空隙水压力计算公式

合集下载

渗流孔隙水压力的计算

渗流孔隙水压力的计算
力学原理解释: x i 为计算段总水头损 失 h1 ,总水头损失=压力水头损失+位置水 头损失,发生渗流的情况与无渗流时(静水)相比较,位置水头差不变,故总水头损失 h1
等于相对于静水时的压力水头损失(水头损失全部由压力水头承担),此段话比较绕,理解 不了也没关系,下面以顺流减压进行推导。
以黏土层底面为基准面,A 点总水头: H H2 x 计算段总水头损失: h1 x i D 点总水头: H H h1 H2 x x i D 点位置水头: x D 点压力水头: uD H x H1 x i
实战中的运用:
此方法实际就是上述的顺流减压公式。
此方法实际就是上述的顺流减压公式。 若按逆流曾压则为:30+45/2=52.5
此题若按顺流减压则为:
i sin 28
hw 6 i sin 28 6 6 6sin2 28 6 cos2 28
任意点 D 的孔隙水压力万能公式: 1、按顺流减压:(从总水头高处往低处 计算是即为顺流向)
uD H2 x i , i h / L
2、按逆流增压: (从总水头低处往高处 计算是即为逆流向)
uD H1 (L x) i H1 (L x) h / L H2 x i
(注:式中 H1、H2 分别为逆流向和顺流向 D 点的静水压力水头)
顺流减压,逆流增压—扫地僧
最近大家问了很多渗流的问题,自己也好好总结了一下。岩土考试涉及到渗流情况的孔 隙水压力计算时,基本都可归结为 8 个字:顺流减压,逆流增压。渗流可以理解为水流,流 速很慢的水流,沿渗流方向移动,相当于顺流而,受到的水压力减小,即为顺流减压。逆 渗流方向移动,相当于逆流而上,压力增大,即为逆流增压。

孔隙水压力计算

孔隙水压力计算

孔隙水压力计算
孔隙水压力是指土壤或岩石中水分子所受到的压力。

在岩土工程中,孔隙水压力是一个非常重要的参数,它直接影响着土体的稳定性、渗透性和变形性等性质。

因此,准确地计算孔隙水压力对于岩土工程的设计和分析至关重要。

孔隙水压力的计算通常采用以下公式:
Pore water pressure = w x h
其中,Pore water pressure表示孔隙水压力,单位为kPa;w
表示水的密度,单位为kN/m;h表示水平面上的水头高度,单位为m。

当孔隙水压力不均匀时,可以采用以下公式计算平均孔隙水压力: Average pore water pressure = (ΣPore water pressure x A) / ΣA
其中,Average pore water pressure表示平均孔隙水压力,单位为kPa;ΣPore water pressure表示所有孔隙水压力之和,单位
为kPa;A表示每个孔隙的横截面积,单位为m;ΣA表示所有孔隙的横截面积之和,单位为m。

在实际工程中,孔隙水压力的计算需要考虑多种因素,如土壤或岩石的渗透性、水头高度、土体的孔隙率等。

因此,在进行孔隙水压力的计算时,需要谨慎选择合适的计算方法和参数。

- 1 -。

泥水压力计算修改017

泥水压力计算修改017

泥水仓压力设计值计算广深港客运专线ZH-4标深港隧道深(深圳段)设计为双洞单线隧道。

左线始发里程DK114+017, 在里程DK114+017~+098盾构掘进全断面为花岗岩弱风化层,岩体受附近地质构造影响,裂隙较发育,碎裂岩化,完整性及稳定性差,透水性好,施工中易发生岩体坍塌,透水等现象,应加强施工防护,围岩级别为Ⅳ级;DK114+098~+201盾构掘进全断面为花岗岩弱风化层,节理裂隙较发育,岩体呈块状,岩体较完整,渗透系数K=0.2~0.8m/d,弱透水,极弱富水,围岩级别Ⅲ级。

隧道上覆土地层透水性大部分为中、弱透水层,非通透性地层,孔隙水压力与静水压相差较大,孔隙水压力等于地下水折减系数 乘以静水压力,该系数依据当地水文地质情况及工程施工经验确定。

依据盾构隧道泥水压力设计推荐公式:泥水压力=地下水压+土压+预压(bar),地下水压即掘削面地层中的孔隙水压力,围岩土压力采用我国《铁路隧道设计规范》推荐的统计法计算,预压是考虑地下水压和土压的设定误差及送排泥浆设备中的泥水压变动等因素,依据经验确定的压力,通常取0.2~0.3bar。

泥水设计压力值: σ设q α=竖+w w h βγ+σ预其中各分项计算式依下:盾构开挖面土压 q σα=土竖 系数α依据开挖隧道围岩分级取值。

见下表围岩水平均布作用压力a q h γ=竖,结构上作用竖向土压力。

γ-围岩重度,取加权平均值,花岗岩为25.73KN M0.411.79S a h =⨯,单线隧道计算围岩高度。

s =围岩级别隧道中心水压:w w h σβγ=水β-地下水影响折减系数,依据工程地质实况实测,地层孔隙水压力与等高水柱静水压比值。

结合工程实际做调整。

w γ3KN M =10w h -水位差预压 =0.200.30bar σ预~例如:盾构掘进里程DK114+017,盾构刀盘中心埋深为42.07m,水位差39.56m,盾构穿越及围岩为花岗岩弱风化地带,透水性差,Ⅳ级围岩。

井眼与地层之间的压力及其平衡关系

井眼与地层之间的压力及其平衡关系

井眼与地层之间的压⼒及其平衡关系井眼与地层之间的压⼒及其平衡关系⼀、静液压⼒Pm静液压⼒是由井内静液柱的重量产⽣的压⼒,其⼤⼩只取决于液体密度和液柱垂直⾼度。

静液压⼒Pm计算公式:Pm= 0.0098ρm Hm (2—1)式中:Pm — 静液压⼒,MPa;ρm— 钻井液密度,g/cm3;Hm— 液柱垂直⾼度,m。

静液压⼒梯度Gm计算公式:Gm = Pm/ Hm = 0.0098ρm (2—2)式中:Gm — 静液压⼒梯度,MPa/m。

⼆、地层压⼒PP地层压⼒是指作⽤在地层孔隙中流体上的压⼒,也称地层孔隙压⼒。

地层压⼒PP计算公式:PP=0.0098ρP HP (2—3)式中:PP — 地层压⼒,MPa;ρP— 地层压⼒当量密度,g/cm3;Hm— 地层垂直⾼度,m。

地层压⼒梯度GP计算公式:GP = PP/ HP = 0.0098ρP (2—4)式中:GP — 静液压⼒梯度,MPa/m。

地层压⼒当量密度ρP计算公式:ρP =PP/0.0098 Hm = 102 GP (2—5)在钻井过程中遇到的地层压⼒可分为三类:正常地层压⼒:ρP=1.0~1.07 g/cm3;异常⾼压:ρP>1.07 g/cm3;异常低压:ρP<1.0 g/cm3。

三、地层破裂压⼒Pf地层破裂压⼒是指某⼀深度处地层抵抗⽔⼒压裂的能⼒。

当达到地层破裂压⼒时,地层原有的裂缝扩⼤延伸或⽆裂缝的地层产⽣裂缝。

从钻井安全⽅⾯讲,地层破裂压⼒越⼤越好,地层抗破裂强度就越⼤,越不容易被压漏,钻井越安全。

⼀般情况下,地层破裂压⼒随着井深的增加⽽增加。

所以,上部地层(套管鞋处)的强度最低,易于压漏,最不安全,所以在设计时应保证下⼊⾜够深度的套管以提⾼裸眼井段上部的地层破裂压⼒。

1.地层破裂压⼒Pf计算公式Pf =0.0098ρf Hf (2—6)式中:Pf —地层破裂压⼒,MPa;ρf —地层破裂压⼒当量密度,g/cm3;Hf—漏失层垂直深度,m。

井眼内压力及相互关系

井眼内压力及相互关系

井眼内压力及相互关系一、钻井液静液压力1、定义:由静止钻井液自身质量所产生的压力。

2、计算公式:钻井液静液压力=9.8×钻井液密度×液柱的垂直高度。

从公式中可以看出,静液压力的大小,只和液体的密度、液柱的垂直高度有关,和截面形状无关。

二、压力梯度1、定义:每增加单位垂直深度(或高度)压力的增加值称为压力梯度。

2、表达式:压力梯度=压力÷高度=液体密度×9.8三、地层压力1、定义:指岩石孔隙中流体所具的压力。

2、地层压力的分类(1)正常地层压力:指从地表到地下该地层处的静液压力。

(9.8----10.486千帕/米)(2)异常高压:指地层压力梯度高于正常压力梯度时。

称为异常高压。

(3)异常低压:指压力梯度低于正常压力梯度称异常低压。

3、地层压力的表示方法(1)用压力的具体数值表示。

(2)用地层压力梯度表示。

(3)用等效钻井液密度表示。

(4)用压力系数表示。

即:某点地层压力与该深度淡水柱的静液压力之比。

四、地层破裂压力1、定义:是指地层抵抗水力压裂的能力,换句话说:指某一深度地层发生破裂或裂缝时所能承受的压力。

2、地层破裂压力梯度:指每增加单位垂深度(或高度)地层破裂压力的增加值称为地层破裂压力梯度3、计算公式地层破裂压力梯度=地层破裂压力÷垂直深度=9.8×地层破裂压力当量钻井液密度。

4、地层破裂压力实验操作步骤钻完水泥塞,再钻进(第一个沙层)3米左右,上提钻具,用地面防喷器关井,小排量(0.8---1.32升/秒)向井内缓慢注如钻井液(最好用水泥车)记录不同时间的泵入量和井口压力,开始泵入量和压力呈直线关系,当偏离直线的点即为该地层的破裂压力对应的井口压力。

即套管鞋处最大允许关井套压五、波动压力1、抽吸压力指钻柱向上运动时井内钻井液向下流动使井底压力减小的压力叫抽吸压力。

2、激动压力指钻柱向下运动时,井内钻井液向上流动时,使井底压力增加的压力。

孔隙水压力测试规程标准

孔隙水压力测试规程标准

孔隙水压力测试规程标准前言现批准《孔隙水压力测试规程》CECS55∶93为中国工程建设标准化协会标准,推荐给各有关单位使用。

在使用过程中,请将意见及有关资料寄交冶金部武汉勘察研究院中国工程建设标准化协会工程勘测委员会(武汉市冶金大道19号,邮政编码430080),以便修订时参考。

中国工程建设标准化协会1993年12月26日1总则1.0.1 为了统一原位孔隙水压力测试的技术要求,提高测试的技术水平,保证测试质量,制定本规程。

1.0.2 本规程适用于饱与土层中孔隙水压力的原位测试。

1.0.3 原位孔隙水压力测试仪器的选择与埋设与测试方法的确定,应符合质量可靠、操作简便、经济有效的原则。

1.0.4 原位孔隙水压力测试除执行本规程外,尚应符合国家现行标准的有关规定。

2仪器设备2.0.1 孔隙水压力计类型的选择,应根据工程测试的目的、土层的渗透性质与测试期的长短等条件,选用封闭式(电测式、流体压力式)或者开口式(包含各类开口测量管、水位计)。

仪器的精度、灵敏度与量程务必满足测试要求。

2.0.2 电测式孔隙水压力计(包含振弦式、电阻式、差动变压式等)适用于各类渗透性质的土层。

当量测误差小于等于2kPa时,务必使用电测式孔隙水压力计;使用期大于1个月、测试深度大于10m或者在一个观测孔中多点同时量测时,宜选用电测式孔隙水压力计。

2.0.3 流体压力式(包含液压式、气压式等)与开口式孔隙水压力计适用于渗透系数K 大于1×10-5cm/sec的土层.当量测误差同意大于等于2kPa时,方可选用液压式孔隙水压力计;当量测误差同意大于等于10kPa时,方可选用气压式孔隙水压力计。

流体压力式孔隙水压力计使用期不宜超过1个月;液压式孔隙水压力计不宜在气温低于零摄氏度时使用。

2.0.4 孔隙水压力根据量测读数分别按下列公式计算。

气压式孔隙水压力计:u=c+ap(2.0.4—5)式中u——孔隙水压力(kPa);Kf——振弦式孔隙水压力计的灵敏度();f0——孔隙水压力计在零压时的频率(Hz);f——孔隙水压力计在量测时的频率(Hz);Kε——电阻式孔隙水压力计的灵敏度(kPa/με);εi——孔隙水压力计的测读值(με);ε0——孔隙水压力计在受压前的初读数(με);KA——差动变压式孔隙水压力计的率定系数(kPa/V);A——孔隙水压力计的测定值(V);A0——孔隙水压力计的初始值(V);P——压力表读数(kPa);γw——水的重度(kN/);h——孔隙水压力计至压力表基准面的高度(m);a——压力表标定系数;c——压力表标定常数(kPa);2.0.5 为保证孔隙水压力计的精度,选择的量程不宜过大,上限值大于静水压力值与预估的超孔隙水压力值之与宜为100~200kPa。

孔隙压力、有效应力和排水

孔隙压力、有效应力和排水

第六章 孔隙压力、有效应力和排水 引言通常所说的土是由固体颗粒和水两部分组成的,基础或挡墙上的荷载包含土颗粒和孔隙水上面的应力两部分。

在没有土颗粒的船体外表面,法向应力就等于水压力;而在没有水的装有糖的盆底,应力就等于所装的糖的重量。

问题就是土颗粒应力和孔隙水压力的哪种组合决定着土的性质。

要研究这个问题,我们首先研究地基中的应力和水压力。

地基中的应力在地基中,某一深度的竖向应力是由上面的一切东西的重量产生的——土颗粒、水和基础,所以应力随着深度的增加而增大。

图(a)中的竖向应力为:z z γσ=其中γ为土的容重(见节)。

如果地基在水平面以下或者在湖底、海底的话(如图(b)所示),竖向应力计算公式就变为:w w z z z γγσ+=如果在基础或路堤表面有荷载q 作用的话(如图(c)所示),那么竖向应力计算公式就变为:q z z +=γσ这里面的γ是单位体积的土颗粒和水重量之和。

因为z σ是由土体的总重量产生的,所以成为总应力。

注意,图(b)中所示的湖中的水把总应力作用在底部同玻璃杯中的水把总应力作用在杯底的方式相同。

土颗粒的重度变化不大,一般来讲,饱和土的3/20m kN ≈γ,干土的3/16m kN ≈γ,水的3/10m kN ≈γ。

同时也有水平向的总应力h σ,但是在z σ和h σ之间没有简单的关系。

在以后的章节我们会对水平向的应力进行研究。

地下水和孔隙水压力饱和土的孔隙水中存在的压力叫做孔隙水压力u 。

在竖管中经常用w h 来简单地代替,如图所示。

当系统处于平衡状态时,竖管内部和外部的水压力相等,因此得到: w w h u γ=当竖管中的水位低于地表面时(如图(a)所示),就称为地下水位。

如果土中水是静止的,那么地下水位面就像湖面一样是水平的。

然而,就像我们后面将要见到的那样,如果地下水位面不是水平的,那么土孔隙中就存在水的渗流。

图(a)中地下水位面处孔隙水压力为零(这就是叫做地下水位),水位以下为正值,问题就出来了:地下水位面以上孔隙水压力是什么样的呢图说明了地表面和地下水位面之间的土中孔隙水压力的变化情况。

井下各种压力概念及相互关系

井下各种压力概念及相互关系
.
由于抽汲压力的影响,提钻时的井底压力会下降,导致
很多井在正常钻进时井底压力能够平衡地层压力,而提钻时发
生溢流。因此,提钻时要事先判断并注意减小抽汲压力的影响。
下钻时,井底压力=静液压力+激动压力
由于激动压力的产生,使得下钻时的井底压力增大,虽
第二章 井下各种压力概念及相互关系
一、静液压力 1、静液压力和静液压力梯度的定义 静液压力是由静止液体的重力产生的压力。其大小取决 于液体的密度和液体的垂直高度,与液柱的横向尺寸及形状无 关。 静液压力梯度是指每增加单位垂直深度静液压力的变化量。 静液压力梯度受液体密度的影响和含盐浓度、气体的浓度以及 温度梯度的影响。含盐浓度高会使静液压力梯度增大,溶解气 体量增加和温度增高则会使静液压力梯度减小。
.
十、井底压力
在钻井作业中,始终有压力作用于井底,主要来自于钻
井液的静液压力。同时,将钻井液沿环空向上泵送时所消耗
的泵压也作用于井底,即循环钻井液时的环空压耗。其它还
有侵入井内的地层流体的压力、激动压力、抽汲压力、地面
回压等。井底压力就是指地面和井内各种压力作用在井底的
总压力。在不同作业情况下,井底压力是不一样的。
液密度。
.
.
2、当量钻井液密度的计算
e
P
0.0098H1
式中:P—压力,MPa 例3 井深2800m,钻井液密度1.24g/cm3,下钻时存 在一个1.76MPa的激动压力作用于井底,计算井底压力及 当量钻井液密度。
解:井底压力P=1.24×0.00981×2800+1.76=35.82 MPa
正常循环时,井底压力=静液压力+环空压耗 井内流体循环时,环空压耗会使井底压力增加,过大的 循环压耗可能漏失;一旦停止循环,循环压耗突然消失会使井 底压力下降,同样影响井内的压力平衡。 节流循环时,井底压力=静液压力+环空压力损失+节 流阀回压 节流循环除气或压井循环时,通过调节节流阀的不同开 关程度,形成一定的井口回压,保持井底压力平衡地层压力。 提钻时,井底压力=静液压力-抽汲压力

钻井工程常用计算公式

钻井工程常用计算公式

钻井常用计算公式•、地层压力计算1、静液柱压力(MPa)=P(粘井液密度)*0.00981*H(垂深m)2、压力梯度值(MPa)=p(钻井液密度)*0.009813、单位内容积(r∩3Λn>=7.854*10-5*内径2(Cm)4、单位环空容积(m3∕m)=7.854*10^5*(井径2cm-管柱外径2cm)5、容积(m?)=单位内容积(m3∕m)*长度(m)管柱单位排音量(mVm)=7.854*10^5*(外径2cm内径2cm)6、地层压力(MPa)=钻具静液柱压力+关井立压7、压井钻井液密度(g∕c11p>=(关井立压Mpa/O.00981/11(m))+当前井液P(gcm3)8、初始循环压力=关井立压+底泵速泵压9、终止循环压力=(压力井液p/当前井液p)*低泵速泵压10、溢流长度m;钻井液增量m3/环空单位容积m3∕m11、溢流密度p(g∕cm3)=当前井液P-[(套压MPa-立压Mpa)/(溢流长度m*0.00981)]12、当量循环密度p(g/cm3)-(环空循环压力损失Mpa/O.00981/垂深m)+当前井液P13、当量钻井液P(g4zm3)-总压力Mpa/O.00981/垂深m14、孔隙压力MPa=9.81*Wf(地瓜水平均密度g∕cmυ*H(垂高m)15、上覆岩层压力(Mpa)=(岩石基质重量+流体重量)/面积[9.81*[(卜-。

岩石孔隙度%)*pm岩石基颓密度Hem3+4>*p岩石孔隙中流体密度g/cnP]16、地层破裂压力梯度(Mpa)=Pf(破裂地层压力Mpa)/H(破裂地层垂直深度m>Pf(破裂地层压力Mpa)=Ph(液柱压力Mpa)+P(破裂实验时的立管压力MPa)二、喷射钻井计算公式1、射流喷射速度计算相同直径喷嘴VOU1.2.73*Q(通过喷嘴液体排量1.∕S)∕n(喷嘴个数)*dc>2(喷嘴直径Cm)不相同直径喷喷Vo=12.73*Q(通过喷嘴液体排量1.∕S)/de?(喷嘴当量直径Cm)试中:de喷喷当量直径(cm)计算等喷嘴直径de-(根号n喷嘴个数)*d。

水利工程常用计算公式

水利工程常用计算公式

精心整理水利专业常用计算公式一、枢纽建筑物计算1、进水闸进水流量计算:Q=B 0δεm (2gH 03)1/2式中:m —堰流流量系数 ε—堰流侧收缩系数最为常见。

求解明渠恒定缓变流水面曲线,宜采用逐段试算法,对棱柱体和非棱柱渠道均可应用。

逐段试算法的基本公式为△x=f21112222i -i 2g v a h 2g v a h ⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+式中:△x ——流段长度(m );g ——重力加速度(m/s2);h 1、h 2——分别为流段上游和下游断面的水深(m ); v 1、v 2——分别为流段上游和下游断面的平均流速(m/s ); a 1、a 2——分别为流段上游和下游断面的动能修正系数; f i ——流段的平均水里坡降,一般可采用⎪⎭⎫ ⎝⎛+=-2f 1f -f i i 21i 或⎪⎪⎭⎫⎝⎛+=∆=3/4222224/312121f f v n R v n 21x h i R n 1=n 2 0.2m ; (6)进口断面河吼道断面间的水平距离与其高度之比:l/P=0.7—0.9; 6、最大负压值出现在吼道断面定点a 处,a 点的最大负压值按下式确定: 式中:Z —前池内正常水位与最低水位之间的高差(m );h 0—吼道断面高度(m );∑wh—从进水口断面至吼道断面间的水头损失(m );γ/p *—因法向加速度所产生的附加压强水头(m )。

附加压强水头按下式计算:式中:0γ—吼道断面中心半径(m ) 计算结果,须满足下列条件:式中: h a —计算断面处的大气压强水柱高(m ); H v —水的气化压强水柱高(m ) 最小淹没深度S ,可按下式估算:式中:0γF —吼道断面的水流弗劳德数,000gh /V F =γ。

B —坝址处的河谷宽度(相当于坝顶的部仪),m 。

L —蓄水后库区延伸长度(回水长度),km(公里)。

H —最大坝前水深,m 。

K —按库尾蓄水断面与坝址蓄水断面之比采用的系数: l:lO 时,K=32;1:5时,K=27(2)根据淹没面积初估: V=HA/KV—水库总库容,104·m3(万立米)。

现场地层压力计算

现场地层压力计算

. . 在此处键入公式。

六、地层压力计算1、地层孔隙压力和压力梯度(1)地层孔隙压力H g p f p ⨯⨯⨯=-ρ310式中,P p ——地层孔隙压力(在正常压实状态下,地层孔隙压力等于静液柱压力),MPa ; ρf ——地层流体密度,g/cm 3; g ——重力加速度,9.81m/s 2;H ——该点到水平面的重直高度(或等于静液柱高度),m 。

在陆上井中,H 为目的层深度,起始点自转盘方钻杆补心算起,液体密度为钻井液密度ρm ,则,H g p m h ⨯⨯⨯=-ρ310式中,p h ——静液柱压力,MPa ; ρm ——钻井液密度,g/cm 3; H ——目的层深度,m ; g ——重力加速度,9.81m/s 2。

在海上钻井中,液柱高度起始点自钻井液液面(出口管)高度算起,它与方补心高差约为0.6~3.3m ,此高差在浅层地层孔隙压力计算中要引起重视,在深层可忽略不计。

(2)地层孔隙压力梯度HP G P p =式中 G p ——地层孔隙压力梯度,MPa/m 。

其它单位同上式。

2、上覆岩层压力及上覆岩层压力梯度 (1)上覆岩层压力])1[(1081.93o ρρΦ+Φ-⨯=-m H P式中 P o ——上覆岩层压力,MPa ; H ——目的层深度,m ; Φ——岩石孔隙度,%;ρ——岩层孔隙流体密度,g/cm 3; ρm ——岩石骨架密度,g/cm 3。

(2)上覆岩层压力梯度HP G oo =式中,G o ——上覆岩层压力梯度,MPa/m ;P o ——上覆岩层压力,MPa ; H ——深度(高度),m 。

(3)压力间关系. . z p P p O σ+=式中,P o ——上覆岩层压力,MPa ; P p ——地层孔隙压力,MPa ;σz ——有效上覆岩层压力(骨架颗粒间压力或垂直的骨架应力),MPa 。

3、地层破裂压力和压力梯度 (1)地层破裂压力(伊顿法)p p z f P P P +--=)(1σμμ式中, P f ——地层破裂压力(为岩石裂缝开裂时的井流体压力),MPa ; μ——地层的泊松比;σz ——有效上覆岩层压力,MPa ; P p ——地层孔隙压力,MPa 。

孔隙水压力计算公式

孔隙水压力计算公式

孔隙水压力计算公式
P=K(f0²-fi²)
其中P 为空隙水压力;K 为所测孔隙水压力计的标定系数;fi 为测量时孔隙水压力计的频率平均值;fo 为测量安装前孔隙水压力计的初始频率平均值。

振弦式孔隙水压力计由金属外壳、透水石、传感器、信号传输电缆等组成,又叫孔隙水压计和渗压计。

孔隙水压力计由两大部分构成,一部分是滤头,分透水石、开孔钢管,起到隔断土压的作用;一部分则是传感器,也是渗压计的核心组成,压力水通过透水石汇集到承压腔,作用于承压膜片上,膜片中心产生扰曲引起钢弦应力发生变化,钢弦的自振频率随之发生变化,再由计算公式把频率换算成压力。

关于《建筑边坡工程技术规范GB 50330-2013》的讨论

关于《建筑边坡工程技术规范GB 50330-2013》的讨论

关于《建筑边坡工程技术规范GB 50330-2013》的讨论2015-09-14 08:52 来源:中国岩土网阅读:3793《建筑边坡工程技术规范 GB 50330-2013》[1](以下简称《边坡规范》或“该规范”)于2013年出版,2014年6月实施。

与旧版比较,有一些进步。

例如删去了原版中不合理的动水压力计算,采用了隐式的传递系数法,取消了工作条件系数等。

但仍有一些不尽如人意之处,作为国家规范,它略显粗糙;附图中有一些未加说明的标注;一些公式也未交代清楚,给使用造成较大困难;还有一些概念上的错误,可能造成严重的后果。

这里提出一些意见以供讨论。

关于《建筑边坡工程技术规范GB 50330-2013》的讨论李广信记得前几年在一次土动力学会议上,邀我作一个报告,于是就从道德经开始,“反者道之动,弱者道之用”,讲了一通法家与道家的哲学。

提出建筑不要一味加强、加固,以铁柱钢墙与强大的自然力对抗。

而应顺应自然,以柔克刚。

介绍了世界上十余处加筋土结构在强地震中,从未发生结构性的破坏的案例。

报告后大家还比较认同。

但多事者推荐到《世界地震工程》期刊,编辑来函告知:我刊是一份严肃的学术期刊,请把1000余字的哲学部分删去。

所以以后在“严肃的学术期刊”上再不敢胡说了,只好在网上聊聊过瘾。

看到网上彭总边坡规范的讨论,这里献上一篇严肃的论文,供批评指正。

0引言《建筑边坡工程技术规范 GB 50330-2013》[1](以下简称《边坡规范》或“该规范”)于2013年出版,2014年6月实施。

与旧版比较,有一些进步。

例如删去了原版中不合理的动水压力计算,采用了隐式的传递系数法,取消了工作条件系数等。

但仍有一些不尽如人意之处,作为国家规范,它略显粗糙;附图中有一些未加说明的标注;一些公式也未交代清楚,给使用造成较大困难;还有一些概念上的错误,可能造成严重的后果。

这里提出一些意见以供讨论。

1.荷载与设计方法1.1作用与效应《工程可靠性设计统一标准(GB 50153-2008)》[2]指出,作用是“施加在结构上的集中力或分布力(直接作用,也称荷载)和引起结构外加变形或约束的原因(间接作用)”。

水利工程常用计算公式

水利工程常用计算公式

水利专业常用计算公式一、枢纽建筑物计算1、进水闸进水流量计算:Q=B 0δεm(2gH 03)1/2式中:m —堰流流量系数ε—堰流侧收缩系数2、 明渠恒定均匀流的基本公式如下:流速公式:u =RiC 流量公式 Q =Au =A RiC 流量模数K =A RC 式中:C —谢才系数,对于平方摩阻区宜按曼宁公式确定,即C =6/1n 1RR —水力半径(m );i —渠道纵坡;A-过水断面面积(m 2);n —曼宁粗糙系数,其值按SL 18确定。

3、水电站引水渠道中的水流为缓流。

水面线以a1型壅水曲线和b1型落水曲线最为常见。

求解明渠恒定缓变流水面曲线,宜采用逐段试算法,对棱柱体和非棱柱渠道均可应用。

逐段试算法的基本公式为△x=f21112222i -i 2g v a h 2g v a h ⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+ 式中:△x-—流段长度(m);g ——重力加速度(m/s ²);h 1、h 2——分别为流段上游和下游断面的水深(m );v 1、v 2——分别为流段上游和下游断面的平均流速(m/s );a 1、a 2—-分别为流段上游和下游断面的动能修正系数;——流段的平均水里坡降,一般可采用⎪⎭⎫ ⎝⎛+=-2f 1f -f i i 21i 或⎪⎪⎭⎫ ⎝⎛+=∆=3/4222224/312121f f v n R v n 21x h i R 式中:h f -—△x 段的水头损失(m);n 1、n 2——分别为上、下游断面的曼宁粗糙系数,当壁面条件相同时,则n 1=n 2=n ;R 1、R 2——分别为上、下游断面的水力半径(m);A 1、A 2——分别为上、下游断面的过水断面面积(㎡);4、各项水头损失的计算如下:(1)沿程水头损失的计算公式为⎪⎪⎭⎫ ⎝⎛+∆=3/4222223/412121f v n v n 2x h R R (2)渐变段的水头损失,当断面渐缩变化时,水头损失计算公式为:L f 2122c f c i g 2v g 2v f h h h -+⎪⎪⎭⎫ ⎝⎛-=+=ω 5、前池虹吸式进水口的设计公式(1)吼道断面的宽高比:b 0/h 0=1.5—2。

现场地层压力计算

现场地层压力计算

现场地层压力计算在此处键入公式。

六、地层压力计算1、地层孔隙压力和压力梯度 (1)地层孔隙压力Hg p f p ⨯⨯⨯=-ρ310式中,P p ——地层孔隙压力(在正常压实状态下,地层孔隙压力等于静液柱压力),MPa ;ρf ——地层流体密度,g/cm 3; g ——重力加速度,9.81m/s 2;H ——该点到水平面的重直高度(或等于静液柱高度),m 。

在陆上井中,H 为目的层深度,起始点自转盘方钻杆补心算起,液体密度为钻井液密度ρm ,则,Hg pm h⨯⨯⨯=-ρ310式中,p h ——静液柱压力,MPa ; ρm ——钻井液密度,g/cm 3; H ——目的层深度,m ; g ——重力加速度,9.81m/s 2。

在海上钻井中,液柱高度起始点自钻井液液面(出口管)高度算起,它与方补心高差约为0.6~3.3m ,此高差在浅层地层孔隙压力计算中要引起重视,在深层可忽略不计。

(2)地层孔隙压力梯度HP G P p =式中 G p ——地层孔隙压力梯度,MPa/m 。

其它单位同上式。

2、上覆岩层压力及上覆岩层压力梯度 (1)上覆岩层压力])1[(1081.93o ρρΦ+Φ-⨯=-m H P式中 P o ——上覆岩层压力,MPa ; H ——目的层深度,m ;Φ——岩石孔隙度,%;ρ——岩层孔隙流体密度,g/cm 3; ρm ——岩石骨架密度,g/cm 3。

(2)上覆岩层压力梯度HP G oo= 式中,G o ——上覆岩层压力梯度,MPa/m ;P o ——上覆岩层压力,MPa ; H ——深度(高度),m 。

(3)压力间关系zp P p O σ+=式中,P o ——上覆岩层压力,MPa ; P p ——地层孔隙压力,MPa ;σz ——有效上覆岩层压力(骨架颗粒间压力或垂直的骨架应力),MPa 。

3、地层破裂压力和压力梯度 (1)地层破裂压力(伊顿法)pp z f P P P +--=)(1σμμ式中, P f ——地层破裂压力(为岩石裂缝开裂时的井内流体压力),MPa ; μ——地层的泊松比;σz ——有效上覆岩层压力,MPa ; P p ——地层孔隙压力,MPa 。

水利工程常用计算公式

水利工程常用计算公式

水利专业常用计算公式一、枢纽建筑物计算1、进水闸进水流量计算:Q=B 0δεm (2gH 03)1/2式中:m —堰流流量系数ε—堰流侧收缩系数2、 明渠恒定均匀流的基本公式如下:流速公式:u = RiC 流量公式Q =Au =A RiC 流量模数K =A RC 式中:C —谢才系数,对于平方摩阻区宜按曼宁公式确定,即C =6/1n 1RR —水力半径(m );i —渠道纵坡;A —过水断面面积(m 2);n —曼宁粗糙系数,其值按SL 18确定。

3、水电站引水渠道中的水流为缓流。

水面线以a1型壅水曲线和b1型落水曲线最为常见。

求解明渠恒定缓变流水面曲线,宜采用逐段试算法,对棱柱体和非棱柱渠道均可应用。

逐段试算法的基本公式为△x=f21112222i -i 2g v a h 2g v a h ⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+ 式中:△x ——流段长度(m );g ——重力加速度(m/s2);h 1、h 2——分别为流段上游和下游断面的水深(m );v 1、v 2——分别为流段上游和下游断面的平均流速(m/s );a 1、a 2——分别为流段上游和下游断面的动能修正系数;f i ——流段的平均水里坡降,一般可采用⎪⎭⎫ ⎝⎛+=-2f 1f -f i i 21i 或⎪⎪⎭⎫ ⎝⎛+=∆=3/4222224/312121f f v n R v n 21x h i R式中:h f ——△x 段的水头损失(m ); n 1、n 2——分别为上、下游断面的曼宁粗糙系数,当壁面条件相同时,则n 1=n 2=n ; R 1、R 2——分别为上、下游断面的水力半径(m );A 1、A 2——分别为上、下游断面的过水断面面积(㎡);4、各项水头损失的计算如下:(1)沿程水头损失的计算公式为⎪⎪⎭⎫ ⎝⎛+∆=3/4222223/412121f v n v n 2x h R R (2)渐变段的水头损失,当断面渐缩变化时,水头损失计算公式为:L f 2122c f c i g 2v g 2v f h h h -+⎪⎪⎭⎫ ⎝⎛-=+=ω 5、前池虹吸式进水口的设计公式(1)吼道断面的宽高比:b 0/h 0=—;(2)吼道中心半径与吼道高之比:r 0/h 0=—;(3)进口断面面积与吼道断面面积之比:A 1/A 0=2—;(4)吼道断面面积与压力管道面积之比:A 0/A M =1—;(5)吼道断面底部高程(b 点)在前池正常水位以上的超高值:△z=—;(6)进口断面河吼道断面间的水平距离与其高度之比:l/P=—;6、最大负压值出现在吼道断面定点a 处,a 点的最大负压值按下式确定:γανp *w 20a h g 2h h -+++Z +∆Z =∑、B式中:Z —前池内正常水位与最低水位之间的高差(m );h 0—吼道断面高度(m );∑w h—从进水口断面至吼道断面间的水头损失(m ); γ/p *—因法向加速度所产生的附加压强水头(m )。

土的有效应力原理

土的有效应力原理

土的有效应力原理土的有效应力是土体中颗粒间的相互作用所产生的一种应力状态,它对土体的力学性质和变形特性具有重要影响。

有效应力原理是土力学中的基本原理之一,对于土体的稳定性、变形特性和力学性质具有重要的指导意义。

本文将从土的有效应力原理的定义、计算公式、影响因素和工程应用等方面进行探讨。

首先,我们来看一下土的有效应力的定义。

土体中存在着孔隙水和孔隙气,当外界施加荷载时,孔隙水和孔隙气会受到压缩,从而产生与土体颗粒间的相互作用所产生的应力。

而有效应力则是指这种应力状态下,颗粒间的实际有效作用力。

在土体中,有效应力可以通过有效应力公式σ' = σ u来计算,其中σ'为有效应力,σ为总应力,u为孔隙水压力。

有效应力的计算公式为土力学中的基本公式之一,它为我们分析土体力学性质提供了重要的理论基础。

其次,土的有效应力受到多种因素的影响。

首先是孔隙水压力的影响。

当孔隙水压力增大时,有效应力会减小,从而导致土体的稳定性降低。

其次是土体的孔隙度和颗粒大小分布。

孔隙度越大,颗粒分布越不均匀,有效应力会减小,土体的稳定性也会降低。

此外,土体的孔隙水排泄能力、孔隙水的流动性等因素也会对有效应力产生影响。

最后,土的有效应力原理在工程中具有重要的应用价值。

在土体的工程设计和施工中,我们需要根据土体的有效应力特性来选择合适的工程方案和施工方法。

比如在基础工程中,需要考虑土体的有效应力分布情况,以保证基础的稳定性和安全性。

在挖掘和填土工程中,也需要考虑土体的有效应力特性,以避免土体的塌陷和变形。

因此,深入理解土的有效应力原理对于工程实践具有重要的指导意义。

综上所述,土的有效应力原理是土力学中的基本原理之一,它对土体的力学性质和变形特性具有重要影响。

通过对土的有效应力的定义、计算公式、影响因素和工程应用等方面的探讨,我们可以更好地理解土的有效应力原理,并在工程实践中加以应用,保证工程的稳定性和安全性。

希望本文能对相关领域的研究和实践工作提供一定的参考和帮助。

孔隙水压力

孔隙水压力
应力和孔隙水压力 u
• 总应力 wh(64)
• 孔隙水压力 u 5w
.
10
(2)确定水深h • 当发生流土时,O点处的有效应力 =0,
即 u w h 2 5 w 2 ( 5 h )w 0
取 1k8/N m 3 ,w 9 .8 k/N m 3
• 代入上式,解得
h1.3m 3
a12p e1 2 ep 2100 .9 .2 10 0..8 1 50.6M 0a 1p
a120.6M 0a 1 p0.5M 0a 1p
该土为高压缩性
.
35
小结
1. 土的压缩性概念:压缩性、固结、土的 弹塑性变形、土的固结状态等;
2. 侧限压缩试验:研究土的压缩性
建立压缩曲线 e~ p
3. 压缩性指标: 压缩系数 a v
3. 固结:土体压缩变形随时间增长的过程。
.
19
(二)侧限压缩试验
1. 侧限压缩仪 • 试样只能产生竖直 方向变形。
2. 测读各种压力下
稳定之后变形量 si
3. 压缩试验成果表示:
• s ~ p 关系曲线
• e~ p 关系曲线
• e ~ lg p 关系曲线
.
20
4.各级压力下孔隙比e的推求
加荷前
压缩指数 c c
压缩模量 E s
.
36
思考题
1. 何谓土的压缩性?引起土体压缩的主要 原因有哪些?
2. 一种土的压缩系数是否为常量?为什么? 如何判断土的压缩性?
.
37
1
2.75 9.8(10.3)81 1.82
1.04
• •
根据公式 ei e0(1e0)H 0si
计算压缩稳定后的孔隙比 e i

地下水与孔隙水压力

地下水与孔隙水压力
• 1微地貌和地质成因,河漫滩、低阶地、 古河道最易液化; • 2成层条件,夹粘性土有抑制喷水冒砂的 作用; • 3颗粒级配,粒度均匀的粉细砂最易液化; • 4历史上发生过液化的地段最易重复发生, • 综合判断。
液化原因和宏观标志
• 在地震动作用下,松砂和密度小的粉土 发生剪缩,孔隙水压力急剧增长,不能 及时消散,使有效强度丧失 • 液化对工程的危害表现喷水冒砂和滑移。 宏观液化的标志 • 喷水冒砂与超静水压力渗流有关
正常固结粘土与超固结粘土的 三轴固结不排水试验
静态液化
不同密度饱和砂土的固结不排水试验 ( a)应力遍变关系曲线 (b)孔隙水压力 (c)有效应力路径
静态液化
• 孔隙比大于临界孔隙比的松砂,应变软 化,剪缩趋势,随着应变的加大,超静 水压力急剧上升,有效应力迅速降低, 砂土呈流动状态。
• 临水松砂的“流滑”就是这种静态液化,
F s

m t
p w
流砂及其他渗流引起的破环
• 常把流砂和流土混为一谈, 实际上流砂的 范围更广一些。 • 流土发生在垂直向上渗流 • 而流砂可能发生在任何方向。 • 止水蜼幕的基坑,坑外地下水向下渗流, 坑内向上渗流,向下的渗透力增加主动 土压力,向上渗透力减少被动土压力。
3 超静水压力
超静水压力的特性
7
• • • • •
静水压力特征
压力的等向性 压力的三角形分布 与土的渗透系数无关 与土的孔隙度无关
工 程
含水层

弱透水层
孔隙水中静水压力的传递
• 砂土、粉土、粘性土 • 均适用有效应力原理 • 包括水压力、浮力 • 密实的硬粘土,是否传递水压力?是否 服从达西定律而流动? • 是否作用静水压力?地下结构上是否作 用完全的浮力?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档