全等三角形单元测试与练习(word解析版)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全等三角形单元测试与练习(word 解析版)

一、八年级数学轴对称三角形填空题(难)

1.如图所示,ABC 为等边三角形,P 是ABC 内任一点,PD AB ,PE BC ∥,PF AC ∥,若ABC 的周长为12cm ,则PD PE PF ++=____cm .

【答案】4

【解析】

【分析】

先说明四边形HBDP 是平行四边形,△AHE 和△AHE 是等边三角形,然后得到一系列长度相等的线段,最后求替换求和即可.

【详解】

解:∵PD AB ,PE BC ∥

∴四边形HBDP 是平行四边形

∴PD=HB

∵ABC 为等边三角形,周长为12cm

∴∠B=∠A=60°,AB=4

∵PE BC ∥

∴∠AHE=∠B=60°

∴∠AHE=∠A=60°

∴△AHE 是等边三角形

∴HE=AH

∵∠HFP=∠A=60°

∴∠HFP=∠AHE=60°

∴△AHE 是等边三角形,

∴FP=PH

∴PD+PE+PF=BH+(HP+PE)=BH+HE=BH+AH=AB=4cm

故答案为4cm .

【点睛】

本题考查了平行四边形的判定和性质以及等边三角形的性质,掌握等边三角形的性质是解答本题的关键.

2.如图,ABC ∆中,90BAC ∠=︒,AD BC ⊥,ABC ∠的平分线BE 交AD 于点F ,AG 平分DAC ∠.给出下列结论:①BAD C ∠=∠;②EBC C ∠=∠;③AE AF =;

④//FG AC ;⑤EF FG .其中正确的结论是______.

【答案】①③④

【解析】

【分析】

①根据等角的余角相等即可得到结果,故①正确;②如果∠EBC=∠C ,则

∠C=12

∠ABC ,由于∠BAC=90°,那么∠C=30°,但∠C 不一定等于30°,故②错误;③由BE 、AG 分别是∠ABC 、∠DAC 的平分线,得到∠ABF=∠EBD .由于

∠AFE=∠BAD+∠FBA ,∠AEB=∠C+∠EBD ,得到∠AFE=∠AEB ,可得③正确;④连接EG ,先证明△ABN ≌△GBN ,得到AN=GN ,证出△ANE ≌△GNF ,得∠NAE=∠NGF ,进而得到GF ∥AE ,故④正确;⑤由AE=AF ,AE=FG ,而△AEF 不一定是等边三角形,得到EF 不一定等于AE ,于是EF 不一定等于FG ,故⑤错误.

【详解】

∵∠BAC=90°,AD ⊥BC ,

∴∠C+∠ABC=90°,∠C+∠DAC=90°,∠ABC+∠BAD=90°,

∴∠ABC=∠DAC ,∠BAD=∠C ,

故①正确;

若∠EBC=∠C ,则∠C=

12

∠ABC , ∵∠BAC=90°,

那么∠C=30°,但∠C 不一定等于30°,

故②错误;

∵BE 、AG 分别是∠ABC 、∠DAC 的平分线,

∴∠ABF=∠EBD ,

∵∠AFE=∠BAD+∠ABF ,∠AEB=∠C+∠EBD ,

又∵∠BAD=∠C ,

∴∠AFE=∠AEF ,

∴AF=AE ,

故③正确;

∵AG 是∠DAC 的平分线,AF=AE ,

∴AN ⊥BE ,FN=EN ,

在△ABN 与△GBN 中,

90

ABN GBN

BN BN

ANB GNB

∠=∠

=

⎪∠=∠=︒

∴△ABN≌△GBN(ASA),

∴AN=GN,

又∵FN=EN,∠ANE=∠GNF,

∴△ANE≌△GNF(SAS),

∴∠NAE=∠NGF,

∴GF∥AE,即GF∥AC,

故④正确;

∵AE=AF,AE=FG,

而△AEF不一定是等边三角形,

∴EF不一定等于AE,

∴EF不一定等于FG,

故⑤错误.

故答案为:①③④.

【点睛】

本题主要考查等腰三角形的判定和性质定理,全等三角形的判定和性质定理,直角三角形的性质定理,掌握掌握上述定理,是解题的关键.

3.如图,在等边ABC

∆中取点P使得PA,PB,PC的长分别为3, 4, 5,则APC APB

S S

∆∆

+=_________.

【答案】

93

6

【解析】

【分析】

把线段AP以点A为旋转中心顺时针旋转60︒得到线段AD,由旋转的性质、等边三角形的性质以及全等三角形的判定定理SAS证得△ADB≌△APC,连接PD,根据旋转的性质知

△APD是等边三角形,利用勾股定理的逆定理可得△PBD为直角三角形,∠BPD=90︒,由△ADB≌△APC得S△ADB=S△APC,则有S△APC+S△APB=S△ADB+S△APB=S△ADP+S△BPD,根据等边

3

S

△ADP

+S△BPD=

34×32+12×3×4=9364

+. 【详解】

将线段AP 以点A 为旋转中心顺时针旋转60︒得到线段AD ,连接PD

∴AD =AP ,∠DAP =60︒,

又∵△ABC 为等边三角形,

∴∠BAC =60︒,AB =AC ,

∴∠DAB +∠BAP =∠PAC +∠BAP ,

∴∠DAB =∠PAC ,

又AB=AC,AD=AP

∴△ADB ≌△APC

∵DA =PA ,∠DAP =60︒,

∴△ADP 为等边三角形,

在△PBD 中,PB =4,PD =3,BD =PC =5,

∵32+42=52,即PD 2+PB 2=BD 2,

∴△PBD 为直角三角形,∠BPD =90︒,

∵△ADB ≌△APC ,

∴S △ADB =S △APC ,

∴S △APC +S △APB =S △ADB +S △APB =S △ADP +S △BPD =3×32+12×3×4=936+. 故答案为:936+.

【点睛】

本题考查了等边三角形的性质与判定,解题的关键是熟知旋转的性质作出辅助线进行求解.

4.如图,在ABC 中,AB AC >,按以下步骤作图:分别以点B 和点C 为圆心,大于BC 一半长为半径作画弧,两弧相交于点M 和点N ,过点M N 、作直线交AB 于点D ,连接CD ,若10AB =,6AC =,则ADC 的周长为_____________________.

相关文档
最新文档