岩气稳定同位素连续流分析技术研究样本

岩气稳定同位素连续流分析技术研究样本
岩气稳定同位素连续流分析技术研究样本

页岩气取样及其烃类、二氧化碳、硫化氢等C、H、O、S 同位素连续流

分析技术研究

1、国外现状

烃类碳氢同位素组成的分析技术一直是困扰同位素地球化学研究和应用的关键问题之一。20世纪90年代之前, 对天然气等有机质碳氢同位素的测试是首先将天然气制备成CO及H2,然后送质谱分析。步骤为:将天然气在气相色谱仪(GC)中分离出CH、CH CsH、CM。等;将甲烷及其同系物逐个在高温下的过量氧气中燃烧为CO和H2O;将产生的水在高温下用锌、铀或者镉还原法制备成H2;最后将CO及H2样品管分别与同位素质谱计(IRMS)联接,进行碳氢同位素测试。此方法的工序繁多, 重复性差, 在控制严格的条件下, 碳氢同位素标准偏差可控制在1%o及5%0以内。

大气中CO碳氧同位素的分析始于上个世纪中后期,国外专家利用传统的双路方法分析, 使用超过400ml 的空气来提取CO2。1990 年, 科罗拉多大学稳定同位素实验室采取了大量的空气样品, 进行CO2 的碳稳定素研究, 用VG SIRA Series II 双路质谱仪能够得到 C O同位素的精度分别为0.3 %。、0.5 %°。

对于硫化氢而言, 硫同位素是研究其成因的最有效手段。由于硫化氢极强的腐蚀性, 需要在现场将其转化为稳定的硫化物, 方可送入实验室分析。在天然气的试气现场, 在各项安全保护措施到位的情况下, 可将高含硫化氢页岩气经过导管输入到饱和的乙酸锌(Zn(CH3COO2)?2HO)溶液中,反应后形成大量白色ZnS 沉淀物,带回实验室烘干,将样品中的硫转化为SO,采用Finnigan MAT公司的MAT251同位素质谱仪,进行质谱分析,最后测量获得硫化物的S 34S值,分析精度为±0.2%。

随着质谱技术的发展, 国外于上世纪末出现了在线连续流技术, 对页岩气烃类、二氧化碳、硫化氢等C、H、O、S 同位素的测定更为高效, 便捷。

20世纪90年代后期, 随着对碳氢同位素研究的需要, 高精度专用质谱仪器得

到了发展, 使碳氢同位素的研究进入了新的阶段。美国ThermoFinnigan 公司于1998年制造了GC/TC/IRMS色质谱联用仪,其由气相色谱、转换炉及同位素

质谱计组成。该仪器的创新在于气相色谱高温转化, 并实现了有机物单个分子碳氢同位素的在线分析, 特别是石油、天然气单体烃的碳氢同位素的在线分析。

Ferretti于在新西兰创造了在线连续流GC与质谱仪IRMS连用的技术。测试流程为用气体进样针吸入一定体积的大气,将样品注入GC注射器中,大气样品在高纯He气流带动下,进入色谱柱分离,之后CO气体进入质谱测量,N 20峰与CO峰能够有效的分离开,C同位素测试精度为0.2 %°。

对于含有硫化氢页岩气, 美国ThermoFinnigan 公司创造了元素分析仪与同位素质谱仪连用技术, 可在线测试硫化氢S 同位素。测试时需要安装专用的Teflon 管、色谱柱、反应器。用气体进样针吸入一定量的页岩气, 注入元素分析仪,混合气体被He带入1020C的反应器中,与Q迅速反应,在氧化剂及还原剂的作用下生成2、CO2、H2O SO2,混合气体在90 ml/min的He气流带动下, 经过干燥剂除水, 色谱柱分离, 经过石英毛细管进入质谱分析。该方法测试页岩气S同位素的外精度0.5 %0

2、国内现状

在中国, 由于技术设备和其它一些因素的限制, 稳定同位素研究的发展受到一些影响,大气CO碳稳定同位素组成方法研究很少,天然气或页岩气C、H、O、S 同位素组成的研究更少0

早期国内对大气CO碳稳定同位素分析多是借鉴国外经验,引进国外设备建立起来的0 80 年代末期, 中国科学院兰州地质研究所的张柳明等, 研究中国西北地区大气CO碳同位素组成,采样容器为250ml带真空磨口阀的玻璃瓶,接入自制CO提纯装置,得到纯净CO气体,之后用质谱仪MAT251测试,测量精度为

0.2 %°。

20 世纪90 年代后期, 国内引进了一些高精度仪器, 例如美国Thermo Finnigan 公司制造的GC/C-TC-IRMS色质谱联用仪。该仪器由HP6890气相色谱、燃烧转换炉、接口和Delta PlusXP 质谱仪组成。利用该仪器在进行天然气碳氢同位素测试时直接将天然气注入气相色谱,Ci?C4轻烃类经过色谱柱分离,依次在高温转换炉中将其分解为CO和H2,而CO和H2进入同位素质谱仪可得到C?C4轻烃类C H同位素组成。这样,减少了以前测试过程中繁杂的提取环节,既环保, 又使其精度大大提高。该仪器的碳、氢同位素测试精度可达0.2%及3%。

运用PreCon-GC-IRMS在线连续流技术,使大气中C02碳同位素测试更为简

便。曹亚澄( ) 利用全自动浓缩接口PreCon, 两头带阀门的玻璃样品瓶, 体积为100 ml。基于大气中CO的浓度远高于CH和20,且极易被液氮冻结,因此分析CO时,不采用100 ml的玻璃气样瓶,而特制了一种体积只有5 ml的钢制样品管。向抽空的样品管内注入约5ml的空气样品。样品管装于PreCon上,待He 气吹扫过样品管接口后, 打开样品管两端的阀门, 用He 气将样品气体吹进-196 C的冷阱,冻结CO,采样时间为60 s。当冷阱离开液氮瓶时,解冻析出的CO随即被转移至另一个冷阱中,然后流进GC色谱柱中进行分离,最后进入质谱分析, 分析误差为± 0.2%。

当前, 核工业北京地质研究院分析测试研究所稳定同位素实验室运用Thermofisher制造的MAT25直接与GC/C连用,使用100卩I气体进样针吸入50 卩l页岩气样品,将样品注入GC/C注射器中,页岩气烷烃在流速为1.1ml/s的He 气流带动下, 进入温度为阶段升温的色谱柱分离, 依次在高温转换炉中将其分解为CO和也进入同位素质谱仪可得到G?G轻烃类C、H同位素组成,其精度为0.2%、2%。

本实验室运用PreCon-GB-IRMS在线连续流技术,可实现页岩气中CO碳氧

同位素的同时测量, 样品气在He 的带动下, 经过水阱除水, 经过氧化炉, N 2O 及

CO气体被液氮冷冻在冷阱T2中并收集,其它不冻气体被排到空气中,之后将T2中的CO气体转移到冷阱T3中,最后CO气体流进色谱柱中分离进入质谱仪测试。该方法可有效的将土壤气中NIO与CO分开,C、O同位素测试外精度

分别为0.2 %。、0.3 %。。

利用Flash EA-Conflo IV-IRMS, 本实验室可实现页岩气硫化氢的硫同位素在线测试。用气体进样针吸入约50卩l的页岩气,注入元素分析仪,混合气体被He带入1020E的反应器中,与Q迅速反应,在氧化剂及还原剂的作用下,H2S 生成"O

SO2,其它气体生成2、CC2、H2O等。混合气体经过干燥剂除水,色谱柱分离,可得到较好的SO质谱峰,测试精度为0.5 %°。

3、本实验室技术条件、指标

测试页岩气中C、H、O、S 稳定同位素用到的仪器为稳定同位素质谱仪MAT253、在线连续流装置GC/G预浓缩装置PreCon元素分析仪FlashEA 1112 HT。

1、MAT 253

分辨率200( 10%峰宽) , 绝对灵敏度800(分子/离子) , 离子源线性

0.02 % /nA,样品消耗0.1 nm ol/S, H 3+因子v 10ppm/nA,加速电压10 KV,分析器有效半径46cm( CNOS),放大器输出范围0?50V,分析精度0.01 %°。

2、GC/C

夕卜精度0.2 %, 100卩l气密性气体进样针,He流速1.1ml/S,柱头温度最高可调至280C,色谱柱温度最高可至300r0

3、PreCon

PreCon氦气压力100kPa GB氦气压力110kPa GB参考气压力110kPa; PreCon氧化炉温度25C、GB色谱柱温度50C ; 13C及18O精度分别为0.2 %。、

0.3 %。。

4、FlashEA 1112 HT

Q压力0.15MPa, Conflo 接口处CO、N2及He气压力0.1 MPa; Flash EA 的He气流速300 ml/min,色谱柱箱的温度85C ,加热炉的温度为1020C ; S 同位素测量精度为0.5%。

4、分析技术方法

( 1) 气体取样

页岩气出气压力较大, 采样人员需要使用护目镜和面罩, 并使用压力表来显示系统压力, 使用泄漏检测器来检查系统是否泄漏, 配备防护手套及有害组分监测器。

在各项安全保护措施到位的情况下, 在页岩气采气井口密封取样, 将页岩气导入真空高压钢瓶中。实验室内经过减压阀释放到真空塑料气袋中, 供分析使用。

( 2) 分析方法

① GC/C-IRMS测定页岩气烷烃C H同位素

如图1所示,GC/C主要有注射器、色谱柱、四通阀、燃烧炉、还原炉、水阱、分流器等组成。为了保证测定值的精度, 每个单体碳氢同位素值至少测定两次以上, 测定结果的标准偏差小于0.2%、2%。

直进模式

图1 GC/C 工作原理示意图 页岩气碳同位素的检测采用 MAT 253同位素质谱仪;用100卩l 气体进样针 吸入50卩l 气体,将样品注入GC/C 注射器中;10秒打开参考气,30秒关闭参考 气,完成一个参考气样的测试;50秒打开参考气,70秒关闭参考气,完成第二 个参考气测试;页岩气样品(C~C )在GC/C 气相色谱仪中经过色谱柱 (Poraplot Q 色谱分离柱:25m x 0.32mn K 10卩m )分离为单组分,色谱仪初始 炉温 40C ,恒温 4mi n,以 10°C /min 升至 80°C ,以 5°C /min 升至 140C ,以 30C /min 升至260C ,保持

2min;单组分烃类经过高温转化炉(温度940C )转化为 CO 后分别进入同位素质谱仪测定碳同位素组成。

页岩气组分氢同位素的检测采用 MAT253同位素质谱仪,天然气样品(G~C ) 在GC/C 气相色谱仪中经过色谱柱(Poraplot Q 色谱分离柱:25m x 0.32mm X 10 卩m )分离为单组分,单组分烃类经过高温转化炉(温度1400C )转化为”后直 接进入同位素质谱仪测定氢同位素组成。色谱仪初始炉温

40C ,恒温4min,以

HeHTVA 3 X2 分流

open

10°C /min 升至 80C ,以 5°C /min 升至 140C ,以 30°C /min 升至 260C ,保持 2mi n 。

② PreCon-GB-IRMS 测量页岩气中CO 碳氧同位素

如图2所示,Precon 痕量气体预浓缩装置主要由样品瓶、

化学阱及三个冷

阱T1、T2、T3组成。 图2 PreCon 工作原理示意图

PreCon 氦气压力1.5 bar 、GB 氦气压力1.20 bar 、GB 参考气压力1.1 bar; PreCon 氧化炉温度25C 、GB 色谱柱温度25C 。质谱仪真空度2.1 x 10-6 MBar, 加速电压 9.460 KV, Box 电流 0.6 mA, Trap 电流 0.9 mA 。

页岩气中CO 含量较高,特制了一个由两个真空金属阀门及不锈钢管道组成 的样品管,体积约1ml,可方便连接于PreCon 上

VflkiQ 內 |>n|

* post oalumri inleriac^ T2 T3 GC tide

wii

ch^rntca :

irap

Mg LU O ( I.

A ■> * 9 ¥

haiium supply or

spliv&pliiless

rn|Mtor

PCIDC M OI d 巧 ii-

Y

J 仪b~i i

man ua

ProCan sida

碳稳定性同位素分析食物网中能量流动审批稿

碳稳定性同位素分析食物网中能量流动 YKK standardization office【 YKK5AB- YKK08- YKK2C- YKK18】

碳稳定性同位素分析食物网中能量流动 摘要:随着科学技术发展,稳定性同位素已经广泛应用在生态学研究的诸多领域。在研究食物网中能量流动关系时,稳定性同位素能提供更迅速、客观的分析。此次实验利用碳稳定性同位素技术对受到人类破坏或其他因素影响的选定区域分析其食物网中的能量流动,旨在研究该区域生物之间的能量流动关系,从而对该区域采取合理的保护措施。 关键词:碳稳定性同位素;食物网;能量流动;δ13C值 Carbon Stable Isotopeanalyzes Studies Energy Flux in Food Web ABSTRACT: Stable isotopehas been widely used in various fields in ecology studieswith the development of science and isotope can provide rapider and more objective analysis when researching energy flux relationship in the food web. In the process of this experiment, we analyze the energy flux relationship in the food web of the chosen areas that are destroyed by human beings or affected by other factors by means of carbon stable isotope technology, with the aim of researching the energy flux relationship among population in this area, consequently we can adopt reasonable protective measures in this areas. KEY WORDS: Carbon stable isotope;food web;energy flux;δ13C 一.研究背景 随着世界人口的持续增长和人类活动范围与强度的扩展和增加,地球上的生物多样性逐渐降低。例如,持续不断地砍伐树木已经导致世界上大量树木物种面临灭种的危险;环境污染使得动植物的栖息地环境遭到严重的破坏,致使物种数量锐减[1]。在某一区域中,动植物数量的减少还有一个很重要的原因,即某些因素(例如栖息地减少和改变、滥捕乱猎、外来物种的引入、污染等[2])导致该区域部分动植物数量的减少,而这进一步通过该区域的食物网影响到区域中其他动植物的种类和数量,进而对整个区域各种生物体造成影响。 食物网是在生态系统中的生物成分之间通过能量传递关系存在着一种错综复杂的普遍联系,直接反映生态系统的结构和功能[3]。生产者制造有机物,各级消费者消耗这些有机物,生产者和消费者之间相互矛盾,又相互依存。不论是生产者还是消费者,其中某一种群数量突然发生变化,必然牵动整个食物网。食物网是生态系统长期发展的进化过程中形成的。人类活动使生态系统中某一生物体种群数量遭到破坏,将使生态平衡失调,甚至是生态系统崩溃[2]。因此,研究食物网中生物的能量流动关系,对于维持生态系统的稳定、利用动物间的相互制约来减缓人类活动对生态系统的破坏具有重要的意义。

稳定同位素应用

高精度稳定同位素技术 同位素指质子数相同而中子数不同的同种化学元素,最常用的稳定同位素有碳-13 (13C)、氮-15(15N)、氢-2 (2H即氘) 和氧(18O)等。因为这些同位素比普通元素重1到2个原子量单位,所以也叫作重元素。稳定同位素(stable isotope) 就是天然同位素或非放射性同位素(non-radioactive isotope),即无辐射衰变,质量保持永恒不变。稳定同位素在自然界无处不在,包括所有化合物、水和大气,所以也就自然地存在于动植物和人体内。其物理化学性质与普通元素相同,所以可用作示踪剂来标记化合物用于科学研究、临床医学和药物生产等几乎所有自然领域。由于没有辐射污染,稳定同位素示踪剂可以用于任何对象,包括孕妇、婴儿和疾病患者,无论是口服还是注射,都绝对安全。 稳定同位素技术的另一特点是其测试定量的高精度和超高精度,达到PPM级(即百万分之一精度),而且同时也测定了化合物的浓度,事半功倍,且降低了测试误差。现在,利用同位素技术人们可以同时测定多个不同的样品,从而提高测定效率。这些高效率、高精度的特点是放射性同位素等技术所不可比拟的。 稳定同位素技术的第三个特点是其示踪能力的微观性和灵活多变性。微观性是指它可以用来标记、追踪化合物分子内部某个或多个特定原子,比如葡萄糖分子中各个原子在人体内的不同代谢途径, 哪些原子进入三羧酸循环产生能量,而哪些原子进入脂肪代谢途径参与脂肪合成。多变性是指通过对同位素标记位点的合理选择和巧妙设计来追踪、定性定量测定化合物的不同代谢途径或者生成过程。 由于以上特性,自上世纪中叶特别是70年代以来稳定同位素技术在科技先行国家被广泛应用于医学、营养、代谢、食品、农业、生态和地质等研究和生产领域。近年来在药物研发生产以及新兴的基因工程、蛋白质组学(proteomics)、代谢组学(metabolomics) 和代谢工程(metabolic engineering) 等前沿领域,稳定同位素技术已成为一种应用广泛、独特高效甚至必须的技术,显著地提高了解决科学问题的能力和生产效率。最新近的例子是德国科学家用碳13氨基酸通过三代喂养成功地标记了动物全身的所有蛋白质而获得了细胞代谢的重要发现。这一崭新的技术堪比当年的聚合酶连锁反应技术(PCR), 必将迅速得到广泛的推广和应用,有力地推动生命科学的发展。稳定同位素在自然界的无所不在意味着该技术应用的普遍性,有大自然显微镜的独特功能,将揭开越来越多的大自然和人体的奥秘。

岩气稳定同位素连续流分析技术研究样本

页岩气取样及其烃类、二氧化碳、硫化氢等C、H、O、S 同位素连续流 分析技术研究 1、国外现状 烃类碳氢同位素组成的分析技术一直是困扰同位素地球化学研究和应用的关键问题之一。20世纪90年代之前, 对天然气等有机质碳氢同位素的测试是首先将天然气制备成CO及H2,然后送质谱分析。步骤为:将天然气在气相色谱仪(GC)中分离出CH、CH CsH、CM。等;将甲烷及其同系物逐个在高温下的过量氧气中燃烧为CO和H2O;将产生的水在高温下用锌、铀或者镉还原法制备成H2;最后将CO及H2样品管分别与同位素质谱计(IRMS)联接,进行碳氢同位素测试。此方法的工序繁多, 重复性差, 在控制严格的条件下, 碳氢同位素标准偏差可控制在1%o及5%0以内。 大气中CO碳氧同位素的分析始于上个世纪中后期,国外专家利用传统的双路方法分析, 使用超过400ml 的空气来提取CO2。1990 年, 科罗拉多大学稳定同位素实验室采取了大量的空气样品, 进行CO2 的碳稳定素研究, 用VG SIRA Series II 双路质谱仪能够得到 C O同位素的精度分别为0.3 %。、0.5 %°。 对于硫化氢而言, 硫同位素是研究其成因的最有效手段。由于硫化氢极强的腐蚀性, 需要在现场将其转化为稳定的硫化物, 方可送入实验室分析。在天然气的试气现场, 在各项安全保护措施到位的情况下, 可将高含硫化氢页岩气经过导管输入到饱和的乙酸锌(Zn(CH3COO2)?2HO)溶液中,反应后形成大量白色ZnS 沉淀物,带回实验室烘干,将样品中的硫转化为SO,采用Finnigan MAT公司的MAT251同位素质谱仪,进行质谱分析,最后测量获得硫化物的S 34S值,分析精度为±0.2%。 随着质谱技术的发展, 国外于上世纪末出现了在线连续流技术, 对页岩气烃类、二氧化碳、硫化氢等C、H、O、S 同位素的测定更为高效, 便捷。 20世纪90年代后期, 随着对碳氢同位素研究的需要, 高精度专用质谱仪器得

稳定同位素样品处理技术

稳定同位素样品处理技术 1、固体样品 固体样品在进行同位素质谱分析之前必须进行干燥、粉碎、称量等处理步骤。 1.1干燥 样品可以放在透气性好,而且耐一定高温的器具或取样袋中,然后在60~70℃的干燥箱进行干燥24~48小时。 注意:烘干的样品要及时研磨或者保持干燥,否则有返潮现象,给磨样造成困难,而且影响同位素数据。 1.2酸处理 将土壤样品适当粉碎(为了更好的反应),放在小烧杯中,倒入适量浓度的盐酸(浓度一般用0.5mol/L),这时会发现有小气泡冒出,这是盐酸与土壤中的无机碳反应产生的CO2,用玻璃棒搅拌使反应更完全,可以间隔1小时搅拌一次使之充分反应。反应至少6小时,除去土壤中的无机碳,沉淀,倒掉上层清夜;再用去离子水搅拌洗涤,沉淀,倾倒上层清夜,重复3~4次,充分洗净过量盐酸;然后烘干土壤样品(条件同上)。 注意:测定碱性土壤中的有机C同位素,在干燥之前需要进行酸处理。因为采集的土壤样品中含有无机碳,会影响到我们需要的数据。 1.3粉碎 经过烘干的样品需要粉碎才能进行分析,为了保证样品的均匀,粉碎程度至少要过60目的筛子。粉碎可以用研钵、球磨机或混合磨碎机来等来处理。 1.4样品整理 磨好的样品放在合适的包装里,如小瓶子、小信封或自封袋里,最好密封保存。以数字和英文字母做标记区别样品。 1.5称量 经过干燥和粉碎处理的样品在分析之前还得放在锡箔帽中称量。用微量分析天平(同位素实验室专用),样品量可以精确到0.001mg (百万分之一天平)。称样前,先将所需工具及样品排放好,所需工具包括样品垫、样品盘、镊子、勺子。先调天平平衡,看水泡是否在圆圈内,在圆圈内则表示天平平衡。在称量过程中尽量不要碰桌子,减少对天平的影响。称量时,先将锡帽放进天平内,等天平显示的数字稳定时调零,然后将锡帽取出放在样品垫上,放适量样品至锡帽中,样品的量根据测定的同位素以及样品中的含量而定。称量最终质量并作记录。然后将锡帽团用镊子或拇指和食指轻轻用力团成小球。已经称量并用锡箔包好的样品放在专门的样品盘里,并附带一份质量表格,保存。 注意:任何时候不能由裸露的双手触摸样品或锡帽。若用手操作,须带上无尘橡胶手套。并确保包好的样品没有泄漏。样品盘中样品的标记对应记录本上的标记。(只要同位素比率值的不需要记录质量数,而需要全N或全C量的则需要记录质量数)。

第十讲稳定同位素地球化学

第十讲 地质常用主要稳定同位素简介 18O Full atmospheric General Circulation Model (GCM) with water isotope fractionation included.

内容提要 ●基本特征●氢同位素●碳同位素●氧同位素●硫同位素

10.1. 传统稳定同位素基本特征 ?只有在自然过程中其同位素分馏变化为可测量范围的元素,才能应用于地质研究用途,这些元素的质量范围多<40; ?多为能形成固、气、液多相态物质的元素,其稳定同位素组成可发生较大程度变化。总体上,重同位素趋于在结合紧密的固相物质中富集;重同位素趋于在氧化价态最高的物相中富集; ?生物系统中的同位素变化常用动力效应来解释。在生物作用过程中(如光合作用、细菌反应及其它微生物过程),相对于反应初始组成,轻同位素趋于在反应生成物中富集。

10.2. 氢(hydrogen) ?直到1930年代,人们才发现H不是由1 个同位素,而是由两个同位素组成: 1H:99.9844% 2H(D):0.0156% ?在SMOW中D/H=155.8 10-6 ?氢还有一个同位素氚(3H),但为放射性核素,半衰期仅为~12.5y。

10.2.1 氢同位素基本特征 ?与多数重元素的同位素组成不同,太阳系物质具有高度不均一的氢(氧)同位素组成,尤其是内地行星与彗星之间; ?1H与D同位素间质量相对差最大,在地球样品中表现出最大的稳定同位素变化(分馏)范围; ?从大气圈、水圈直至地球深部,氢总是以H O、OH-, 2 H2、CH4等形式存在,即在各种地质过程中起着重要作用; ?氢同位素以 D表示,其同位素测量精度通常为0.5‰至2‰(相对其它稳定同位素偏低)。

稳定同位素技术的发展及其应用

核技术与核安全课程作业 稳 定 同 位 素 技 术 的 发 展 及 其 应 用

原子核内质子数相同而中子数不同的一类原子称为同位素,它们处在周期表上的同一位置,可分为稳定性同位素和放射性同位素。放射性同位素的原子核是不稳定的,它通过自发的放出粒子而衰变成另一种同位素。而不具有放射性的同位素称为稳定同位素,其中一部分是由放射性同位素通过衰变后形成的稳定产物,称为放射成因同位素;另一部分是天然的稳定同位素,是核合成以来就保持稳定,迄今为止还未发现它们能够自发衰变形成其他同位素。自然界中共有1700余种同位素,其中稳定同位素有270余种。有的元素由很多的稳定同位素组成,如第50号元素锡含有10个稳定同位素;而有的稳定同位素却仅仅只有一个稳定同位素,如元素氟、钠等。 稳定同位素较放射性同位素具有安全、无污染、易控制的优点,在地质、生态、医药、农业等领域研究中得到广泛应用。 1.稳定同位素技术的发展过程 稳定同位素的发现比放射性同位素要晚一些,1912年汤姆孙用电磁分析器(近代质谱计的雏形)才第一次确定了氖-20和氖-22的存在;1927年发现了氧的稳定同位素O 17和O 18 ;1932年发现了重氢(D )。1936年尤里等用精馏法从水中富集了O 18,随后又用化学交换法富集了Li 8,C 13,N 15和S 34,不但证实了早年发表过的有关分离的计算理论,同时也发现了化学交换法对大量分离轻同位素很合适的。与此同时也采取了几种物理方法分离了若干种同位素。 在1930-1941年期间稳定同位素分离还处于探索阶段,此时尚无工业规模的生产,少量分离物只是提供研究同位素本身的核性质以及作为示踪原子用。到20世纪50年代后期,由于科学技术的进步及稳定同位素特殊性质的逐步显示,才使之得以迅速发展。我国稳定同位素的研制工作起步于50年代中,60年代首先在农业上获得应用。之后,在医药学中的应用也取得初步成果。目前,我国已有一支稳定同位素的研究、生产机应用的技术队伍,个别产品进入了国际市场。 2.稳定同位素分析技术 稳定同位素分析是分离研究、生产和应用的前提,它是稳定同位素科学技术中不可缺少的组成部分。其中最重要的方法是质谱分析,它用于同位素分析已有70年历史,是经典、常用,准确的方法,适用于各种元素同位素质量和浓度测定以及物质成分和结构分析。近来在样品引入、离子源、分析器以及检出系统等四个主要方面都有重大的改进。在样品引入部分加上气相色谱,构成色质联用仪器,可以分析复杂混合物样品而不必转化为简单气体。此外,现在又出现高压液相色谱与质谱联用的更新技术。在离子化方面出现了许多新型离子化型式,如化学离子化,在离子源中产生的离子基本上是分子离子,谱线要比普通的电子轰击离子化单纯得多,大大提高了检测灵敏度。又如场致离子化和场解吸离子化,它们都是不直接轰击样品分子,是一种软离子化技术,不出现离子碎片,基本上没有同位素效应的干扰问题,可以直接分析多成分的混合物样品,而且不必像GC-MS 那样需要引入适合于气相色谱的诱导体,所以操作更为简单。这对多重标记物的分析十分有利,能测定稀释了一百万倍的样品,最小检测量可低到fs(1510 g)。此外,还有激光离子化、大气压离子化和多点场离子化等。在分析器方面,除了磁场偏转形式外,还有一种简便的四重极质量过滤器,它是用四根圆棒电极(最好是双曲线断面型式)代替了笨重的磁铁。对角线上两根电极互成一对,分别加上高

稳定同位素比例质谱仪(IRMS)的原理和应用

稳定同位素比例质谱仪(IRMS)的原理和应用 祁彪,崔杰华 (中国科学院沈阳应用生态研究所农产品安全与环境质量检测中心,沈阳,110016)同位素质谱最初是伴随着核科学与核工业的发展而发展起来的,同位素质谱是同位素地质学发展的重要实验基础。当前我国同位素质谱技术已深入到矿床同位素地球化学、岩石年代学、有机稳定同位素地球化学、无机稳定同位素地球化学等各个方面,并在国家一系列重大攻关和研究课题中发挥重大作用,如金矿和石油天然气研究、水资源开发等。稳定同位素技术的出现加深了生态学家对生态系统过程的进一步了解,使生态学家可以探讨一些其它方法无法研究的问题。与其它技术相比,稳定同位素技术的优点在于使得这些生态和环境科学问题的研究能够定量化并且是在没有干扰(如没有放射性同位素的环境危害)的情况下进行。有些问题还只能通过利用稳定同位素技术来解决。现在,有许多农业研究机构和大学,已经开始使用高精度同位素质谱计从事合理用肥、果实营养、固氮分析、农药毒性、家畜气候对作物的影响以及食品质量控制等多方面的研究工作。与原子能和地质研究工作相比较,在农业和食品方面应用同位素方法从事科研和检测工作,正处于方兴未艾阶段,随着人类社会发展,对农业的要求越来越高,今后大力开展和普及用现代化方法研究农业增产、改善果实质量以及进行食品质量控制检测的工作前途无限广阔。 一、有关同位素的基本概念 1、同位素(Isotope) 由于原子核所含有的中子数不同,具有相同质子数的原子具有不同的质量,这些原子被称为同位素。例如,碳的3个主要同位素分别为12C、13C和14C,它们都有6个质子和6个电子,但中子数则分别为6、7和8。 2、稳定同位素(Stable isotope) 同位素可分为两大类:放射性同位素(radioactive isotope)和稳定同位素(stable isotope)。 凡能自发地放出粒子并衰变为另一种同位素者为放射性同位素。 无可测放射性的同位素是稳定同位素。其中一部分是放射性同位素衰变的最终稳定产物。例如206Pb 和87Sr等。另一大部分是天然的稳定同位素,即自核合成以来就保持稳定的同位素,例如12C和13C、18O 和16O等。与质子相比,含有太多或太少中子均会导致同位素的不稳定性,如14C。这些不稳定的“放射性同位素”将会衰变成稳定同位素。 3、同位素丰度(Isotope abundance)

比较蛋白质组学研究中的稳定同位素标记技术

进展评述 比较蛋白质组学研究中的稳定同位素标记技术 刘新1,2 应万涛1,2 钱小红1,23 (1军事医学科学院放射与辐射医学研究所 北京 100850;2北京蛋白质组研究中心 北京 102206) 摘 要 比较蛋白质组学是指在蛋白质组学水平上研究正常和病理情况下细胞或组织中蛋白质表达变化,以期发现具有重要功能的生物标识物,为疾病的早期诊断提供依据。近年来它正成为蛋白质组学研究的热点和发展趋势。比较蛋白质组学的研究方法和策略有多种,本文就最近几年来稳定同位素标记技术(体内代谢标记技术和体外化学标记技术)在比较蛋白质组学研究中的进展进行综述。 关键词 比较蛋白质组学 稳定同位素标记 体内代谢标记 体外化学标记 Application of Stable Isotope Labeling in Comparative Proteomics Liu X in1,2,Y ing Wantao1,2,Qian X iaohong1,23 (1Beijing Institute of Radiation Medicine,Beijing100850; 2Beijing Proteome Research Center,Beijing102206) Abstract C omparative proteomics is the research of protein expression changing between normal and pathological cell or tissue on the proteome level.P otential biomarkers w ould be discovered from the research by comparative proteomics, which will be helpful to the diagnosis and therapy of diseases.In the recent years,it has been becoming the hot spot of the proteomics research and many strategies used in comparative proteomics have been developed.During those approaches,the strategies based on stable is otopic labeling coupled with mass spectrometry have been extensively used and lots of success ful applications have been reported.In contrast to the traditional radioactive is otope labeling method,stable is otope labeling technique was not radioactive and the operation is simple.Metabolic labeling in viv o and chemical labeling in vitro are tw o parts of stable is otope labeling technique,which both have various advantages and disadvantages.This paper reviewed the progress of stable is otope labeling technique in comparative proteomics. K ey w ords C omparative proteomics,S table is otope labeling,Metabolic labeling in viv o,Chemical labeling in vitro 随着人类基因组精确图谱的公布,基因组功能的阐明已经成为生命科学研究中一项极重要的任务[1]。蛋白质是基因的最终产物同时也是基因功能的最终执行体,因而人类基因的表达及其功能有待于在蛋白水平上揭示。蛋白质组学的研究目的是分离和鉴定组织或细胞中的所有蛋白质。生物体在生长发育过程中,基因组是相对稳定的,而蛋白表达是高度动态变化的,并且具有严格调控的时间和空间特异性[2]。为了研究生物体在不同状态下表达的所有蛋白质的动态变化,比较蛋白质组学应运而生,即在蛋白组学水平上,研究在正常生理和病理状态,或受到不同的外部环境刺激下,或在突变等因素影响下,蛋白质表达的变化情况,以期发现生物体内关键的调控分子及与疾病相关的蛋白质标志物,最终为疾病的防诊治、新型疫苗的研发等提供理论依据。 为了研究蛋白质表达的动态变化,基因表达检测技术,如微阵列法[3]、DNA(脱氧核糖核酸)芯片法[4]等曾被广泛使用。这些方法虽然能够实现对mRNA(信使核糖核酸)进行定性和定量分析,但 刘新 男,27岁,博士生,现从事比较蛋白质组学研究。 3联系人,E2mail:qianxh1@https://www.360docs.net/doc/346827073.html, 国家自然科学基金(20505019、20505018)、国家重点基础研究发展规划项目(2004C B518707)和北京市科技计划重大项目(H030230280190)资助项目 2006207220收稿,2006209221接受

稳定同位素技术的应用

稳定同位素技术的应用 稳定同位素是元素周期表中某元素中不发生或极不易发生放射性衰变的同位素,目前地球上发现的稳定同位素共有200多种。现在稳定同位素技术还已经应用于医学、农业和环境科学等各领域。 稳定同位素的常规分析方法主要有:质谱法、核磁共振谱法、气相色谱法、中子活化分析法、光谱法等。 1.稳定性同位素探针技术 将稳定同位素运用于微生物中的技术主要是稳定性同位素核酸探针技术,稳定性同位素核酸探针技术是将复杂环境中微生物物种组成及其生理功能耦合分析的有力工具。由于自然环境中微生物具有丰富的多样性,在整体水平上清楚认知复杂环境中微生物群落生理代谢过程的分子机制具有较大难度。而稳定性同位素核酸探针技术则能有效克服这一难点,在群落水平揭示复杂环境中重要微生物生理生态过程的分子机制。 稳定性同位素核酸探针技术的基本原理与DNA半保留复制实验类似、主要区别在于后者以纯菌为研究对象,证明子代DNA源于父代DNA,而前者主要针对微生物群落,揭示复杂环境中参与标记底物代谢过程的微生物作用者。一般而言,重同位素或轻同位素组成的化合物具有相同的物理化学和生物学特性,因此,微生物可利用稳定性重同位素生长繁殖。 2.稳定同位素标记的相对定量与绝对定量方法 2.1稳定同位素标记的相对定量方法 稳定同位素在蛋白质组学中也有重要的应用。根据同位素引入的方式,基于稳定同位素标记的蛋白质组定量方法可以分为代谢标记法、化学标记法和酶解标记法。采用不同方法,标记同位素的样品在不同步骤混合;越早混合,样品预处理步骤引入的误差越小,定量的准确度越高。 代谢标记是指在细胞或生物体成长过程加入含有稳定同位素标记的培养基,完成细胞或生物体标记的方法。该方法是在细胞培养过程中加入稳定同位素标记的必需氨基酸,使得每条肽段相差的质量数恒定。与15N方法相比,由于肽段的质量差异数与氨基酸种类和数目无关,因此简化了相对定量分析的难度。 除代谢水平标记外,通过体外化学标记引入同位素是一种非常有价值的蛋白质组相对定量方法;适用于细胞、体液、组织等多种样品分析。现有的化学标记试剂多数通过与氨基或巯基反应引入稳定同位素。最常用的是基于N -羟基琥珀酰胺化学和还原胺反应。 18O标记是目前酶解标记的唯一方法。采用该方法仅需要在酶解过程中使用H218O。18O标记既可用于非修饰蛋白质组的相对定量,而且也可以将肽段末端的

仪器名称气体稳定同位素比质谱仪

仪器名称:气体稳定同位素比质谱仪 数量:1套,进口 用途:科研及教学。 技术指标(标注有*的部分为重要技术条款,不能有负偏离): 1. 工作条件: 1.1环境温度:18℃-28℃,对环境温度变化敏感度小; 1.2相对湿度:20% - 70%; 1.3电源电压:230V-10%+6%, 16A\50Hz单相; 2. 设备用途: 2.1 元素-同位素质谱联用:用于固体样品、液体样品中C、N、H和O稳定同位素比率高精度分析; 2.2 气相-同位素质谱联用:用于单体化合物中C和H稳定同位素比率高精度分析; 3. 技术规格: 3.1 硬件部分: 3.1.1 稳定同位素比质谱主机: 3.1.1.1 离子源:高灵敏度电子轰击源; 3.1.1.2 离子源室:为无焊缝整块不锈钢(或合金材料),可烘烤到90℃,有效消除记忆效应和本底; 3.1.1.3 真空系统:带有涡轮分子泵和前级真空泵的自动真空系统; 3.1.1.4 离子光学:不小于18cm的扇形磁场能同时测定所有气体,100%传输所有离子束; 3.1.1.5万用三杯接收器,能实现CO2 /N2O (44, 45, 46), O2 (32, 33, 34), N2 /CO (28, 29, 30) 和NO (30, 31, 32) 检测; 3.1.1.6 D/H接收器,独立的H2接收器和HD接收器,用于测定氢同位素比;内置3He过滤器,消除HD+以外所有离子的干扰;具有自动测定H3+因子与自动校正功能,可以在样品序列的前、后、进行中的任何时机自动监视H3+因子与校正; 3.1.17软件自动识别和自动控制外围设备; 3.1.1.8 参考气连接器;所有参考气体的智能连接、自动样品识别、样品气体和参考气体信号强度的自动匹配;可以同时连接5路参考气:C, N, O和H的连续测定,不需要交换气路,方便操作,节约气体;自动监测所有气体的线性、稳定性参数; 3.1.2 元素分析仪及其接口: 3.1.2.1元素分析仪是一台具有C/N 全部分析功能的元素分析仪和温度可高达1500°C裂解分析仪的组合,并且可以同时获得元素百分含量。在低温燃烧模式下对C/N进行单独或同时测定;在高温裂解模式下,使

气体稳定同位素比质谱仪Thermo Delta V Advantage介绍

气体稳定同位素比质谱仪介绍(Thermo Delta V Advantage) 清华大学环境学院公共研究平台文彦杰 2012年3月22日

Thermo Delta V Advantage 同位素质谱介绍清华大学环境学院文彦杰 一、概述 1.1 硬件部分 第一部分——质谱(桌面以下) 测:N2O、CO2,H2、CO,N2,SO2→ 计算出H、C、N、O、S同位素比第二部分——强大的前处理附件(桌面以上) 又分为三个独立部分(由左向右): Precon(气体混合物中N2O、CH4、CO2的C、N同位素比)→ N2O、CO2 EA/HT(液体样品中的H、O同位素比)→ H2、CO (固态样品中C、N、S同位素比)→ N2、CO2、SO2 GC-Isolink(液态有机物中C、N同位素比)→ N2、CO2 (顶空进样,无机气体中C、N同位素比)→ N2、CO2

Thermo Delta V Advantage 同位素质谱介绍清华大学环境学院文彦杰 1.2 操作软件 操作界面概览:

二、Flash EA/HT 2.1 概述 2.1.1 可分析物质 ①固体进样,固体自动进样盘——无机或有机固体样品中总氮、总碳、总硫、总氢、总氧的同位素比。 ②液体进样,液体自动进样器——水或其它液体样品中总氢、总氧的同位素比。 2.1.2 流路 快速燃烧模式:产生和分离N2、CO2、SO2 高温裂解模式:产生和分离H2和CO 2.2 D/H和18O/16O的测定 高温裂解模式: 裂解管定量高温转换,1320℃,迅速定量地把样品中氧和氢转换为CO和H2。

CO和H2通过恒温色谱柱分离,按时间顺序进入质谱仪的离子源,被高速电子打为带电离子H2+(或CO+),通过磁场分离,被法拉第杯收集到2、3质量数的H2+(而后,收集到28、29、30质量数的CO+)。 特点: 陶管,内套玻璃碳管,内填充玻璃化碳粒。 陶管含氧,必须不能与样品气接触,以免发生氧交换。 实现单次同时测定D/H和18O/16O同位素比值。 亚微升进样量,5-6min测定完成。 应用: 有机物的H、O分析 H2O的同位素比分析 硫酸盐、磷酸盐、硝酸盐的O同位素分析 硝酸盐的N、O同位素分析 页硅酸盐、闪石的H同位素分析 2.3 13C/12C、15N/14N和36S/34S的测定 快速燃烧模式: 固态有机物由固体进样盘进入燃烧管,转化为N2、CO2、SO2,经GC分离,进入IRMS。 特点: 氧气在预先设定的时刻自动注入反应炉,保证样品定量转换。 测量样品中的某元素总量的同位素比。 样品被锡杯包好,落入反应炉后燃烧。 燃烧产生N2和CO2,可能产生的N x O被燃烧管中的Cu还原为N2。

稳定同位素质谱仪的应用

稳定同位素质谱仪的应用 一、地质地球化学:稳定同位素质谱仪的最早应用 主要研究轻元素(CHONS)的稳定同位素在自然界(岩石圈、土壤圈、水圈、大气圈)的丰度及其变化机理、在各种天然过程中的化学行为,并以此为指导研究天然和环境物质的来源、迁移过程以及经历过的物理和化学反应。 研究领域: 固体地球学科:地球动力学、地质构造学、岩石学、矿床学、矿物学、沉积学。 其他:海洋学、水文学、冰川学、古气候学、天体学、天体化学、考古学、石油/石油相关。 二、农业、林业(起步也比较早) 稳定同位素技术在农业研究中的应用包括:科学施肥、作物营养代谢、生物固氮、土壤呼吸、农用化学物质对环境影响、饲料配方、水产养殖、林木果树、药材等。 ●肥料的利用/转化途径和利用效率(13C,15N)。 ●氮素的硝化、反硝化过程(2H,15N,18O)。 ●光合作用及同化产物的传导和分布研究 ●利用稳定同位素展开的固氮研究。 ●农业残留、代谢及降解研究。 ●土壤碳氮循环研究:有机质年龄及周转率的测定、土壤细根年龄测算、土壤呼吸 等。 三、生态 稳定同位素技术加深了对生态过程的研究,可以探讨一些其他方法无法研究的问题。 1. 植物生理生态学 稳定同位素(2H、13C、15N和18O)可对生源元素的吸收、水分来源、水分平衡和利用效率等进行测定,从而研究植物的光合作用途径; ●植物水分胁迫程度; ●植物水分利用效率:植物13C组成能够在时间尺度上反映植物的水分利用效率。 ●植物水通量检测:通过植物中水2H和18O组成,判定植物对表层水和深层水的依 赖程度。 ●确定植物的分布区域(15N,18O,2H) ●光合作用、呼吸作用研究:对生态系统CO2交换的相对贡献(13C,18O) ●蒸发和升腾作用研究:对生态系统水交换或蒸散(ET)的相对贡献(2H,18O) ●树木年轮同位素环境响应:通过年轮同位素比值变化,分析过去环境变化(湿度、 旱涝、气候特征)。 2. 生态系统生态学 稳定同位素技术可用来研究生态系统的气体交换、生态系统功能及对全球变化的响应

食品真实性领域稳定同位素技术标准一览

食品真实性领域稳定同位素技术标准一览 颁布年份方法产品组分仪器应用同位素1987OIV, recueil des méthodes d'analyse葡萄酒乙醇SNIF-NMR D/H, 1990EC regulation 2676/90, annex 8葡萄酒乙醇SNIF-NMR D/H 1991AOAC method 991.41蜂蜜蜂蜜、蛋白质IRMS13C/12C 1992AOAC 992.09浓缩橙汁水IRMS18O/16O 1993CEN (TC174 N108, ENV 12140)果汁蔗糖IRMS13C/12C 1995AOAC Official method 995.17果汁乙醇SNIF-NMR D/H 1996OIV Resolution OENO 2/96葡萄酒水IRMS18O/16O 1997EC Regulation No. 822/97葡萄酒水IRMS18O/16O 1997CEN (TC174 N109, ENV 12141)果汁水IRMS18O/16O 1997CEN (TC174 N109, ENV 12142)果汁水IRMS D/H 1998AOAC 998.12蜂蜜蜂蜜、蛋白质IRMS13C/12C 1998BS DD ENV 13070-1998果汁果浆IRMS13C/12C 2000AOAC Official method 2000.19枫树蜜乙醇SNIF-NMR D/H 2000AOAC 44.5.17枫树糖浆糖IRMS13C/12C 2001OIV Resolution OENO 17/2001葡萄酒乙醇IRMS13C/12C 2002GBT18932.1蜂蜜蜂蜜、蛋白质IRMS13C/12C 2003EC No 440/2003,annex 2葡萄酒乙醇IRMS13C/12C 2004AOAC method 2004.01果汁、枫树蜜乙醇IRMS13C/12C 2005OIV Resolution OENO 7/2005起泡葡萄酒CO2IRMS13C/12C 2006AOAC method 2006.05香兰素香兰素SNIF-NMR D/H 2009OIV Resolution OENO 353/2009葡萄酒水IRMS18O/16O 2009OIV Resolution OENO 381/2009葡萄酒、烈性酒乙醇IRMS13C/12C 2010OIV Resolution OENO 343/2010葡萄酒甘油IRMS13C/12C

稳定性同位素内标与质谱检测

稳定性同位素内标与质谱检测 稳定性同位素内标是质谱方法(稳定性同位素稀释法)独有的,没有别的临床检测方法用到同位素内标。比如光吸收和免疫的方法,都无法分辨出被检测物和同位素内标的区别,因为它们的理化性质太接近了。如果真的加进内标,那测出来的值肯定大大的偏高。只有质谱才能把同位素内标和要检测的物质分得开,虽然它们的差别只有几个道尔顿。现在的内标基本都是稳定同位素标记的,最常见的是D和13C。同位素内标和被检测物是同一个物质,但是其中的几个氢原子被氘所取代,或者是12C换成了13C,理化性质基本不变。 同样是标记,13C就比D要好。但是D要比13C便宜很多。绝大多数D做的内标性能是很好的。出问题的经常是一些疏水性比较差,保留时间比较短的物质。出峰的时候跟很多其它物质一起出来,些许的偏差就能引起浓度测不准。 临床检测的数据要想测的准,离不开一条好的标准曲线。通俗来讲,标准曲线就像一把尺子。只有把尺子做准确了,才能把未知物品的长度测准确。从科学上来讲,标准曲线就是检测物质的浓度和仪器读数的一种线形关系。一般是浓度越高,读数越大。标准品的浓度是已知的,高中低都有。测完标准品以后,把它们的浓度和仪器测得的读数在x/y的坐标纸上一画,连一条线就成了。测未知的病人样品时,浓度(x)是未知的,只有仪器的读数(y),通过这条曲线可以把y 换算成浓度。 标准品应该怎么做,怎么用,这里面有很多学问。质谱是新鲜技术,大多的检测项目还买不到标准品,只能自己配。做标准品需要有纯样品。最好的纯样品应该是浓度和纯度都有保证书的,这样用起来放心。如果是液体的溶液就更好了,省去自己称量和溶解的麻烦。高浓度的纯样品要稀释到不同的低浓度才能使用。用什么来稀释是下一个非常关键的步骤,这里面牵扯到基质效应。因为基质效应这块儿瓦是质谱临床应用里比较难理解的一个概念。 目前同位素内标广泛应用于临床检测中:

元素分析仪-稳定同位素比例质谱仪的使用及维护

第16卷第3期2018年6月实验科学与技术 Experiment Science and Technolog ^^VoL . 16 N o . 3 Jun . 2018 元素分析仪-稳定同位素比例质谱仪的使用及维护 严玉鹏\郭智成2,张丽梅1 (1.华中农业大学资源与环境学院,湖北武汉430070; 2.北京嘉德元素科技有限公司,北京朝阳区101318) 摘要元素分析仪-稳定同位素比例质谱仪具有灵敏、快速、高效、便捷等特点,在同位素自然丰度和示踪分析方面得 到广泛应用。元素分析仪-稳定同位素比例质谱仪的科学管理和正确使用维护,是获得良好测试数据和延长仪器使用寿命的 前提和基础。介绍了元素分析仪-稳定同位素比例质谱仪的工作原理和操作流程,并对使用过程中出现的问题提出了应对策 略。此外,还对元素分析仪-同位素比例质谱仪使用过程中的日常维护和注意事项进行了阐述。 关键词元素分析仪;同位素比例质谱仪;使用;维护中图分类号 TH6 文献标志码 A d o i:10.3969/j.issn. 1672 -4550. 2018. 03. 018 Use and Maintenance of Elemental Analyzer - Isotope - Ratio Mass Spectrometer (EA - IRMS) YAN Yupeng 1 , GUO Zhicheng 2, and ZHANG Limei 1 (1. College of Resources and Environment, Huazhong Agricultural University, W uhan 430070 , China ; 2. Beijing Jiade Element Technology Co. , Ltd, Chaoyang 101318, China) Abstract The elemental analyzer-isotope-ratio mass spectrometer( E A -IR M S ) is sensitive, rapid, efficient and convenient properties, which is widely used in isotope natural abundance analysis and trace analysis. The scientific management and proper use and maintenance of the elemental analyzer-stable isotope ratio mass spectrometer is the prerequisite and foundation for boating good test data and prolonging the service life of the instrument. This article describes the working principle and operation flo w - of the elemental analyzer - stable isotope ratio mass spectrometer, and proposes the countermeasures for the problems that arise during the use. In ad-dition ,routing maintenance and precautions during the use of the elemental analyzer - isotope proportional mass spectrometer are de-scribed. Key words elemental analyzer(EA ); isotope - ratio mass spectrometer(IRM S); use ; instrument maintenance 了 EA -IRMS 的基本工作原理,结合对该实验室 Vario PYRO cube 元素分析仪-Isoprime 100 稳定同位素比例质谱仪的管理和使用经验,较详细地介 绍了 EA -IRMS 在日常管理和使用维护等方面的一 些体会,希望与同行们共享。1 E A -I R M S 的工作原理 元素分析仪-稳定同位素比例质谱仪整个分析 系统主要包括Vario PYRO cube 元素分析仪、 Isoprime 100质谱仪、稀释器和参考气进样器四部 分,结构示意简图如图1(以CN 模式为例)所示。 元素分析仪-稳定同位素比例质谱(EA -IRMS ) 分析法在同位素自然丰度和示踪分析方面得到广 泛应用,具有测试速度快、结果精确、样品用量 少等优点[1]。作为便捷的分析测试仪器,E A - IRMS 被广泛应用于地球化学、地质、环境、生 物、农业、生态系统以及食品检测等各领域[2-13]。 EA -IRMS 技术可应用于土壤、植物等样品中H 、 C 、N 、O 和S 等元素的定量分析以及其稳定碳同 位素比例的高效精确测定和分析。EA -IRMS 的科 学管理和正确使用维护,是获得良好测试数据和 延长仪器使用寿命的前提和基础。本文主要介绍 收稿日期:2016-12-01;修改日期:2017-04-01 基金项目:国家自然科学基金(41603100)。 作者简介:严玉鹏(1986-),男,博士,工程师,主要从事大型实验仪器管理工作

相关文档
最新文档