DS18B20单片机数码管显示原理图和程序
DS18B20原理及程序编写

DS18B20原理及程序编写(一)概述DS18B20为单总线12位(二进制)温度读数。
内部有64位唯一的ID编码。
工作电压从3.0~5.5V。
测量温度范围从-55℃~125℃。
最高±0.0625℃分辩率。
其内部结构如下图所示。
DS18B20的核心功能是直接数字温度传感器。
温度传感器可以配置成9、10、11和12位方式。
相应的精度分别为:0.5℃、0.25℃、0.125℃和0.0625℃。
默认的分辨率为12位。
DS18B20在空闲低功耗状态下加电(寄生电源工作方式)。
主机必须发出Convert T [44h]命令使其对测量温度进行A-D转换。
接下来进行采集转换,结果存于两字节高速温度寄存器并返回到空闲低功耗状态。
如果DS18B20在外部VDD供电方式下,单片机可以在发出Convert T 命令并总线为1时(总线为0表示正在转换)发出“read time slots”命令。
DS18B20芯片内部共有8字节的寄存器,其中地址编号0,1为温度寄存器,里面存储着DS18B20温度转换后的AD值,其格式如表1所示。
地址编号2,3为温度报警寄存器,里面为报警设定值,地址编号4为配置寄存器(这三个寄存器在读取之前请使用“重新调入EEPROM”命令将存储在EEPROM里的内容调出,同样,在向温度报警寄存器里写入内容后,也要使用“复制到存储器”命令48H将温度报警寄存器内的内容存入EEPROM当中,以免掉电丢失数据)。
DS18B20内部寄存器映射如下图所示。
配置寄存器的格式如表2和表3所示。
DS18B20内部寄存器映射表1 温度寄存器的格式表2 配置寄存器的格式表3 温度分辨率配置DS18B20使用单总线工作方式,其通信协议以电平的高平时间作为依据,其基本时序有复位时序,写时序、读时序。
//********************************************************************** //** 文件名:DS18B20.c//** 说明:DS18B20驱动程序文件//----------------------------------------------------------------------//** 单位://** 创建人:张雅//** 创建时间:2010-01-20//** 联系方式:QQ:276564402//** 版本:V1.0//----------------------------------------------------------------------//**********************************************************************//----------------------------------------------------------------------//** 芯片:AT89S52//** 时钟:11.0592MHz//** 其它:这个文档为18B20的驱动程序,引用了数码管的驱动。
18B20温度传感器温度计程序

18B20温度传感器温度计程序2008-9-261.实验任务本实验实现的是通过18B20温度传感器读回温度并在6位数码管上显示。
精度为,范围为2.实验目的学会使用单片机控制18B20此类单总线器件。
原理及引脚介绍DS18B20数字温度计是DALLAS公司生产的1-Wire,即单总线器件,具有线路简单,体积小的特点。
因此用它来组成一个测温系统,具有线路简单,在一根通信线,可以挂很多这样的数字温度计,十分方便。
DS18B20产品的特点(1)、只要求一个端口即可实现通信。
(2)、在DS18B20中的每个器件上都有独一无二的序列号。
(3)、实际应用中不需要外部任何元器件即可实现测温。
(4)、测量温度范围在-55。
C到+125。
C之间。
(5)、数字温度计的分辨率用户可以从9位到12位选择。
(6)、内部有温度上、下限告警设置。
TO-92封装的DS18B20的引脚排列见下图,其引脚功能描述见下:1.GND地信号2.DQ数据输入/输出引脚。
开漏单总线接口引脚。
当被用着在寄生电源下,也能够向器件提供电源。
3.VDD可选择的VDD引脚。
当工作于寄生电源时,此引脚必需接地。
18B20管脚图4.实验原理图实验原理图5. 18B20操纵命令字指令说明读ROM(33H) 读18B20的序列号匹配ROM(55H) 继续读完64位序列号的命令,用于多个18B20时定位跳过ROM(CCH) 此命令执行后的在存储器打操作针对在线所有18B20 搜ROM(F0H) 识别总线上各器件的编码,为操作各器件做准备报警搜索(ECH) 公温度越限的器件对此命令作出响应指令说明温度转换(44H) 启动在线18B20做温度AD转换读数据(BEH) 从高速暂存器读9位温度值和CRC值写数据(4EH) 将数据写入高速暂存的第3和第4字节中复制(48H) 将高速暂存器中第3和第4字节复制到EERAM读EERAM(B8H) 将EERAM内容写入高速暂存器中第3和第4字节读电源供电方式(B4H) 了解18B20的供电方式6. 实验源程序WENDU_L EQU 29H;用于保留读出温度的低字节WENDU_H EQU 28H;用于保留读出温度的高字节XIAOSHU EQU 27H;用于保留温度的小数部份ZHENGSHU EQU 26H;用于保留整数部份BIAOZHI BIT 50H;18B20检查位1为存在,0为不存在ORG 0000HAJMP MAINORG 0030HMAIN:MOV SCON,#00HACALL DUWENACALL ZHENGHEACALL BCDACALL DISPACALL TIME1AJMP MAIN;---------------------------------------------------------------------------------------------------------------------------------------- ;读温度子程序;---------------------------------------------------------------------------------------------------------------------------------------- DUWEN:SETBACALL FUWEI ;读温度之前必需先复位JB BIAOZHI,CUNZAI;查看标志位看18B20是不是存在,1为存在,0为不存在RET ;不存在那么返回CUNZAI: ;存在那么开始读温度MOV A,#0CCH ;跳过ROM匹配ACALL XIE ;调写子程序MOV A,#44H ;发出温度转换命令ACALL XIE ;调写子程序ACALL TIME1 ;调1秒延时,等等AD转换完成,此刻分辨率为12位,温度最大转换时刻为750MSACALL FUWEI ;读温前需要复位MOV A,#0CCH ;跳过ROM匹配ACALL XIEMOV A,#0BEH ;发读温度命令ACALL XIEACALL DUSHU ;将闱出数据读回CLRRET;------------------------------------------------------------------------------------------------------------------------------;复位子程序;18B20复位需要将数据位拉低500us;18B20收到信号后要等待16-60us,然后发出60-240us的低脉冲;------------------------------------------------------------------------------------------------------------------------------- FUWEI:SETBNOPCLRMOV R0,#3INTE:MOV R1,#107 ;设一个537us延时KK1: DJNZ R1,KK1DJNZ R0,INTESETB ;拉高数据线,等待回应NOPNOPNOPMOV R0,#25 ;INTE1:JNB ,INTE2 ;延时延时50us等待18B20回应,假设返回低脉冲那么说明18B20存在DJNZ R0 ,INTE1AJMP INTE3 ;通过反映时刻而没检测到18B20的存在,那么跳转去清零标志位INTE2:SETB BIAOZHI ;检测到18B20存在,置1标志位CLRAJMP INTE4INTE3:CLR BIAOZHI ;没检测到18B20,清零标志位AJMP INTE5INTE4:MOV R0,#120 ;延时240us,确定回应信号已发完KK: DJNZ R0,KKINTE5:SETBRET;---------------------------------------------------------------------------------------------------------------------------------------- ;写18B20子程序;----------------------------------------------------------------------------------------------------------------------------------------- XIE:MOV R2,#8 ;写计数寄放器,一共有8位数据CLR CLP:CLRMOV R3,#6 ;设一个延时LL1:DJNZ R3,LL1RRC A ;右循环,先输出低位MOV ,CMOV R3,#23 ;设延时LL: DJNZ R3,LL ;SETBNOPNOPDJNZ R2,LP ;判定是不是完成数据传送SETB ;完成传送拉高数据位RET;----------------------------------------------------------------------------------------------------------------------------------------- ;从18B20中读出温度数据子程序;-----------------------------------------------------------------------------------------------------------------------------------------DUSHU:MOV R4,#2 ;设读回数据个数指针MOV R1,#WENDU_L ;把温度数据低位存入29HRE: MOV R2,#8 ;设数据长度指针RE1: CLR CSETBNOPNOP CLRNOPNOPNOPSETBMOV R3,#9 DJNZ R3,$ MOV C, MOV R3,#23NN: DJNZ R3,NNRRC ADJNZ R2,RE1MOV @R1,A DEC R1 ;高位存入28H DJNZ R4,RERET;---------------------------------------------------------------------------------------------------------------------------------;数据整合子程序;温度源数据的整合,读出数据的高字节的低四位决定温度的整数部份;低字节的低四位决定小数部份;----------------------------------------------------------------------------------------------------------------------------- ZHENGHE:MOV A,#0FHANL A,WENDU_L ;低字节的低四位就是小数部分MOV XIAOSHU,A ;取得小数部份MOV A,WENDU_L ;将高字节的低四位移入低字节的高4位,MOV C,40H ;获得的新字节就是整数部分的数据RRC AMOV C,41HRRC AMOV C,42HRRC AMOV C,43HRRC AMOV ZHENGSHU,ARET;----------------------------------------------------------------------------------------------------------------------------------------- ;显示数据拆解程序、显示程序、延时程序;----------------------------------------------------------------------------------------------------------------------------------------;数据拆解程序BCD:MOV A,ZHENGSHU MOV B,#10DIV ABMOV 50H,AMOV 51H,BMOV A,XIAOSHUMOV R0,#52HMOV R2,#4D0:MOV B,#10MUL ABMOV B,#16DIV ABMOV @R0,AINC R0MOV A,BDJNZ R2,D0RET ;----------------------------------- ;显示程序;---------------------------------- DISP:ACALL TIMEMOV R7,#6MOV DPTR,#TABMOV R0,#55HLP1:MOV A ,@R0;MOVC A,@A+DPTRCJNE R7,#2,NE1ANL A,#07FHNE1:MOV SBUF,AJNB TI ,$CLR TIDEC R0DJNZ R7,LP1RET;---------------------------------------- ;延时程序;---------------------------------------- TIME1:MOV R6,#4LOOP2:MOV R5,#250LOOP1:ACALL D1MSDJNZ R5,LOOP1DJNZ R6,LOOP2RETTIME:MOV R6,#200LOOP3:ACALL D1MSDJNZ R6,LOOP3RETD1MS:MOV R7,#250LOOP0:NOPNOPNOPDJNZ R7,LOOP0RETTAB:DB 0C0H,0F9H,0A4H,0B0H DB 99H, 92H, 82H, 0F8HDB 80H, 90H, 88H, 83HDB 0C6H,0A1H,86H, 8EHDB 0FFHEND。
DS18B20程序

Lesson11-1:数字温度传感器DS18B20,采用3位数码管显示,仿真通过#include <reg51.h>#define uchar unsigned char#define uint unsigned intsbit DS=P2^2; // 定义DS18B20接口uchar time=100;sbit dula=P2^6;sbit wela=P2^7;uchar code table[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79,0x71};//不带小数点编码。
uchar code table1[]={0xbf,0x86,0xdb,0xcf,0xe6,0xed,0xfd,0x87,0xff,0xef}; //带小数点编码。
void mdelay(uint z){uint x,y;for(x=z;x>0;x--)for(y=110;y>0;y--);}///////功能:串口初始化,波特率9600,方式1///////void Init_Com(void){TMOD = 0x20;PCON = 0x00;SCON = 0x50;TH1 = 0xFd;TL1 = 0xFd;TR1 = 1;}void dsreset(void) // DS18B20初始化{uint i;DS=0; // 首先拉低,要求480usi=103;while(i>0)i--;DS=1; // 上升沿,要求15~60usi=4;while(i>0)i--;}void rxwait()//等待应答脉冲{uint i;while(DS);while(~DS);i=8;while(i>0)i--;}bit tmpreadbit(void) //读一位{uint i;bit dat;DS=0;i++; //1us延时DS=1;//15us内,主机必须停止将DS引脚置低i++;i++; //15us延时dat=DS;i=8;while(i>0)i--;//读时隙不低于60us延时return (dat);}uchar tmpread(void) // 读一个字节{uchar i,j,dat;dat=0;for(i=1;i<=8;i++){j=tmpreadbit();dat=(j<<7)|(dat>>1);//读出的数据最低位在最前面,这样刚好一个字节在DA T里}return(dat); //将一个字节数据返回}void tmpwritebyte(uchar dat) //写一个字节到DS18B20里{uint i;uchar j;bit testb;for(j=1;j<=8;j++){testb=dat&0x01;dat=dat>>1;if(testb) //写1部分{DS=0;i++;i++;DS=1;i=8;while(i>0)i--;}else{DS=0; //写0部分i=8;while(i>0)i--;DS=1;i++;i++;}}}void tmpchange(void) //发送温度转换命令{dsreset();//初始化DS18B20rxwait(); //等待应答脉冲mdelay(1); //延时tmpwritebyte(0xcc); // 跳过序列号命令tmpwritebyte(0x44); //发送温度转换命令}uint tmp() //获得温度{float tt;uchar a,b;uint temp; // 存放温度值dsreset();rxwait();//等待应答脉冲mdelay(1);tmpwritebyte(0xcc);tmpwritebyte(0xbe); //发送读取数据命令a=tmpread(); //连续读两个字节数据b=tmpread();temp=b;temp<<=8; //出厂默认设置为12位分辨率temp=temp|a; //两字节合成一个整型变量。
ds18b20详解及程序

最近都在学习和写单片机的程序, 今天有空又模仿DS18B20温度测量显示实验写了一个与DS18B20基于单总线通信的程序.DS18B20 数字温度传感器(参考:智能温度传感器DS18B20的原理与应用)是DALLAS 公司生产的1-Wire,即单总线器件,具有线路简单,体积小的特点。
因此用它来组成一个测温系统,具有线路简单,在一根通信线,可以挂很多这样的数字温度计。
DS18B20 产品的特点: (1)、只要求一个I/O 口即可实现通信。
(2)、在DS18B20 中的每个器件上都有独一无二的序列号。
(3)、实际应用中不需要外部任何元器件即可实现测温。
(4)、测量温度范围在-55 到+125℃之间; 在-10 ~ +85℃范围内误差为±5℃; (5)、数字温度计的分辨率用户可以从9 位到12 位选择。
将12位的温度值转换为数字量所需时间不超过750ms;(6)、内部有温度上、下限告警设置。
DS18B20引脚分布图DS18B20 详细引脚功能描述:1、GND 地信号;2、DQ数据输入出引脚。
开漏单总线接口引脚。
当被用在寄生电源下,此引脚可以向器件提供电源;漏极开路, 常太下高电平. 通常要求外接一个约5kΩ的上拉电阻.3、VDD可选择的VDD 引脚。
电压范围:3~; 当工作于寄生电源时,此引脚必须接地。
DS18B20存储器结构图暂存储器的头两个字节为测得温度信息的低位和高位字节;第3, 4字节是TH和TL的易失性拷贝, 在每次电复位时都会被刷新;第5字节是配置寄存器的易失性拷贝, 同样在电复位时被刷新;第9字节是前面8个字节的CRC检验值.配置寄存器的命令内容如下:0 R1 R0 11111MSBLSBR0和R1是温度值分辨率位, 按下表进行配置.默认出厂设置是R1R0 = 11, 即12位.温度值分辨率配置表R1R0分辨率最大转换时间(ms)009bit(tconv/8)4种分辨率对应的温度分辨率为0.5℃, 0.25℃, 0.125℃, 0.0625℃(即最低一位代表的温度值)12位分辨率时的两个温度字节的具体格式如下:低字节:高字节:其中高字节前5位都是符号位S, 若分辨率低于12位时, 相应地使最低为0, 如: 当分辨率为10位时, 低字节为:, 高字节不变....一些温度与转换后输出的数字参照如下:由上表可看出, 当输出是负温度时, 使用补码表示, 方便计算机运算(若是用C语言, 直接将结果赋值给一个int变量即可).DS18B20 的使用方法:由于DS18B20 采用的是1-Wire 总线协议方式,即在一根数据线实现数据的双向传输,而对单片机来说,我们必须采用软件的方法来模拟单总线的协议时序来完成对DS18B20芯片的访问。
DS18B20 单片机数码管显示原理图和程序

WriteOneChar(0xCC);//跳过读序号列号得操作
WriteOneChar(0xBE); //读取温度寄存器等(共可读9个寄存器)前两个就就是温度/
delay(5);
a=ReadOneChar(); //读取温度值低位/
b=ReadOneChar();//读取温度值高位/
delay1(5);
wx3=1;
wx4=0;
P0=table[12];//显示C字符
delay1(5);
wx4=1;
}
void main()
{
while(1)
{
ReadTemperature();
wenduxianshi();
}
}
{
unsigned char x=0;
DQ=1;//DQ复位ds18b20通信端口
delay(8);//稍做延时
DQ = 0;//单片机将DQ拉低
delay(80);//精确延时大于 480us
DQ=1;//拉高总线
delay(4);
x=DQ;//稍做延时后如果x=0则初始化成功x=1则初始化失败
delay(20);
if(DQ)
dat|=0x80;//
delay(4);
}
return(dat);
}
/*************ds18b20写一个字节****************/
voidWriteOneChar(unsignedchardat)
{
unsigned char i=0;
for (i=8;i>0;i——)
最近天气热了,想要就是做个能显示温度得小设备就好了,于就是想到DIY个电子温度计,网上找了很多资料,结合自己得材料,设计了这个用单片机控制得实时电子温度计。作为单片机小虾得我做这个用了2天时间,当然就是下班后,做工不行见谅了.
电子温度计 DS18B20 程序 电路图

它的功能是:1.读出当前温度值。
2.可通过按键调整报警温度上下限。
按第一个键,进入温度上线调节模式,第二个键温度加,第三个键温度减,再按一下第一个键,进入温度下线调节模式,第二个键温度加,第三个键温度键,再按一下第一个键,正常显示当前温度。
3.当进入报警温度上下限调节时,红灯亮,当显示当前温度是,绿灯亮。
4.当当前温度超过上限温度时,或者低于下限温度时,蜂鸣器报警且黄灯闪烁。
需要说明的是,一般情况下,DQ引脚应该有一个上拉电阻来拉高电平,但是我通过观察发现,初始状态下,89C52单片机的引脚都为高电平,故我将上拉电阻去除,1820与单片机正常通信,加上上拉电阻,反而不能正常通信。
#include <reg52.h>#include<intrins.h>#define uchar unsigned char#define uint unsigned intsbit DQ=P3^0;sbit Speak=P1^7;sbit Out=P3^2;sbit Button1=P1^4;sbit Button2=P1^5;sbit Button3=P1^6;sbit Ledblue=P1^0;sbit Ledred=P1^1;bit Point;uint T;int Up=980,Down=300,Tplace=0;code uchar Ledcode[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x8f}; /*数码管显示的数字0123456789℃*/code uchar Ledcode_s[]={0xbf,0x86,0xdb,0xcf, /*带小数点数码管显示0123456789-*/0xe6,0xed,0xfd,0x87,0xff,0xef,0x40};code uchar Ledplace[]={0,0x1e,0x1d,0x1b,0x17,0x0f}; /*数码管的位置1 2 3 4 5 位*/void Delay_2us(uchar num_us) /*可调度为2us,最大误差为6us,最大延时510us*/ {while(--num_us);}void Delay_8us(uint num_us) /*延时8微妙最大误差263us*/{while(--num_us);}void Delay_ms(uint num_ms) /*延时1毫秒*/{uint i;while(num_ms--){for(i=0;i<123;i++);}}void Speaker() /*蜂鸣器响*/{uint i=50;while(--i)Speak=~Speak;Delay_8us(500);}}void Nospeaker() /*蜂鸣器不响*/ {Speak=0;}bit Reset() /*复位*/{bit flag;DQ=1;_nop_();DQ=0;Delay_8us(70);DQ=1;Delay_2us(20);flag=DQ;Delay_2us(70);DQ=1;Delay_2us(70);return flag;}void Writedata(uchar dat) /*写数据*/{uchar i;bit flag;for(i=0;i<8;i++){flag=dat&0x01;DQ=1;_nop_();DQ=0;Delay_2us(5);DQ=flag;Delay_2us(40);dat=dat>>1;DQ=1;Delay_2us(2);}Readdata() / *读数据*/ {uchar i=0,dat=0;bit flag=0;for(i=0;i<8;i++){DQ=1;_nop_();DQ=0;Delay_2us(5);DQ=1;flag=DQ;Delay_2us(30);DQ=1;Delay_2us(5);dat=dat>>1;if(flag){dat|=0x80;}Delay_2us(3);}Out=0;return dat;}uint ReadTem() /*温度转换*/ {uint High,Low;Reset();Writedata(0xcc);Writedata(0x44);Delay_8us(85);Reset();Writedata(0xcc);Writedata(0xbe);Delay_8us(85);Low=Readdata();High=Readdata();Point=High&0xf8;if(Point){T=(~((High<<8)|Low)+1)*0.625;}else{T=((High<<8)|Low)*0.625;}return T;}Display(uint T) /*显示*/{if(Point){P2=Ledplace[1];P0=Ledcode_s[10];Delay_ms(5);P0=0;}else{P2=Ledplace[1];P0=0;Delay_ms(5);P0=0;}P2=Ledplace[2];P0=Ledcode[T/100];Delay_ms(5);P0=0;P2=Ledplace[3];P0=Ledcode_s[T%100/10];Delay_ms(5);P0=0;P0=Ledcode[T%10];Delay_ms(5);P0=0;P2=Ledplace[5];P0=Ledcode[10];Delay_ms(5);P0=0;}void Outinter() interrupt 0 /*外部中断*/{if((T>Up&&Point==0)||(T>Down&&Point==1)){Speaker();}else{Nospeaker();}Out=1;}main(void) /*主程序*/{EA=1;EX0=1;IT0=0;while(1){switch(Tplace){case 0: {Ledblue=1;Ledred=0;Display(ReadTem());}break;case 1: {Ledred=1;Ledblue=0;Point=0;Display(Up);}break;case 2: {Ledred=1;Ledblue=0;Point=1;Display(Down);}break;}if(!Button1){Delay_ms(300);if(Tplace==3){Tplace=0;}}if(!Button2&&Tplace==1){Delay_ms(300);Up=Up+10;if(Up>990){Up=0;}}if(!Button3&&Tplace==1){Delay_ms(300);Up=Up-10;if(Up<0){Up=990;}}if(!Button2&&Tplace==2){Delay_ms(300);Down=Down-10;if(Down<0){Down=550;}}if(!Button3&&Tplace==2){Delay_ms(300);Down=Down+10;if(Down>550){Down=0;}}}}用ISIS模拟,显示正常,但是将模拟的电路焊出来,反而出现了几个问题:1.必须去掉第五位数码管选择位管脚的三极管,数码管方能正常显示。
单片机DS18B20温度计(有程序)

;单片机DS18B20温度计C语言程序; 有程序#include<reg51.h>#include<intrins.h>#include <math.H> //要用到取绝对值函数abs()//通过DS18B20测试当前环境温度, 并通过数码管显示当前温度值, 目前显示范围: -55~ +125度sbit wela = P2^7; //数码管位选sbit dula = P2^6; //数码管段选sbit ds = P2^2;int tempValue;//0-F数码管的编码(共阳极)unsigned char code table[]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90,0x88,0x83,0xc6,0xa1,0x86,0x8e};//0-9数码管的编码(共阳极), 带小数点unsigned char code tableWidthDot[]={0x40, 0x79, 0x24, 0x30,0x19, 0x12, 0x02,0x78, 0x00, 0x10};//延时函数, 对于11.0592MHz时钟, 例i=10,则大概延时10ms.void delay(unsigned int i){unsigned int j;while(i--){for(j = 0; j < 125; j++);}}//初始化DS18B20//让DS18B20一段相对长时间低电平, 然后一段相对非常短时间高电平, 即可启动 void dsInit(){//对于11.0592MHz时钟, unsigned int型的i, 作一个i++操作的时间大于?us unsigned int i;ds = 0;i = 100; //拉低约800us, 符合协议要求的480us以上while(i>0) i--;ds = 1; //产生一个上升沿, 进入等待应答状态i = 4;while(i>0) i--;}void dsWait(){unsigned int i;while(ds);while(~ds); //检测到应答脉冲i = 4;while(i > 0) i--;}//向DS18B20读取一位数据//读一位, 让DS18B20一小周期低电平, 然后两小周期高电平,//之后DS18B20则会输出持续一段时间的一位数据bit readBit(){unsigned int i;bit b;ds = 0;i++; //延时约8us, 符合协议要求至少保持1usds = 1;i++; i++; //延时约16us, 符合协议要求的至少延时15us以上b = ds;i = 8;while(i>0) i--; //延时约64us, 符合读时隙不低于60us要求return b;}//读取一字节数据, 通过调用readBit()来实现unsigned char readByte(){unsigned int i;unsigned char j, dat;dat = 0;for(i=0; i<8; i++){j = readBit();//最先读出的是最低位数据dat = (j << 7) | (dat >> 1);}return dat;}//向DS18B20写入一字节数据void writeByte(unsigned char dat){unsigned int i;unsigned char j;bit b;for(j = 0; j < 8; j++){b = dat & 0x01;dat >>= 1;//写"1", 将DQ拉低15us后, 在15us~60us内将DQ拉高, 即完成写1if(b){ds = 0;i++; i++; //拉低约16us, 符号要求15~60us内ds = 1;i = 8; while(i>0) i--; //延时约64us, 符合写时隙不低于60us要求}else //写"0", 将DQ拉低60us~120usds = 0;i = 8; while(i>0) i--; //拉低约64us, 符号要求ds = 1;i++; i++; //整个写0时隙过程已经超过60us, 这里就不用像写1那样, 再延时64us 了}}//向DS18B20发送温度转换命令void sendChangeCmd(){dsInit(); //初始化DS18B20, 无论什么命令, 首先都要发起初始化dsWait(); //等待DS18B20应答delay(1); //延时1ms, 因为DS18B20会拉低DQ 60~240us作为应答信号writeByte(0xcc); //写入跳过序列号命令字Skip RomwriteByte(0x44); //写入温度转换命令字Convert T}//向DS18B20发送读取数据命令void sendReadCmd(){dsInit();dsWait();delay(1);writeByte(0xcc); //写入跳过序列号命令字Skip RomwriteByte(0xbe); //写入读取数据令字Read Scratchpad}//获取当前温度值int getTmpValue(){unsigned int tmpvalue;int value; //存放温度数值float t;unsigned char low, high;sendReadCmd();//连续读取两个字节数据low = readByte();high = readByte();//将高低两个字节合成一个整形变量//计算机中对于负数是利用补码来表示的//若是负值, 读取出来的数值是用补码表示的, 可直接赋值给int型的valuetmpvalue = high;tmpvalue <<= 8;tmpvalue |= low;value = tmpvalue;//使用DS18B20的默认分辨率12位, 精确度为0.0625度, 即读回数据的最低位代表0.0625度t = value * 0.0625;//将它放大100倍, 使显示时可显示小数点后两位, 并对小数点后第三进行4舍5入//如t=11.0625, 进行计数后, 得到value = 1106, 即11.06 度//如t=-11.0625, 进行计数后, 得到value = -1106, 即-11.06 度value = t * 100 + (value > 0 ? 0.5 : -0.5); //大于0加0.5, 小于0减0.5return value;}unsigned char const timeCount = 3; //动态扫描的时间间隔//显示当前温度值, 精确到小数点后一位//若先位选再段选, 由于IO口默认输出高电平, 所以当先位选会使数码管出现乱码void display(int v){unsigned char count;unsigned char datas[] = {0, 0, 0, 0, 0};unsigned int tmp = abs(v);datas[0] = tmp / 10000;datas[1] = tmp % 10000 / 1000;datas[2] = tmp % 1000 / 100;datas[3] = tmp % 100 / 10;datas[4] = tmp % 10;if(v < 0){//关位选, 去除对上一位的影响P0 = 0xff;wela = 0;//段选P0 = 0x40; //显示"-"号dula = 1; //打开锁存, 给它一个下降沿量dula = 0;//位选P0 = 0xfe;wela = 1; //打开锁存, 给它一个下降沿量wela = 0;delay(timeCount);}for(count = 0; count != 5; count++){//关位选, 去除对上一位的影响P0 = 0xff;wela = 1; //打开锁存, 给它一个下降沿量wela = 0;//段选if(count != 2){P0 = table[datas[count]]; //显示数字}else{P0 = tableWidthDot[datas[count]]; //显示带小数点数字}dula = 0;//位选P0 = _crol_(0xfd, count); //选择第(count + 1) 个数码管wela = 1; //打开锁存, 给它一个下降沿量wela = 0;delay(timeCount);}}void main(){unsigned char i;while(1){//启动温度转换sendChangeCmd();//显示5次for(i = 0; i < 40; i++){display(tempValue);}tempValue = getTmpValue();}以下是我编的程序,可用#include <reg52.h>#include <intrins.h>//-----------------------------------------------------------sbit DQ=P1^5;//-----------------------------------------------------------unsigned char number[10]={0X3F,0X06,0X5B,0X4F,0X66,0X6D,0X7D,0X07,0X7F,0X6F};//数字0~9unsigned char wei[8]={0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80}; //数码管位循环unsigned char Flag;unsigned char Templ,Temph;unsigned int temp;//-----------------------------------------------------------//函数声明//-----------------------------------------------------------void delay(unsigned char i); //延时程序//----------------------------------void Int18b20(void); //18b20初始化void Write18b20(unsigned char dat); //向18b20写一字节unsigned char Read18b20(void); //从18b20读一字节void Start18b20(void); //开始转换温度void Get18b20(void); //读出温度void chinT(void); //数据转换//----------------------------------void display(void); //显示程序//-----------------------------------------------------------//函数功能:延时//-----------------------------------------------------------/*************精确延时函数*****************/void delay(unsigned char i){while(--i);}/*此延时函数针对的是12Mhz的晶振delay(0); //延时518us 误差:518-2*256=6delay(1); //延时7us (原帖写"5us"是错的)delay(10); //延时25us 误差:25-20=5delay(20); //延时45us 误差:45-40=5delay(100); //延时205us 误差:205-200=5delay(200); //延时405us 误差:405-400=5*///-----------------------------------------------------------//DS18b20的相关程序//-----------------------------------------------------------//初始化//-----------------------------------------------------------void Int18b20(void){DQ=1;_nop_();_nop_();DQ=0; //拉低delay(100); //延时205usdelay(200); //延时405us //等待400~960微秒,最短为480us DQ=1;delay(1); //延时7usdelay(20); //延时45us //等待15~60微秒(等待回复)if(DQ==1) //判断初始化的情况是否成功{Flag=0; //复位失败}else{Flag=1;while(!DQ); //等待回复完成}delay(200); //延时405us //等待完成初始化}//-----------------------------------------------------------//写一字节//-----------------------------------------------------------void Write18b20(unsigned char dat){unsigned char i;for(i=0;i<8;i++){DQ=1;_nop_();DQ=0;delay(1); //延时7us //拉低后延时小于15usif(dat&0x01){DQ=1;}else{DQ=0;}dat=dat>>1;delay(20); //延时45usdelay(10); //延时25us //延时大于60usDQ=1;delay(1); //延时7us //延时大于1us}}//-----------------------------------------------------------//读一字节//-----------------------------------------------------------unsigned char Read18b20(void){unsigned char i,dat=0;for(i=0;i<8;i++){DQ=1;_nop_();DQ=0;delay(1); //延时7usdat=dat>>1;DQ=1;delay(1); //延时7us //确保在15us后60us前读数据if(DQ){dat|=0x80;}delay(20); //延时45us //确保读时续大于60us}return dat;}//-----------------------------------------------------------//开始转换温度//-----------------------------------------------------------void Start18b20(void){Int18b20();Write18b20(0xcc); //跳过ROM指令Write18b20(0x44); //温度转换指令}//-----------------------------------------------------------//读出温度//-----------------------------------------------------------void Get18b20(void){Int18b20();Write18b20(0xcc); //跳过ROM指令Write18b20(0xbe); //读暂存器指令Templ=Read18b20();Temph=Read18b20();}//-----------------------------------------------------------//数据转换//-----------------------------------------------------------void chinT(void){float Tt;temp=Temph; //先把高八位有效数据赋于temptemp=(temp<<8); //将数据从temp低八位移到高八位temp=temp|Templ; //将两字节合成一个整型变量Tt=temp*0.0625; //得到真实十进制温度值(因为DS18B20可以精确到0.0625度) temp=Tt*10+0.5; //放大十倍(将小数点后一位变成个位,个位变成十位,十位变成百位,并四舍五入)}//-----------------------------------------------------------//显示程序//-----------------------------------------------------------void display(void){unsigned int i;unsigned char A1,A2,A3;A1=temp/100; //百位(温度的十位)A2=temp%100/10; //十位(温度的个位)A3=temp%10; //个位(温度的小数点后一位)for(i=0;i<20;i++){P0=0x00;P2=0x00;P0=number[A1];P2=wei[0];delay(220);P0=0x00;P2=0x00;P0=number[A2];P2=wei[1];delay(220);P0=0x00;P2=0x00;P0=number[A3];P2=wei[2];delay(220);P0=0x00;P2=0x00;P0=0x80;P2=wei[1];delay(220);}}//-----------------------------------------------------------//----------------------------------------------------------- void main(void){while(1){Int18b20();if(Flag){Start18b20(); //开始转换温度Get18b20(); //得到温度chinT(); //数据转换display(); //显示}else P3=0x01;}}。
万年历时钟(ds1302)+温度显示(ds18b20)原理图

P3.0 (RXD) P3.1 (TXD) P3.2 (INT0) P3.3 (INT1) P3.4 (T0) P3.5 (T1) X1 X2 IC2 89C51 P27 P26 P25 P24 P23 P22 P21 P20
Байду номын сангаас
28 27 26 25 24 23 22 21
LED2
DIG0_C
DIG4_B
DIG0_B
SD3
DP3
SG3
SD2
DP2
SG2
SD2
DP2
SG2
SD1
DP1
SG1
SD1
DP1
SC3
SC2
SC2
SC1
SC1
SE3
SE2
SE2
SE1
SE1
6
A4
d
h
g
d
h
g
d
h
g
d
h
g
d
h
g
e
c
e
c
e
c
e
c
e
c
R12 1.5k
S7 DP3 S6 SA3 S16 S5:减键,代码05 C S8 S6:加键,代码06 S7:调节时间,代码 07
R12 1.5k C7 104 C7 15P
5V 5V 1 2 3 4 5 CS1 6 CLK1 7 DATA1 8 9 KEY1 10 11 12 13 14 驱动第一排 VDD VDD NC VSS NC CS CLK DATA KEY SG SF SE SD SC HD7279A RESET RC CLKO DIG7 DIG6 DIG5 DIG4 DIG3 DIG2 DIG1 DIG0 DP SA SB 28 27 26 25 24 23 22 21 20 19 18 17 16 15
18b20测温数码管显示实验--精确到小数点后4位

18b20测温数码管显示实验--精确到小数点后4位//滑国虎于09.9.20完成////DS18B20的读写程序,数据脚P1.5 ////温度传感器18B20程序,采用器件默认的12位转化 ////最大转化时间750微秒,显示温度-55到+125度,显示精度 // //为0.1度,显示采用4位LED共阳显示测温值 ////P0口为段码输入,P27~P21为位选 ///***************************************************/#include "reg51.h"#include "intrins.h" //_nop_();延时函数用 #define Disdata P0 //段码输出口 #define discan P2 //扫描口 #define uchar unsigned char #define uint unsigned intsbit DQ=P1^5; //温度输入口 sbit DIN=P0^7; //LED小数点控制 uint h;uint temp;//uchar codedis_7[12]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90,0xff,0x bf};//共阳LED段码表 "0" "1" "2" "3" "4" "5" "6" "7" "8" "9" "不亮""-"uchar code scan_con[7]={0x7f,0xbf,0xdf,0xef,0xf7,0xfb,0xfd}; //列扫描控制字uchar data temp_data[2]={0x00,0x00}; //读出温度暂放 uchar data display[7]={0x00,0x00,0x00,0x00,0x00,0x00,0x00}; //显示单元数据,共4个数据和一个运算暂用/*****************11us延时函数*************************///void delay(uint t) //11us{for (;t>0;t--);}///****************DS18B20复位函数************************/ow_reset(void){char presence=1;while(presence){while(presence){DQ=1;_nop_();_nop_();//从高拉倒低DQ=0;delay(50); //550 usDQ=1;delay(6); //66 uspresence=DQ; //presence=0 复位成功,继续下一步}delay(45); //延时500 uspresence=~DQ;}DQ=1; //拉高电平 }/****************DS18B20写命令函数************************/ //向1-WIRE 总线上写1个字节void write_byte(uchar val){uchar i;for(i=8;i>0;i--){DQ=1;_nop_();_nop_(); //从高拉倒低DQ=0;_nop_();_nop_();_nop_();_nop_(); //5 usDQ=val&0x01; //最低位移出delay(6); //66 usval=val/2; //右移1位}DQ=1;delay(1);}/****************DS18B20读1字节函数************************/ //从总线上取1个字节uchar read_byte(void){uchar i;uchar value=0;for(i=8;i>0;i--){DQ=1;_nop_();_nop_();value>>=1;DQ=0;_nop_();_nop_();_nop_();_nop_(); //4 usDQ=1;_nop_();_nop_();_nop_();_nop_(); //4 usif(DQ)value|=0x80;delay(6); //66 us}DQ=1;return(value);}/****************显示扫描函数***************************/ scan(){char k;for(k=0;k<7;k++) //4位LED扫描控制{Disdata=dis_7[display[k]]; //数据显示 P0if (k==2){DIN=0;} //小数点显示 P0.7discan=scan_con[k]; //位选 P2delay(150);discan=0xff;}}/****************读出温度函数************************/ //read_temp(){ow_reset(); //总线复位delay(200);write_byte(0xcc); //发命令write_byte(0x44); //发转换命令ow_reset();delay(1);write_byte(0xcc); //发命令write_byte(0xbe);temp_data[0]=read_byte(); //读温度值的低字节temp_data[1]=read_byte(); //读温度值的高字节temp=temp_data[1];temp=temp&0x0f; //去掉符号位temp=temp<<8; //temp为16位temp=temp|temp_data[0]; // 两字节合成一个整型变量。
(整理)电子温度计DS18B20程序电路图

2.(5)建设项目对环境影响的经济损益分析。必须去掉第五位数码管选择位管脚的三极管,数码管方能正常显示。
3.数码管显示的亮度不够亮。
1.准备阶段
焊好的电路图如下:
1.环境影响评价工作等级的划分
(1)资质等级。评价机构的环评资质分为甲、乙两个等级。环评证书在全国范围内使用,有效期为4年。
while(1)
{
switch(Tplace)
{
case 0: {Ledblue=1;Ledred=0;Display(ReadTem());}
break;
case 1: {Ledred=1;Ledblue=0;Point=0;Display(Up);}
break;
case 2: {Ledred=1;Ledblue=0;Point=1;Display(Down);}
}
Delay_2us(3);
}
Out=0;
return dat;
}
uint ReadTem() /*温度转换*/
{
uint High,Low;
Reset();
Writedata(0xcc);
Writedata(0x44);
Delay_8us(85);
Reset();
Writedata(0xcc);
Writedata(0xbe);
}
bit Reset() /*复位*/
{
bit flag;
DQ=1;
_nop_();
DQ=0;
Delay_8us(70);
DQ=1;
Delay_2us(20);
flag=DQ;
Delay_2us(70);
DQ=1;
Delay_2us(70);
DS18B20水温控制系统+电路图程序

水温控制系统摘要:该水温控制系统采用单片机进行温度实时采集与控制。
温度信号由“一线总线”数字化温度传感器DS18B20提供,DS18B20在-10~+85°C范围内, 固有测温分辨率为0.5 ℃。
水温实时控制采用继电器控制电热丝和风扇进行升温、降温控制。
系统具备较高的测量精度和控制精度,能完成升温和降温控制。
关键字: AT89C51 DS18B20 水温控制Abstract: This water temperature control system uses the Single Chip Microcomputer to carry on temperature real-time gathering and controling. DS18B20, digitized temperature sensor, provides the temperature signal by "a main line". In -10~+85℃the scope, DS18B20’s inherent measuring accuracy is 0.5 ℃. The water temperature real-time control system uses the electricity nichrome wire carring on temperature increiseament and operates the electric fan to realize the temperature decrease control. The system has the higher measuring accuracy and the control precision, it also can complete the elevation of temperature and the temperature decrease control.Key Words:AT89C51 DS18B20 Water temperature control目录1. 系统方案选择和论证 (2)1.1 题目要求 (2)1.1.1 基本要求 (2)1.1.2 发挥部分 (2)1.1.3 说明 (2)1.2 系统基本方案 (2)1.2.1 各模块电路的方案选择及论证 (2)1.2.2 系统各模块的最终方案 (5)2. 硬件设计与实现 (6)2.1系统硬件模块关系 (6)2.2 主要单元电路的设计 (6)2.2.1 温度采集部分设计 (6)2.2.2 加热控制部分 (8)2.2.3 键盘、显示、控制器部分 (8)3. 系统软件设计 (10)3.1 读取DS18B20温度模块子程序 (10)3.2 数据处理子程序 (10)3.3 键盘扫描子程序 (12)3.4 主程序流程图 (13)4. 系统测试 (14)4.1 静态温度测试 (14)4.2动态温控测量 (14)4.3结果分析 (14)附录1:产品使用说明 (15)附录2:元件清单 (15)附录3:系统硬件原理图 (16)附录4:软件程序清单 (17)参考文献 (26)1.系统方案选择和论证1.1题目要求设计并制作一个水温自动控制系统,控制对象为1L净水,容器为搪瓷器皿。
用DS18B20测量室温并在数码管上显示

}
while ((IFG1 & OFIFG)); //晶振失效标志仍然存在?
BCSCTL2 |= SELM_2 + SELS; //MCLK和SMCLK选择高频晶振
}
}
if(temper & BIT9)
{
dN[4] += 2;
dN[5] += 3;
if(dN[4] >= 10)
{
dN[4] -= 10;
码管位选变量
uchar cnt = 2;
void Disp_Numb(uint temper);
/****************主函数****************/
void main(void)
{
uchar i;
WDTCTL=WDTPW+WDTHOLD;
/*************************************************
程序功能:用DS18B20测量室温并在数码管上显示。
-------------------------------------------------
测试说明:观察显示温度数值。
*************************************************/
功 能:看门狗定时器中断服务函数,进行数码
管动态扫描
参 数:无
返回值 :无
********************************************/
#pragma vector = WDT_VECTOR
单片机DS18B20温度传感器C语言程序含CRC校验

单片机中使用DS18B20温度传感器C语言程序(参考1)/******************************************************************************** DS18B20 测温程序硬件:AT89S52(1)单线ds18b20接 P2.2(2)七段数码管接P0口(3)使用外部电源给ds18b20供电,没有使用寄生电源软件:Kei uVision 3**********************************************************************************/ #include "reg52.h"#include "intrins.h"#define uchar unsigned char#define uint unsigned intsbit ds=P2^2;sbit dula=P2^6;sbit wela=P2^7;uchar flag ;uint temp; //参数temp一定要声明为 int 型uchar code table[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79,0x71}; //不带小数点数字编码uchar code table1[]={0xbf,0x86,0xdb,0xcf,0xe6,0xed,0xfd,0x87,0xff,0xef}; //带小数点数字编码/*延时函数*/void TempDelay (uchar us){ while(us--); }void delay(uint count) //延时子函数{ uint i;while(count){ i=200;while(i>0)i--;count--; } }/*串口初始化,波特率9600,方式1 */void init_com(){ TMOD=0x20; //设置定时器1为模式2TH1=0xfd; //装初值设定波特率TL1=0xfd;TR1=1; //启动定时器SM0=0; //串口通信模式设置SM1=1;// REN=1; //串口允许接收数据PCON=0; //波特率不倍频// SMOD=0; //波特率不倍频// EA=1; //开总中断//ES=1; //开串行中断}/*数码管的显示 */void display(uint temp){ uchar bai,shi,ge;bai=temp/100;shi=temp%100/10;ge=temp%100%10;dula=0;P0=table[bai]; //显示百位dula=1; //从0到1,有个上升沿,解除锁存,显示相应段dula=0; //从1到0再次锁存wela=0;P0=0xfe;wela=1;wela=0;delay(1); //延时约2msP0=table1[shi]; //显示十位dula=1;dula=0;P0=0xfd;wela=1;wela=0;delay(1);P0=table[ge]; //显示个位dula=1;dula=0;P0=0xfb;wela=1;wela=0;delay(1); }/*****************************************时序:初始化时序、读时序、写时序。
51单片机设计数字温度计(流程图+源码+实物图片)

DS18B20获取温度程序流程图DS18B20的读字节,写字节,获取温度的程序流程图如图所示。
DS18B20初始化程序流程图DS18B20读字节程序流程图DS18B20写字节程序流程图DS18B20获取温度程序流程图图3-4 DS18B20程序流程图显示程序设计显示电路是由四位一体的数码管来实现的。
由于单片机的I/O 口有限,所以数码管采用动态扫描的方式来进行显示。
程序流程图如图所示。
图显示程序流程图按键程序设计按键是用来设定上下限报警温度的。
具体的程序流程图如图所示。
N图按键程序流程图附1 源程序代码/********************************************************************* 程序名; 基于DS18B20的测温系统* 功能:实时测量温度,超过上下限报警,报警温度可手动调整。
K1是用来* 进入上下限调节模式的,当按一下K1进入上限调节模式,再按一下进入下限* 调节模式。
在正常模式下,按一下K2进入查看上限温度模式,显示1s左右自动* 退出;按一下K3进入查看下限温度模式,显示1s左右自动退出;按一下K4消除* 按键音,再按一下启动按键音。
在调节上下限温度模式下,K2是实现加1功能,* K1是实现减1功能,K3是用来设定上下限温度正负的。
* 编程者:ZPZ* 编程时间:2009/10/2*********************************************************************/#include<AT89X52.h> //将AT89X52.h头文件包含到主程序#include<intrins.h> //将intrins.h头文件包含到主程序(调用其中的_nop_()空操作函数延时)#define uint unsigned int //变量类型宏定义,用uint表示无符号整形(16位)#define uchar unsigned char //变量类型宏定义,用uchar表示无符号字符型(8位)uchar max=0x00,min=0x00; //max是上限报警温度,min是下限报警温度bit s=0; //s是调整上下限温度时温度闪烁的标志位,s=0不显示200ms,s=1显示1s左右bit s1=0; //s1标志位用于上下限查看时的显示void display1(uint z); //声明display1()函数#include"ds18b20.h" //将ds18b20.h头文件包含到主程序#include"keyscan.h" //将keyscan.h头文件包含到主程序#include"display.h" //将display.h头文件包含到主程序/***********************主函数************************/void main(){beer=1; //关闭蜂鸣器led=1; //关闭LED灯timer1_init(0); //初始化定时器1(未启动定时器1)get_temperature(1); //首次启动DS18B20获取温度(DS18B20上点后自动将EEPROM中的上下限温度复制到TH和TL寄存器)while(1) //主循环{keyscan(); //按键扫描函数get_temperature(0); //获取温度函数keyscan(); //按键扫描函数display(temp,temp_d*0.625);//显示函数alarm(); //报警函数keyscan(); //按键扫描函数}}/********************************************************************* 程序名; __ds18b20_h__* 功能:DS18B20的c51编程头文件* 编程者:ZPZ* 编程时间:2009/10/2* 说明:用到的全局变量是:无符号字符型变量temp(测得的温度整数部分),temp_d* (测得的温度小数部分),标志位f(测量温度的标志位‘0’表示“正温度”‘1’表* 示“负温度”),标志位f_max(上限温度的标志位‘0’表示“正温度”、‘1’表* 示“负温度”),标志位f_min(下限温度的标志位‘0’表示“正温度”、‘1’表* 示“负温度”),标志位w(报警标志位‘1’启动报警‘0’关闭报警)。
DS18B20温度传感器和数码管显示例程

//DS18B20温度传感器和数码管显示//编程时间:连线表: CPU=stc89C52 SysClock=12MHz// LEDLE= 控制位高电平有效 LEDSEG=P2 KEYBOARD=P3 LEDWEI=,LED高到底//**********************************************************//DS18B20//**********************************************************//连线表: CPU=stc89C52 SysClock=12MHz *//单总线: TMDAT=////**********************************************************#include <>#define uchar unsigned char#define uint unsigned intuchar discount=0;//显示扫描位计数uchar last=0;//最终温度值uchar itcount=0x13;//定时器延时计数uchar seg[4];//数码管显示暂存uchar tem[2];//读取温度暂存uchar flag=0;//温度正负标志位/********************LED引脚定义********************/sfr LEDSEG=0x80;//P2sfr LEDWEI=0xA0;//P3/********************DS18B20引脚定义********************/sbit TMDAT=P1^0; //温度传感器数据位/********************DS18B20函数定义*******************/void dmsec(uint count);//延时(count)毫秒void tmreset(void); //产生复位信号void tmpre(void); //检测器件应答信号bit tmrbit(void); //从总线读一个bituchar tmrbyte(void); //从总线读一个字节void mwbyte(uchar dat);//向总线写一个字节void tmstart(void); //启动一次温度转换uchar tmrtemp(void); //读取温度数据/********************LED函数定义*******************/uchar * uchartodectoseg(uchar unm);//字符转换为十进制然后转换为数码管段表void disp(uchar *seg);//显示函数void delay_ms(uint t); //延时函数/************************************************/uchar code table[]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0xc6};/*************数码表*******0 1 2 3 4 5 6 7 8 9 无显示 C**************/ /************************************************/uchar * uchartodectoseg(uchar unm){uchar x00,xx,x0,x,n;x00=unm/100;//取百位xx=unm%100;//取余x0=xx/10;//取十位x=xx%10;//取余即取个位n=0;seg[n]=table[x00];n++;seg[n]=table[x0];n++;seg[n]=table[x];n++;seg[n]=table[11];//最后一位显示摄氏度符号Cif(flag==1)seg[0]=0x40;//显示负号‘-’if(seg[0]==table[0])seg[0]=table[10]; //如果百位为零则不显示if((seg[0]==table[0])&(seg[1]==table[0]))seg[1]=table[10];//如果百位为零且十位为零则十位不显示return seg;}/***************************************************/ /******DELAY***************************/void delay_ms(uint t){uint m,n;for(m=0;m<t;m++){for(n=0;n<950;n++);}}/******************************************//*********************显示LEDSEG*****************************/void disp(uchar *seg){uchar wei[]={0x08,0x04,0x02,0x01};//位扫描码//LEDSEG=seg[10];LEDWEI =wei[discount];LEDSEG = seg[discount];delay_ms(1);discount++;if(discount==4){ delay_ms(1);discount=0;//LEDSEG=seg[10];LEDWEI=wei[discount];LEDSEG=seg[discount];}//检测是否扫描完,扫描完的话则重新置初值}/*********************************************************//*****************DS18B20函数体定义****************/void dmsec(uint count) {uint i;while(count--){for(i=0;i<125;i++){} }}void tmreset(void){uint i;TMDAT=0;i=103;while(i>0) i--;TMDAT=1;i=4;while(i>0) i--;}void tmpre(void){uint i;while(TMDAT);while(~TMDAT);i=4;while(i>0) i--;}bit tmrbit(void){uint i;bit dat;TMDAT=0;i++;TMDAT=1;i++;i++;dat=TMDAT;i=8;while(i>0) i--;return(dat);}uchar tmrbyte(void){uchar i,j,dat;dat=0;for(i=1;i<=8;i++){ j=tmrbit();dat=(j<<7)|(dat>>1); }return(dat);}void tmwbyte(uchar dat) {uint i;uchar j;bit testb;for(j=1;j<=8;j++){ testb=dat & 0x01; dat=dat>>1;if(testb){ TMDAT=0;i++; i++;TMDAT=1;i=8;while(i>0) i--; }else{ TMDAT=0;i=8;while(i>0) i--; TMDAT=1;i++; i++;}}}void tmstart(void){tmreset();tmpre();dmsec(1);tmwbyte(0xcc);tmwbyte(0x44);}uchar tmrtemp(void){uchar y1,y2,y3;tmreset();tmpre();dmsec(1);tmwbyte(0xcc);tmwbyte(0xbe);tem[0]=tmrbyte();tem[1]=tmrbyte();if(tem[1]>127){tem[1]=(255-tem[1]);tem[0]=(255-tem[0]);flag=1;} //负温度求补码y1=tem[0]>>4;y2=tem[1]<<4;y3=y1|y2;return(y3);}/*********************************************************/void main(){TMOD=0X01;TL0=0XB0;TH0=0X3C;EA=1;ET0=1;TR0=1;dmsec(1);tmstart();while(1){uchartodectoseg(last);disp(seg);}}void time0() interrupt 1{TL0=0XB0;TH0=0X3C;//定时50msitcount--;if(itcount==0){last=tmrtemp();dmsec(1);tmstart();itcount=0x13;}}。
数字温度传感器DS18B20(含程序)

数字温度传感器DS18B20摘要DS-18B20 数字温度传感器具有耐磨耐碰,体积小,使用方便,封装形式多样,适用于各种狭小空间设备数字测温和控制领域。
应用范围广泛,适用于冷冻库,粮仓,储罐,电讯机房,电力机房,电缆线槽等测温和控制领域,轴瓦,缸体,纺机,空调,等狭小空间工业设备测温和控制和汽车空调、冰箱、冷柜、以及中低温干燥箱等。
一、引脚图DS18B20引脚定义:(1)DQ为数字信号输入/输出端;(2)GND为电源地;(3)VDD为外接供电电源输入端(在寄生电源接线方式时接地)二、DS18B20的主要特性1.1、电压范围:3.0~5.5V,在寄生电源方式下可由数据线供电1.2、DS18B20在与微处理器连接时仅需要一条口线即可实现微处理器与DS18B20的双向通讯1.3、多个DS18B20可以并联在唯一的三线上,实现组网多点测温1.4、DS18B20在使用中不需要任何外围元件1.5、温范围-55℃~+125℃,在-10~+85℃时精度为±0.5℃1.6、可编程的分辨率为9~12位,对应的可分辨温度分别为0.5℃、0.25℃、0.125℃和0.0625℃,可实现高精度测温1.7、在9位分辨率时最多在93.75ms内把温度转换为数字,12位分辨率时最多在750ms内把温度值转换为数字,速度更快1.8、测量结果直接输出数字温度信号,以"一线总线"串行传送给CPU,同时可传送CRC校验码,具有极强的抗干扰纠错能力1.9、负压特性:电源极性接反时,芯片不会因发热而烧毁,但不能正常工作。
三、DS18B20的外形和内部结构DS18B20内部结构主要由四部分组成:64位光刻ROM 、温度传感器、非挥发的温度报警触发器TH和TL、配置寄存器。
DS18B20内部结构图四、DS18B20工作原理DS18B20的温度转换时的延时时间由2s 减为750ms。
DS18B20测温原理如图3所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最近天气热了,想要是做个能显示温度的小设备就好了,于是想到DIY个电子温度计,网上找了很多资料,结合自己的材料,设计了这个用单片机控制的实时电子温度计。
作为单片机小虾的我做这个用了2天时间,当然是下班后,做工不行见谅了。
主要元件用到了单片机STC89C54RD+,DB18B20温度传感器,4为共阳数码管,PNPS8550三极管等。
先上原理图:
洞洞板布局图:
然后就是实物图了:
附上源程序:程序是别人写的,我只是自己修改了下,先谢谢原程序者的无私奉献。
#include"reg52.h"
#define uchar unsigned char
#define uint unsigned int
sbit DQ=P3^4; //温度数据口
sbit wx1=P2^0; //位选1
sbit wx2=P2^1; //位选2
sbit wx3=P2^2; //位选3
sbit wx4=P2^3; //位选4
unsigned int temp, temp1,temp2, xs;
uchar code table[]={0xc0,0xf9,0xa4,0xb0,0x99, //共阳数码管0x92,0x82,0xf8,0x80,0x90,0x88,0x83,0xc6};
/******延时程序*******/
void delay1(unsigned int m)
{
unsigned int i,j;
for(i=m;i>0;i--)
for(j=110;j>0;j--);
}
void delay(unsigned int m) //温度延时程序
{
while(m--);
}
void Init_DS18B20()
{
unsigned char x=0;
DQ = 1; //DQ复位ds18b20通信端口
delay(8); //稍做延时
DQ = 0; //单片机将DQ拉低
delay(80); //精确延时大于480us
DQ = 1; //拉高总线
delay(4);
x=DQ; //稍做延时后如果x=0则初始化成功x=1则初始化失败delay(20);
}
/***********ds18b20读一个字节**************/
uchar ReadOneChar()
{
unsigned char i=0;
unsigned char dat = 0;
for (i=8;i>0;i--)
{
DQ = 0; // 高电平拉成低电平时读周期开始
dat>>=1;
DQ = 1; // 给脉冲信号
if(DQ)
dat|=0x80; //
delay(4);
}
return(dat);
}
/*************ds18b20写一个字节****************/
void WriteOneChar(unsigned char dat)
{
unsigned char i=0;
for (i=8; i>0; i--)
{
DQ = 0; //从高电平拉至低电平时,写周期的开始
DQ = dat&0x01; //数据的最低位先写入
delay(5); //60us到120us延时
DQ = 1;
dat>>=1; //从最低位到最高位传入
}
}
/**************读取ds18b20当前温度************/
void ReadTemperature()
{
unsigned char a=0;
unsigned b=0;
unsigned t=0;
Init_DS18B20();
WriteOneChar(0xCC); // 跳过读序号列号的操作/
WriteOneChar(0x44); // 启动温度转换
delay(5); // this message is wery important
Init_DS18B20();
WriteOneChar(0xCC); //跳过读序号列号的操作
WriteOneChar(0xBE); //读取温度寄存器等(共可读9个寄存器)前两个就是温度/ delay(5);
a=ReadOneChar(); //读取温度值低位/
b=ReadOneChar(); //读取温度值高位/
temp1=b<<4; //高8位中后三位数的值
temp1+=(a&0xf0)>>4; //低8位中的高4位值加上高8位中后三位数的值temp1室温整数值
temp2=a&0x0f; //小数的值
temp=((b*256+a)>>4); //当前采集温度值除16得实际温度值zhenshu
xs=temp2*0.0625*10; //小数位,若为0.5则算为5来显示xs小数xiaoshu
}
void wenduxianshi()
{
wx1=0;
P0=table[temp/10]; //显示百位
delay1(5);
wx1=1;
wx2=0;
P0=table[temp%10]+0x80; //显示十位加上0x80就显示小数点了。
delay1(5);
wx2=1;
wx3=0;
P0=table[xs%10]; //显示个位
delay1(5);
wx3=1;
wx4=0;
P0=table[12]; //显示C 字符
delay1(5);
wx4=1;
}
void main()
{
while(1)
{
ReadTemperature();
wenduxianshi();
}
}
(注:文档可能无法思考全面,请浏览后下载,供参考。
可复制、编制,期待你的好评与关注)。