理论力学课后答案第二章

合集下载

理论力学(周衍柏 第二版)第2章习题解答

理论力学(周衍柏  第二版)第2章习题解答

把⑥代入⑦得,
R1 = m1m2 cosθ g ⑧ m2 + m1 sin 2 θ
水平面对劈的反作用力 R2 。仍用隔离法。因为劈在垂直水皮方向上无加速度, 所以
R2 − m2 g − R1 cosθ = 0 ⑨
于是
R2 = m2 ( m1 + m2 ) g ⑩ m2 + m1 sin 2 θ
6
2.5解 因为质点组队某一固定点的动量矩 J = ∑ ri × mi v i
m 相对于地固连的坐标系 Oxy 的绝对速度
V绝对 = V相 + V牵
V相 为 m 相对 M 的运动速度
② u = aθ
故水平方向 vx = u cosθ − V ③ 竖直方向
v y = usiaθ ④
在 m 下滑过程中,只有保守力(重力)做功,系统机械能守恒: (以地面为重力零势能面)
8
mga cos α = mga cos θ +
(M + M ′) − M 2 μg M′ u− 2mM M
2
2.16 雨滴落下时,其质量的增加率与雨滴的表面积成正比例,求雨滴速度与时间的关系。 2.17 设用某种液体燃料发动的火箭, 喷气速度为 2074 米/秒, 单位时间内所消耗的燃料为 原始火箭总质量的 1 。如重力加速度 g 的值可以认为是常数,则利用此种火箭发射人造太
i =1 n
所以对于连续物体对某一定点或定轴,我们就应该把上式中的取和变为积分。如 图 2.5.1 图所示薄圆盘,任取一微质量元,
O

dr
dm = ρ ⋅ rdθdr
ρ=
所以圆盘绕此轴的动量矩 J
J =
M πa 2
∫∫ r × ( dm v ) = ∫∫ r ⋅ ρ rdrd

理论力学课后习题第二章思考题答案

理论力学课后习题第二章思考题答案

理论力学课后习题第二章思考题解答2.1.答:因均匀物体质量密度处处相等,规则形体的几何中心即为质心,故先找出各规则形体的质心把它们看作质点组,然后求质点组的质心即为整个物体的质心。

对被割去的部分,先假定它存在,后以其负质量代入质心公式即可。

2.2.答:物体具有三个对称面已足以确定该物体的规则性,该三平面的交点即为该物体的几何对称中心,又该物体是均匀的,故此点即为质心的位置。

2.3.答:对几个质点组成的质点组,理论上可以求每一质点的运动情况,但由于每一质点受到周围其它各质点的相互作用力都是相互关联的,往往其作用力难以n3预先知道;再者,每一质点可列出三个二阶运动微分方程,各个质点组有个相互关联的三个二阶微分方程组,难以解算。

但对于二质点组成的质点组,每一质点的运动还是可以解算的。

若质点组不受外力作用,由于每一质点都受到组内其它各质点的作用力,每一质点的合内力不一定等于零,故不能保持静止或匀速直线运动状态。

这表明,内力不改变质点组整体的运动,但可改变组内质点间的运动。

2.4.答:把碰撞的二球看作质点组,由于碰撞内力远大于外力,故可以认为外力为零,碰撞前后系统的动量守恒。

如果只考虑任一球,碰撞过程中受到另一球的碰撞冲力的作用,动量发生改变。

2.5.答:不矛盾。

因人和船组成的系统在人行走前后受到的合外力为零(忽略水对船的阻力),且开船时系统质心的初速度也为零,故人行走前后系统质心相对地面的位置不变。

当人向船尾移动时,系统的质量分布改变,质心位置后移,为抵消这种改变,船将向前移动,这是符合质心运动定理的。

2.6.答:碰撞过程中不计外力,碰撞内力不改变系统的总动量,但碰撞内力很大,使物体发生形变,内力做功使系统的动能转化为相碰物体的形变能(分子间的结合能),故动量守恒能量不一定守恒。

只有完全弹性碰撞或碰撞物体是刚体时,即相撞物体的形变可以完全恢复或不发生形变时,能量也守恒,但这只是理想情况。

2.7.答:设质心的速度,第个质点相对质心的速度,则,代入质点组动量定理可得这里用到了质心运动定理。

理论力学简明教程答案 第二章

理论力学简明教程答案 第二章

第二章有心运动和两体问题斗转星移,粒子变迁,乃至整个宇宙的各种运动均受着“上帝”的安排----力的大小与距离平方成反比定律。

在此解析几何的空间曲线将一展风情。

【要点分析与总结】1有心力和有心运动()()rr r r F F F e r==r r r(1)有心运动的三个特征:平面运动动量守恒(0M ≡r)机械能守恒(E T V =+)(2)运动微分方程()()2()2r m r r F m r r F θθθθ⎧−=⎪⎨+=⎪⎩&&&&&&可导出:()()()2222222221()21()(,r r u F r r m r h h m r r V E d u mh u u F u d r θθθθ⎧−=⎪⎪⎪=⎪⎨++=⎪⎪⎪−+==⎪⎩&&&&&&(为常量)(机械能守恒)比内公式〈析〉0L h m=是一个恒量,解题时应充分利用。

恰当运用会使你绝处逢生,可谓是柳暗花明又一村的大门。

2距离平方反比引力作用下的质点运动2222k F k u r=−=−可由比内公式导出:2220201cos()1cos()mh p k r mhe A k θθθθ==+−+−(220,,,mhp e pA A k θ==为由初始条件决定的常量)近日点:1m p r e =+远日点:1M pr e=−且422(1)2k E T V e mh=+=−可得半长轴长:221()212m M p k a r r e E=+==−−〈析〉用a 来求E ,进而得出运动规律,即便是开普勒三定律亦是须臾即得。

2距离平方反比斥力作用下的质点运动(粒子散射)的双曲线模型22k F r=(204Qqk πε=)可导出:01cos()pr e θθ−=−−散射角:12cos arc e ϕπ⎛⎞=−⎜⎟⎝⎠2004cos 2m Qq πευϕρ⎛⎞=⎜⎟⎝⎠卢瑟福散射公式:24011()44sin 2d Qq d σϕπε=Ω(式中散射截面:2d d σπρρ=,立体角:2sin d d πϕϕΩ=将散射角公式两侧微分并代入即得散射公式)4质点运动轨道的讨论(1)圆轨道的稳定条件()()220,r r dU d U drdr =>(等效势能:()()222r r mh U V r=+)再利用()()r r dV F dr=−可导出:3n <(2n k F r=)(2)轨道的轨迹曲线000E E E <⎧⎪=⎨⎪>⎩(1)(1)(1)e e e <=>LL LL LL 椭圆抛物线双曲线〈析〉通过E 与0的关系,即可判断天体运动的轨迹曲线【解题演示】1质点在有心力()r F 的作用下运动,质点速度的大小为a r υ=,这里a 是常数。

胡汉才编著理论力学课后习题答案第2章力系的简化

胡汉才编著理论力学课后习题答案第2章力系的简化

力系的简化第二章,的力F,5)两点(长度单位为米),且由A指向B.通过A(3,0,0),B(0,42-1 。

,对z轴的矩的大小为在z轴上投影为22 /5。

答:F / ;6 F上和y,c,则力F在轴z2-2.已知力F的大小,角度φ和θ,以及长方体的边长a,b的矩x ;F对轴;Fy= 的投影:Fz=F 。

)= M ( x)··()(··;-··;cos=FFz=F答:φsinφbFy=θFsincosφφcosφ+cMxFcos41-图2 图2-40F,则该力,若F=100N,4)两点(长度单位为米)),B(0,2-3.力4通过A(3,4、0 。

,对x轴的矩为在x轴上的投影为320N.m;答:-60NAE内有沿对角线,在平面ABED2-4.正三棱柱的底面为等腰三角形,已知OA=OB=a °,则此力对各坐标轴之矩为:α=30的一个力F,图中。

)= );M(F= ((MF)= ;MF zYx6Fa/4 =(F);M)=0,(F)=-Fa/2MF答:M(zxy2-5.已知力F的大小为60(N),则力F对x轴的矩为;对z轴的矩为。

答:M(F)=160 N·cm;M(F)=100 N·cmzx43-图2 2图-42O2-6.试求图示中力F对点的矩。

M(F)=Flsinα解:a: O M(F)=Flsinαb: Oα+ Flcos)sinc: M(F)=F(l+lα2O13??22?lM?Fl?Fsin d: 2o1。

轴的力矩M1000N2-7.图示力F=,求对于z z图题2-8 7题2-图。

试求=40N,M=30N·m=40N2-8.在图示平面力系中,已知:F=10N,F,F321其合力,并画在图上(图中长度单位为米)。

解:将力系向O点简化=30N F=F-R12X40N -=R=-F3V R=50N ∴m )··3+M=300N+FF主矩:Mo=(+F312d=Mo/R=6mO合力的作用线至点的矩离iiRR0.8-=),(cos,=0.6),(cos合力的方向:iR )=-53,°08'(iR ,')(=143°08,内作用一力偶,其矩M=50KNGA转向如图;又沿·m,2-9.在图示正方体的表面ABFE2RR =50。

清华理论力学课后答案2

清华理论力学课后答案2

kh da
(b)
w.
co
m
4
三角块 V4
V4 = 2 × 3 × 3 ÷ 2 = 9
(1, 7, 1)
2-5 均质折杆及尺寸如图示,求此折杆形心坐标。 解: 将图示折杆简化为折线计算。 折杆有 5 段直线组成, 每一段的长度及形心坐标如表所示。 按形心计算公式,有
xc =
∑iLi xi 200 × (−100) + 100 × (−50) + 100 × 0 + 200 × 100 + 100 × 200 = 200 + 100 + 100 + 200 + 100 ∑iLi = 21.43(mm)
kh da

w.
FRx ' = F1 cos 45� − F2 cos 45� = 0 ,

co
在坐标轴上的投影为
m
解: 各力均在与坐标平面平行的面内, 且与所在平面的棱边成 45°角。 将力系向 A 点简化, 主矢 FR '
a b c + + = 0。 F1 F2 F3
当主矢与主矩平行时,力系能简化为力螺旋,即从 FR '× M O = 0 得,
yc =



(200,100,-50)
ww w.
3
kh da
题 2-5 图
w.
co
m
题 2-6 图
解: 由对称性知,该图形的形心一定在 x 轴上,即 yc = 0 。用负面积法计算其横坐标。此平面图
按形心计算公式,有
xc =
2-7 工字钢截面尺寸如图示,求此截面的形心坐标。
题 2-7 图

理论力学(刘又文 彭献)答案第2章

理论力学(刘又文 彭献)答案第2章
12.空间平衡力系向 3 个相互垂直的坐标平面投影,得到 3 个平面任意力系, 这样该力系的独立平衡方程数为 3×3=9 个。对吗?
答:不对。因为其中一个平面上的 3 个投影方程,完全可由其他两组方程导 出,故独立平衡方程数只有 6 个。
13.均质杆 AB、AC,铅垂架在粗糙水平面上,并处于临界平衡状态,如图 2.9 所示。研究整体,其受力为平面一般力系,则可解出 3 个未知量。对吗?
可由其导出,它们与上述 6 个方程互不独立;如果使用整体及其中一刚体的共 6
个平衡方程,则另一刚体的 3 个平衡方程也可由其导出。故该系统的独立平衡方
程只有 6 个。 9. 如 图 2.6 所 示 为 两 铰 拱 , A 、 B 支 座 处 有 4 个 未 知 约 束 力 , 可 由
∑ Fx = 0, ∑ Fy = 0, ∑ M A = 0, ∑ M B = 0,共 4 个平衡方程联立解出。对吗?
答:不对。平面一般力系,只有 3 个独立平衡方程,第 4 个方程一定是前 3
个的某种线性组合,是不独立的。该结构为超静定,4 个未知量不可由平衡方程
全部求出。
10.某力系中,各力的作用线平行于某一平面,则独立平衡方程的个数是 3。
对吗?
答:不对。平行于某平面的力线不一定共面,也不一定平行。如图 2.7 所示,
吗?
答:不对。当 A、B 两矩心与汇交点共线,且力系对于 AB 轴对称时,如图
∑ ∑ 2.3 所示汇交力系中, F1 = F2 ,虽有 MA = 0, MB = 0,但该力系并不平衡。
∑ ∑ ∑ 5.平面一般力系,满足 MA =0, MB =0, Fx = 0,则一定平衡。对吗?
答:不对。应补充 AB 不垂直 x 轴的条件,否则条件不充分。如图 2.3 所示 情形,力系虽满足上述三个方程,但并不平衡。

理论力学第二章习题答案

理论力学第二章习题答案

理论力学第二章习题答案理论力学第二章习题答案理论力学是物理学的基础学科之一,它研究物体的运动规律以及力的作用原理。

在理论力学的学习过程中,习题是检验学生理解和掌握程度的重要方式之一。

下面将为大家提供理论力学第二章的习题答案,希望对大家的学习有所帮助。

1. 一个质点在匀速直线运动中,它的加速度是多少?答:在匀速直线运动中,速度保持不变,所以加速度为0。

2. 一个质点的速度随时间的变化规律为v=3t+2,求它在t=2s时的速度。

答:将t=2s代入速度变化规律中,得到v=3*2+2=8m/s。

3. 一个质点做匀加速直线运动,它的初速度为2m/s,加速度为3m/s²,求它在t=4s时的位移。

答:根据匀加速直线运动的位移公式s=vt+1/2at²,将初速度v=2m/s,时间t=4s,加速度a=3m/s²代入,得到s=2*4+1/2*3*4²=8+24=32m。

4. 一个质点做匀加速直线运动,它的初速度为4m/s,位移为20m,加速度为2m/s²,求它的末速度。

答:根据匀加速直线运动的末速度公式v²=u²+2as,将初速度u=4m/s,位移s=20m,加速度a=2m/s²代入,得到v²=4²+2*2*20=16+80=96,所以末速度v=√96≈9.8m/s。

5. 一个质点做直线运动,它的速度随时间的变化规律为v=2t²+3t,求它在t=3s时的加速度。

答:加速度是速度对时间的导数,所以将速度变化规律v=2t²+3t对时间t求导,得到加速度a=dv/dt=4t+3。

将t=3s代入,得到a=4*3+3=15m/s²。

6. 一个质点做直线运动,它的速度随时间的变化规律为v=5t²+2t,求它在t=2s 时的加速度。

答:同样地,将速度变化规律v=5t²+2t对时间t求导,得到加速度a=dv/dt=10t+2。

理论力学(周衍柏 第二版)第2章习题解答

理论力学(周衍柏  第二版)第2章习题解答
之值。
2.8 一光滑球 A 与另一静止的光滑球 B 发生斜碰。如两者均为完全弹性体,且两球的质量相
等,则两球碰撞后的速度互相垂直,试证明之。 2.9 一光滑小球与另一相同的静止小球相碰撞。在碰撞前,第一小球运动的方向与碰撞时两
球的联心线成α 角。求碰撞后第一小球偏过的角度 β 以及在各种α 值下 β 角的最大值。设 恢复系数 e 为已知。 2.10 质量为 m2 的光滑球用一不可伸长的绳系于固定点 A 。另一质量为 m1 的球以与绳成θ 角的速度 v1 与 m2 正碰。试求 m1 与 m2 碰后开始运动的速度 v1′ 及 v2′ 。设恢复系数 e 为已知。
离是一致的(因为两次运动水平方向上均以 v水平 = v0cosα 作匀速直线运动,运动 的时间也相同)。所以我们只要比较人把物抛出后水平距离的变化即可。第一次
机枪后退的速度为
M ′ u − (M + M ′)2 − M 2 μg
Mபைடு நூலகம்
2mM
2.16 雨滴落下时,其质量的增加率与雨滴的表面积成正比例,求雨滴速度与时间的关系。
2.17 设用某种液体燃料发动的火箭,喷气速度为 2074 米/秒,单位时间内所消耗的燃料为
原始火箭总质量的 1 。如重力加速度 g 的值可以认为是常数,则利用此种火箭发射人造太 60
zc
=
∫ zdm ∫ dm
=

3 4
(a + b)2 (2a + b)
2.3 解 建立如题 2.3.1 图所示的直角坐标,原来W人 与共同作一个斜抛运动。 y v0
α
O
x
4
当达到最高点人把物体水皮抛出后,人的速度改变,设为 vx ,此人即以 vx 的速 度作平抛运动。由此可知,两次运动过程中,在达到最高点时两次运动的水平距

理论力学第七版答案 第二章

理论力学第七版答案 第二章

2-15 直角弯杆ABCD 与直杆DE 及EC 铰接如图,作用在DE 杆上力偶的力偶矩M =40kN ⋅m ,不计各杆件自重,不考虑摩擦,尺寸如图。

求支座A 、B 处的约束反力及EC 杆受力。

题2-15图【知识要点】 平面力偶系的平衡方程。

【解题分析】 以整体为研究对象可求得A,B 处约束力,以杆DE 为研究对象可求得EC 的受力。

【解答】 (1)以整体为研究对象,受力如图。

∑=⋅-=030cos 4,00A i F M M解得 kN F F B A 320==(2) 以杆DE 为研究对象,受力如图。

∑=⋅-=045cos 4,00BC i F M M解得 kN F BC 220=2-16 在图示机构中,曲柄OA 上作用一力偶,其矩为M ;另在滑块D 上作用水平力F 。

机构尺寸如图所示,各杆重量不计。

求当机构平衡时,力F 与力偶矩M 的关系。

【知识要点】 平面力偶系的平衡方程及应用,平面汇交力系的平衡方程及应用。

【解题分析】 先研究曲柄OA ,再研究铰链B ,然后研究滑块D 。

【解答】 (1)以曲柄OA 为研究对象,受力如图。

0cos ,0=-⋅=∑M F MA i θα 解得 θαcos M F A = (2)以铰链B 为研究对象,受力如图。

题2-17图0sin cos cos ,0=-+-=∑θθθAB CB DB x F F F F0cos sin sin ,0=+--=∑θθθAB CB DB yF F F F 其中A AB F F = 解得θθαθcos 2sin 2cos M F DB =(3)以滑块D 为研究对象;受力如图。

∑=+-=0cos ,0θBD x F F F 其中 DB BD F F =解得 θαθ2cot cos M F F DB =⋅=。

理论力学第二章答案

理论力学第二章答案

[
]
代入完整保守体系的拉格朗日方程,并化简得
&& θ + sinθ ⋅ cosθ ⋅ ω 2 = 0
2.9 用拉格朗日方程写出习题1.27的运动微分方程 解:体系为自由度为2的完整约束体系,取x,y为广义坐标
m & & T = (x2 + y2) 2

V =−
e2 4 πε 0

1 x2 + y2 1 x2 + y2
ϕ +ϕ ϕ +ϕ m1g sinϕ1 − k cos 1 2 ⋅ (l − 2R) ⋅ sin 1 2 = 0 2 2 m g sinϕ − k cosϕ1 + ϕ2 ⋅ (l − 2R) ⋅ sinϕ1 + ϕ2 = 0 2 2 2 2
o
ϕ1 ϕ2
m2
m1
2.23 质量为m,电荷为q的粒子在轴对称电场 中运动。写出粒子的拉格朗日函数和运动微分方程。 v v v v 解: 由题中 E = E 0 e r ,B = B 0 k 令 ϕ = E 0 ln R v 1 v A = B 0 R eθ 2 v v 在柱坐标系中,有: = 1 mv 2 − q ϕ + q A ⋅ V , L 2 d ∂L ∂L − =0 代入: & dt ∂ q α ∂ qα
o
2.6 用拉格朗日程写出习题1.20的运动微分方程 解:如图,取底面圆心处为坐标原点,建立柱坐标系,质点到 v &v v v & eϕ + ze z & 轴距为R,则: υ = R er + Rϕ & & 由几何关系 R = ( R2 + z ⋅ tan α ), R = z ⋅ tan α

理论力学第二章课后习题答案

理论力学第二章课后习题答案

理论力学第二章课后习题答案·12·理论力系第2章平面汇交力系与平面力偶系一、是非题(恰当的在括号内踢“√”、错误的踢“×”)1.力在两同向平行轴上投影一定相等,两平行相等的力在同一轴上的投影一定相等。

2.用解析法求平面呈报力系的合力时,若挑选出相同的直角坐标轴,其税金的合力一定相同。

(√)3.在平面汇交力系的平衡方程中,两个投影轴一定要互相垂直。

(×)4.在维持力偶矩大小、转为维持不变的条件下,可以将例如图2.18(a)右图d处为平面力偶m移至例如图2.18(b)所示e处,而不改变整个结构的受力状态。

(×)(a)图2.185.如图2.19所示四连杆机构在力偶m1m2的作用下系统能保持平衡。

6.例如图2.20右图皮带传动,若仅就是包角发生变化,而其他条件均维持维持不变时,并使拎轮旋转的力矩不能发生改变。

(√图2.19图2.201.平面呈报力系的均衡的充要条件就是利用它们可以解言的约束反力。

2.三个力汇交于一点,但不共面,这三个力3.例如图2.21右图,杆ab蔡国用数等,在五个力促进作用下处在平衡状态。

则促进作用于点b的四个力的合力fr=f,方向沿4.如图2.22所示结构中,力p对点o的矩为plsin。

5.平面呈报力系中作力多边形的矢量规则为:各分力的矢量沿着环绕着力多边形边界的某一方向首尾相接,而合力矢量沿力多边形半封闭边的方向,由第一个分力的起点指向最后一个分力的终第面汇交力系与平面力偶图2.21图2.226.在直角坐标系中,力对坐标轴的投影与力沿坐标轴分解的分力的大小但在非直角坐标系中,力对坐标轴的投影与力沿坐标轴分解的分力的大小不相等。

1.例如图2.23右图的各图为平面呈报力系所作的力多边形,下面观点恰当的就是(c)。

(a)图(a)和图(b)就是平衡力系则(b)图(b)和图(c)就是平衡力系则(c)图(a)和图(c)就是平衡力系则(d)图(c)和图(d)就是平衡力系则f2f2f1(a)(b)(c)2.关于某一个力、分力与投影下面说法正确的是(b)。

理论力学答案第二章

理论力学答案第二章

《理论力学》第二章作业习题2-5解:(1)以D点为研究对象,其上所受力如上图(a)所示:即除了有一铅直向下的拉力Fr外, 沿DB有一拉力Tr和沿DE有一拉力ETr。

列平衡方程XYFF⎧=⎪⎨=⎪⎩∑∑cos0sin0EET TT Fθθ-=⎧⎨-=⎩解之得800/0.18000()T Fctg Nθ=≈=(2)以B点为研究对象,其上所受力如上图(b)所示:除了有一沿DB拉力T'r外,沿BA有一铅直向下的拉力ATr,沿BC有一拉力CTr,且拉力T'r与D点所受的拉力Tr大小相等方向相反,即T T'=-r r。

列平衡方程XYFF⎧=⎪⎨=⎪⎩∑∑sin0cos0CC AT TT Tθθ'-=⎧⎨-=⎩解之得8000/0.180000()AT T ctg Nθ'=≈=答:绳AB作用于桩上的力约为80000N。

习题2-6 解:(1) 取构件BC 为研究对象,其受力情况如下图(a)所示:由于其主动力仅有一个力偶M ,那末B 、C 处所受的约束力B F r 、C F r必定形成一个阻力偶与之平衡。

列平衡方程()0B M F =∑r0C M F l -=所以 C M F l=(2) 取构件ACD 为研究对象,其受力情况如上图(b)所示:C 处有一约束力C F 'r与BC 构件所受的约束力C F r 互为作用力与反作用力关系,在D 处有一约束力D F r 的方向向上,在A 处有一约束力A F r,其方向可根据三力汇交定理确定,即与水平方向成45度角。

列平衡方程0X F =∑sin 450o A C F F '-=所以 222A C C M F F F l'=== 2Ml(b)所示。

习题2-7解:(1) 取曲柄OA 为研究对象,其受力情况如下图(a)所示:由于其主动力仅有一个力偶M ,那末O 、A 处所受的约束力O F ρ、BA F ρ必定形成一个阻力偶与之平衡。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档