直升机空气动力学-第1章

合集下载

直升机空气动力学 课件

直升机空气动力学 课件

《直升机空气动力学》南京航空航天大学“直升机空气动力学”课程组学时数:43几点要求:❑上课认真做笔记❑课后认真看书❑作业认真完成教材:❑王适存主编,《直升机空气动力学》,航空专业教材编审组出版,1985参考文献:❑[美]R.普劳蒂著,高正等译,《直升机性能及稳定性和操纵性》,航空工业出版社,1990年❑W.Z. Stepniewski and C. N. Keys, Rotary-Wing Aerodynamics, Dover Publications,Inc.,1981绪论南京航空航天大学《直升机空气动力学》课程组©本课程性质描述直升机(主要是它的旋翼)与周围空气相互作用的空气动力现象、阐明空气动力分析的理论、研究直升机不同飞行状态下的流场和气动载荷、估算直升机飞行性能、进行直升机尤其是旋翼气动设计的一门科学。

本章内容1.本课程基本内容;2.旋翼的功用和直升机的飞行特点;3.旋翼的基本参数;4.旋翼参数无因次化。

一. 本课程基本内容1.直升机研制的主要环节2.空气动力学在直升机技术中的地位❑气动在直升机研制中占重要地位❑总体设计、部件设计、气动载荷计算、性能计算、飞行品质分析、流场分析、噪声分析、气动试验等许多工作均与气动相关。

3.本课程的基本内容❑旋翼气动理论❑气动性能分析❑流场和气动载荷分析❑试验技术二. 旋翼的功用和直升机的飞行特点旋翼是直升机的关键部件构造:数片桨叶+桨毂桨毂:连接旋翼轴和桨叶,可铰接的或固接的桨叶:2-7片1. 旋翼的功用✓产生拉力——克服重量✓产生向前的水平分力——使直升机前进✓产生其他分力和力矩——使直升机保持平衡或进行机动飞行2. 直升机分类按构造型式分类❑单旋翼式❑共轴双旋翼式❑纵列双旋翼式❑横列双旋翼式倾转双旋翼式单旋翼式——尾桨平衡旋翼反扭矩S-92共轴双旋翼式Coaxial纵列双旋翼式Tandam倾转双旋翼式Tiltrotor3. 直升机的飞行特点旋翼的运动(以垂直飞行为例):旋翼一面绕自身的旋翼轴旋转,一面随直升机一起向上运动。

直升机结构与系统--直升机飞行原理 ppt课件

直升机结构与系统--直升机飞行原理  ppt课件

《直升机结构与系统》 第1章 直升机飞行原理
直升机与固定翼飞机的比较:主要的不同之处是4个基本力(重力、升 力、推力和阻力)中的升力、推力和阻力的产生方法不一样。 ➢ 升力由运动的翼型产生,要改变升力的大小,则必须改变翼型与相 对气流之间的攻角。
• 在固定翼飞机上,要想实现改变攻角,必须通过改变机身沿横轴的俯 仰角的大小。
旋翼实度。 ➢ 挥舞(FLAPPING):在升力的作用下,桨叶绕水平关节的垂直运动。 ➢ 阻尼(DRAGGING):在阻力作用下,桨叶绕垂直关节的水平运动,也称摆
振。 ➢ 垂直飞行(VERTICAL FHGHT):直升机在垂直方向的上升和下降,由总距
杆操纵。 ➢ 转换飞行(TRANSLATIONAL FLIGHT):除垂直方向以外任何方向的飞行,
《直升机结构与系统》 第1章 直升机飞行原理
主旋翼
➢ 主旋翼
• 旋翼有效力
把每片桨叶产生的 升力合成为一个力, 这个力作用在桨叶 叶尖旋转平面的中 心,且垂直于这个 平面,这个力叫做 旋翼有效力,也叫 旋翼总空气动力。
《直升机结构与系统》 第1章 直升机飞行原理
• 旋翼锥体角
主桨叶形成一个倒锥体,桨叶与桨毂旋转平面之间的夹角叫做锥体角,它的 定义是桨叶的展向中心线与桨叶叶尖平面之间的夹角。
《直升机结构与系统》
第 01 章 直升机飞行原理
《直升机结构与系统》 第1章 直升机飞行原理
1.1 直升机概述(直升机与垂直/短距起落飞行器)
垂直/短距起落飞行器(V/STOL aircraft) ➢ V/STOL:vertical or short takeoff and landing ➢ 空气动力学原理主要侧重于在低速前飞时升力的产生。 ➢ “升力”是指飞行中为保持飞行器在空中飞行所需的垂直向上的力, 它也可能是常规的垂直向上的力和前飞所需的推进力的合力。

直升机空气动力学-直升机技术研究所

直升机空气动力学-直升机技术研究所

直升机技术研究所
Institute of Helicopter Technology
直升机特有的飞行安全性能
自转下滑和自转着陆
垂直下降与涡环状态
低空飞行回避区 起飞、着陆临界决策点
Helicopter Aerodynamics
直升机空气动力学
南京航空航天大学
Nanjing University of Aeronautics & Astronautics
Nanjing University of Aeronautics & Astronautics
直升机技术研究所
Institute of Helicopter Technology
1-1 叶素的气动环境
叶素坐标系oxyz oz 桨叶的变距轴线
ox 旋转前进方向
oy 在翼型平面内垂直于XOZ 叶素的相对气流速度 w 垂直上升相对速度 V0 旋转相对速度
Helicopter Aerodynamics
直升机空气动力学
南京航空航天大学
Nanjing University of Aeronautics & Astronautics
直升机技术研究所
Institute of Helicopter Technology
第二章 垂直飞行时的叶素理论
1、叶素理论的基本概念
1-3 自转着落
自转下滑,主要用于发动机或传动系统故障、尾桨失效时的应急 处臵,是直升机必要的安全性能。在自转下滑过程中,选定着陆 点。 着陆前,利用前进及旋转动能转化为拉力功,减小速度及 下降率。第一步,后拉驾驶杆,旋翼后仰,拉力增大,转速提高。 减速、缓降 ; 第二步,增大桨距,拉力再增大,下降率减至最 小(转速下降); 第三步, 前推杆纠正上仰姿态

现代直升机旋翼空气动力学

现代直升机旋翼空气动力学

现代直升机旋翼空气动力学•目录:•第1章绪论1.1空气动力学的内容1.1.1定义1.1.2研究问题的类型1.2空气动力学的研究工具1.2.1解析工具1.2.2计算工具1.2.3实验工具1.3直升机概况1.3.1发展简述1.3.2直升机分类1.4直升机空气动力学发展概况1.4.1经典空气动力学理论1.4.2基于CFD技术的旋翼流场模拟1.4.3旋翼计算声学简介1.4.4旋翼/机身等多部件的气动干扰简介1.5旋翼基本参数介绍参考文献第2章旋翼动量理论2.1引言2.2垂直飞行时的动量理论2.2.1垂直上升状态2.2.2悬停状态2.2.3垂直下降状态2.2.4诱导速度普遍规律2.3前飞时的动量理论2.3.1平飞状态2.3.2爬升和下滑状态2.3.3诱导速度普遍规律参考文献第3章旋翼叶素理论3.1引言3.2桨叶翼型3.2.1桨叶翼型几何参数3.2.2桨叶翼型空气动力学特性3.2.3桨叶翼型设计3.3垂直飞行时的叶素理论3.3.1旋翼拉力和功率的微分形式3.3.2旋翼拉力和功率的积分形式3.3.3旋翼拉力的近似解析式3.3.4旋翼功率的近似解析式3.3.5完善系数3.4基于叶素-环量理论的拉力系数3.5基于叶素-动量组合理论的拉力系数3.6前飞时的叶素理论3.6.1旋翼拉力和功率的积分形式3.6.2旋翼拉力和功率的近似解析式3.6.3旋翼功率的一般表达式参考文献第4章旋翼涡流理论4.1引言4.2基本概念4.2.1Kelvin定理4.2.2Helmholtz定律4.2.3Biot-Savart定律4.2.4涡与环量4.3垂直飞行时的涡流理论4.3.1儒氏旋翼涡系模型4.3.2儒氏旋翼诱导速度4.3.3非儒氏旋翼涡系模型4.3.4非儒氏旋翼诱导速度4.4前飞时的涡流理论4.4.1旋翼涡系模型4.4.2旋翼诱导速度4.4.3桨叶附着涡环量的求解参考文献第5章旋翼自由尾流分析技术5.1引言5.2涡动力学基础5.3自由涡系模型5.3.1旋翼桨叶涡系模型5.3.2旋翼尾迹模型5.3.3旋翼桨尖涡模型5.3.4涡核扩散模型5.4桨叶附着涡环量求解5.5远尾迹涡丝控制方程5.6远尾迹涡丝控制方程的求解5.6.1远尾迹周期边界条件5.6.2PIPC松弛迭代法求解过程5.7自由尾迹/面元法的耦合模型算例5.7.1求解方法5.7.2涡/面干扰5.7.3算例分析参考文献第6章旋翼CFD理论基础知识6.1引言6.2适合旋翼的流体力学控制方程组6.2.1连续性方程6.2.2动量方程6.2.3能量方程6.2.4控制方程的选择形式6.3控制方程的离散化6.3.1有限差分法(FDM)6.3.2有限体积法(FVM)6.4网格生成简介6.4.1椭圆网格生成实例6.4.2多区重叠网格(嵌套网格)简介6.5结论参考文献第7章旋翼N-S方程SIMPLE数值模拟方法7.1引言7.2SIMPLE算法7.2.1交错网格技术7.2.2SIMPLE算法基本假设7.2.3SIMPLE算法基本步骤7.2.4SIMPLE算法的简单算例7.3SIMPLER算法简介7.4代数方程组的求解7.5前飞旋翼湍流场的数值模拟算例7.5.1流场控制方程7.5.2动量源项7.5.3算例方案描述7.5.4前飞流场分析7.5.5前飞性能预测7.6垂直下降旋翼湍流场的数值模拟算例7.6.1桨盘压差源项计算7.6.2垂直下降算例方案描述7.6.3模型旋翼悬停算例验证7.6.4垂直下降算例流场分析7.6.5垂直下降性能预测7.7斜下降旋翼湍流场的数值模拟算例7.7.1计算模型及方法7.7.2旋翼升阻气动特性7.7.3单片桨叶压力场随周期的变化7.7.4孤立旋翼流场分析7.7.5旋翼/机身组合流场分析参考文献第8章旋翼TVD数值模拟方法8.1引言8.2TVD格式的概念和性质8.2.1TVD的概念8.2.2TVD的性质8.3TVD格式的构造8.3.1一阶TVD格式8.3.2二阶TVD格式8.3.3高阶TVD格式简介8.4对一维和多维方程组的推广8.4.1一维方程组的推广8.4.2多维方程组的推广8.5算例:旋翼流场Euler方程Jameson/TVD数值模拟8.5.1主控方程8.5.2数值方法8.5.3结果分析参考文献第9章旋翼绕流N-S方程数值计算方法9.1引言9.2Jameson格式9.2.1标量人工粘性的中心差分方法9.2.2各向异性的人工粘性9.2.3矩阵人工粘性模型9.3TVD格式9.3.1TVD的概念9.3.2单调格式、保单调格式和TVD性质的充分条件9.3.3显式一阶TVD格式举例9.4一种Jameson/TVD混合格式9.4.1N-S方程和通量修正法9.4.2旋翼流场N-S方程Jameson/TVD数值模拟方法9.5Jameson格式与其他格式9.5.1积分形式下的旋翼流动控制方程9.5.2空间离散格式9.5.3悬停旋翼流动的数值模拟9.5.4前飞旋翼流动的数值模拟参考文献第10章旋翼洗流和旋翼/机身/发动机耦合流场分析10.1引言10.2旋翼洗流分析10.3旋翼/机身干扰流场10.3.1"作用盘"假设10.3.2N-S方程直接模拟10.4旋翼/机身/发动机耦合流场10.5旋翼/机身/柱体耦合流场10.5.1旋翼/机身耦合流场10.5.2机身/柱体耦合流场参考文献第11章旋翼计算声学基础11.1引言11.2Ffowcs Williams-Hawkings方程和Kirchhoff理论11.2.1Ffowcs Williams-Hawkings方程11.2.2Kirchhoff理论11.3两种方法的比较11.4桨涡干扰噪声的模拟11.5计算流体力学方法参考文献习题与思考题附录彩图页。

最新2019-直升机空气动力学-涡流理论-PPT课件

最新2019-直升机空气动力学-涡流理论-PPT课件

Helicopter Aerodynamics
直升机空气动力学
南京航空航天大学
Nanjing University of Aeronautics & Astronautics
直升机技术研究所
Institute of Helicopter Technology
3-2 轴向气流中的旋翼涡系构成
1)附着涡盘
你所见到的漩涡及其形成的原因
Helicopter Aerodynamics
直升机空气动力学
南京航空航天大学
Nanjing University of Aeronautics & Astronautics
直升机技术研究所
Institute of Helicopter Technology
1-2 涡的诱导速度
讨论:三类涡系的优缺点和适用性
Helicopter Aerodynamics
直升机技术研究所
Institute of Helicopter Technology
直升机空气动力学
南京航空航天大学
Nanjing University of Aeronautics & Astronautics
直升机技术研究所
漩涡引起周围流体的速度和压强变化

涡的诱导速度用毕奥—沙瓦定理计算
速度
Y向
rr
r ds l
dv
4
l3
压强
式中 是涡元 d s 到计算点M 的矢径,
是涡的环量。
Helicopter Aerodynamics
直升机空气动力学
南京航空航天大学
Nanjing University of Aeronautics & Astronautics

直升机空气动力学

直升机空气动力学

直升机空气动力学一、引言直升机是一种能够在垂直方向起降的飞行器,其独特的设计和工作原理使其在许多领域发挥着重要作用。

直升机的空气动力学是研究直升机在空气中运动和操纵的科学,深入了解直升机的空气动力学原理对于提高直升机的性能和安全性至关重要。

二、气动力学基础直升机的气动力学基础包括气动力、气动力矩和旋翼气动力分析。

气动力是指直升机在飞行中由于空气的作用而产生的力,它包括升力和阻力。

升力是使直升机产生升力的主要力量,它是由于旋翼产生的气流下垂所产生的。

阻力是直升机在飞行过程中由于空气的阻碍而产生的阻力,它是直升机前进的阻碍力量。

三、旋翼气动力学旋翼是直升机最重要的部件之一,它是直升机产生升力和推力的关键。

旋翼的气动力学研究主要包括旋翼升力的产生、旋翼阻力的产生和旋翼的空气动力特性。

旋翼升力的产生是指旋翼通过改变攻角和旋翼叶片的运动来产生升力的过程,其主要依靠气流下垂产生升力。

旋翼阻力的产生是指旋翼在运动中由于空气的阻碍而产生的阻力,其大小取决于旋翼叶片的形状和攻角。

四、直升机操纵直升机的操纵是指驾驶员通过改变旋翼的迎角和旋翼的旋转速度来改变直升机的飞行状态和方向。

直升机的操纵主要包括升降操纵、前进操纵和横向操纵。

升降操纵是指通过改变旋翼的迎角来控制直升机的上升和下降。

前进操纵是指通过改变旋翼的旋转速度和机身的倾斜角度来控制直升机的前进和后退。

横向操纵是指通过改变旋翼的迎角差和尾桨的推力来控制直升机的左右移动。

五、直升机稳定性和控制性直升机的稳定性和控制性是指直升机在飞行中保持稳定和响应驾驶员操纵指令的能力。

直升机的稳定性主要包括静态稳定性和动态稳定性。

静态稳定性是指直升机在静止状态下保持平衡的能力,它取决于直升机的几何形状和重心位置。

动态稳定性是指直升机在飞行中保持平稳和响应驾驶员操纵指令的能力,它取决于直升机的气动特性和操纵系统。

直升机的控制性是指直升机在飞行中响应驾驶员操纵指令的能力,它取决于直升机的操纵系统和飞行状态。

直升机空气动力学叶素理论

直升机空气动力学叶素理论

CmF Cm0 常数
xF
焦点位置是固定的,它不因迎角变化而移动。 常用翼型在低速下,
Cm0 0.01
翼型气动合力的作x用F点称为0.压2力5 中心
位置为
是随迎角变化的。
xp 讨CCmy论:桨CC叶ym0的变xF距轴线为何一般安置在焦点处
xp
2-4 雷诺数的影响
翼型雷诺数 Re b r /
CT
1 3
C
y
7
m
K
1 4
KP Cx7
CTV0
JCT v1
叶素理论建立了旋翼几何特性、运动特性与其
空气动力的关系。可用于旋翼设计。
但不能确定各叶素处的诱导速度。
感谢下 载
Cy
- Cm
Cy
若升力合力作用点在

Xp ,
对任一点CmX x p C y
xp xp /b
若使 翼弦上距前缘
Cmx C y ( xp x) Cm x C y 的点C称m0为翼CC型my焦 C点y,绕x焦 C点则y 的力矩不随xxXFFp升力变化,总等
于零升力矩x。
(
Cm C y
)
xF
0.7 2
儒氏条件建立了桨叶宽度与安装角的关系。
由 Cybr Cy7b(0.7) 常数

已知 C y a 0.7C y7 / r
由此得矩形桨叶儒氏旋翼安装角
桨叶安装角、来流角、迎角
沿径 向 的变化0.a如7C双ry7曲线V型0 r v1
在矩形桨叶条件下,
讨论: 旋翼桨叶通常采用线性扭转
迎角不能太大--受限于气流分离(失速) 速度不能太大--受限于阻力和力矩突增 物理实质:气流粘性和可压缩性起作用 分别以 Re 和 Ma来表征 讨论二 探寻、创造新翼型

直升机空气动力学

直升机空气动力学

直升机空气动力学限制直升机速度的一个重要因素是旋翼桨叶的挥舞,桨叶的惯性在不断地挥舞中增加了机械振动,铰链的磨损(或弹性元件的疲劳)使直升机的可靠性总是不如固定翼飞机。

常规直升机的柔性桨叶虽然是非常规机动成为可能,但柔性的桨叶也限制了直升机的机动性,难于像固定翼飞机一样做迅猛的滚翻、拉起、俯冲、盘旋动作,过于激烈的机动动作可能使桨叶和机体碰撞,严重危害飞行安全。

刚性桨叶的限制要小得多,采用刚性桨叶的直升机或许有这样、那样的问题,但都具有比常规直升机远为出色的机动性。

为此,刚性桨叶一直是直升机研究的一个目标。

洛克希德“夏延”的下马给刚性桨叶的发展蒙上阴影,但刚性桨叶的研究并没有就此偃旗息鼓,近来又柳暗花明的迹象。

为了大幅度提高直升机性能,美国从70 年代开始,进行了一系列直升机研究机项目。

西科斯基的“前行桨叶概念”(Advancing Blade Concept,简称ABC)在较早就获得成功。

如前所述,刚性旋翼的一个大问题是由于前飞的相对速度叠加在旋翼旋转速度引起的非对称升力,但对于刚性的共轴反转双桨来说,两边的非对称升力叠加起来,就对称了,刚性的桨叶和桨轴吸收所有的扭力,这就是ABC 可以免去挥舞铰的基本思路。

由于刚性桨叶没有挥舞,上下旋翼可以离得很近,而没有碰撞的危险。

差动式地加减上下旋翼的桨距以形成扭力差不仅形成水平方向上的转向,还由于刚性旋翼非对称升力造成横滚,进一步加速转弯过程,所以ABC 具有异乎寻常的机动性,大大超过常规直升机。

ABC 直升机有专用的推进发动机,高速平飞时,用气动舵面实现飞行控制。

采用ABC 的S-69(军用代号XH-59A)参加了LHX 竞争,但技术终究不够成熟,在悬停中低头或抬头也比较困难,落选于同出于西科斯基的常规旋翼加涵道尾桨的方案,后者最终成为RAH-66“科曼奇”,现在也下马了。

西科斯基XH-59A“前行桨叶”概念研究机,用共轴反转的刚性旋翼,既抵消扭力,又抵消非对称升力流线型的S-69 蛮俊俏的前行桨叶在无人机的大潮中得到复苏,西科斯基的Mariner/Cypher II 将前行桨叶和涵道风扇结合起来,动力从“碗边”通过传动轴传递,可以分别传递给上下旋翼,而不必用套筒轴驱动,大大简化机械设计和制造。

直升机空气动力学基础

直升机空气动力学基础
的旋翼滑流理论入门。该理论比较简单,但含有重 要的基本概念和知识。
第一章 垂直飞行时的滑流理论 3
第一节 基本原理
1.1 旋翼怎样产生拉力 旋翼从上方吸入空气,向下排压空气,
形成旋翼尾流。 气流受到旋翼作用力,被加速、增压;
同时对旋翼施加反作用力,即是旋翼拉力。 为知道旋翼拉力,可计算气流所受的力, 二者大小相等。
如 Z9,p = 37, u10 = 12m / s ,六(九)级风
第一章 垂直飞行时的滑流理论 17
5.2 功率载荷
G
定义 单位马力载荷
q= NM
G-直升机设计的起飞重量,kg
kg/HP
NM-发动机在海平面的额定功率,HP (马力) NM 大部分用于驱动旋翼,约10~20%功率消耗于 尾桨、附件、传动损失等
直升机空气动力学基础
第一章 垂直飞行时的滑流理论 1
第一章 垂直飞行时的滑流理论
基本原理 旋翼滑流计算 悬停特性 滑流理论的修正 工程应用
第一章 垂直飞行时的滑流理论 2
直升机具有广泛用途,是因其独特的飞行性能: 能垂直升降、空中悬停 良好的低速飞行性能
来自旋翼的空气动力特性。 直升机空气动力学课程,从垂直上升及悬停中
讨论:旋翼拉力不称做升力,概念不同: 翼面升力垂直于来流速度 旋翼拉力沿转轴方向,是各桨叶的合力。
第一章 垂直飞行时的滑流理论 4
1.2 滑流假定 为做数学推演,须对物理现象 做适当的简化假定: ➢ 滑流:空气无粘性、不可压缩 ➢ 作用盘:旋翼是作用盘,产生稳定均布的诱导速度 ➢ 流管:受旋翼作用的气流形成一流管,气流无扭转
讨论:滑流理论应用的局限性
第一章 垂直飞行时的滑流理论 16
第五节 滑流理论的工程应用

空气动力学与飞行原理课件:无人直升机基本飞行原理

空气动力学与飞行原理课件:无人直升机基本飞行原理

和最小下滑角。
6
第二节

习 大
二、
无人直升机操纵及控制原理

7
贰 无人直升机操纵及控制原理
直升机运动包括姿态运动和轨迹运动。姿态 运动指绕无人机机体轴的三个角运动,轨迹运动 指无人直升机质心在空间中的运动轨迹。无人直 升机操纵就是控制直升机的姿态运动和轨迹运动 。 飞行控制系统是一个根据测量元件测量当前直 升机的飞行姿态和运动轨迹,反馈给中央处理器, 根据目标航线运动和当前测量值差别,由一套控制 算法,控制执行机构,进行姿态控制,使无人直升 机按照当前预定轨迹运动。
图3.16 自动倾斜器示意图
12
贰 无人直升机操纵及控制原理
需要说明的是,虽然桨盘平面的倾斜相对桨叶的桨距变化 有90度的滞后,但是自动倾斜器的倾转方向与桨盘平面的 倾转方向是大体相同的。主需要说明的是,虽然桨盘平面 的倾斜相需对要桨说叶明的的桨是,距虽变然化桨有盘9平0度面的的倾滞斜后相,对但桨是叶自的动桨倾斜 器的距倾变转化方有向90与度桨的盘滞平后,面但的是倾自转动方倾向斜是器大的倾体转相方同向的与。主要 为了桨习盘惯平一面致的,倾在转实方向际是控大制体桨相叶同的的时。候主要,为旋了转习环惯的一方致位,角 会超在前实90际度控控制制桨桨叶的叶时来候克,服旋桨转盘环平的面方位的角滞会后超。前但90在度实际设 计周期变距机构的时候由于挥舞铰外伸量的不同,桨盘平 面的控滞制后桨角叶有来时克会服小桨盘于平90面度的,滞需后要。对但在不实旋际转设环计的周操期纵变相位 进行距调机整构使的操时纵候杆由于前挥推舞时铰,外桨伸盘量平的面不同也,是桨前盘倾平。面要的为滞了习 惯一后致角,有在时实会际小控于9制0桨度,叶需的要时对候不,旋旋转转环环的操的纵方相位位角进会超前 90度行控调制整桨使叶操来纵克杆前服推桨时盘,平桨面盘的平滞面后也是。前但倾在。实际设计周期 变距机构的时候由于挥舞铰外伸量的不同,桨盘平面的滞 后角有时会小于90度,需要对不旋转环的操纵相位进行调

飞机的飞行原理--空气动力学基本知识 ppt课件

飞机的飞行原理--空气动力学基本知识  ppt课件
PPT课件 21
4、电离层(暖层、热层)






电离层位于中间层之上,顶界离地面大约 800公里。 电离层的特点: 1)空气温度随着高度的增加而急剧增加, 气温可以增加到400 ℃以上(最高可达1000 ℃ 以上)。 2)空气具有很大的导电性,空气已经被 电离,主要是带负电的电离子。 3)空气可以吸收、反射或折射无线电波。 4)空气极为稀薄,占整个大气的1/亿. 这层空气主要有人造卫星、宇宙飞船飞行。
PPT课件 16



对流层的特点: 1)气流随高度升高而降低 在对流层中.由于空气受热的直接来源不是太阳,而 是地面,太阳放射出的能量,大部分被地面吸收,空气是 被太阳晒热的地面而烤热的,所以越靠近地面,空气温度 就越高。在中纬度地区,随着高度的增加,空气温度从15 ℃降低到11公里高时的-56.5 ℃。 2)风向、风速经常变化 由于太阳对地面的照射程度不一,加之地球表面地形、 地貌的不同,地面各地区空气气温和密度不相同,气压也 不相等,即使同一地区,气温、气压也常会发生变化,使 大气产生对流现象,形成风,且风向、风速也会经常变化。 3)空气上下对流激烈 地面各处的温度不同,受热多的空气膨胀而上升,受 热少的空气冷却而下降,就形成了空气的上下对流。
PPT课件 17



4)有云、雨、雾、雪等天气现象 地球表面的海洋、江河中的水由于太阳照射而不断蒸 发,使大气中常常聚集着各种形态的水蒸气,在空中形成 了“积雨云”,随着季节的变化,就会形成云、雨、雾、 雪、雹和打雷、闪电等天气现象。 5)空气的组成成分一定 对流层中几乎包含了全部大气质量的3/4,主要是由于 地球引力作用的结果。 由于对流层具有以上特点,会给飞机的飞行带来很大 影响。在高空飞行时,气温低,容易引起飞机结冰,温度 变化还会引起飞机各金属部件收缩,改变机件间隙,甚至 影响飞机正常工作。上下对流空气会使飞机颠簸,既不便 于操纵,又使飞机受力增大。

直升机气动力手册(3篇)

直升机气动力手册(3篇)

第1篇第一章:直升机概述1.1 直升机的定义与分类直升机是一种垂直起降的航空器,它通过旋翼的旋转产生升力。

根据旋翼的数量,直升机可分为单旋翼直升机和多旋翼直升机。

单旋翼直升机通过尾桨来平衡旋翼的扭矩,而多旋翼直升机则通过多个旋翼来平衡扭矩。

1.2 直升机的发展历程直升机的发展可以追溯到20世纪初,当时的航空先驱们尝试通过旋转的叶片来产生升力。

经过多年的研究和实验,直升机逐渐从理论走向实践,并在第二次世界大战期间开始用于军事领域。

随着技术的进步,直升机在民用领域也得到了广泛的应用。

第二章:直升机气动原理2.1 旋翼的气动特性旋翼是直升机产生升力的主要部件,其气动特性如下:(1)旋翼叶片的形状和数量:旋翼叶片的形状和数量对直升机的气动性能有很大影响。

叶片形状决定了升力和推力的产生,叶片数量则影响了直升机的稳定性和机动性。

(2)旋翼叶片的转速:旋翼叶片的转速越高,产生的升力和推力越大。

但过高的转速会导致叶片振动和噪声增大。

(3)旋翼叶片的攻角:旋翼叶片的攻角是指叶片与气流方向的夹角。

攻角越大,产生的升力越大,但过大的攻角会导致叶片失速。

2.2 旋翼的空气动力学分析旋翼的空气动力学分析主要包括以下几个方面:(1)旋翼叶片的升力系数:升力系数是旋翼叶片产生升力的能力,它与叶片形状、攻角和转速等因素有关。

(2)旋翼叶片的阻力系数:阻力系数是旋翼叶片在飞行过程中受到的空气阻力与升力的比值。

阻力系数越小,直升机的燃油效率越高。

(3)旋翼叶片的扭矩:扭矩是旋翼叶片旋转时产生的力矩,它与升力和转速有关。

第三章:直升机气动设计3.1 旋翼设计旋翼设计是直升机气动设计的关键环节,主要包括以下几个方面:(1)叶片形状:叶片形状决定了旋翼的气动性能,如升力系数、阻力系数和扭矩等。

(2)叶片数量:叶片数量影响了直升机的稳定性和机动性。

(3)叶片材料:叶片材料对旋翼的强度、重量和耐久性有很大影响。

3.2 尾翼设计尾翼设计主要包括尾桨和尾梁,其作用是平衡旋翼的扭矩,提高直升机的稳定性和操纵性。

空气动力学基本理论—大气物理参数

空气动力学基本理论—大气物理参数
露点温度是指大气中所含水蒸气已达到了饱和状态并开始
凝结,从而形成云、雾、降水等各种气象,而这些都会影响 飞机的飞行安全。所以,了解露点温度对飞行安全十分重 要。 含有水蒸气的空气比干空气密度小、重量轻,这对飞机的起 飞性能也有影响。
声速
声速是小扰动在介质中的传播速度,单位:米每秒(m.S1) 声速成因:物体的振动在介质中引起的小扰动会以介质不 断被压缩(压力和密度增大)、膨胀(压力和密度减小) 的形式向四周传播,形成介质疏密交替变化的小扰动波。
大气密度
单位体积内流体的空气质量,简单来说 就是空气稠密的程度。
= m
V
国际单位制中,单位为kg/m3 空气密度大,说明单位体积内的空气分子多,比较稠密;反之相反。
由于地心引力的作用,大气的密度随高度的增加而减少,近似按指数曲线变 化。注:在6700米高度时,大气密度仅为海平面大气密度的一半。
大气温度
2023/12/14
学习目的
通过学习本章内容,掌握大气的重要参数 和构造,掌握国际标准大气的制定及应用 并能熟练分析气象对飞行活动及飞机机体 的影响。
主要内容
1
大气的重要物理参数
2
大气层的构造
3
国际标准大气
4
气象对飞行活动的影响
第一节 大气的重要物理参数
大气组成
• 氮气、氧气 • 二氧化碳 • 氩、氖、氦、氢等气体 • 水蒸气和尘埃颗粒。
不同流体具有不同的粘度系数,同一流体的粘度系数又随温度而 变化;流体黏度随着温度变化的特性又称为流体的黏温特性
气体的粘度系数随温度的升高而增大 液体的粘度系数随温度的升高而减小
为何二者相反?
气体的粘度系数随温度的升高而增大 液体的粘度系数随温度的升高而减小

直升机的空气动力学原理

直升机的空气动力学原理
升力 前行桨叶 高速度小桨距 诱导速度 离心力 机身阻力 后行桨叶 低速度大桨距 当地阻力系数CD 桨毂阻力 升力
旋翼系统运动学
旋翼系统存在以下运动和运动耦合: 摆振运动(减摆器和前后限动块) 挥舞运动(上、下限动块和限制器) 变距运动 变距-摆振不稳定性 变距-挥舞不稳定性 挥舞-摆振不稳定性
V0 sin S 0 R
速度系数
在悬停飞行,由于V0=0,则μ=0,λ0=0。αs无意义。 在 在垂直下降,由于V 直下降 由于 0自下而上流向旋翼,则μ≈0, 自下而 流向旋翼 则 αs≈90°,λ0>0。 在垂直上升,μ≈0,αs≈-90°,λ0<0。 在前飞状态,直升机飞行速度越大,μ值越大,αs≈5~10°,λ0<0。来流从斜上方吹向旋翼。 如计入旋转平面处的等效轴向诱导速度V1,则旋转的 轴向气流为(V0sinαs-V1),轴向来流系数为:
3.1 旋翼的空气动力学特点
完全刚性的直升机旋翼空气动力学非常复杂,不对称气流是 造成直升机旋翼动力学和空气动力学许多问题的原因。前行 桨叶感受着旋转速度和前飞速度之和 在高速前飞时 桨尖 桨叶感受着旋转速度和前飞速度之和,在高速前飞时,桨尖 马赫数达到0.92~0.95。后行桨叶感受着旋转速度和前飞 速度之差,它的内侧有 个反流区,因低速而使它在大迎角 速度之差,它的内侧有一个反流区,因低速而使它在大迎角 下工作,在高速前飞时容易发生气流分离失速。
3.1.2 旋翼桨叶的铰接形式
旋翼桨叶同桨毂之间装有铰链。通过铰链可使桨叶进 行三种转动: 1.桨叶可绕桨叶轴向铰进行转动,改变安装角(桨距) φ 极限安装角φ 极限安装角 15°
旋翼旋转轴
旋翼桨叶平面形状
平面形状 平面尖削的效果是 使直升机悬停时 流过桨盘的气流 比较均匀,桨根 弦长大于桨尖弦 长,可增大桨盘 内侧区域的诱导 速度,增大桨盘 内侧区域的拉力, 从而改善飞行品 质。

直升机空气动力学-第1章

直升机空气动力学-第1章
讨论:旋翼拉力不称做升力,概念不同: 翼面升力垂直于来流速度 旋翼拉力沿转轴方向,是各桨叶的合力
旋翼动力学国防科技重点实验室
直升机空气动力学基础
--第一章垂直飞行时的滑流理论
1.2 滑流假定 为做数学推演,须对物理现象 做适当的简化假定:
➢ 滑流:空气无粘性、不可压缩
➢ 作用盘:旋翼是作用盘,产生稳定均布的诱导速度 ➢ 流管:受旋翼作用的气流形成一流管,气流无扭转ຫໍສະໝຸດ 以1 R2 (R)2
2
把 T 无量纲化,且

V V0 R

1
1 R
得拉力系数 CT 4(V0 1) 1

1
1 2
[V0
V02 CT ]
直升机匀速垂直上升中,T = G = 常数, 若V0增大,则流量增大,1 减小。
旋翼动力学国防科技重点实验室
直升机空气动力学基础
--第一章垂直飞行时的滑流理论
截取上游、下游各很远处两截面之间的一长段流管,
周围大气压强皆为 P0 ,自成平衡。
由于旋翼激起诱导速度,V1 V0 1 ,V2 V0 2
2.1 由动量定理,单位流量的动量改变等于
所受的同方向外力
(不计空气重力)
m(V2 V0 ) F
根据质量守恒定律,单位流量
m V1S1 V0S0 V2S2
直升机空气动力学基础
--第一章垂直飞行时的滑流理论 直升机空气动力学基础
第一章 垂直飞行的滑流理论
旋翼动力学国防科技重点实验室 唐正飞
旋翼动力学国防科技重点实验室
直升机空气动力学基础
--第一章垂直飞行时的滑流理论
一些悬停试验
旋翼动力学国防科技重点实验室
直升机空气动力学基础

《飞行原理空气动力》PPT课件

《飞行原理空气动力》PPT课件
航程
飞机在无风和不加油的条件下,连续飞行耗尽 可用燃油时飞行的水平距离
航时
飞机耗尽可用燃油时能持续飞行的时间。
28
起飞
起飞定义:从起飞线开始,经过滑跑-离地爬升到安全高度(飞机高于起飞表面10.7 米—CCAR-25)为止的全过程。
主要性能指标:地面滑跑距离、离地速度和 起飞距离。
影响起飞性能的主要因素:起飞重量、大气 条件(密度、风向等)、离地时的迎角、增 升装置的使用、发动机的推力及爬升阶段爬 升角的选择等。
18
3.4 巡航飞行
飞机巡航飞行应满足的平衡条件:升力等 于重力、推力等于阻力。
平飞所需速度:飞机在某高度上保持平飞 所需的升力(等于重量)对应的飞行速度。
平飞速度
1
平飞 (2W / CL S)2
19
影响平飞所需速度的因素: 飞机重量:重量愈大所需速度愈高。 升力系数:取决于飞机的迎角,迎角减小
如果着陆重量过大或机场温度较高或在海拔较高 的机场着陆,都会造成接地速度过大,使飞机接 地时受到较大的地面撞击力,损坏起落架和机体 受力结构;也会使着陆滑跑距离过长,导致飞机 冲出跑道的事故发生。
着陆时的重量不能超过规定的着陆重量。 在不超过临界迎角和护尾迎角的条件下,接地迎
角应取最大值,增升增阻的后缘襟翼在着陆时要 放下最大的角度,以最大限度的增加升力系数减 小接地速度
最大正过载表示飞机承受的气动升力指向 机体立轴的正向并达到最大;
最大最负过载表示飞机承受的气动升力指 向机体立轴的反向并达到最大;
最大速度表示此时飞机的载荷或升力不一 定最大,但机翼表面的局部气动载荷很大, 压力中心靠后,考验机翼结构局部强度的 严重受载情况。
27
巡航飞行
巡航速度
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

度)

P0 T10
1 R 2 (R) 2 (R) 2

P0 无量纲化,
得功率系数

1 10 CT 2
mk 0 CT10
代入,则得
1 3/ 2 mk 0 CT 2
旋翼动力学国防科技重点实验室
直升机空气动力学基础
--第一章垂直飞行时的滑流理论
第四节 旋翼滑流理论的修正
4.1 叶端损失系数 实际旋翼,并非整个桨盘面积产生拉力: 1)桨毂及叶根段(r0以内)无翼型 2)桨盘上下有压差,在叶尖处会有自 下而上的绕流,削弱了尖部的作用 有效面积 S r12 r02 R2 令叶端损失系数 , S R2 一般 r0 =(0.20 ~ 0.25)R } 0.92 r1 = (0.98 ~ 0.99)R 1 CT 悬停实际诱导速度,比理论值大一些: 10 2 旋翼动力学国防科技重点实验室
1
2
0
0
T
直升机匀速垂直上升中,T = G = 常数,
若V0增大,则流量增大, 1 减小。 旋翼动力学国防科技重点实验室
直升机空气动力学基础
--第一章垂直飞行时的滑流理论
第三节 悬停特性
悬停是直升机最重要的飞行状态之一。 旋翼在原地运转, V0 0 空气被旋翼吸入,桨盘处的入流速度就是 旋翼的诱导速度,即 V1 10
旋翼拉力沿转轴方向,是各桨叶的合力
旋翼动力学国防科技重点实验室
直升机空气动力学基础
--第一章垂直飞行时的滑流理论
1.2 滑流假定 为做数学推演,须对物理现象
做适当的简化假定:

滑流:空气无粘性、不可压缩 作用盘:旋翼是作用盘,产生稳定均布的诱导速度

流管:受旋翼作用的气流形成一流管,气流无扭转
定义:
悬停效率
3/ 2 理想悬停功率 P0 1 CT 0 实际悬停功率 P 2 mk
大多数直升机, 0
在0.7左右。
旋翼动力学国防科技重点实验室
直升机空气动力学基础
--第一章垂直飞行时的滑流理论
4.3 悬停旋翼尾流扩散
由质量守恒 已知
20 210
10 R2 20 R22
1 R 0.707 R 2
下游无限远处,滑流收缩为
R2
实际气流有粘性,流动中动能逐渐耗散
1)尾流不能收缩到 R2=0.707,
实际约达 0.78 R 后开始扩散 2) 20 最大值仅能达到约 1.610 ,之后即减小 至耗尽。
讨论:滑流理论也称做动量理论 应用的局限性
旋翼动力学国防科技重点实验室
直升机空气动力学基础
--第一章垂直飞行时的滑流理论
直升机空气动力学基础
第一章
垂直飞行的滑流理论
唐正飞
旋翼动力学国防科技重点实验室
旋翼动力学国防科技重点实验室
直升机空气动力学基础
--第一章垂直飞行时的滑流理论
一些悬停试验
旋翼动力学国防科技重点实验室
直升机空气动力学基础
--第一章垂直飞行时的滑流理论
诱导速度---旋翼的作用引起的速度变化(方向、大小) 讨论:各项假定的适宜性:
低速、常温、常规尺寸 ;(粘、波阻力)
多叶旋转、负扭及尖削;(修正系数) 流动有界面、扭速较小
旋翼动力学国防科技重点实验室
直升机空气动力学基础
--第一章垂直飞行时的滑流理论 第二节 旋翼滑流计算
当直升机以速度 V0 垂直上升,相对气流向下吹来。
0.8 ~ 0.9
,A-发动机高度特性
功率传递系数
当代直升机 q = 3~5 kg/HP
G q A N可用
讨论:飞机螺旋桨,约 1 kg/HP
旋翼动力学国防科技重点实验室
直升机空气动力学基础
--第一章垂直飞行时的滑流理论
5.3 旋翼直径选择 直升机飞行,必须
{
TG N可用 P 需用


1 R 2 (R) 2 CT G 2

G 1 p (R)2 CT 2 R 2
C 1 1 N可用 A T R 2 (R)3 mk q 2 75

q 75 A
CT 1 mk R
3/ 2 CT 75 75 q p A A0 4 mk 0 2 0
2 T m 210 2 R2 10 3 T10 10
一定的条件下, 10 小 , 10 小则诱导功率小
m 10 R2

而诱导功率
讨论: 1)怎样用小功率发动机制成大重量直升机 2)发展趋势:p增大, 20 40 旋翼动力学国防科技重点实验室
直升机空气动力学基础
2 T 2 R2 10 2 10
拉力系数 CT 4
10 常用作特性速度,如垂直上升中:
V 1 1 V0 [ ( 0 ) 2 4] 10 2 10 10
1 ,悬停诱导速度 10 CT 2
旋翼动力学国防科技重点实验室
直升机空气动力学基础
--第一章垂直飞行时的滑流理论
直升机空气动力学基础
--第一章垂直飞行时的滑流理论
4.2 悬停效率 0 旋翼在悬停时消耗的功率,不仅是诱导功率 T10 ,还有: 克服空气粘性引起的翼型阻力的能耗、克服波阻的度有脉动、沿桨盘不均布,诱导功率比 T10 要大些(上述功率将利用旋翼叶素理论、涡流理论计算)
旋翼动力学国防科技重点实验室
直升机空气动力学基础
--第一章垂直飞行时的滑流理论
2.2 由动能定理,滑流动能的改变,等于旋翼输送给滑 流的功率 即 将动量定理的 得
1 1 mV22 mV02 FV1 2 2
1 m(V22 V02 ) F (V0 1 ) 2
F m(V2 V0 )
2.3 诱导速度与拉力系数的关系 旋翼拉力 T F m(V2 V0 ) (V0 1 ) R2 21
1 R 2 (R ) 2 2
V0 V R


把 T 无量纲化,且

1 1 R
得拉力系数 CT 4(V0 1 ) 1 或 1 [V V 2 C ]
在海平面, q p 37.50 讨论:
一般 18~25
q p 有极限值的物理解释: 能量守恒
旋翼动力学国防科技重点实验室
直升机空气动力学基础
--第一章垂直飞行时的滑流理论
将 p 与 q 的定义式代入,得
G3/ 2 33.25 0 N M D
直升机重量G一定,则需用功率与旋翼直径成反比 物理解释:D大,则流量 在
及 V2 V0 2
代入上式
2 21
即 旋翼在下游远处的诱导速度
2 ,等于桨盘处
21
诱导速度 1 的2倍.
讨论:空气有粘性,动能会耗散。远处诱导速度 达不到
最大值约为
1.61 ,之后即减小,最终耗尽。
旋翼动力学国防科技重点实验室
直升机空气动力学基础
--第一章垂直飞行时的滑流理论
视屏
旋翼动力学国防科技重点实验室
直升机空气动力学基础
--第一章垂直飞行时的滑流理论 第一节 基本原理
1.1 旋翼怎样产生拉力
旋翼向下排压空气,形成旋翼尾流, 同时从上方吸入空气。 气流受到旋翼作用力,被加速、增压; 同时对旋翼施加反作用力,即是旋翼拉力。
为知道旋翼拉力,可计算气流所受的力, 二者大小相等。 讨论:旋翼拉力不称做升力,概念不同: 翼面升力垂直于来流速度
3.2 滑流中的速度及静压变化 对于无粘、不可压流体,柏努利方程简化为 旋翼上方
1 2 P V 常数 2
1 2 1 2 P0 V0 P V1 1上 2 2
因 V0 0 ,V1 10

1 2 P 10 0 1上 P 2
旋翼动力学国防科技重点实验室
直升机空气动力学基础
悬停效率
q p 37.50
桨盘载荷与功率载荷的关系: 2)简略分析中,估算 分析 (如尾桨用推力式)
10
二、应用 1)总体方案设计时,初定 p,D,NM
3)其他对流场、气动干扰等的快速分析、定性
旋翼动力学国防科技重点实验室
直升机空气动力学基础
--第一章垂直飞行时的滑流理论
旋翼动力学国防科技重点实验室
--第一章垂直飞行时的滑流理论
旋翼下方
1 2 1 2 P V P V2 1下 1 2 2 2


P2 P0 , V1 10 , V2 210
3 2 P 10 1下 P 0 2
即:旋翼上面为吸压,下面为增压,且增压值为吸压的 3倍。若由桨盘上、下的静压差来计算旋翼拉力,则
截取上游、下游各很远处两截面之间的一长段流管,
周围大气压强皆为 P 0 ,自成平衡。
V1 V0 1 , V2 V0 2 由于旋翼激起诱导速度,
2.1 由动量定理,单位流量的动量改变等于 所受的同方向外力
(不计空气重力)
m(V2 V0 ) F
根据质量守恒定律,单位流量
m V1S1 V0 S0 V2 S2
旋翼动力学国防科技重点实验室
直升机空气动力学基础
--第一章垂直飞行时的滑流理论
5.2 功率载荷
定义 单位马力载荷
G q NM
Kg/HP
G-直升机设计的起飞重量,kg
NM-发动机在海平面的额定功率,HP (马力)
NM大部分用于驱动旋翼,约10~20%功率消耗于尾桨、附件、传动损失等 旋翼可用功率
N可用 = ( AN M )
2 2 得 T R2 ( P ,与动量分析所得结 P ) R 2 1下 10 1上 果相同。
相关文档
最新文档