微分方程及其分类ppt课件

合集下载

高等数学第七章第一节微分方程的基本概念课件.ppt

高等数学第七章第一节微分方程的基本概念课件.ppt
解: 如图所示, 点 P(x, y) 处的法线方程为
令 Y = 0 , 得 Q 点的横坐标
即 yy 2x 0
y P
Qo xx
引例1 通解:
dy dx
2x
y x1 2
引例2
y x2 C
d2y dx2
0.4
s t0 0 ,
ds dt
t0 20
s 0.2t 2 C1t C2
特解: y x2 1
s 0.2t 2 20t
例1. 验证函数 是微分方程
(C1 , C2为常数 )
的解, 并求满足初始条件
x
t0
A, dx
dt
t00
的特解 .
解:
k 2 (C1 sin kt C2 cos kt ) 这说明 x C1 cos kt C2 sin kt 是方程的解 .
是两个独立的任意常数, 故它是方程的通解.
利用初始条件易得:
故所求特解为
x Acos k t
例2. 已知曲线上点 P(x, y) 处的法线与 x 轴交点为 Q 且线段 PQ 被 y 轴平分, 求所满足的微分方程 .
微分方程的基本概念
含未内容)
分类 偏微分方程
方程中所含未知函数导数的最高阶数叫做微分方程 的阶.
一般地 , n 阶常微分方程的形式是
F (x, y, y,, y(n) ) 0
或 y(n) f (x, y, y,, y(n1) ) ( n 阶显式微分方程)
微分方程的解 — 使方程成为恒等式的函数.
通解 — 解中所含独立的任意常数的个数与方程 的阶数相同.
特解 — 不含任意常数的解, 其图形称为积分曲线.
定解条件 — 确定通解中任意常数的条件.

全版微分方程.ppt

全版微分方程.ppt
将 y 和 y 代入原方程得C( x)e P( x)dx Q( x),
积分得 C( x) Q( x) e P( x)dxdx C,
.精品课件.
24
C( x) Q( x) e P( x)dxdx C,
故一阶线性非齐次微分方程的通解为:
y
C(
x)e
P(
x )dx
[ Q( x)e P( x)dxdx C]e P( x)dx
第六章 微 分 方 程
6.1 微分方程的基本概念 6.2 一阶微分方程 6.3 可降阶的二阶微分方程 6.4 二阶线性微分方程 6.5 微分方程的应用举例
.精品课件.
1
6.1 微分方程的基本概念
定义 把联系自变量、未知函数、未知函数的
导数或微分的方程称为微分方程.
例 y xy, y 2 y 3 y e x ,
x
微分方程的解为 sin y ln x C. x
.精品课件.
19
例 4 求解微分方程
x2
dx xy
y2
dy 2y2
xy
.

dy dx
2 y2 xy x2 xy y2
2
y 2
y
1
x y
x y 2
,
x x
令u y , x
即 y xu,
则 dy u x du ,
dx
dx
x
x
定义 形 如 dy f ( y ) 的微分方程称为齐次方程 .
dx
x
.精品课件.
17
解法: 对齐次方程dy f ( y ) , dx x
令 u y x
,
即 y xu, dy u x du ,
dx

高等数学之微分方程课件

高等数学之微分方程课件
8-4 二阶微分方程
精品课程
例8 求微分方程 的通解
解 特征方程为 共轭虚根为 原方程的通解 (共轭虚根时,由欧拉公式有 再根据该方程 的线性组合仍是解而消去i )
8-5 数学建模:微分方程应用(2)
精品课程
战争模型 用x(t)和y(t)表示甲乙交战双方在时刻t的兵力,可视为双方的士兵人数,一个简化模型是,假设一支军队参站人数减少(死亡或受伤)的比率(如 ) 是与另一支军队集中向其开火的次数成正比,而这开火的次数又与该方军队中参战人数成正比。 于是x、y服从微分方程: (1) 下面分析求解此微分方程组
《高等数学》 教学课件
旅游旅行攻略
汇报人姓名
CLICK TO ADD TITLE来自八章 微分方程精品课程
8-1 什么是微分方程
精品课程
引例1:曲线过点(1,2),且在该曲线上任意一点M (x , y) 处的切线的斜率为2x,求这曲线的方程? 解 设所求曲线y=f ( x ) ,根据导数的几何意义得 (1) 此外还应满足条件 把方程(1)两边积分,得 即 把条件 代入(2),得C=1 把 C=1代入(2)式,即得所求曲线方程
8-4 二阶微分方程
精品课程
解 解特征方程 得 于是微分方程的通解 (可以证明,二阶常系数线性齐次微分方程的两个特解 ,只要他们不成比例,则 为该方程的通解) 例7 求方程 的通解 解 特征方程 则通解为 重根时,得一个特解 ,再用待定法令 或 等等,求得另一个特解
3、如果把某个函数代入微分方程,能使方程恒等,这个方程称为微分方程的解;求微分方程的解的过程,叫做解微分方程
4、微分方程的解有不同的形式,常用的两种形式是:一种是解中含有任意常数并且独立的任意常数的个数与微分方程的阶数相同,这样的解称为微分方程的通解;另一种是解不含任意常数,称为特解

高等数学微分方程总结ppt课件.pptx

高等数学微分方程总结ppt课件.pptx
y py qy 0,
y py qy f ( x)
代数法
求解二阶常系数线性方程
二阶常系数齐次线性微分方程求通解的一般步骤:
(1) 写出相应的特征方程 r 2 pr q 0;
(2) 求出特征方程的两个根 r1 与 r2;
(3) 根据特征方程的两个根的不同情况,按照下列规 则写出微分方程的通解
高阶常系数线性微分方程
P338
y(n) p1 y(n1) pn1 y pn y 0
代数特征方程 r n p1r n1 pn1r pn 0
1. 一阶标准类型方程求解 四个标准类型: 可分离变量方程, 齐次方程, 线性方程, 全微分方程
关键: 辨别方程类型 , 掌握求解步骤 2. 一阶非标准类型方程求解
所以F(x) 满足的一阶线性非齐次微分方程:
F (x) 2F (x) 4e2x
(2) 由一阶线性微分方程解的公式得
F (x) e 2d x 4e2x e 2d x d x C
e2x 4e4x d x C
e2x Ce2x 将 F (0) f (0)g(0) 0 代入上式,得 C 1
齐次通解
非齐特解
难点:如何求特解?
方法:待定系数法.
y py qy f ( x)
(1) f ( x) ex Pm ( x), (可以是复数)
y* xkexQm ( x);
0 不是根 k 1 是单根,
2 是重根
(2) f ( x) ex[Pl ( x)cosx Pn ( x)sinx],
令y=ut
可分离变量方程求解
(4) y2 (x 3y ) dx (1 3 xy2 ) dy 0 变方程为 y2 x dx dy 3 y2 ( ydx xdy) 0

高等数学全微分方程精品PPT课件

高等数学全微分方程精品PPT课件

dx x
dy y
0
即 d 1 d( ln x ) d( ln y ) 0
xy
1
因此通解为 1 ln x ln C , 即 x C e xy
xy y
y
因 x = 0 也是方程的解 , 故 C 为任意常数 .
练习题 解方程 y d x ( y x) d y 0.
解法1 积分因子法. 原方程变形为
2
3
因此方程的通解为
y (x, y)
x5 3 x2 y2 xy3 1 y3 C
2
3
o (x,0) x
例2. 求解
(
x
y x2
)
dx
1 x
dy
0
解:
P y
1 x2
Q , x
∴ 这是一个全微分方程 .
用凑微分法求通解. 将方程改写为
x
dx
x
d
y x2
y
dx
0

d 1 x2 d y 0, 或 d 1 x2 y 0
为全微分方程 ( 又叫做恰当方程 ) .
判别: P, Q 在某单连通域D内有连续一阶偏导数, 则
① 为全微分方程 求解步骤:
P Q , (x, y) D y x
1. 求原函数 u (x, y)
方法1 凑微分法;
方法2 利用积分与路径无关的条件.
2. 由 d u = 0 知通解为 u (x, y) = C .
第二节 一阶微分方程
第十二章
一、可分离变量方程 二、齐次型微分方程 三、可化为齐次型的微分方程 四、一阶线性微分方程 五、全微分方程
五、全微分方程
若存在 u(x, y) 使 d u(x, y) P (x, y) dx Q (x, y) dy

高等数学 常微分方程PPT课件

高等数学 常微分方程PPT课件
第12页/共35页
【解法】需经过变量代换化为一阶线性微分方程.
除方程两边 , 得
yn d y P( x) y1n Q( x) dx
令 z y1n , 则 dz (1 n) yn d y
dx
dx
dz (1 n) P( x) z (1 n)Q( x) (关于z , x的一阶线性方程) dx
特征方程法
待 定
特征方程的根 及其对应项


法 f(x)的形式及其
特解形式
高阶方程 可降阶方程
线性方程 解的结构
定理1;定理2 定理3;定理4
欧拉方程
第4页/共35页
微分方程解题思路
一阶方程
作 变 换
降 阶
高阶方程
分离变量法 全微分方程 常数变易法
作变换 积分因子
非非 变全 量微 可分
分方 离程
特征方程法
[提示](1)
原方程化为
令u=xy,得 (2) 将方程改写为
d u u ln u (分离变量方程) dx x
d y 1 y y3 (贝努里方程) d x 2x ln x 2x
令 z y2
第17页/共35页
【例3】 识别下列一阶微分方程的类型,并求解
1)
【解】
y y x
①可分离变量的微分方程
u e P( x)d x P( x) ue P( x)d x P( x) u e P( x)d x Q( x)
即 两端积分得
非齐பைடு நூலகம்方程
dy P(x) y Q(x)
dx
u Q(
对应齐次方程通解
x
)
e
P( x)d
y
x
dx

吴老师第二讲二阶线性偏微分方程及其分类省名师优质课赛课获奖课件市赛课一等奖课件

吴老师第二讲二阶线性偏微分方程及其分类省名师优质课赛课获奖课件市赛课一等奖课件

dx
a11
(6)
若 a122 a11a22 ,0 二阶线性偏微分方程为双曲型方程
若 a122 a11a22 0,二阶线性偏微分方程为抛物型方程
若 a122 a11a22 ,0 二阶线性偏微分方程为椭圆型方程
1:双曲型
当 a122 a11a22 0 时,(6)式给出一族实旳特征
曲线 (x, y) c1 (x, y) c2
x x( ,) y y( ,)
则在上式代换下方程(1)变为
A11u 2 A12u A22u B1u B2u Cu F 0
(2)
其中系数:
A11 A12
a11
2 x
a11 x x
2a12 x y a12 ( x y
a
222 yFra biblioteky x )
a22 y y
BA122aa1111xxx2
第五讲
二阶线性偏微分方程旳化简及其 分类
二阶线性偏微分方程旳一般形式:
n n
aij
j1 i1
2u xix j
n
bi
i 1
u xi
cu
f
0
其中 aij ,bi , c, f 是自变量 x1, x2 ,, xn
旳函数,假如f=0,则方程是线
性齐次方程,不然方程是非线性 齐次方程。
§1.5.1 两个自变量方程旳化简
dy a12 dx a11
它只能给出一种实旳特征线, (x, y) c 。取与
(x, y) 函数无关旳 (x, y) 作为另一种新旳变量
则有
u
1 A22
[B1u
B2u
Cu F ]
(3-8)
3:椭圆型
当 a122 a11a22 0时,(6)式各给出一族复特征线 (x, y) , (x, y)

高数微分方程PPT

高数微分方程PPT

应用
描述了许多自然现象,如生态模型、化学反应等。
二阶常系数线性微分方程
定义
形如 $y'' + py' + qy = 0$ 的微分方程称为二阶常系数 线性微分方程。
解法
通过求解特征方程,得到通 解。
应用
在物理学、工程学等领域有 广泛应用,如弹簧振动、电 磁波等。
04
高阶微分方程
BIG DATA EMPOWERS TO CREATE A NEW
参数法
总结词
通过引入参数,将微分方程转化为更易于求 解的形式。
详细描述
参数法是通过引入参数,将微分方程转化为 更易于求解的形式。这种方法适用于具有特 定形式的高阶微分方程。
积分因子法
总结词
通过寻找积分因子,将微分方程转化为积分 方程,简化求解过程。
详细描述
积分因子法是通过寻找积分因子,将微分方 程转化为积分方程,从而简化求解过程。这 种方法适用于具有特定形式的一阶线性微分
高阶微分方程
包含多个导数的微分方程。
微分方程的应用
物理问题
描述物理现象的变化规律,如 振动、波动、流体动力学等。
经济问题
描述经济现象的变化规律, 如供求关系、市场均衡等。
工程问题
在机械、航空、化工等领域中 ,微分方程被用来描述各种动 态过程。
生物问题
描述生物种群的增长规律、 生理变化等。
02
一阶微分方程
经济增长模型
在经济学中,微分方程可以用来描述一个国家或地区的经济增长率 与人口、技术、资本等因素之间的关系。
生物问题中的应用
1 2 3
种群动态
微分方程可以用来描述种群数量的变化规律,如 Logistic增长模型、捕食者-猎物模型等。

《微分方程 》课件

《微分方程 》课件
总结词
需要选择合适的代换变量。
详细描述
在使用变量代换法时,需要选择合适的代换变量,使得微 分方程能够被转化为更简单的形式。这个过程需要一定的 技巧和经验。
积分因子法
总结词
通过寻找积分因子,将微分方程转化为积分方程。
详细描述
积分因子法是通过寻找积分因子,将微分方程转化为积 分方程,从而简化求解过程。这种方法适用于具有特定 形式的一阶非线性微分方程。
总结词
通过引入新的变量代换,简化微分方程的形式。
详细描述
变量代换法是通过引入新的变量代换,将微分方程转化为 更简单的形式,从而简化求解过程。这种方法适用于具有 特定形式的高阶微分方程。
总结词
适用于高阶微分方程。
详细描述
变量代换法主要适用于高阶微分方程,通过引入新的变量 代换,可以将高阶微分方程转化为更简单的形式,从而简 化求解过程。
解法
通常需要使用迭代法、级数法或摄动法等非线性 求解方法。
3
特例
当 p(x,y,y') = 0, q(x,y,y') = a(常数)时,方程 简化为 y'' + ay = f(x),其解法与二阶线性微分 方程类似。
二阶常系数线性微分方程
定义
形如 y'' + ay' + by = f(x) 的微分方程称为二阶常系数线性 微分方程。
《微分方程》PPT课件
目 录
• 微分方程简介 • 一阶微分方程 • 二阶微分方程 • 高阶微分方程 • 微分方程的解法 • 微分方程的应用实例
01
微分方程简介
微分方程的定义
总结词
微分方程是描述数学模型中变量之间 动态关系的方程,通过微分来描述函 数的变化率。

偏微分方程分类与标准型PPT课件

偏微分方程分类与标准型PPT课件

1 )u
2Cu F ]
第21页/共28页
小结:三种方程的标准型式:
(1) a122 a11a22 0 u u Au Bu Cu D
(2) a122 a11a22 0,
u Au Bu Cu D (3) a122 a11a22 0
u u Au Bu Cu D
dx
特征线:y sin x 2x C1, y sin x - 2x C2
令: y sin x 2x, y sin x - 2x
u
32
(u
u
)
0
s , t ξ-η
第26页/共28页
第二章: 复习思考题与作业
一.写出二阶常系数线性齐次微分方程的特征方程与 特 征根。
二. 简述二阶常系数线性齐次微分方程的求解步骤。 三. 写出二阶线性偏微分方程的辨别式及其分类原则。 四. 解释何谓自变量非奇异变换。 五. 简述二阶线性偏微分方程简化的基本步骤。 六. 书习题2:1(1)(2);2(2)(3);7 七. 课堂练习:P41:2(1)
利用了欧拉公式
例: 求下列方程的通解
(1) y 4 y 3 y 0 (2) y 2 2 y 2 y 0 (3) y 2 y 3 y 0
解 (1)特征方程为 r2 4r 3 0 解得 r1 3, r2 1
所以方程的通解为
y C1e3x C2e x C1 ,C2为任意常数
2u t 2
a2
2u x2

x
2u x 2
a2
2u t 2
u
2u x 2
a2
u t
xu
1
u
1
2
2u
2
0
第11页/共28页

微分方程ppt

微分方程ppt
VIP时长期间,下载特权不清零。
100W优质文档免费下 载
VIP有效期内的用户可以免费下载VIP免费文档,不消耗下载特权,非会员用户需要消耗下载券/积分获取。
部分付费文档八折起 VIP用户在购买精选付费文档时可享受8折优惠,省上加省;参与折扣的付费文档均会在阅读页标识出折扣价格。
服务特 权
共享文档下载特权
VIP用户有效期内可使用共享文档下载特权下载任意下载券标价的文档(不含付费文档和VIP专享文档),每下载一篇共享文
档消耗一个共享文档下载特权。
年VIP
月VIP
连续包月VIP
享受100次共享文档下载特权,一次 发放,全年内有效
赠每的送次VI的发P类共放型享的决文特定档权。下有载效特期权为自1个VI月P,生发效起放每数量月发由放您一购次买,赠 V不 我I送 清 的P生每 零 设效月 。 置起自 随1每5动 时次月续 取共发费 消享放, 。文一前档次往下,我载持的特续账权有号,效-自
服务特 权
共享文档下载特权
VIP用户有效期内可使用共享文档下载特权下载任意下载券标价的文档(不含付费文档和VIP专享文档),每下载一篇共享文
档消耗一个共享文档下载特权。
年VIP
月VIP
连续包月VIP
享受100次共享文档下载特权,一次 发放,全年内有效
赠每的送次VI的发P类共放型享的决文特定档权。下有载效特期权为自1个V月IP,生发效放起数每量月由发您放购一买次,赠 V不 我IP送 清的生每 零设效月 。置起1自随每5次动时月共续取发享费消放文,。一档前次下往,载我持特的续权账有,号效自-
分 方 程
z z xy z2 x y
zx 5z4 0
常微分方程
偏微分方程

微分方程ppt课件

微分方程ppt课件

F(x, y, y) 0
(1.8)
如果在(1.8)中能将 y 解出,则得到方程
y f (x, y)
(1.9)

M (x, y)dx N(x, y)dy 0
(1.10)
(1.8)称为一阶隐式方程,(1.9)称为一阶显式方程,(1.10)称为微 分形式的一阶方程.
14
机动 目录 上页 下页 返回 结束
推得
c1 v0
c2 H
于是,得到满足上述初值条件的特解为
xx(t()t)H12gt122 gt2c1t v0ct 2
(1.14)
22
机动 目录 上页 下页 返回 结束
它描述了初始高度为H,初始速度为v0的自由落体运 动规律.
求微分方程满足初值条件的解的问题称为初值 问题.
于是我们称(1.14)是初值问题
4
机动 目录 上页 下页 返回 结束


第一章 初等积方法 第二章 基本定理 第三章 一阶线性微分方程组 第四章 n阶线性微分方程 第五章 定性与稳定性理论简介 第六章 一阶偏微分方程初步
5
机动 目录 上页 下页 返回 结束
第一讲
第一章 初等积分法
1.1 微分方程和解
300多年前,由牛顿(Newton,1642-1727)和 莱布尼兹(Leibniz,1646-1716)所创立的微积分学, 是人类科学史上划时代的重大发现,而微积分 的产生和发展,又与求解微分方程问题密切相 关.这是因为,微积分产生的一个重要动因来自 于人们探求物质世界运动规律的需求.
12
机动 目录 上页 下页 返回 结束
例如下面的方程都是常微分方程
dy 2x dx
(1.4)

第十二章 微分方程幻灯

第十二章 微分方程幻灯
第十二章 微分方程
高等数学主要研究对象是函数,它是客观事物的内部联 系在数量方面的反映。利用函数关系可以对客观事物的 规律性进行研究。所以寻找函数关系非常重要。但在许
多实际中不能直接找到所需的函数关系,而有时可以列
出函数及其导数(或微分)的关系式。这种关系式就是 微分方程,通过求解微分方程,便可以得到所要寻找的 函数关系。本章主要介绍微分方程的一些基本概念,讨 论几种常见的微分方程的解法,并通过举例介绍微分方
个数等于阶数)
特解:通解中任意常数取定值后的解。
解的几何意义:通解—— 一族曲线,成为积分曲线
特解—— 一条曲线
5.初始条件:确定任意常数的条件:
一般的:一阶初始条件,y 二阶初始条件,y n阶初始条件,y
x x0
y0 y0 , y
x x0
x x0
y0
x x0
x x0
又C1 , C2是相互独立的两个任意常数, 是通解
(2)由y
x 0
0, y
x 0
1得
1 1 C1 C2 0 解得C1 , C2 , 4 4 2C1 2C2 1 初值条件特解y 1 2x (e e 2 x ) 4
程在几何,物理等实际中的一些简单应用——数学建模
第一节 微分方程的基本概念
实际 = 微分方程 解是否符合实际
建模 转化 求解
一 引例
例1 一曲线通过点(1,2)且曲线上任意一点P( x, y )处的切线 斜率为3x 2,求这条曲线方程
解: 设曲线为y y ( x)
y c 1 (1, 2) c 0 c 1
F [ x, ( x), ( x),..., ( n ) ( x)] 0则称y ( x)是该方程的解。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

曲线、抛物线和椭圆.受此启发,下面我们来对二阶线性偏
微分方程进行分类. 下面主要以含两个自变量的二阶线性偏微分方程为例,进行
理论分析.而对于更多个自变量的情形尽管要复杂一些,但讨 论的基本方法是一样的.
两个自变量(x, y)的二阶线性偏微分方程所具有的普遍形式为
12
其中
定理10.2.1 如果
的一般积分,则
2
一、微分方程的概念
为了便于阐述微分方程的有关概念,先看下面例子:
例1 一曲线通过点 (1, 2) ,且在该曲线上任一点 M( x, y) 切线的斜率为 2x ,求这曲线的方程。
解 设所求曲线为 y y( x)。则有 y 2 x 对上式两边积分有 y x 2 C
由于所求曲线通过点 (1, 2)
7
d2y dx 2
4C1
sin 2 x
4C 2
cos 2x
代入原方程 ,有
4C1 sin2x 4C2 cos 2x 4C1 sin2x 4C2 cos 2x 0. 故函数 y C1 sin2x C2 cos 2x, 是原方程的解。
又因为这个解中含有两个独立的任意常数 C1 ,C 2 , 而方程为二阶微分方程,所以 函数 y C1 sin2x C2 cos 2x, 是原方程的通解。
8
把条件y x0 0 代入 y C1 sin2x C2 cos 2x, 得 C2 1
把条件y x0 1 代入 y 2C1 cos2x 2C2 sin2x, 得
C1
1, 2
因此方程满足初始条件的特解为
y 1 sin2x cos 2x 2
9
二阶线性偏微分方程的分类
本章将介绍二阶线性偏微分方程的基本概念、分类方 法和偏微分方程的标准化. 特别对于常系数的二阶线性偏 微分方程的化简方法也进行了详细讨论,这对后面的偏微 分方程求解是十分有用的.
微分方程及其解法
一、 微分方程的概念 二、二阶线性偏微分方程的分类
1
函数是研究客观事物运动规律的一个重要工具 ,因此寻求客观事物运动变化过程中的函数关系是 十分重要的,然而,在许多问题中,往往不能直接 找出所需的函数关系。但根据问题所给的条件,有 时可以列出含有要找的函数及其导数的关系式,这 样的关系式就是所谓的微分方程。
6
确定通解中的任意常数的附加条件。 5.微分方程解的几何意义
通解的图象: 积分曲线族.
特解的图象: 微分方程的积分曲线.
例3 验证:
y C1 sin2x C2 cos 2x 是
d2y dx2
4y
0
的解, 并求满足初始条件 y x0 0, y x0 1 的特解.

dy
dx 2C1 cos 2x 2C2 sin2x,
3.微分方程的阶 微分方程中所出现的未知函数的最高阶导数的阶数。
4
例2 判断下列方程是否为微分方程?若是,是几阶 的微分方程?
(1) y x 2 y sin x (2) xydx (1 x 2 )dy 0
(3) y y 0 (5) x( y)2 x 2 1
(4) y 3 y x 1 (6) y3 3 y 2 x 4
.所以,方程(10.2.6) 即为
(10.2.4)
15
或者进一步作变换 于是有
所以
16
又可以进一步将方程(10.2.11)化为
这种类型的方程称为双曲型方程.我们前面建立的波动方 程就属于此类型.
2.当判别式
时:这时方程
(10.2.10)一定有重根
17
因而只能求得一个解,例如,
,特征线为
一条实特征线.作变换
10
10.2 数学物理方程的分类
在数学物理方程的建立过程中,我们主要讨论了三种类型的 偏微分方程:波动方程;热传导方程;稳定场方程.这三类方 程描写了不同物理现象及其过程,后面我们将会看到它们的解 也表现出各自不同的特点.
我们在解析几何中知道对于二次实曲线
其中
为常数,且设
11
则当
时,上述二次曲线分别为双
解 (1)是,1阶; (2)是,1阶; (3)是,2阶; (4)是,3阶; (5)是,1阶; (6)不是。
5
4.微分方程的解 任何代入微分方程后使微分方程恒成立的函数。 (1)微分方 程的通解 如果在微分方程的解中,所含的独立的常数的个数与
微分方程的阶数相同,这样的解就叫微分方程的通解 (2)微分方程的特解 当微分方程的通解中各任意常数都取定值时所得的解 (3) 微分方程的初始条件
需讨论判别式
即可.
22
10.3 二阶线性偏微分方程标准化
对于二阶线性偏微分方程
若判别式为 线性偏微分方程分为三类:
(10.3.1) ,则二阶
23
时,方程称为双曲型; 时,方程称为抛物型; 时,方程称为椭圆型;
就可以使
由(10.2.4)式可以得出,一定有
,故可推出
.这样就可以任意选取另一个变换,
只要它和
彼此独立,即雅可俾式
18
即可.这样,方程(10.2.6)就化为
此类方程称为抛物型方程.热传导(扩散)方程就属于 这种类型.
19
3. 当判别式
时:这时,可以重复上
面的讨论,只不过得到的

是一
对共轭的复函数,或者说,偏微分方程(10.2.1)的两条特征线是
即满足
y 2 x1
则 C 1. 所求曲线方程为 y x 2 1 .
3
1.微分方程的定义 凡含有未知函数以及未知函数的导数(或微分)的方 程叫微分方程。
例 y xy, y 2 y 3 y ex , (t 2 x)dt xdx 0.
2.微分方程的分类 常微分方程:未知函数是一元函数的微分方程。 偏微分方程:未知函数是多元函数的微分方程。
一对共轭复函数族.于是
是一对共轭的复变量.进一步引进两个新的实变量
20
于是
所以 方程(10.2.11)又可以进一步化为
21
这种类型的方程称为椭圆型方程.拉普拉斯(Laplace)方程、 泊松(Poisson)方程和Helmholtz 方程都属于这种类型.
综上所述,要判断二阶线性偏微分方程属于何种类型,只
(10.2.1)

的已知函数.
是方程
(10.2.2)
是方程
13
(10.2.3) 的一个特解. 在具体求解方程(10.2.10)时,需要分三种情况讨论判别式
1. 当判别式 以求得两个实函数解

时,从方程(10.2.10)可
14
也就是说,偏微分方程(10.2.1)有两条实的特征线.于是,令
即可使得
.同时,根据(10.2.4)式,就可以断定
相关文档
最新文档