则FN =FC ,NH =CH , ∴2222(4)(6)20(12)40s t s t ⎧-+-=⎨-+=⎩, 解得,11425265s t ⎧=⎪⎪⎨⎪=⎪⎩,2262s t =⎧⎨=⎩(即点C ), ∴4226,55N ⎛⎫ ⎪⎝⎭; 第二种情况:若△FHC ≌△HFN ,则FN =CH ,NH =FC ,∴2222(4)(6)40(12)20s t s t ⎧-+-=⎨-+=⎩, 解得,1138545s t ⎧=⎪⎪⎨⎪=⎪⎩,22104s t =⎧⎨=⎩, ∴384,55N ⎛⎫ ⎪⎝⎭或(10,4)N , 综上所述,以F ,H ,N 为顶点的三角形与△FHC 全等时,点N 坐标为(10,4)或4226,55⎛⎫ ⎪⎝⎭或384,55⎛⎫ ⎪⎝⎭. 【点睛】本题是函数与几何的综合题,考查了待定系数法求函数的表达式,全等三角形的判定与性质,菱形与正方形的判定,旋转的性质,勾股定理等知识,其中对全等三角形存在性的分析,因有一条公共边,可对另外两边进行分类讨论,本题有一定的难度,是中考压轴题.4.我们定义:如图1,在△ABC看,把AB点绕点A顺时针旋转α(0°<α<180°)得到AB',把AC绕点A逆时针旋转β得到AC',连接B'C'.当α+β=180°时,我们称△A'B'C'是△ABC的“旋补三角形”,△AB'C'边B'C'上的中线AD叫做△ABC的“旋补中线”,点A叫做“旋补中心”.特例感知:(1)在图2,图3中,△AB'C'是△ABC的“旋补三角形”,AD是△ABC的“旋补中线”.①如图2,当△ABC为等边三角形时,AD与BC的数量关系为AD= BC;②如图3,当∠BAC=90°,BC=8时,则AD长为.猜想论证:(2)在图1中,当△ABC为任意三角形时,猜想AD与BC的数量关系,并给予证明.拓展应用(3)如图4,在四边形ABCD,∠C=90°,∠D=150°,BC=12,CD=23,DA=6.在四边形内部是否存在点P,使△PDC是△PAB的“旋补三角形”?若存在,给予证明,并求△PAB的“旋补中线”长;若不存在,说明理由.【答案】(1)①12;②4;(2)AD=12BC,证明见解析;(3)存在,证明见解析,39.【解析】【分析】(1)①首先证明△ADB′是含有30°是直角三角形,可得AD=12AB′即可解决问题;②首先证明△BAC≌△B′AC′,根据直角三角形斜边中线定理即可解决问题;(2)结论:AD=12BC.如图1中,延长AD到M,使得AD=DM,连接E′M,C′M,首先证明四边形AC′MB′是平行四边形,再证明△BAC≌△AB′M,即可解决问题;(3)存在.如图4中,延长AD交BC的延长线于M,作BE⊥AD于E,作线段BC的垂直平分线交BE于P,交BC于F,连接PA、PD、PC,作△PCD的中线PN.连接DF交PC于O.想办法证明PA=PD,PB=PC,再证明∠APD+∠BPC=180°,即可;【详解】解:(1)①如图2中,∵△ABC是等边三角形,∴AB=BC=AB=AB′=AC′,∵DB′=DC′,∴AD⊥B′C′,∵∠BAC=60°,∠BAC+∠B′AC′=180°,∴∠B′AC′=120°,∴∠B′=∠C′=30°,∴AD=12AB′=12BC,故答案为12.②如图3中,∵∠BAC=90°,∠BAC+∠B′AC′=180°,∴∠B′AC′=∠BAC=90°,∵AB=AB′,AC=AC′,∴△BAC≌△B′AC′,∴BC=B′C′,∵B′D=DC′,∴AD=12B′C′=12BC=4,故答案为4.(2)结论:AD=12 BC.理由:如图1中,延长AD到M,使得AD=DM,连接E′M,C′M∵B′D=DC′,AD=DM,∴四边形AC′MB′是平行四边形,∴AC′=B′M=AC,∵∠BAC+∠B′AC′=180°,∠B′AC′+∠AB′M=180°,∴∠BAC=∠MB′A,∵AB=AB′,∴△BAC≌△AB′M,∴BC=AM,∴AD=1BC.2(3)存在.理由:如图4中,延长AD交BC的延长线于M,作BE⊥AD于E,作线段BC的垂直平分线交BE于P,交BC于F,连接PA、PD、PC,作△PCD的中线PN.连接DF交PC于O.∵∠ADC=150°,∴∠MDC=30°,在Rt△DCM中,∵3,∠DCM=90°,∠MDC=30°,∴CM=2,DM=4,∠M=60°,在Rt△BEM中,∵∠BEM=90°,BM=14,∠MBE=30°,∴EM=1BM=7,2∴DE=EM﹣DM=3,∵AD=6,∴AE=DE,∵BE⊥AD,∴PA=PD,PB=PC,在Rt△CDF中,∵3CF=6,∴tan∠3∴∠CDF=60°=∠CPF,易证△FCP≌△CFD,∴CD=PF,∵CD∥PF,∴四边形CDPF是矩形,∴∠CDP=90°,∴∠ADP=∠ADC﹣∠CDP=60°,∴△ADP是等边三角形,∴∠ADP=60°,∵∠BPF=∠CPF=60°,∴∠BPC=120°,∴∠APD+∠BPC=180°,∴△PDC是△PAB的“旋补三角形”,在Rt△PDN中,∵∠PDN=90°,PD=AD=6,DN=3,∴PN=2222=(3)6DN PD++=39.【点睛】本题考查四边形综合题.5.小明研究了这样一道几何题:如图1,在△ABC中,把AB点A顺时针旋转α (0°<α<180°)得到AB′,把AC绕点A逆时针旋转β得到AC′,连接B′C′.当α+β=180°时,请问△AB′C′边B′C′上的中线AD与BC的数量关系是什么?以下是他的研究过程:特例验证:(1)①如图2,当△ABC为等边三角形时,AD与BC的数量关系为AD=BC;②如图3,当∠BAC=90°,BC=8时,则AD长为.猜想论证:(2)在图1中,当△ABC为任意三角形时,猜想AD与BC的数量关系,并给予证明.拓展应用(3)如图4,在四边形ABCD,∠C=90°,∠A+∠B=120°,BC=12,CD=6,DA=63,在四边形内部是否存在点P,使△PDC与△PAB之间满足小明探究的问题中的边角关系?若存在,请画出点P的位置(保留作图痕迹,不需要说明)并直接写出△PDC的边DC上的中线PQ的长度;若不存在,说明理由.【答案】(1)①12;②4(2) AD=12BC,理由见解析(3)存在,313【解析】【分析】(1)①由已知条件可得AD⊥B′C′,由α+β=180°可得∠BAC+∠B′AC′=180°,已知∠BAC=60°,可求得∠B′AC′=120°继而∠B′=∠C′=30°,可得AD=12AB′=12BC②当∠BAC=90°时,可得∠B′AC′=∠BAC=90°,△B′AC′是直角三角形,可证得△BAC≌△B′AC′,推出对应边相等,已知BC=8求出AD的长.(2)先做辅助线,延长AD到M,使得AD=DM,连接B′M、C′M,如图1所示:因为B′D=DC′,AD=DM,对角线相互平分,可得四边形AC′MB′是平行四边形,得出对应边相等,由∠BAB′+∠CAC′=180°推得∠BAC=∠AB′M,可证明△BAC≌△AB′M,所以BC=AM,AD=12 BC;(3)先做辅助线,作线段BC的垂直平分线交BE于P,即为点P的位置;延长AD交BC的延长线于M,线段BC的垂直平分线交BC于F,连接PA、PD、PC,作△PDC的中线PQ,连接DF交PC于O假设P点存在,再证明理由.根据已知角可得出△DCM是直角三角形,∠MDC=30°,可得出CM3DM3在;∵CD=6,∠DCM=90°,∠MDC=30°,∠M=90°﹣∠MDC=60°,可求得EM=12BM3DE=EM﹣DM3﹣33由已知DA3AE=DE且BE⊥AD,可得PF是线段BC的垂直平分线,证得PA=PD因为PB=PC,PF∥CD,可求得CF=12BC3,利用线段长度可求得∠CDF=60°利用全等三角形判定定理可证得△FCP≌△CFD(AAS),进而证得四边形CDPF是矩形,得∠CDP=90°,∠ADP =60°,可得△ADP是等边三角形,求出DQ、DP,在Rt△PDQ中可求得PQ长度.【详解】(1)①∵△ABC是等边三角形∴AB=BC=AC=AB′=AC′,∠BAC=60°∵DB′=DC′∴AD⊥B′C′∵∠BAB′+∠CAC′=180°∴∠BAC+∠B′AC′=180°∴∠B′AC′=180°﹣∠BAC=180°﹣60°=120°∴∠B′=∠C′=30°∴AD=12AB′=12BC故答案:1 2②∵∠BAB′+∠CAC′=180°∴∠BAC+∠B′AC′=180°∵∠BAC=90°∴∠B′AC′=∠BAC=90°在△BAC和△B′AC′中,''"90"AB ABBAC B ACAC AC=⎧⎪∠=∠=︒⎨⎪=⎩∴△BAC≌△B′AC′(SAS)∴BC=B′C′∵B′D=DC′∴AD=12B′C′=12BC=4故答案:4(2)AD与BC的数量关系:AD=12BC;理由如下:延长AD到M,使得AD=DM,连接B′M、C′M,如图1所示:∵B′D=DC′,AD=DM,∴四边形AC′MB′是平行四边形,∴∠B′AC′+∠AB′M=180°,AC′=B′M=AC,∵∠BAB′+∠CAC′=180°,∴∠BAC+∠B′AC′=180°,∴∠BAC=∠AB′M,在△BAC和△AB′M中,'''AC B MBAC AB MAB AB=⎧⎪∠=∠⎨⎪=⎩,∴△BAC≌△AB′M(SAS),∴BC=AM,∴AD=12 BC;(3)存在;作BE⊥AD于E,作线段BC的垂直平分线交BE于P,即为点P的位置;理由如下:延长AD交BC的延长线于M,线段BC的垂直平分线交BC于F,连接PA、PD、PC,作△PDC的中线PQ,连接DF交PC于O,如图4所示:∵∠A+∠B=120°,∴∠ADC=150°,∴∠MDC=30°,在Rt△DCM中,∵CD=6,∠DCM=90°,∠MDC=30°,∴CM3DM3,∠M=90°﹣∠MDC=60°,在Rt△BEM中,∵∠BEM=90°,BM=BC+CM333,∠MBE=90°﹣∠M=30°,∴EM=12BM3∴DE=EM﹣DM333∵DA3∴AE=DE,∵BE⊥AD,∴PA=PD,∵PF是线段BC的垂直平分线,∴PB=PC,PF∥CD,在Rt△CDF中,∵CD=6,CF=12BC3∴tan∠CDF=CFCD=363,∴∠CDF=60°,∴∠MDF=∠MDC+∠CDF=30°+60°=90°,∴∠ADF=90°=∠AEB,∴∠CBE=∠CFD,∵∠CBE=∠PCF,∴∠CFD=∠PCF=30°,∵∠CFD +∠CDF =90°,∠PCF +∠CPF =90°,∴∠CPF =∠CDF =60°,在△FCP 和△CFD 中,CPF CDF PCF CFD CF CF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△FCP ≌△CFD (AAS ),∴CD =PF ,∵CD ∥PF ,∴四边形CDPF 是矩形,∴∠CDP =90°,∴∠ADP =∠ADC ﹣∠CDP =60°,∴△ADP 是等边三角形,∴∠APD =60°,∵∠BPF =∠CPF =90°﹣30°=60°,∴∠BPC =120°,∴∠APD +∠BPC =180°,∴△PDC 与△PAB 之间满足小明探究的问题中的边角关系;在Rt △PDQ 中,∵∠PDQ =90°,PD =DA =63,DN =12CD =3, ∴PQ =22DQ DP +=223(63)+=313. 【点睛】本题考查了三角形的边旋转的问题,旋转前后边长不变,根据已知角度变化,求得线段之间关系.在证明某点知否存在时,先假设这点存在,能求出相关线段或坐标,即证实存在性.6.(1)观察猜想如图(1),在△ABC 中,∠BAC=90°,AB=AC,点D 是BC 的中点.以点D 为顶点作正方形DEFG ,使点A ,C 分别在DG 和DE 上,连接AE ,BG ,则线段BG 和AE 的数量关系是_____;(2)拓展探究将正方形DEFG 绕点D 逆时针方向旋转一定角度后(旋转角度大于0°,小于或等于360°),如图2,则(1)中的结论是否仍然成立?如果成立,请予以证明;如果不成立,请说明理由.(3)解决问题若BC=DE=2,在(2)的旋转过程中,当AE 为最大值时,直接写出AF 的值.【答案】(1)BG=AE.(2)成立.如图②,连接AD.∵△ABC是等腰三直角角形,∠BAC=90°,点D是BC的中点.∴∠ADB=90°,且BD=AD.∵∠BDG=∠ADB-∠ADG=90°-∠ADG=∠ADE,DG=DE.∴△BDG≌△ADE,∴BG=AE.…………………………………………7分(3)由(2)知,BG=AE,故当BG最大时,AE也最大.正方形DEFG绕点D逆时针方向旋转270°时,BG最大,如图③.若BC=DE=2,则AD=1,EF=2.在Rt△AEF中,AF2=AE2+EF2=(AD+DE)2+EF2=(1+2)2+22=13.∴AF=【解析】解:(1)BG=AE.(2)成立.如图②,连接AD.∵△ABC是等腰三直角角形,∠BAC=90°,点D是BC的中点.∴∠ADB=90°,且BD=AD.∵∠BDG=∠ADB-∠ADG=90°-∠ADG=∠ADE,DG=DE.∴△BDG≌△ADE,∴BG=AE.(3)由(2)知,BG=AE,故当BG最大时,AE也最大.Z+X+X+K]因为正方形DEFG在绕点D旋转的过程中,G点运动的图形是以点D为圆心,DG为半径的圆,故当正方形DEFG旋转到G点位于BC的延长线上(即正方形DEFG绕点D逆时针方向旋转270°)时,BG最大,如图③.若BC=DE=2,则AD=1,EF=2.在Rt△AEF中,AF2=AE2+EF2=(AD+DE)2+EF2=(1+2)2+22=13.∴AF=.即在正方形DEFG旋转过程中,当AE为最大值时,AF=.7.某数学活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程:操作发现(1)某小组做了有一个角是120︒的等腰三角形DAC和等边三角形GEB纸片,DA DC=,让两个三角形如图①放置,点C和点G重合,点D,点E在AB的同侧,AC 和GB在同一条直线上,点F为AB的中点,连接DF,EF,则DF和EF的数量关系与位置关系为:________;数学思考(2)在图①的基础上,将GEB绕着C点按顺时针方向旋转90︒,如图②,试判断DF和EF的数量关系和位置关系,并说明理由;类比探索(3)①将GEB绕着点C任意方向旋转,如图③或图④,请问DF和EF的数量关系和位置关系改变了吗?无论改变与否,选择图③或图④进行证明;②GEB绕着点C旋转的过程中,猜想DF与EF的数量关系和位置关系,用一句话表述:________.【答案】(1)3EF DF =,DFEF ; (2)3EF DF =,DFEF ,理由见解析; (3)①3EF DF =,DFEF ;②旋转过程中3EF DF =,DF EF 始终成立.【解析】【分析】 (1)由题意过点D 作DM AB ⊥于点M ,过点E 作EN AB ⊥于点N ,利用等边三角形和中点性质设DM a =,2GB b =,结合相似三角形判定和性质进行综合分析求解; (2)根据题意要求判断DF 和EF 的数量关系和位置关系,连接CF ,OB 与AE 交于点M ,并综合利用垂直平分线定理以及矩形和等边三角形性质与三角函数进行综合分析;(3)①根据题意延长DF 并截取FN DF =,连接NE ,连接NB 并延长交CE 于点P ,交DC 的延长线于点O ,连接DE ,并利用全等三角形判定和性质以及三角函数进行分析证明;②由题意可知结合①猜想可知旋转过程中3EF DF =,DFEF 始终成立. 【详解】解:(1)3EF DF =,DF EF ;如解图,过点D 作DM AB ⊥于点M ,过点E 作EN AB ⊥于点N ,AD CD =,EGB 为等边三角形.AM MC ∴=,GN BN =.又点F 为AB 的中点,AF BF ∴=.()12MF CF NC NB AC AM CB MC NC +=++=+=+∴.MF NC NB ∴==,CF CN FN AM +==. 设DM a =,2GB b =,120ADC ∠=︒,DA DC =,3AM a ∴=,3FN a =,MF NC NB b ===.tan 33EGB NE GN GN b =⋅==∠.在DMF 和FNE 中,33DM FN a==, 33MF NE b ==, 又90DMF FNE ∠=∠=︒,DMF FNE ∴∽. MDF NFE ∴∠=∠,33DF DM FE FN ==,即3EF DF =. 90MDF DFM ∠+∠=︒,90DFM NFE ∴∠+∠=︒.90DFE ∴∠=︒.3EF DF ∴=且DFEF . (2)3EF DF =,DF EF . 理由如下:如解图,连接CF ,OB 与AE 交于点M ,当旋转角是90︒时,则90ACB ∠=︒,在Rt ACB △中,点F 是AB 的中点,CF BF ∴=.又CE EB =,EF ∴垂直平分BC.同理,DF 垂直平分AC ,∴四边形LCMF 为矩形,90DFE ∴∠=︒.DF EF ∴⊥,//AC EF .DA DC =,120ADC =∠︒,30DCA ∴∠=︒.GEB 为等边三角形,60ECB ∴∠=︒.∴∠DCA+∠ACB+∠ECB=180^∘∴D ,C ,E 三点共线.30DCADEF ∴∠=∠=︒. ∴在Rt DEF △中,3tan 3DE DF F F E DF ===∠; (3)①3EF DF =,DFEF .选择题图进行证明: 如解图,延长DF 并截取FN DF =,连接NE ,连接NB 并延长交CE 于点P ,交DC 的延长线于点O ,连接DE ,在ADF 和BNF 中, AF BF AFD BFN DF NF =⎧⎪∠=∠⎨⎪=⎩,()SAS ADF BNF ∴≅.AD NB ∴=,ADF BNF ∠=∠.//AD NB ∴.18060O ADC ∴∠=︒-∠=︒.又CPO BPE ∠=∠,60O CEB ∠=∠=︒,OCP OBE ∴∠=∠.DCE NBE ∴∠=∠.又GEB 是等边三角形,GE BE ∴=,又AD BN CD ==,()SAS DCE NBE ∴≅.DE NE ∴=,BEN CED ∠=∠.BEN BED CED BED ∴∠+∠=∠+∠,即60NED BEC ∠=∠=︒.DEN ∴是等边三角形.又DF FN =,DF EF ∴⊥,60FDE ∠=︒.tan 3E E F DF DF FD ∴∠=⋅=.或选择图进行证明,证明如下:如解图,延长DF 并延长到点N ,使得FN DF =,连接NB ,DE ,NE ,NB 与CD 交于点O ,EB 与CD 相交于点J , 在ADF 和BNF 中,AF BF AFD BFN DF NF =⎧⎪∠=∠⎨⎪=⎩,()SAS ADF BNF ∴≅.AD NB ∴=,ADF BNF ∠=∠.//AD NB ∴.120NOC ADC ∴∠=∠=︒.60BOJ ∴∠=︒,60JEC ∠=︒.又OJB EJC ∠=∠,OBE ECJ ∴∠=∠.AD CD =,AD NB =,CD NB ∴=. 又GEB 是等边三角形,CE BE ∴=.()SAS DCE NBE ∴≅.DE NE ∴=,BEN CED ∠=∠.BEN BED CED BED ∴∠-∠=∠-∠,即60NED BEC ∠=∠=︒. DEN ∴是等边三角形.又DF FN =,DF EF ∴⊥,60FDE ∠=︒.tan 3E E F DF DF FD ∴∠=⋅=.②旋转过程中3EF DF =,DFEF 始终成立.【点睛】本题考查几何图形的综合探究题,难度大,运用数形结合思维分析以及掌握并灵活利用全等三角形判定和性质以及三角函数、相似三角形判定和性质等是解题关键.错因分析:①未掌握旋转的性质,即旋转前后线段、角度均不变;②不能合理利用类比关系,由浅到深解决问题.8.在平面直角坐标系中,O为原点,点A(8,0),点B(0,6),把△ABO绕点B逆时针旋转得△A′B′O′,点A、O旋转后的对应点为A′、O′,记旋转角为α.(1)如图1,若α=90°,则AB= ,并求AA′的长;(2)如图2,若α=120°,求点O′的坐标;(3)在(2)的条件下,边OA上的一点P旋转后的对应点为P′,当O′P+BP′取得最小值时,直接写出点P′的坐标.【答案】(1)10,102;(2)(33,9);(3)12354 55(,)【解析】试题分析:(1)、如图①,先利用勾股定理计算出AB=5,再根据旋转的性质得BA=BA′,∠ABA′=90°,则可判定△ABA′为等腰直角三角形,然后根据等腰直角三角形的性质求AA′的长;(2)、作O′H⊥y轴于H,如图②,利用旋转的性质得BO=BO′=3,∠OBO′=120°,则∠HBO′=60°,再在Rt△BHO′中利用含30度的直角三角形三边的关系可计算出BH和O′H的长,然后利用坐标的表示方法写出O′点的坐标;(3)、由旋转的性质得BP=BP′,则O′P+BP′=O′P+BP,作B点关于x轴的对称点C,连结O′C交x轴于P点,如图②,易得O′P+BP=O′C,利用两点之间线段最短可判断此时O′P+BP的值最小,接着利用待定系数法求出直线O′C的解析式为y=x﹣3,从而得到P(,0),则O′P′=OP=,作P′D⊥O′H于D,然后确定∠DP′O′=30°后利用含30度的直角三角形三边的关系可计算出P′D 和DO′的长,从而可得到P′点的坐标.试题解析:(1)、如图①,∵点A(4,0),点B(0,3),∴OA=4,OB=3,∴AB==5,∵△ABO绕点B逆时针旋转90°,得△A′BO′,∴BA=BA′,∠ABA′=90°,∴△ABA′为等腰直角三角形,∴AA′=BA=5;(2)、作O′H⊥y轴于H,如图②,∵△ABO绕点B逆时针旋转120°,得△A′BO′,∴BO=BO′=3,∠OBO′=120°,∴∠HBO′=60°,在Rt△BHO′中,∵∠BO′H=90°﹣∠HBO′=30°,∴BH=BO′=,O′H=BH=,∴OH=OB+BH=3+,∴O′点的坐标为();(3)∵△ABO绕点B逆时针旋转120°,得△A′BO′,点P的对应点为P′,∴BP=BP′,∴O′P+BP′=O′P+BP,作B点关于x轴的对称点C,连结O′C交x轴于P点,如图②,则O′P+BP=O′P+PC=O′C,此时O′P+BP的值最小,∵点C与点B关于x轴对称,∴C(0,﹣3),设直线O′C的解析式为y=kx+b,把O′(),C(0,﹣3)代入得,解得,∴直线O′C的解析式为y=x﹣3,当y=0时,x﹣3=0,解得x=,则P(,0),∴OP=,∴O′P′=OP=,作P′D⊥O′H于D,∵∠BO′A=∠BOA=90°,∠BO′H=30°,∴∠DP′O′=30°,∴O′D=O′P′=,P′D=,∴DH=O′H﹣O′,∴P′点的坐标为(,).考点:几何变换综合题9.操作与证明:如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF.取AF中点M,EF的中点N,连接MD、MN.(1)连接AE,求证:△AEF是等腰三角形;猜想与发现:(2)在(1)的条件下,请判断MD、MN的数量关系和位置关系,得出结论.结论1:DM、MN的数量关系是;结论2:DM、MN的位置关系是;拓展与探究:(3)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.【答案】(1)证明参见解析;(2)相等,垂直;(3)成立,理由参见解析.【解析】试题分析:(1)根据正方形的性质以及等腰直角三角形的知识证明出CE=CF,继而证明出△ABE≌△ADF,得到AE=AF,从而证明出△AEF是等腰三角形;(2)DM、MN的数量关系是相等,利用直角三角形斜边中线等于斜边一半和三角形中位线定理即可得出结论.位置关系是垂直,利用三角形外角性质和等腰三角形两个底角相等性质,及全等三角形对应角相等即可得出结论;(3)成立,连接AE,交MD于点G,标记出各个角,首先证明出MN∥AE,MN=12AE,利用三角形全等证出AE=AF,而DM=12AF,从而得到DM,MN数量相等的结论,再利用三角形外角性质和三角形全等,等腰三角形性质以及角角之间的数量关系得到∠DMN=∠DGE=90°.从而得到DM、MN的位置关系是垂直.试题解析:(1)∵四边形ABCD是正方形,∴AB=AD=BC=CD,∠B=∠ADF=90°,∵△CEF 是等腰直角三角形,∠C=90°,∴CE=CF,∴BC﹣CE=CD﹣CF,即BE=DF,∴△ABE≌△ADF,∴AE=AF,∴△AEF是等腰三角形;(2)DM、MN的数量关系是相等,DM、MN的位置关系是垂直;∵在Rt△ADF中DM是斜边AF的中线,∴AF=2DM,∵MN 是△AEF的中位线,∴AE=2MN,∵AE=AF,∴DM=MN;∵∠DMF=∠DAF+∠ADM,AM=MD,∵∠FMN=∠FAE,∠DAF=∠BAE,∴∠ADM=∠DAF=∠BAE,∴∠DMN=∠FMN+∠DMF=∠DAF+∠BAE+∠FAE=∠BAD=90°,∴DM⊥MN;(3)(2)中的两个结论还成立,连接AE,交MD于点G,∵点M为AF的中点,点N为EF的中点,∴MN∥AE,MN=12AE,由已知得,AB=AD=BC=CD,∠B=∠ADF,CE=CF,又∵BC+CE=CD+CF,即BE=DF,∴△ABE≌△ADF,∴AE=AF,在Rt△ADF中,∵点M为AF的中点,∴DM=12AF,∴DM=MN,∵△ABE≌△ADF,∴∠1=∠2,∵AB∥DF,∴∠1=∠3,同理可证:∠2=∠4,∴∠3=∠4,∵DM=AM,∴∠MAD=∠5,∴∠DGE=∠5+∠4=∠MAD+∠3=90°,∵MN ∥AE ,∴∠DMN=∠DGE=90°,∴DM ⊥MN .所以(2)中的两个结论还成立.考点:1.正方形的性质;2.全等三角形的判定与性质;3.三角形中位线定理;4.旋转的性质.10.在矩形ABCD 中,2AB =,1BC =,以点A 为旋转中心,逆时针旋转矩形ABCD ,旋转角为(0180)αα<<,得到矩形AEFG ,点B 、点C 、点D 的对应点分别为点E 、点F 、点G .()1如图①,当点E 落在DC 边上时,直写出线段EC 的长度为______;()2如图②,当点E 落在线段CF 上时,AE 与DC 相交于点H ,连接AC ,①求证:ACD ≌CAE ;②直接写出线段DH 的长度为______.()3如图③设点P 为边FG 的中点,连接PB ,PE ,在矩形ABCD 旋转过程中,BEP 的面积是否存在最大值?若存在请直接写出这个最大值;若不存在请说明理由.【答案】(1)23;(2)①见解析;34②;(3)存在,PBE 的面积的最大值为21,理由见解析 【解析】【分析】 ()1如图①中,在Rt ADE 中,利用勾股定理即可解决问题;()2①证明:如图②中,根据HL 即可证明ACD ≌CAE ;②如图②中,由ACD ≌CAE ,推出ACD CAE ∠∠=,推出AH HC =,设AH HC m ==,在Rt ADH 中,根据222AD DH AH +=,构建方程即可解决问题; ()3存在.如图③中,连接PA ,作BM PE ⊥交PE 的延长线于M.由题意:PF PC 1==,由AG EF 1==,G F 90∠∠==,推出PA PE ==PBE 1S PE BM 22=⋅⋅=,推出当BM 的值最大时,PBE 的面积最大,求出BM 的最大值即可解决问题;【详解】()1四边形ABCD 是矩形,AB CD 2∴==,BC AD 1==,D 90∠=,矩形AEFG 是由矩形ABCD 旋转得到,AE AB 2∴==,在Rt ADE 中,DE ==CE 2∴=,故答案为2.()2①当点E 落在线段CF 上,AEC ADC 90∠∠∴==,在Rt ADC 和Rt AEC 中,{AC CACD AE ==, Rt ACD ∴≌()Rt CAE HL ; ACD ②≌CAE ,ACD CAE ∠∠∴=,AH HC ∴=,设AH HC m ==,在Rt ADH 中,222AD DH AH +=,2221(2m)m ∴+-=,5m 4∴=, 53DH 244∴=-=, 故答案为34; ()3存在.理由如下:如图③中,连接PA ,作BM PE ⊥交PE 的延长线于M ,由题意:PF PC1==,AG EF1==,G F90∠∠==,PA PE2∴==PBE 12S PE BM BM22∴=⋅⋅=,∴当BM的值最大时,PBE的面积最大,BM PB≤,PB AB PA≤+,PB22∴≤,BM22∴≤BM∴的最大值为22+PBE∴21.【点睛】本题是四边形综合题,考查了矩形的性质,旋转变换,全等三角形的判定和性质,勾股定理,三角形的面积,三角形的三边关系等知识,解题的关键是正确寻找全等三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.。
《常考题》初中九年级数学上册第二十四章《圆》知识点总结(含答案解析)
一、选择题1.如图,在平行四边形ABCO 中,45C ∠=︒,点A ,B 在⊙O 上,点D 在优弧ADB 上,DA DB =,则AOD ∠的度数为( )A .165°B .155°C .145°D .135° 2.如图,四个水平放置正方形的边长都为4,顶点A 、B 、C 是圆上的点,则此圆的面积为( )A .72πB .85πC .100πD .104π 3.如图,分别以AB,AC 为直径的两个半圆,其中AC 是半圆O 的一条弦,E 是弧AEC 中点,D 是半圆ADC 中点.若DE=2,AB=12,且AC˃6,则AC 长为( )A .6+2B .8+2C . 6+22D .8+22 4.在⊙O 中,AB 为直径,点C 为圆上一点,将劣弧AC 沿弦AC 翻折交AB 于点D ,连结CD .如图,若点D 与圆心O 不重合,∠BAC =25°,则∠BDC 的度数( )A .45°B .55°C .65°D .70° 5.如图,AB 为O 的直径,C 为O 上一点,其中6AB =,120AOC ∠=︒,P 为O 上的动点,连AP ,取AP 中点Q ,连CQ ,则线段CQ 的最大值为( )A .37B .3272+C .237+D .33722+ 6.下列事件属于确定事件的为( )A .氧化物中一定含有氧元素B .弦相等,则所对的圆周角也相等C .戴了口罩一定不会感染新冠肺炎D .物体不受任何力的时候保持静止状态 7.如图,已知AB 是O 的直径,AD 切O 于点A ,CE CB =.则下列结论中不一定正确的是( )A .OC BE ⊥B .//OC AE C .2COE BAC ∠=∠D .OD AC ⊥ 8.如图,在ABC 中,90C ∠=︒,7AB =,4AC =,以点C 为圆心、CA 为半径的圆交AB 于点D ,求弦AD 的长为( )A 433B .327C 233D .1679.如图,正方形ABCD 内接于O ,直径//MN AD ,则阴影部分的面积占圆面积的( )A .12B .16C .13D .1410.《九章算术》是东方数学思想之源,该书中记载:“今有勾八步,股一十五步,同勾中 容圆径几何.”其意思为:“今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形内切圆的直径是多少步?”该问题的答案是( ) A .8.5 B .17 C .3 D .611.如图,MN 是半径为1的⊙O 的直径,点A 在⊙O 上,∠AMN=30°,点B 为劣弧AN 的中点,P 是直径MN 上一动点,则PA+PB 的最小值为( )A .2B .1C .2D .22 12.如图,AB 是⊙的直径,DB 、DE 分别切⊙O 于点B 、C ,若∠ACE =35°,则∠D 的度数是( )A .65°B .55°C .60°D .70°13.如图,四边形ABCD 内接于O ,若108B ∠=︒,则D ∠的大小为( )A .36°B .54°C .62°D .72° 14.如图,AB 为圆O 的直径,点C 在圆O 上,若∠OCA =50°,OB =2,则弧BC 的长为( )A .103πB .59πC .109πD .518π 15.在△ABC 中,∠ACB 为锐角,分别以AB ,AC 为直径作半圆,过点B ,A ,C 作弧BAC ,如图所示.若AB=4,AC=2,图中两个新月形面积分别为S 1,S 2,两个弓形面积分别为S 3,S 4,S 1-S 2=14π,则S 3-S 4的值是( )A .294πB .234πC .114πD .54π 二、填空题16.已知扇形的圆心角为120︒,面积为π,则扇形的半径是___________. 17.如图,在半径为3的⊙O 中,AB 是直径,AC 是弦,D 是AC 的中点,AC 与BD 交于点E .若E 是BD 的中点,则AC 的长是____________.18.如图,已知O 是以数轴上原点O 为圆心,半径为2的圆,45AOB ∠=︒,点P 在x正半轴上运动,若过点P 与OA 平行的直线与O 有公共点,设P 点对应的数为x ,则x 的取值范围是______.19.如图,直线AB 、CD 相交于点,30O AOC ∠=︒,半径为1cm 的⊙P 的圆心在直线AB 上,且与点O 的距离为8cm ,如果⊙P 以2cm/s 的速度,由A 向B 的方向运动,那么_________秒后⊙P 与直线CD 相切.20.已知一个圆锥形纸帽的底面半径为5cm,母线长为10cm,则该圆锥的侧面积为_____cm2(结果保留π)21.在△ABC中,已知∠ACB=90°,BC=3,AC=4,以点C为圆心,2.5为半径作圆,那么直线AB与这个圆的位置关系分别是_________.22.如图,若∠BOD=140°,则∠BCD=___________ .,半径为15cm的扇形卡纸,围成一个圆锥侧23.小红在手工制作课上,用面积为215cm面,则这个圆锥的底面半径为_______cm.24.如图,半径为3的⊙O与边长为8的等边三角形ABC的两边AB、BC都相切,连接OC,则OC=_____.25.扇形的半径为6cm,弧长为10cm,则扇形面积是________.26.湖州南浔镇河流密如蛛网,民间有“千步一桥”之说.如图,某圆弧形桥拱的跨度AB=12米,拱高CD=4米,则该拱桥的半径为____米.三、解答题27.正方形ABCD的四个顶点都在⊙O上,E是⊙O上的一点.(1)如图1,若点E在AB上,F是DE上的一点,DF=BE.①求证:ADF≌ABE;②求证:DE﹣BE2AE.(2)如图2,若点E在AD上,直接写出线段DE、BE、AE之间的等量关系.28.如图,已知AB 是⊙O 的直径,点C 、D 在⊙O 上,点E 在⊙O 外,∠CAE=∠ADC .(1)求证:AE 是⊙O 的切线;(2)若⊙O 的半径为2,∠B=60°,求图中阴影部分的面积.(结果保留根号和π) 29.如图,O 的直径AB 为10,弦BC 为6,D 是AC 的中点,弦BD 和CE 交于点F ,且DF DC =.(1)求证:EB EF =;(2)求CE 的长.30.已知PA 、PB 分别与O 相切于点A ,B 两点,76APB ∠=︒ ,C 为O 上一点. (1)如图,求ACB ∠的大小; (2)如图,AE 为O 的直径,AE 与BC 相交于点D ,若AB AD =,求EAC ∠的大小.。
上海民办永昌学校数学圆 几何综合(篇)(Word版 含解析)
上海民办永昌学校数学圆 几何综合(篇)(Word 版 含解析)一、初三数学 圆易错题压轴题(难)1.已知:如图,梯形ABCD 中,AD//BC ,AD 2=,AB BC CD 6===,动点P 在射线BA 上,以BP 为半径的P 交边BC 于点E (点E 与点C 不重合),联结PE 、PC ,设x BP =,PC y =.(1)求证:PE //DC ;(2)求y 关于x 的函数解析式,并写出定义域;(3)联结PD ,当PDC B ∠=∠时,以D 为圆心半径为R 的D 与P 相交,求R 的取值范围.【答案】(1)证明见解析;(2)2436(09)y x x x =-+<<;(3)3605R <<【解析】 【分析】()1根据梯形的性质得到B DCB ∠=∠,根据等腰三角形的性质得到B PEB ∠∠=,根据平行线的判定定理即可得到结论;()2分别过P 、A 、D 作BC 的垂线,垂足分别为点H 、F 、.G 推出四边形ADGF 是矩形,//PH AF ,求得2BF FG GC ===,根据勾股定理得到22226242AF AB BF =-=-=,根据平行线分线段成比例定理得到223PH x =,13BH x =,求得163CH x =-,根据勾股定理即可得到结论; ()3作//EM PD 交DC 于.M 推出四边形PDME 是平行四边形.得到PE DM x ==,即 6MC x =-,根据相似三角形的性质得到1218655PD EC ==-=,根据相切两圆的性质即可得到结论. 【详解】()1证明:梯形ABCD ,AB CD =,B DCB ∠∠∴=,PB PE =, B PEB ∠∠∴=, DCB PEB ∠∠∴=,//PE CD ∴;()2解:分别过P 、A 、D 作BC 的垂线,垂足分别为点H 、F 、G .梯形ABCD 中,//AD BC , ,BC DG ⊥,BC PH ⊥,∴四边形ADGF 是矩形,//PH AF ,2AD =,6BC DC ==, 2BF FG GC ∴===,在Rt ABF 中,22226242AF AB BF =-=-=,//PH AF ,PH BP BHAF AB BF∴==6242x BH ==,223PH x ∴=,13BH x =, 163CH x ∴=-,在Rt PHC 中,22PC PH CH =+22221()(6)33y x x ∴=+-2436(09)y x x x =-+<<, ()3解:作//EM PD 交DC 于M .//PE DC ,∴四边形PDME 是平行四边形.PE DM x ∴==,即 6MC x =-,PD ME ∴=,PDC EMC ∠∠=, 又PDC B ∠∠=,B DCB ∠=∠, DCB EMC PBE PEB ∠∠∠∠∴===. PBE ∴∽ECM ,PB BE EC MC ∴=,即232663xx x x =--, 解得:185x =,即125BE =,1218655PD EC ∴==-=, 当两圆外切时,PD r R =+,即0(R =舍去); 当两圆内切时,-PD r R =,即10(R =舍去),2365R =; 即两圆相交时,3605R <<. 【点睛】本题属于圆综合题,梯形的性质,平行四边形的性质,勾股定理,相似三角形的判定和性质,正确的作出辅助线是解题的关键.2.已知:在△ABC 中,AB=6,BC=8,AC=10,O 为AB 边上的一点,以O 为圆心,OA 长为半径作圆交AC 于D 点,过D 作⊙O 的切线交BC 于E.(1)若O 为AB 的中点(如图1),则ED 与EC 的大小关系为:ED EC (填“”“”或“”)(2)若OA<3时(如图2),(1)中的关系是否还成立?为什么? (3)当⊙O 过BC 中点时(如图3),求CE 长. 【答案】(1)ED=EC ;(2)成立;(3)3 【解析】试题分析:(1)连接OD ,根据切线的性质可得∠ODE=90°,则∠CDE+∠ADO=90°,由AB=6,BC=8,AC=10根据勾股定理的逆定理可证得∠ABC=90°,则∠A+∠C=90°,根据圆的基本性质可得∠A=∠ADO ,即可得到∠CDE=∠C ,从而证得结论;(2)证法同(1);(3)根据直角三角形的性质结合圆的基本性质求解即可.(1)连接OD∵DE为⊙O的切线∴∠ODE=90°∴∠CDE+∠ADO=90°∵AB=6,BC=8,AC=10∴∠ABC=90°∴∠A+∠C=90°∵AO=DO∴∠A=∠ADO∴∠CDE=∠C∴ED=EC;(2)连接OD∵DE为⊙O的切线∴∠ODE=90°∴∠CDE+∠ADO=90°∵AB=6,BC=8,AC=10∴∠ABC=90°∴∠A+∠C=90°∵AO=DO∴∠A=∠ADO∴∠CDE=∠C∴ED=EC;(3)CE=3.考点:圆的综合题点评:此类问题综合性强,难度较大,在中考中比较常见,一般作为压轴题,题目比较典型.3.如图,在平面直角坐标系中,O为坐标原点,△ABC的边BC在y轴的正半轴上,点A在x轴的正半轴上,点C的坐标为(0,8),将△ABC沿直线AB折叠,点C落在x轴的负半轴D(−4,0)处.(1)求直线AB的解析式;(2)点P从点A出发以每秒45个单位长度的速度沿射线AB方向运动,过点P作PQ⊥AB,交x轴于点Q,PR∥AC交x轴于点R,设点P运动时间为t(秒),线段QR长为d,求d与t的函数关系式(不要求写出自变量t的取值范围);(3)在(2)的条件下,点N是射线AB上一点,以点N为圆心,同时经过R、Q两点作⊙N,⊙N交y轴于点E,F.是否存在t,使得EF=RQ?若存在,求出t的值,并求出圆心N的坐标;若不存在,说明理由.【答案】(1)132y x=-+(2)d=5t (3)故当 t=85,或815,时,QR=EF,N(-6,6)或(2,2).【解析】试题分析:(1)由C(0,8),D(-4,0),可求得OC,OD的长,然后设OB=a,则BC=8-a,在Rt△BOD中,由勾股定理可得方程:(8-a)2=a2+42,解此方程即可求得B的坐标,然后由三角函数的求得点A的坐标,再利用待定系数法求得直线AB的解析式;(2)在Rt△AOB中,由勾股定理可求得AB的长,继而求得∠BAO的正切与余弦,由PR//AC 与折叠的性质,易证得RQ=AR,则可求得d与t的函数关系式;(3)首先过点分别作NT⊥RQ于T,NS⊥EF于S,易证得四边形NTOS是正方形,然后分别从点N在第二象限与点N在第一象限去分析求解即可求解;试题解析:(1)∵C(0,8),D(-4,0),∴OC=8,OD=4,设OB=a,则BC=8-a,由折叠的性质可得:BD=BC=8-a,在Rt△BOD中,∠BOD=90°,DB2=OB2+OD2,则(8-a)2=a2+42,解得:a=3,则OB=3,则B(0,3),tan∠ODB=34OBOD=,在Rt△AOC中,∠AOC=90°,tan∠ACB=34OAOC=,则OA=6,则A(6,0),设直线AB的解析式为:y=kx+b,则60{3k bb+==,解得:1{23kb=-=,故直线AB的解析式为:y=-12x+3;(2)如图所示:在Rt△AOB中,∠AOB=90°,OB=3,OA=6,则22135,tan2OBOB OA BAOOA+=∠==,255OAcos BAOAB∠==,在Rt△PQA中,905APQ AP t∠=︒=,则AQ=10cosAPtBAO=∠,∵PR∥AC,∴∠APR=∠CAB,由折叠的性质得:∠BAO=∠CAB,∴∠BAO=∠APR,∴PR=AR,∵∠RAP+∠PQA=∠APR+∠QPR=90°,∴∠PQA=∠QPR,∴RP=RQ,∴RQ=AR ,∴QR=12 AQ=5t, 即d=5t;(3)过点分别作NT ⊥RQ 于T ,NS ⊥EF 于S , ∵EF=QR , ∴NS=NT ,∴四边形NTOS 是正方形,则TQ=TR=1522QR t = , ∴1115151022224NT AT AQ TQ t t t ==-=-=()() , 分两种情况,若点N 在第二象限,则设N (n ,-n ),点N 在直线132y x =-+ 上, 则132n n -=-+ , 解得:n=-6,故N (-6,6),NT=6,即1564t = , 解得:85t = ;若点N 在第一象限,设N (N ,N ), 可得:132n n =-+ , 解得:n=2, 故N (2,2),NT=2,即1524t =, 解得:t=815∴当 t=85,或815,时,QR=EF,N(-6,6)或(2,2)。
九年级中考数学考点训练——几何专题:《圆的综合》试卷(五)(Word版含答案)
九年级中考数学考点训练——几何专题:《圆的综合》(五)1.正方形ABCD的四个顶点都在⊙O上,E是⊙O上的一点.(1)如图①,若点E在上,F是DE上的一点,DF=BE.求证:△ADF≌△ABE;(2)在(1)的条件下,小明还发现线段DE、BE、AE之间满足等量关系:DE﹣BE=AE.请说明理由;(3)如图②,若点E在上,连接DE,CE,已知BC=5,BE=1,求DE及CE的长.2.如图1,直线l⊥AB于点B,点C在AB上,且AC:CB=2:1,点M是直线l上的动点,作点B关于直线CM的对称点B′,直线AB′与直线CM相交于点P,连接PB.(1)如图2,若点P与点M重合,则∠PAB=,线段PA与PB的比值为;(2)如图3,若点P与点M不重合,设过P,B,C三点的圆与直线AP相交于D,连接CD,求证:①CD=CB′;②PA=2PB.3.如图,已知⊙O是△ABC的外接圆,直径AD与BC垂直,垂足为点E.(1)求证:∠ABC=∠ACB;(2)连接OB,CD,若OB=,CD=5,求CE的长.4.问题提出(1)如图1,在Rt△ABC中,∠ACB=90°,AC>BC,∠ACB的平分线交AB于点D.过点D分别作DE⊥AC,DF⊥BC.垂足分别为E,F,则图1中与线段CE相等的线段是.问题探究(2)如图2,AB是半圆O的直径,AB=8.P是上一点,且=2,连接AP,BP.∠APB的平分线交AB于点C,过点C分别作CE⊥AP,CF⊥BP,垂足分别为E,F,求线段CF 的长.问题解决(3)如图3,是某公园内“少儿活动中心”的设计示意图.已知⊙O的直径AB=70m,点C在⊙O上,且CA=CB.P为AB上一点,连接CP并延长,交⊙O于点D.连接AD,BD.过点P分别作PE⊥AD,PF⊥BD,垂足分别为E,F.按设计要求,四边形PEDF内部为室内活动区,阴影部分是户外活动区,圆内其余部分为绿化区.设AP的长为x(m),阴影部分的面积为y(m2).①求y与x之间的函数关系式;②按照“少儿活动中心”的设计要求,发现当AP的长度为30m时,整体布局比较合理.试求当AP=30m时.室内活动区(四边形PEDF)的面积.5.如图,在⊙O中的内接四边形ABCD中,AB=AD,E为弧AD上一点.(1)若∠C=110°,求∠BAD和∠E的度数;(2)若∠E=∠C,求证:△ABD为等边三角形.6.如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点且AP =AC.(1)求证:PA是⊙O的切线;(2)若AB=2+,BC=4,求⊙O的半径.7.等边三角形ABC内接于⊙O,点D在弧AC上,连接AD、CD、BD.(1)如图1,求证BD平分∠ADC;(2)如图2,若∠DBC=15°,求证:AD:AC=:;(3)如图3,若AC、BD交于点E,连接OE,且OE=2,若BD=3CD,求AD的长.8.如图1,在直角坐标系中,直线l与x、y轴分别交于点A(2,0)、B(0,)两点,∠BAO的角平分线交y轴于点D.点C为直线l上一点,以AC为直径的⊙G经过点D,且与x轴交于另一点E.(1)求出⊙G的半径r,并直接写出点C的坐标;(2)如图2,若点F为⊙G上的一点,连接AF,且满足∠FEA=45°,请求出EF的长?9.定义:如果三角形的两个内角α与β满足α+2β=90°,那么称这样的三角形为“类直角三角形”.尝试运用(1)如图1,在Rt△ABC中,∠C=90°,BC=3,AB=5,BD是∠ABC的平分线.①证明△ABD是“类直角三角形”;②试问在边AC上是否存在点E(异于点D),使得△ABE也是“类直角三角形”?若存在,请求出CE的长;若不存在,请说明理由.类比拓展(2)如图2,△ABD内接于⊙O,直径AB=13,弦AD=5,点E是弧AD上一动点(包括端点A,D),延长BE至点C,连结AC,且∠CAD=∠AOD,当△ABC是“类直角三角形”时,求AC的长.10.如图,在∠DAM内部做Rt△ABC,AB平分∠DAM,∠ACB=90°,AB=10,AC=8,点N 为BC的中点,动点E由A点出发,沿AB运动,速度为每秒5个单位,动点F由A点出发,沿AM运动,速度为每秒8个单位,当点E到达点B时,两点同时停止运动,过A、E、F作⊙O.(1)判断△AEF的形状为,并判断AD与⊙O的位置关系为;(2)求t为何值时,EN与⊙O相切?求出此时⊙O的半径,并比较半径与劣弧长度的大小;(3)直接写出△AEF的内心运动的路径长为;(注:当A、E、F重合时,内心就是A点)(4)直接写出线段EN与⊙O有两个公共点时,t的取值范围为.(参考数据:sin37°=,tan37°=,tan74°≈,sin74°≈,cos74°≈)参考答案1.解:(1)由圆周角定理得,∠ADF=∠ABE,∵四边形ABCD是正方形,∴AD=AB,∠BAD=90°,在△ADF和△ABE中,,∴△ADF≌△ABE(SAS);(2)∵△ADF≌△ABE,∴AE=AF,∠EAB=∠FAD,∵∠BAD=90°,∴∠EAF=90°,∴△AEF为等腰直角三角形,∴EF=AE,∴DE﹣BE=AE;(3)如图,过点B作BH⊥CE于点H,∵四边形ABCD为正方形,故∠BEC=45°,∠DEC=45°,在△BEC中,BE=1,BC=5,∠EBC=45°,则BH=BE sin∠EBC=1•sin45°==EH,在Rt△BCH中,CH===,EC=EH+CH=4;在△EDC中,∠DEC=45°,CE=4,CD=BC=5,过点C作CH⊥ED于点H,在Rt△ECH中,EC=4,∠DEC=45°,则CH=EH=EC=4,在Rt△CDH中,CH=4,CD=5,则HD=3,∴DE=EH+CH=7.2.解:(1)若点P与点M重合,如下图所示,∵点B、B关于CM对称,则PB=PB′,B′C=BC,而PC=PC,∴△PB′C≌△PBC(SSS),故∠B=∠PB′C=90°,在Rt△AB′C中,B′C=BC=AC,∴∠PAB=30°,在Rt△PAB中,∵∠A=30°,∴PB=PA,故答案为30°,2;(2)①∵B、C、D、P在圆上∴∠PBC=∠B′DC,又∵B关于直线CM的对称点为B′,∴△PB′C≌△PBC(AAS),∴∠P B′C=∠PBC,∴∠P B′C=∠B′DC,∴CB′=CD;②同理∠DCA=∠APB且∠A=∠A,∴△ACD∽△APB,∴,∵AC:CB=2:1,又BC=CB′=CD,∴,∴,即AP=2PB.3.(1)证明:∵AD⊥BC,∴=,∴∠ABC=∠ACB;(2)解:连接OC,如图,设OE=x,则DE=OD﹣OE=﹣﹣x,在Rt△OEC中,CE2=OC2﹣OE2=()2﹣x2,在Rt△CDE中,CE2=CD2﹣DE2=52﹣(﹣x)2,∴()2﹣x2=52﹣(﹣x)2,解得x=,∴CE==.4.解:(1)∵∠ACB=90°,DE⊥AC,DF⊥BC,∴四边形CEDF是矩形,∵CD平分∠ACB,DE⊥AC,DF⊥BC,∴DE=DF,∴四边形CEDF是正方形,∴CE=CF=DE=DF,故答案为:CF 、DE 、DF ; (2)连接OP ,如图2所示: ∵AB 是半圆O 的直径,=2,∴∠APB =90°,∠AOP =×180°=60°, ∴∠ABP =30°,同(1)得:四边形PECF 是正方形, ∴PF =CF ,在Rt △APB 中,PB =AB •cos ∠ABP =8×cos30°=8×=4,在Rt △CFB 中,BF ====CF ,∵PB =PF +BF , ∴PB =CF +BF , 即:4=CF +CF ,解得:CF =6﹣2;(3)①∵AB 为⊙O 的直径, ∴∠ACB =∠ADB =90°, ∵CA =CB , ∴∠ADC =∠BDC ,同(1)得:四边形DEPF 是正方形,∴PE =PF ,∠APE +∠BPF =90°,∠PEA =∠PFB =90°,∴将△APE 绕点P 逆时针旋转90°,得到△A ′PF ,PA ′=PA ,如图3所示: 则A ′、F 、B 三点共线,∠APE =∠A ′PF , ∴∠A ′PF +∠BPF =90°,即∠A ′PB =90°, ∴S △PAE +S △PBF =S △PA ′B =PA ′•PB =x (70﹣x ), 在Rt △ACB 中,AC =BC =AB =×70=35,∴S △ACB =AC 2=×(35)2=1225,∴y =S △PA ′B +S △ACB =x (70﹣x )+1225=﹣x 2+35x +1225; ②当AP =30时,A ′P =30,PB =AB ﹣AP =70﹣30=40,在Rt△A′PB中,由勾股定理得:A′B===50,∵S=A′B•PF=PB•A′P,△A′PB∴×50×PF=×40×30,解得:PF=24,∴S=PF2=242=576(m2),四边形PEDF∴当AP=30m时.室内活动区(四边形PEDF)的面积为576m2.5.解:(1)∵四边形ABCD内接于⊙O,∴∠BAD+∠C=180°,∵∠C=110°,∴∠BAD=70°,∵AB=AD,∴∠ABD=∠ADB=55°,∵四边形ABDE内接于⊙O,∴∠ABD+∠E=180°,∴∠E=125°.(2)∵四边形ABCD是⊙O的内接四边形,∴∠BAD+∠C=180°,∵四边形ABDE是⊙O的内接四边形,∴∠ABD+∠E=180°,又∵∠E=∠C,∴∠BAD=∠ABD,∴AD=BD,∵AB=AD,∴AD=BD=AD,∴△ABD为等边三角形.6.(1)证明:连接OA,∵∠B=60°,∴∠AOC=2∠B=120°,又∵OA=OC,∴∠OAC=∠OCA=30°,又∵AP=AC,∴∠P=∠ACP=30°,∴∠OAP=∠AOC﹣∠P=90°,∴OA⊥PA,∴PA是⊙O的切线;(2)解:过点C作CE⊥AB于点E.在Rt△BCE中,∠B=60°,BC=4,∴BE=BC=2,CE=2,∵AB=2+,∴AE=AB﹣BE=,在Rt△ACE中,AC==3,∴AP=AC=3.在Rt△PAO中,OA=OP=3,∴⊙O的半径为3.7.解:(1)∵△ABC为等边三角形,则∠ABC=∠ACB=∠BAC=60°,∵∠BDC=∠BAC=60°,∠ADC=∠ACB=60°=∠BDC,∴BD平分∠ADC;(2)过点A作AH⊥BD于点H,在Rt△AHD中,∠ADH=60°,设AD=2a,则AH=a,HD=a,∵∠ABC=60°,∠DBC=15°,∴∠ABH=60°﹣15°=45°,∴△为等腰直角三角形,则AB=AH=a=AC,∴AD:AC=:;(3)设CD=m,在DB上截取DF=CD,连接CF,∵∠BDC=60°,故△CDF为等边三角形,则CD=DF=CF=m,∠DFC=60°,则BD=3CD=3m,则BF=2m,∵∠BFC=180°﹣∠DFC=120°=∠ADC,∵FC=CD,∠FBC=∠CAD,∴△BFC≌△ADC(AAS),∴AD=BF=2m,∵∠DFC=∠ADB=60°,∴FC∥AD,∴△AED∽△CEF,故=2,设EC=2t,则AE=4t,AC=6t,SG=CG=3t,故GE=t,连接AO,过点O作OG⊥AC于点G,∵△ABC为等边三角形,则∠OAG=30°,在Rt△AOG中,OG=AG tan∠OAG=3t×=t,在Rt△OGE中,OG=t,GE=t,OE=2,由勾股定理得:(t)2+t2=(2)2,解得t=,则AC=6;过点A作CD的垂线交CD的延长线于点K,在Rt△ADK中,∠ADK=180°﹣∠ADC=60°,AD=2m,则DK=m,AK=m,在Rt△AKC中,AK=m,KC=KD+CD=m+m=2m,AC=6,由勾股定理得:(m)2+(2m)2=(6)2,解得m=6,则AD=2m=12.8.解:(1)连接GD,EC.∵∠OAB的角平分线交y轴于点D,∴∠GAD=∠DAO,∵GD=GA,∴∠GDA=∠GAD,∴∠GDA=∠DAO,∴GD∥OA,∴∠BDG=∠BOA=90°,∵GD为半径,∴y轴是⊙G的切线;∵A(2,0),B(0,),∴OA=2,OB=,在Rt△AOB中,由勾股定理可得:AB===设半径GD=r,则BG=﹣r,∵GD∥OA,∴△BDG∽△BOA,∴=,∴r=2(﹣r),∴r=,∵AC是直径,∴∠AEC=∠AOB=90°,∴EC∥OB,∴==,∴==,∴EC=2,AE=,∴OE=2﹣=,∴C的坐标为(,2);(2)过点A作AH⊥EF于H,连接CE、CF,∵AC是直径,∴AC=2×=∴∠AEC=∠AFC=90°∵∠FEA=45°。
人教版九年级数学上册第二十四章:圆(教案)
-圆与直线、圆与圆的位置关系:识别并理解相离、外切、相交、内切、内含五种位置关系,以及对应的几何特征和计算方法。
-实际应用题:运用圆的相关知识解决实际问题,如计算弓形面积、弧长和扇形面积等。
-弓形面积和弧长的计算:这部分涉及到圆的扇形和弓形的相关计算,学生需要理解并掌握相应的计算公式。
-解决实际应用题:将圆的知识应用于解决综合性问题,如涉及多个圆或圆与其他几何图形的组合问题。
举例:在讲解圆与圆的位置关系时,难点在于如何通过比较两圆半径之和与圆心距离的大小来判断它们的位置关系。教师需要通过图示和具体例子来帮助学生理解和记忆这个判定方法。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“圆在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.重点难点解析:在讲授过程中,我会特别强调圆的基本性质和圆的方程这两个重点。对于难点部分,如圆的一般方程推导,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与圆相关的实际问题,如圆的面积和周长的计算。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如用绳子画圆,演示圆的基本原理。
九年级上册数学 圆 几何综合(篇)(Word版 含解析)
九年级上册数学 圆 几何综合(篇)(Word 版 含解析)一、初三数学 圆易错题压轴题(难)1.已知:如图,梯形ABCD 中,AD//BC ,AD 2=,AB BC CD 6===,动点P 在射线BA 上,以BP 为半径的P 交边BC 于点E (点E 与点C 不重合),联结PE 、PC ,设x BP =,PC y =.(1)求证:PE //DC ;(2)求y 关于x 的函数解析式,并写出定义域;(3)联结PD ,当PDC B ∠=∠时,以D 为圆心半径为R 的D 与P 相交,求R 的取值范围.【答案】(1)证明见解析;(2)2436(09)y x x x =-+<<;(3)3605R <<【解析】 【分析】()1根据梯形的性质得到B DCB ∠=∠,根据等腰三角形的性质得到B PEB ∠∠=,根据平行线的判定定理即可得到结论;()2分别过P 、A 、D 作BC 的垂线,垂足分别为点H 、F 、.G 推出四边形ADGF 是矩形,//PH AF ,求得2BF FG GC ===,根据勾股定理得到22226242AF AB BF =-=-=,根据平行线分线段成比例定理得到223PH x =,13BH x =,求得163CH x =-,根据勾股定理即可得到结论; ()3作//EM PD 交DC 于.M 推出四边形PDME 是平行四边形.得到PE DM x ==,即 6MC x =-,根据相似三角形的性质得到1218655PD EC ==-=,根据相切两圆的性质即可得到结论. 【详解】()1证明:梯形ABCD ,AB CD =,B DCB ∠∠∴=,PB PE =, B PEB ∠∠∴=, DCB PEB ∠∠∴=,//PE CD ∴;()2解:分别过P 、A 、D 作BC 的垂线,垂足分别为点H 、F 、G .梯形ABCD 中,//AD BC , ,BC DG ⊥,BC PH ⊥,∴四边形ADGF 是矩形,//PH AF ,2AD =,6BC DC ==, 2BF FG GC ∴===,在Rt ABF 中,22226242AF AB BF =-=-=,//PH AF ,PH BP BHAF AB BF∴==6242x BH ==,223PH x ∴=,13BH x =, 163CH x ∴=-,在Rt PHC 中,22PC PH CH =+22221()(6)33y x x ∴=+-2436(09)y x x x =-+<<, ()3解:作//EM PD 交DC 于M .//PE DC ,∴四边形PDME 是平行四边形.PE DM x ∴==,即 6MC x =-,PD ME ∴=,PDC EMC ∠∠=, 又PDC B ∠∠=,B DCB ∠=∠, DCB EMC PBE PEB ∠∠∠∠∴===. PBE ∴∽ECM ,PB BE EC MC ∴=,即232663xx x x =--, 解得:185x =,即125BE =,1218655PD EC ∴==-=, 当两圆外切时,PD r R =+,即0(R =舍去); 当两圆内切时,-PD r R =,即10(R =舍去),2365R =; 即两圆相交时,3605R <<. 【点睛】本题属于圆综合题,梯形的性质,平行四边形的性质,勾股定理,相似三角形的判定和性质,正确的作出辅助线是解题的关键.2.在直角坐标系中,⊙C 过原点O ,交x 轴于点A (2,0),交y 轴于点B (0,).(1)求圆心C 的坐标.(2)抛物线y=ax 2+bx+c 过O ,A 两点,且顶点在正比例函数y=-的图象上,求抛物线的解析式.(3)过圆心C 作平行于x 轴的直线DE ,交⊙C 于D ,E 两点,试判断D ,E 两点是否在(2)中的抛物线上.(4)若(2)中的抛物线上存在点P (x 0,y 0),满足∠APB 为钝角,求x 0的取值范围.【答案】(1)圆心C 的坐标为(1,);(2)抛物线的解析式为y=x 2﹣x ;(3)点D 、E 均在抛物线上;(4)﹣1<x0<0,或2<x0<3.【解析】试题分析:(1)如图线段AB是圆C的直径,因为点A、B的坐标已知,根据平行线的性质即可求得点C的坐标;(2)因为抛物线过点A、O,所以可求得对称轴,即可求得与直线y=﹣x的交点,即是二次函数的顶点坐标,利用顶点式或者一般式,采用待定系数法即可求得抛物线的解析式;(3)因为DE∥x轴,且过点C,所以可得D、E的纵坐标为,求得直径AB的长,可得D、E的横坐标,代入解析式即可判断;(4)因为AB为直径,所以当抛物线上的点P在⊙C的内部时,满足∠APB为钝角,所以﹣1<x0<0,或2<x0<3.试题分析:(1)∵⊙C经过原点O∴AB为⊙C的直径∴C为AB的中点过点C作CH垂直x轴于点H,则有CH=OB=,OH=OA=1∴圆心C的坐标为(1,).(2)∵抛物线过O、A两点,∴抛物线的对称轴为x=1,∵抛物线的顶点在直线y=﹣x上,∴顶点坐标为(1,﹣).把这三点的坐标代入抛物线y=ax2+bx+c,得,解得,∴抛物线的解析式为y=x2﹣x.(3)∵OA=2,OB=2,∴AB==4,即⊙C的半径r=2,∴D(3,),E(﹣1,),代入y=x2﹣x检验,知点D、E均在抛物线上.(4)∵AB为直径,∴当抛物线上的点P在⊙C的内部时,满足∠APB为钝角,∴﹣1<x0<0,或2<x0<3.考点:二次函数综合题.3.如图,在△ABC 中,∠C=90°,∠CAB=30°,AB=10,点D 在线段AB 上,AD=2.点P ,Q 以相同的速度从D 点同时出发,点P 沿DB 方向运动,点Q 沿DA 方向到点A 后立刻以原速返回向点B 运动.以PQ 为直径构造⊙O ,过点P 作⊙O 的切线交折线AC ﹣CB 于点E ,将线段EP 绕点E 顺时针旋转60°得到EF ,过F 作FG ⊥EP 于G ,当P 运动到点B 时,Q 也停止运动,设DP=m .(1)当2<m≤8时,AP=,AQ=.(用m 的代数式表示) (2)当线段FG 长度达到最大时,求m 的值; (3)在点P ,Q 整个运动过程中,①当m 为何值时,⊙O 与△ABC 的一边相切? ②直接写出点F 所经过的路径长是.(结果保留根号)【答案】(1)2+m ,m ﹣2;(2)m=5.5;(3)①当m=1或4或10433与△ABC 的边相切.②点F 1136572【解析】试题分析:(1)根据题意可得AP =2+m ,AQ =m −2.(2)如图1中在Rt △EFG 中, 30,90EFG A EGF ∠=∠=∠=, 推出3cos30cos302FG EF PE EP =⋅=⋅=,所以当点E 与点C 重合时,PE 的值最大,求出此时EP 的长即可解决问题.(3)①当02t <≤ (Q 在往A 运动)时,如图2中,设O 切AC 于H ,连接OH .当28m <≤(Q 从A 向B 运动)时,则PQ =(2+m )−(m −2)=4,如图3中,设O 切AC 于H .连接OH .如图4中,设O 切BC 于N ,连接ON .分别求解即可.②如图5中,点F 的运动轨迹是F 1→F 2→B .分别求出122F F F B ,即可解决问题. 试题解析:(1)当28m <≤时,AP =2+m ,AQ =m −2. 故答案为2+m ,m −2. (2)如图1中,在Rt △EFG 中, 30,90EFG A EGF ∠=∠=∠=,3cos30cos30FG EF PE EP ∴=⋅=⋅=, ∴当点E 与点C 重合时,PE 的值最大, 易知此时53553AC BC EP AB ⨯⨯===,3tan30(2)3EP AP m =⋅=+⋅, 533(2)m ∴=+⋅,∴m =5.5(3)①当02t <≤ (Q 在往A 运动)时,如图2中,设O 切AC 于H ,连接OH .则有AD =2DH =2, ∴DH =DQ =1,即m =1.当28m <≤(Q 从A 向B 运动)时,则PQ =(2+m )−(m −2)=4, 如图3中,设O 切AC 于H .连接OH .则AO =2OH =4,AP =4+2=6, ∴2+m =6, ∴m =4. 如图4中,设O 切BC 于N ,连接ON .在Rt △OBN 中, 43sin60OB ON ==4310AO ∴=- 4312AP ∴=-43212m ∴+= 3103m ∴=-综上所述,当m =1或4或4310O 与△ABC 的边相切。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版九年级数学上册 圆 几何综合(篇)(Word 版 含解析)一、初三数学 圆易错题压轴题(难)1.已知圆O 的半径长为2,点A 、B 、C 为圆O 上三点,弦BC=AO ,点D 为BC 的中点,(1)如图,连接AC 、OD ,设∠OAC=α,请用α表示∠AOD ;(2)如图,当点B 为AC 的中点时,求点A 、D 之间的距离:(3)如果AD 的延长线与圆O 交于点E ,以O 为圆心,AD 为半径的圆与以BC 为直径的圆相切,求弦AE 的长.【答案】(1)1502AOD α∠=︒-;(2)7AD =3)33133122or 【解析】【分析】(1)连接OB 、OC ,可证△OBC 是等边三角形,根据垂径定理可得∠DOC 等于30°,OA=OC 可得∠ACO=∠CAO=α,利用三角形的内角和定理即可表示出∠AOD 的值.(2)连接OB 、OC ,可证△OBC 是等边三角形,根据垂径定理可得∠DOB 等于30°,因为点D 为BC 的中点,则∠AOB=∠BOC=60°,所以∠AOD 等于90°,根据OA=OB=2,在直角三角形中用三角函数及勾股定理即可求得OD 、AD 的长.(3)分两种情况讨论:两圆外切,两圆内切.先根据两圆相切时圆心距与两圆半径的关系,求出AD 的长,再过O 点作AE 的垂线,利用勾股定理列出方程即可求解.【详解】(1)如图1:连接OB 、OC.∵BC=AO∴OB=OC=BC∴△OBC 是等边三角形∴∠BOC=60°∵点D 是BC 的中点∴∠BOD=1302BOC ∠=︒ ∵OA=OC∴OAC OCA ∠=∠=α∴∠AOD=180°-α-α-30︒=150°-2α(2)如图2:连接OB、OC、OD.由(1)可得:△OBC是等边三角形,∠BOD=130 2BOC∠=︒∵OB=2,∴OD=OB∙cos30︒=3∵B为AC的中点,∴∠AOB=∠BOC=60°∴∠AOD=90°根据勾股定理得:AD=227AO OD+=(3)①如图3.圆O与圆D相内切时:连接OB、OC,过O点作OF⊥AE∵BC是直径,D是BC的中点∴以BC为直径的圆的圆心为D点由(2)可得:3D的半径为1∴31设AF=x 在Rt △AFO 和Rt △DOF 中,2222OA AF OD DF -=-即()2222331x x -=-+- 解得:331x 4+= ∴AE=3312AF +=②如图4.圆O 与圆D 相外切时:连接OB 、OC ,过O 点作OF ⊥AE∵BC 是直径,D 是BC 的中点∴以BC 为直径的圆的圆心为D 点由(2)可得:3D 的半径为1∴31在Rt △AFO 和Rt △DOF 中,2222OA AF OD DF -=-即()2222331x x -=-解得:331x 4-= ∴AE=3312AF -=【点睛】本题主要考查圆的相关知识:垂径定理,圆与圆相切的条件,关键是能灵活运用垂径定理和勾股定理相结合思考问题,另外需注意圆相切要分内切与外切两种情况.2.如图,△ABC内接于⊙O,AB是直径,过点A作直线MN,且∠MAC=∠ABC.(1)求证:MN是⊙O的切线.(2)设D是弧AC的中点,连结BD交AC于点G,过点D作DE⊥AB于点E,交AC于点F.①求证:FD=FG.②若BC=3,AB=5,试求AE的长.【答案】(1)见解析;(2)①见解析;②AE=1【解析】【分析】(1)由AB为直径知∠ACB=90°,∠ABC+∠CAB=90°.由∠MAC=∠ABC可证得∠MAC+∠CAB=90°,则结论得证;(2)①证明∠BDE=∠DGF即可.∠BDE=90°﹣∠ABD;∠DGF=∠CGB=90°﹣∠CBD.因为D是弧AC的中点,所以∠ABD=∠CBD.则问题得证;②连接AD、CD,作DH⊥BC,交BC的延长线于H点.证明Rt△ADE≌Rt△CDH,可得AE=CH.根据AB=BH可求出答案.【详解】(1)证明:∵AB 是直径,∴∠ACB =90°,∴∠CAB+∠ABC =90°;∵∠MAC =∠ABC ,∴∠MAC+∠CAB =90°,即MA ⊥AB ,∴MN 是⊙O 的切线;(2)①证明:∵D 是弧AC 的中点,∴∠DBC =∠ABD ,∵AB 是直径,∴∠CBG+∠CGB =90°,∵DE ⊥AB ,∴∠FDG+∠ABD =90°,∵∠DBC =∠ABD ,∴∠FDG =∠CGB =∠FGD ,∴FD =FG ;②解:连接AD 、CD ,作DH ⊥BC ,交BC 的延长线于H 点.∵∠DBC =∠ABD ,DH ⊥BC ,DE ⊥AB ,∴DE =DH ,在Rt △BDE 与Rt △BDH 中,DH DE BD BD =⎧⎨=⎩, ∴Rt △BDE ≌Rt △BDH (HL ),∴BE =BH ,∵D 是弧AC 的中点,∴AD =DC ,在Rt △ADE 与Rt △CDH 中,DE DH AD CD =⎧⎨=⎩, ∴Rt △ADE ≌Rt △CDH (HL ).∴AE =CH .∴BE =AB ﹣AE =BC+CH =BH ,即5﹣AE =3+AE ,∴AE=1.【点睛】本题是圆的综合题,考查了切线的判定,圆周角定理,全等三角形的判定与性质,等腰三角形的判定,正确作出辅助线来构造全等三角形是解题的关键.3.如图,已知抛物线y=ax2+bx+c(a>0,c<0)交x轴于点A,B,交y轴于点C,设过点A,B,C三点的圆与y轴的另一个交点为D.(1)如图1,已知点A,B,C的坐标分别为(-2,0),(8,0),(0,-4);①求此抛物线的函数解析式;②若点M为抛物线上的一动点,且位于第四象限,求△BDM面积的最大值;(2)如图2,若a=1,c=-4,求证:无论b取何值,点D的坐标均不改变.【答案】(1)①y=x2-x-4;②△BDM的面积有最大值为36;(2)证明见解析.【解析】试题分析:(1)①只需运用待定系数法就可解决问题;②过点M作ME∥y轴,交BD于点E,连接BC,如图1.根据勾股定理的逆定理可得∠ACB=90°,从而可得AB为直径,根据垂径定理可得OD=OC,即可得到D(0,4),然后运用待定系数法可求得直线BD的解析式为y=-x+4,设M(x,x2-x-4),则E(x,-x+4),从而得到ME=-x2+x+8,运用割补法可得S△BDM=S△DEM+S△BEM=-(x-2)2+36,然后根据二次函数的最值性就可求出△BDM 的面积的最大值;(2)连接AD、BC,如图2.若a=1,c=-4,则抛物线的解析式为y=x2+bx-4,可得C(0,-4),OC=4.设点A(x1,0),B(x2,0),则OA=-x1,OB=x2,且x1、x2是方程x2+bx-4=0的两根,根据根与系数的关系可得OA•OB=4.由A、D、B、C四点共圆可得∠ADC=∠ABC,∠DAB=∠DCB,从而可得△ADO∽∽△CBO,根据相似三角形的性质可得OC•OD=OA•OB=4,从而可得OD=1,即可得到D(0,1),因而无论b取何值,点D的坐标均不改变.试题解析:(1)①∵抛物线y=ax2+bx+c过点A(-2,0),B(8,0),C(0,-4),∴,解得.∴抛物线的解析式为y=x2-x-4;②过点M作ME∥y轴,交BD于点E,连接BC,如图1.∵A(-2,0),B(8,0),C(0,-4),∴OA=2,OB=8,OC=4,∴AB=10,AC=2,BC=4,∴AB2=AC2+BC2,∴∠ACB=90°,∴AB为直径.∵CD⊥AB,∴OD=OC,∴D(0,4).设直线BD的解析式为y=mx+n.∵B(8,0),D(0,4),∴,解得,∴直线BD的解析式为y=-x+4.设M(x,x2-x-4),则E(x,-x+4),∴ME=(-x+4)-(x2-x-4)=-x2+x+8,∴S△BDM=S△DEM+S△BEM=ME(x E-x D)+ME(x B-x E)=ME(x B-x D)=(-x2+x+8)×8=-x2+4x+32=-(x-2)2+36.∵0<x<8,∴当x=2时,△BDM的面积有最大值为36;(2)连接AD、BC,如图2.若a=1,c=-4,则抛物线的解析式为y=x2+bx-4,则C(0,-4),OC=4.设点A(x1,0),B(x2,0),则OA=-x1,OB=x2,且x1、x2是方程x2+bx-4=0的两根,∴OA•OB=-x1•x2=-(-4)=4.∵A、D、B、C四点共圆,∴∠ADC=∠ABC,∠DAB=∠DCB,∴△ADO∽△CBO,∴,∴OC•OD=OA•OB=4,∴4OD=4,∴OD=1,∴D(0,1),∴无论b取何值,点D的坐标均不改变.考点:圆的综合题4.在平面直角坐标系xOy中,⊙C的半径为r(r>1),点P是圆内与圆心C不重合的点,⊙C的“完美点”的定义如下:过圆心C的任意直线CP与⊙C交于点A,B,若满足|PA﹣PB|=2,则称点P为⊙C的“完美点”,如图点P为⊙C的一个“完美点”.(1)当⊙O的半径为2时①点M(32,0)⊙O的“完美点”,点(312)⊙O的“完美点”;(填“是”或者“不是”)②若⊙O的“完美点”P在直线y=34x上,求PO的长及点P的坐标;(2)设圆心C的坐标为(s,t),且在直线y=﹣2x+1上,⊙C半径为r,若y轴上存在⊙C的“完美点”,求t的取值范围.【答案】(1)①不是,是;②PO的长为1,点P的坐标为(45,35)或(﹣45,﹣35);(2)t的取值范围为﹣1≤t≤3.【解析】【分析】(1)①利用圆的“完美点”的定义直接判断即可得出结论.②先确定出满足圆的“完美点”的OP的长度,然后分情况讨论计算即可得出结论;(2)先判断出圆的“完美点”的轨迹,然后确定出取极值时OC与y轴的位置关系即可得出结论.【详解】解:(1)①∵点M(32,0),∴设⊙O与x轴的交点为A,B,∵⊙O的半径为2,∴取A(﹣2,0),B(2,0),∴|MA﹣MB|=|(32+2)﹣(2﹣32)|=3≠2,∴点M不是⊙O的“完美点”,同理:点(﹣32,﹣12)是⊙O的“完美点”.故答案为不是,是.②如图1,根据题意,|PA﹣PB|=2,∴|OP+2﹣(2﹣OP)|=2,∴OP=1.若点P在第一象限内,作PQ⊥x轴于点Q,∵点P在直线y=34x上,OP=1,∴43,55 OQ PQ==.∴P(43,55).若点P在第三象限内,根据对称性可知其坐标为(﹣45,﹣35).综上所述,PO的长为1,点P的坐标为(43,55)或(43,55--)).(2)对于⊙C的任意一个“完美点”P都有|PA﹣PB|=2,∴|CP+r﹣(r﹣CP)|=2.∴CP=1.∴对于任意的点P,满足CP=1,都有|CP+r﹣(r﹣CP)|=2,∴|PA﹣PB|=2,故此时点P为⊙C的“完美点”.因此,⊙C的“完美点”是以点C为圆心,1为半径的圆.设直线y=﹣2x+1与y轴交于点D,如图2,当⊙C移动到与y轴相切且切点在点D的上方时,t的值最大.设切点为E,连接CE,∵⊙C的圆心在直线y=﹣2x+1上,∴此直线和y轴,x轴的交点D(0,1),F(12,0),∴OF=12,OD=1,∵CE∥OF,∴△DOF∽△DEC,∴OD OF DE CE=,∴112 DE=,∴DE=2,∴OE=3,t的最大值为3,当⊙C移动到与y轴相切且切点在点D的下方时,t的值最小.同理可得t的最小值为﹣1.综上所述,t的取值范围为﹣1≤t≤3.【点睛】此题是圆的综合题,主要考查了新定义,相似三角形的性质和判定,直线和圆的位置关系,解本题的关键是理解新定义的基础上,会用新定义,是一道比中等难度的中考常考题.5.四边形ABCD内接于⊙O,AC为对角线,∠ACB=∠ACD(1)如图1,求证:AB=AD;(2)如图2,点E在AB弧上,DE交AC于点F,连接BE,BE=DF,求证:DF=DC;(3)如图3,在(2)的条件下,点G在BC弧上,连接DG,交CE于点H,连接GE,GF,若DE=BC,EG=GH=5,S△DFG=9,求BC边的长.【答案】(1)见解析;(2)见解析;(370【解析】【分析】(1)如图1,连接OA,OB,OD,由∠ACB=∠ACD,可得AD AB,可得AB=AD;(2)连接AE,由“SAS”可证△ABE≌△ADF,可得∠BAE=∠DAC,可证BE=CD=DF;(3)如图3,过点F作FN⊥GD于N,过点C作CM⊥GD于M,连接GC,通过证明△FDN≌△DCM,可得FN=DM,CM=DN,由面积公式可求FN=2,DM=2,DH=4,通过证明△EGC∽△DMC,△GEH∽△CHD,可得EC=52CD,CD2=403,由勾股定理可求解.【详解】证明:(1)如图1,连接OA,OB,OD,∵∠ACB=∠ACD,∠AOD=2∠ACD,∠AOB=2∠ACB ∴∠AOD=∠AOB∴AD AB∴AD=AB;(2)如图2,连接AE,∵AE AE∴∠ABE=∠ADE在△ABE和△ADF中AB ADABE ADFBE DF∴△ABE≌△ADF(SAS)∴∠BAE=∠DAC∴BE CD∴BE=DC∵BE=DF∴DF=DC;(3)如图3,过点F作FN⊥GD于N,过点C作CM⊥GD于M,连接GC,∵DE=BC,BE=CD,∴四边形BCDE是平行四边形,∴∠EBC=∠EDC,∵四边形BEDC是圆内接四边形,∴∠EBC+∠EDC=180°,∴∠EDC=∠EBC=90°,∴EC是直径,∴∠FGC=∠EDC=90°∴∠FDN+∠MDC=90°,且∠MDC+∠MCD=90°,∴∠FDN=∠MCD,且∠FND=∠CMD=90°,DF=DC,∴△FDN≌△DCM(AAS)∴FN=DM,CM=DN,∵EG=GH=5,∴∠GEH=∠GHE,且∠GHE=∠DHC,∠GEH=∠GDC,∴∠HDC=∠CHD,∴CH=CD,且CM⊥DH,∴DM=MH=FN,∵S△DFG=9,∴12DG×FN=9,∴12×(5+2FN)×FN=9,∴FN=2,∴DM =2,DH =4, ∵∠GEC =∠GDC ,∠EGC =∠DMC ,∴△EGC ∽△DMC ,∴52ECEG CD DM , ∴EC =52CD ,且HC =CD , ∴EH =32CD , ∵∠EGD =∠ECD ,∠GEC =∠GDC ,∴△GEH ∽△CHD ,∴EGEH CH DH, ∴3524CD CD, ∴2403CD , ∵EC 2﹣CD 2=DE 2,∴222254CD CD DE , ∴2214043DE ,∴DE =70∴BC =70【点睛】本题是圆的综合题,考查了圆的有关知识,全等三角形的判定和性质,平行四边形的判定和性质,相似三角形的判定和性质,勾股定理等知识,添加恰当辅助线是本题的难点.6.如图,∠ACL =90°,AC =4,动点B 在射线CL ,CH ⊥AB 于点H ,以H 为圆心,HB 为半径作圆交射线BA 于点D ,交直线CD 于点F ,交直线BC 于点E .设BC =m .(1)当∠A =30°时,求∠CDB 的度数;(2)当m =2时,求BE 的长度;(3)在点B的整个运动过程中,①当BC=3CE时,求出所有符合条件的m的值.②连接EH,FH,当tan∠FHE=512时,直接写出△FHD与△EFH面积比.【答案】(1)60°;(2)45;(3)①m=22或42;②262【解析】【分析】(1)根据题意由HB=HD,CH⊥BD可知:CH是BD的中垂线,再由∠A=30°得:∠CDB=∠ABC=60°;(2)由题意可知当m=2时,由勾股定理可得:AB=25,cos∠ABC=5,过点H作HK⊥BC于点K,利用垂径定理可得结论;(3))①要分两种情况:I.当点E在C右侧时,II.当点E在C左侧时;根据相似三角形性质和勾股定理即可求得结论;②根据题意先证明EF∥BD,根据平行线间距离相等可得:△FHD与△EFH高相等,面积比等于底之比,再由tan∠FHE=512可求得DHEF的值即可.【详解】解:(1)∵∠A=30°,∠ACB=90°,∴∠ABC=60°,∵HB=HD,CH⊥BD,∴CH是BD的中垂线,∴CB=CD,∴∠CDB=∠ABC=60°;(2)如图1,过点H作HK⊥BC于点K,当m=2时,BC=2,∴AB22AC BC5,∴cos∠ABC=BCAB 5,∴BH=BC•cos∠ABC=255,∴BK=BH•cos∠ABC=25,∴BE=2BK=45;(3)①分两种情况:I.当点E在C右侧时,如图2,连结DE,由BD是直径,得DE⊥BC,∵BC=3CE=m,∴CE=13m,BE=23m,∵DE∥AC,∴△DEB~△ACB,∴DEAC =BEBC=23,∴DE=23AC=83,∵CD=CB=m,∴Rt△CDE中,由勾股定理得:2281m33⎛⎫⎛⎫⎪⎭⎝+⎪⎝⎭=m2,∵m>0,∴m=22;II.当点E在C左侧时,如图3,连结DE,由BD是直径,得DE⊥BC,∵BC =3CE , ∴CE=13m ,BE =32m , ∵DE ∥AC ,∴△DEB ~△ACB , ∴DE AC =BE BC =32, ∴DE =32AC =6, ∵CD =CB =m , ∴Rt △CDE 中,由勾股定理得:62+21m 3⎛⎫ ⎪⎝⎭=m 2, ∵m >0,∴m =42;综上所述,①当BC =3CE 时,m =22或42.②如图4,过F 作FG ⊥HE 于点G ,∵CH ⊥AB ,HB =HD ,∴CB =CD ,∴∠CBD =∠CDB ,∴DFE BEF =,即DF EF BE EF +=+,∴DF BE =,∴EF ∥BD ,∴FHDEFH S S =DH EF, ∵在Rt △FHG 中,FG HG =tan ∠FHE =512, 设FG =5k ,HG =12k ,则FH 22FG HG +22(5)(12)k k +=13k ,∴DH =HE =FH =13k ,EG =HE ﹣HG =13k ﹣12k =k ,∴EF 22FG EG +22(5)k k +26k ,∴FHD EFH SS =26k =262. 【点睛】本题考查的是圆的几何综合题,主要考查圆的性质,垂径定理,勾股定理,相似三角形判定及性质,解直角三角形知识等;综合性较强,有一定难度,解题要求对所学知识点熟练掌握和运用数形结合思维分析.7.如图,PA ,PB 分别与O 相切于点A 和点B ,点C 为弧AB 上一点,连接PC 并延长交O 于点F ,D 为弧AF 上的一点,连接BD 交FC 于点E ,连接AD ,且2180APB PEB ∠+∠=︒.(1)如图1,求证://PF AD ;(2)如图2,连接AE ,若90APB ∠=︒,求证:PE 平分AEB ∠;(3)如图3,在(2)的条件下,连接AB 交PE 于点H ,连接OE ,8AD =,4sin 5ABD ∠=,求PH 的长. 【答案】(1)见解析;(2)见解析;(3)257 【解析】【分析】(1)连接OA 、OB ,由切线的性质可得90OAP OBP ∠=∠=︒,由四边形内角和是360︒,得180∠+∠=︒P AOB ,由同弧所对的圆心角是圆周角的一半,得到2AOB ADB ∠=∠,等量代换得到ADB PEB ∠=∠,由同位角相等两直线平行,得到//PF AD ;(2)过点P 做PK PF ⊥交EB 延长线于点K ,由90APB ∠=︒得290PEB ∠=︒,从而45PEB ∠=︒,由切线的性质,得PA PB =,由PK PE ⊥,45PEK ∠=︒,得PE PK =,从而90APE EPB ︒∠=-∠,进而APE BPK ∠=∠,即可证得APE BPK ∆∆≌由此45K AEP ∠=∠=︒,得到AEP PEB ∠=∠,即可证得PE 平分AEB ∠;(3)连接AO 并延长交圆O 于点M ,连接OB 、OH 、OP 、OD 、DM ,由45ADE ∠=︒,90AED ∠=︒,可得DE AE =,由OA 、OD 为半径,可得OA OD =,即可证出DEO AEO ∆∆≌,由直径所对的圆周角是直角,可得90ADM ∠=︒,在Rt ADM ∆中,由正弦定义可得10AM =,由此5OA OB ==,由OAPB 为正方形,对角线AB 垂直平分OP ,从而,OH PH =.在Rt OAP ∆中,252OP OA ==延长EO交AD 于K ,在Rt OEP ∆中,由勾股定理得7PE =,在Rt OEH ∆中,由勾股定理得257PH =. 【详解】 (1)连接OA 、OB∵PA 、PB 与圆O 相切于点A 、B ,且OA 、OB 为半径,∴OA AP ⊥,OB BP ⊥,∴90OAP OBP ∠=∠=︒,∴在四边形AOBP 中,360180180P AOB ∠+∠=︒-︒=︒,∵AB AB =,∴2AOB ADB ∠=∠,∴2180P ADB ∠+∠=︒,∵2180P PEB ∠+∠=︒,∴ADB PEB ∠=∠,∴//PF AD(2)过点P 做PK PF ⊥交EB 延长线于点K∵90APB ∠=︒,∴21809090PEB ∠=︒-︒=︒,∴45PEB ∠=︒,∵PA 、PB 为圆O 的切线,∴PA PB =,∵PK PE ⊥,45PEK ∠=︒,∴PE PK = ,∵9090APE EPB KPB EPB ︒︒∠=-∠=∠=-∠,∴APE BPK ∠=∠,∴APE BPK ∆∆≌,∴45K AEP ∠=∠=︒,∴AEP PEB ∠=∠,∴PE 平分AEB ∠;(3)连接AO 并延长交圆O 于点M ,连接OB 、OH 、OP 、OD 、DM∵45ADE ∠=︒,90AED ∠=︒,∴DE AE =,∵OA 、OD 为半径,∴OA OD =,∵OE OE =,∴DEO AEO ∆∆≌,∴1452AEO OED AED ∠=∠=∠=︒, ∴90OEP ∠=︒,∵AM 为圆O 的直径,∴90ADM ∠=︒,∵弧AD =弧AD ,∴ABD AMD ∠=∠,在Rt ADM ∆中,8AD =,4sin 5AMD ∠=,则10AM =, ∴5OA OB ==,由题易证四边形OAPB 为正方形, ∴对角线AB 垂直平分OP ,AB OP =,∵H 在AB 上,∴OH PH =,在Rt OAP ∆中,252OP OA ==延长EO 交AD 于K ,∵DE AE =,可证OK AD ⊥,DOK ABD ∠=∠,∴4DK KE ==,3OK =,1OE =∴在Rt OEP ∆中,227PE OP OE =-=在Rt OEH ∆中,222OH OE EH =+∵OH PH =,7EH PE HP PH =-=-∴()22217PH PH =+-∴257PH =. 【点睛】 本题考查了圆的综合题,圆的性质,等腰三角形的性质,相交弦定理,正弦定理,勾股定理,灵活运用这些性质定理解决问题是本题的关键.8.如图,在ABC ∆中,90C ∠=︒,30CAB ∠=︒,10AB =,点D 在线段AB 上,2AD =.点P 从D 点出发,沿DB 方向运动,以DP 为直径作O ,当P 运动到点B 时停止运动,设DP m =.(1)AO =___________,BP =___________.(用m 的代数式表示)(2)当m 为何值时,O 与ABC ∆的一边相切?(3)在点P 整个运动过程中,过点P 作O 的切线交折线AC CB -于点E ,将线段EP 绕点E 顺时针旋转60︒得到EF ,过F 作FG EP ⊥于G .①当线段FG 长度达到最大时,求m 的值;②直接写出点F 所经过的路径长是________.(结果保留根号)【答案】(1)22m AO =+,8BP m =-;(2)4m =或32348m =;(3)①1121153762【解析】【分析】(1)观察图中AO 和DP 的数量关系可得22DP AO =+,而BP AB AP =-,将DP m =代入即可.(2)O 与ABC ∆的一边相切有两种情况,先与AC 相切,再与BC 相切;两种情况的解答方法都是连接圆心与切点,构造直角三角形,根据条件所给的特殊角的三角函数解答. (3)①根据旋转的性质可得PF PE =,在Rt EFG ∆中根据三角函数可得cos30FG PE ︒=⋅,故当E 点与C 点重合,PE 取得最大值时,FG 有最大值,解之即可.②明显以E点与C点重合前后为节点,点F的运动轨迹分两部分,第一部分为从P开始运动到E点与C点重合,即图中的12F F,根据1212F F AC AF CF=--求解;第二部分,根据tanEF EPEBFEB EB∠==为定值可知其轨迹为图中的2F B,在2Rt F BC中用勾股定理求解即可.【详解】(1)2222DP mAO=+=+,8BP AB AP m=-=-(2)情况1:与AC相切时,Rt AOH∆中,∵30A∠=︒∴2AO OH=∴22mm+=解得4m=情况2:与BC相切时,Rt BON∆中,∵60B∠=︒∴3cosONBOB==即32282mm=-解得32348m=-(3)①在Rt EFG∆中,∵30EFG A∠=∠=︒,90EGF∠=︒,∴3cos30cos302FG EF PE EP ︒︒=⋅=⋅=, ∴当FG 最大时即PE 最大 当点E 与点C 重合时,PE 的值最大.易知此时53553AC BC EP AB ⨯⨯===. 在Rt EAP ∆中,∵30A ∠=︒∴1532AP EP ==∴1511222m DP ==-= (3)F 轨迹如图:从1F 到2F 到B1133233AF AE EF AD PE =-=-==, 253CF CP ==, 故1212235311353326F F AC AF CF =--=-=, 2F 到B 轨迹是线段理由如下:∵60FEP ∠=︒,30PEB ∠=︒,∴90FEB ∠=︒.∴tan EF EP EBF EB EB∠==为定值, ∴点F 的第二段的轨迹是线段2BF . 在2Rt F BC 中,222222535752BF BC F C ⎛⎫=+=+= ⎪ ⎪⎝⎭, 所以点F 1153762【点睛】本题是综合了圆的性质,直线与圆相切的条件,锐角三角函数,勾股定理以及旋转的性质等知识的动点动图问题,熟练掌握各个知识点是基础,充分理解题意并作图,化动为静是解答关键.9.已知AB 是O 的一条弦,点C 在O 上,联结CO 并延长,交弦AB 于点D ,且CD CB =.(1)如图1,如果BO 平分ABC ∠,求证:AB BC =;(2)如图2,如果AO OB ⊥,求:AD DB 的值;(3)延长线段AO 交弦BC 于点E ,如果EOB ∆是等腰三角形,且O 的半径长等于2,求弦BC 的长.【答案】(1)证明见解析;(23351和22【解析】【分析】(1)由题意利用弦心距即可求证结果,(2)此题关键先求出AO ,做辅助线构造特殊三角形,并求证出∠AOD ,再根据平行线分线段成比例求出比值即可,(3)分情况讨论两种情况:OE=BE 时或OB=BE 时两种情况,利用三角形相似即△COE ~△CBO 找到相似比,利用相似比求解即可.【详解】(1)过点O作OP⊥AB,垂足为点P;OQ⊥BC,垂足为点Q,∵BO平分∠ABC,∴OP=OQ,∵OP,OQ分别是弦AB、BC 的弦心距,∴AB= BC;(2)∵OA=OB,∴∠A=∠OBD,∵CD=CB,∴∠CDB =∠CBD,∴∠A+∠AOD =∠CBO +∠OBD,∴∠AOD =∠CBO,∵OC=OB,∴∠C =∠CBO,∴∠DOB =∠C +∠CBO = 2∠CBO = 2∠AOD,∵AO⊥OB,∴∠ AOB =∠AOD +∠BOD =3∠AOD = 90°,∴∠AOD=30°,过点D作DH⊥AO,垂足为点H,∴∠AHD=∠DHO=90°,∴tan∠AOD =HDOH3∵∠AHD=∠AOB=90°,∴HD‖OB,∴DA OBH AHO=,∵OA=OB,∴HD=AH,∵HD‖OB,∴3AH HDOH OAHDB H===;(3)∵∠C=∠CBO ,∴∠OEB =∠C+∠COE >∠CBO ,∴OE≠OB ;若OB = EB =2时,∵∠C=∠C ,∠COE =∠AOD =∠CBO ,∴△COE ~△CBO , ∴CO CE BC CO =, ∴222BC BC =-, ∴2BC -2BC -4=0,∴BC =舍去)或,∴;若OE = EB 时,∵∠EOB =∠CBO ,∵∠OEB =∠C+∠COE =2∠C =2∠CBO 且∠OEB +∠CBO +∠EOB = 180°,∴4∠CBO=180°,∠CBO=45°,∴∠OEB=90°,∴cos ∠CBO=EB OB =, ∵OB=2,∴ ,∵OE 过圆心,OE ⊥BC ,∴.【点睛】此题考查圆的相关知识:圆心距及圆内三角形相似的相关知识,属于综合题型,难度较高.10.已知点A 为⊙O 外一点,连接AO ,交⊙O 于点P ,AO=6.点B 为⊙O 上一点,连接BP ,过点A 作CA ⊥AO ,交BP 延长线于点C ,AC=AB .(1)判断直线AB与⊙O的位置关系,并说明理由.(2)若PC=43,求 PB的长.(3)若在⊙O上存在点E,使△EAC是以AC为底的等腰三角形,则⊙O的半径r的取值范围是___________.【答案】(1)AB与⊙O相切,理由见解析;(2)433PB=;(3)6565r≤<【解析】【分析】(1)连接OB,有∠OPB=∠OBP,又AC=AB,则∠C=∠ABP,利用∠CAP=90°,即可得到结论成立;(2)由AB=AC,利用勾股定理先求出半径,作OH⊥BP与H,利用相似三角形的判定和性质,即可求出PB的长度;(3)根据题意得出OE=12AC=12AB=2216r2-,利用OE=22162r r-≤,即可求出取值范围.【详解】解:(1)连接OB,如图:∵OP=OB,∴∠OPB=∠OBP=∠APC,∵AC=AB,∴∠C=∠ABP,∵AC ⊥AO , ∴∠CAP=90°,∴∠C+∠APC=90°,∴∠ABP+∠OBP=90°,即OB ⊥AB ,∴AB 为切线;(2)∵AB=AC∴22AB AC =,∴2222CP AP OA OB -=-,设半径为r ,则2222(43)(6)6r r --=-解得:r=2;作OH ⊥BP 与H ,则△ACP ∽△HOP ,∴PH OP AP CP=,即443PH = ∴23PH =, ∴432PB PH ==; (3)如图,作出线段AC 的垂直平分线MN ,作OE ⊥MN ,∴四边形AOEM 是矩形,∴OE=AM=12AC=12 又∵圆O 与直线MN 有交点,∴r ,2r ≤,∴22364r r -≤,∴5r ≥ 又∵圆O 与直线AC 相离,∴r <6,即65r ≤<. 【点睛】此题主要考查了圆的综合以及切线的判定与性质和勾股定理以及等腰三角形的性质等知识,得出EO 与AB 的关系进而求出r 取值范围是解题关键.。