数字图像处理第二章
数字图像处理(第二版)章 (2)
第2章 数字图像处理基础
2.2 数字图像类型
第2章 数字图像处理基础
为了减小量化误差,引入了非均匀量化的方法。非均匀量 化依据一幅图像具体的灰度值分布的概率密度函数,按总的量 化误差最小的原则来进行量化。具体做法是对图像中像素灰度 值频繁出现的灰度值范围,量化间隔取小一些; 而对那些像 素灰度值的概率分布密度函数因图像不同而异,所 以不可能找到一个适用于各种不同图像的最佳非等间隔量化方 案,因此,实用上一般多采用等间隔量化。
第2章 数字图像处理基础
3. 索引颜色图像 在介绍索引颜色图像之前,首先来了解PC机是如何处理颜 色的。大多数扫描仪都是以24位模式对图像进行采样的,即可 以从图像中采样出1670万种不同的颜色。用这种方式获得的颜 色通常称为RGB颜色。颜色深度为24位每像素的数字图像是目前 所能获取、浏览和保存的颜色信息最丰富的彩色图像,由于它 所表达的颜色远远超出了人眼所能辨别的范围,故将其称为 “真彩色”。在早期,由于技术上和价格上的原因,计算机在 处理时并没有达到24位每像素的真彩色水平,为此人们创造了 索引颜色。索引颜色通常也称为映射颜色。在这种模式下,颜 色都是预先定义的,并且可供选用的一组颜色也很有限。索引 颜色的图像最多只能显示256种颜色。索引颜色通常称为调色板。 一幅索引颜色图像在图像文件里定义,当打开该文件时,构成 该图像具体颜色的索引值就被读入程序,然后根据索引值在调 色板中找到对应的颜色。
b=M×N×Q (b)
数字图像处理第2章图像数字化
续图像的频谱与它的平移复制品重叠。
的高频分量混入到它的中频或低频部分,这种现象称为
混叠。在这种情况下,由函数的采样值重建的图像将产生失真。如图 2-1-4 所示,由于采样间隔不满足
奈奎斯特条件,采样图像的频谱在阴影区及其附近产生了混叠。当我们用图示的低通滤波器
取
出
重建图像时,将会带来两个问题:
(1) 图像信号损失了一部分高频分量,致使图像变得模糊。
像,但需要付出更大的存储空间作为代价。
连续图像
在二维空间域里进行采样时,常用的方法是对
进行均匀采样。取得各点的亮
度值,构成一个离散的函数 函数来表示,即
。若是彩色图像,则以三基色 R、G、B 的亮度作为分量的三维向量
1
相应的离散向量函数用(1.1.7)表示。
图 2-1-2 采样示意图(2) 评价连续图像经过采样获得数字图像的效果,采用如下一些参数。 图像分辨率是指采样所获得图像的总像素。例如,640×480 图像的总像素数为 307 200 个。在购买 具有这种分辨率的数码相机时,产品性能介绍上会给出 30 万像素分辨率这一参数。 采样密度是指在图像上单位长度所包含的采样点数。采样密度的倒数就是像素间距。 采样频率是指一秒钟内采样的次数。它反映了采样点之间的间隔大小。采样频率越高,丢失的信息 越少,采样后获得的样本更细腻逼真,图像的质量更好,但要求的存储量也就更大。 扫描分辨率表示一台扫描仪输入图像的细微程度。它指每英寸扫描所得到的点,单位是 dpi (dot per inch)。数值越大,表示被扫描的图像转化为数字化图像越逼真,扫描仪质量也越好。无论采用哪种评价 参数,实际上在进行采样时,采样点间隔的选取是一个非常重要的参数。
(a) 中央上升型
(b) 中央平稳型
第二章数字图像处理的基本概念PPT课件
字节数B为
BMNQ (Byt)e 8
对一幅图像,当量化级数Q一定时,采样点数M×N对图像 质量有着显著的影响。如下图:采样点数越多,图像质量越好; 当采样点数减少时,图上的块状效应就逐渐明显。
(a)原始图像(256×256)(b)采样图像1(128×128)(c) 采样图像2(64×64) (d)采样图像3(32×32) (e)采样图像4(16×16)(f) 采样图像5(8×8)
在进行采样时,采样点间隔的选取是一个非常重要的问题,
它决定了采样后图像的质量。采样间隔的大小选取要依据原图
像中包含的细微浓淡变化来决定。一般图像中细节越多,采样
间隔应越小。根据一维采样定理,若一维信号g(t)的最大频率为
ω, 以T≤1/2ω为间隔进行采样,则能够根据采样结果g(iT) (i=…,
-1, 0, 1, …)完全恢复g(t), 即
➢沿垂直方向按一定间隔从上到下顺序地沿水平方向直线扫描, 取出各水平线上灰度值的一维扫描。
➢再对一维扫描线信号按一定间隔采样得到离散信号。
➢对于运动图像(即时间域上的连续图像),需先在时间轴上采 样,再沿垂直方向采样,最后沿水平方向采样由这三个步骤完成。
对一幅图像采样时,若每行(即横向)像素为M个,每列 (即纵向)像素为N个,则图像大小为M×N个像素。
一般当限定数字图像的大小时, 为了得到质量较好的图像可
(1) 对缓变的图像, 应该细量化, 粗采样, 以避免假轮廓。
(2) 对细节丰富的图像, 应细采样, 粗量化, 以避免模糊 (混叠)。
第二章 数字图像处理的基本概念
2.1人眼的视觉原理
2.1.1人眼的构造
2.1.2图像的形成
人眼对场景可见光能量在视网膜上形成的一种刺激,通过人脑对刺 激信号的处理,获取场景的描述和感知。
第二章 数字图像处理基础
2.1 数字图像的表示 2.2 数字图像的采样与量化 2.3 人的视觉特性 2.4 光度学与色度学原理
第二章 数字图像处理基础
本章重点、难点
重点: 采样和量化 BMP图像文件格式 RGB颜色模型和HSI颜色模型 难点: 采样和量化的理解 BMP位图
2.1 数字图像
数字图像:f(x,y),函数值对应于图像点的 亮度。称亮度图像。 注意:模拟图像与数字图像的区别 动态图像:f(x,y,t)
人眼成像过程
视细胞分为两类: 锥状细胞:明视细胞,在强光下检测亮度 和颜色。 杆(柱)状细胞:暗视细胞,在弱光下检测亮 度,无色彩感觉。 人眼成像过程
图像的对比度和亮度
人眼的亮度感觉 图像 “黑”“白”(“亮”、“暗”)对比参数 对比度 : c=Bmax/Bmin 相对对比度:cr=(B-B0)/B0 人眼亮度感觉范围 总范围很宽 c = 108 人眼适应某一环境亮度后,范围限制 适当平均亮度下:c=103 很低亮度下:c=10
亮度
也称为灰度,它是颜色的明暗变化,常用 0 %~ 100 % (由黑到白) 表示。以下三幅图是 不同亮度对比。
对比度
对比度(contrast)是亮度的局部变化,定义为物体亮 度的平均值与背景亮度的比值,是画面黑与白的比 值,也就是从黑到白的渐变层次。比值越大,从黑 到白的渐变层次就越多,从而色彩表现越丰富。人 眼对亮度的敏感性成对数关系。
同时对比度
人眼对某个区域感觉到的亮度不是简单 地取决于该区域的强度,背景亮度不同 时,人眼所感觉到的明暗程度也不同。
马赫带效应
马赫带(Mach Band)效应:边界处亮度对比加强
为什么我们要在暗室评片?
马赫带效应的出现,是因为人眼对于图像中不同 空间频率具有不同的灵敏度,而在空间频率突变处 就出现了 “欠调”或“过调”
数字图像处理数字图像处理第二章(第六讲)KL变换、其他正交变换
第二章 常用的数学变换
2.6其他正交变换 —离散沃尔什-哈达玛变换(WHT)
1 1 1 1 1 1 1 1
1
1
1
1
1
1
1
1
1 1 1 1 1 1 1 1
H8
1 22
1 1
1 1
1 1
1 1
1
1 1
1
1 1 1 1
1
1
1
1 1
1
1
1
1 1 1 1 1 1 1 1
1
1
1
1
1
2.6其他正交变换 —离散沃尔什-哈达玛变换(WHT)
1893年法国数学家哈达玛总结前人研究只包含+1和-1的正交矩 阵结果,形成哈达玛矩阵,既简单又有规律
1923年美国数学家沃尔什提出Walsh函数,具有特点 函数取值仅有两个(0,1或-1,+1) 由Walsh函数构成的Walsh函数集,具备正交性和完备性
种是按照哈达玛排列来定义。由于哈达玛排序的沃尔什函数是由2n (n=0,1,2,…)阶哈达玛矩阵(Hadamard Matrix)得到的,而
哈达玛矩阵的最大优点在于它具有简单的递推关系, 即高阶矩阵可 用两个低阶矩阵的克罗内克积求得,因此在此只介绍哈达玛排列定 义的沃尔什变换。
第二章 常用的数学变换
0.443(60) 0.742(70) 0.376(62) 0.106(50)
119.53
国家级精品资源共享课
第二章 常用的数学变换
第二章 常用的数学变换
2.1 引言 2.2 空域变换 2.3 频率域变换 2.4 离散余弦变换 2.5 KL变换 2.6 其他正交变换
第二章 常用的数学变换
数字图像处理 第2章 图像的数字化与显示
(2.20)
2.3.3 空间与灰 度级分辨率
对一幅图像,当量化级数Q一定 时,采样点数 M×N 对图像质量有着显 著的影响。采样点数越多,图像质量越 好;当采样点数减少时,图像越小,图 上的块状效应就逐渐明显。
图像的采样与数字图像的质量
图像的量化与数字图像的质量
量化级数越多,图像质量越好,当量化级数越少时,图像质量越 差,量化级数最小的极端情况就是二值图像,图像出现假轮廓。
2.2 图像场取样
2.2.1 取样和量化的基本概念
数字化包括取样和量化两个过程 :
取样(sampling):对空间连续坐标(x, y)的 离散化 量化(quantization):幅值 f (x, y)的离散化
(a)连续图像
(b)数字化结果
图2.1 图像的数字化过程
(a)
(b)
图2.2 采样网格 (a) 正方形网格; (b) 正六角形网格
截止频率。
u U c , v Vc u U c , v Vc
(2.8)
其中 U c , Vc 对应于空间位移变量x和y的最高
则当采样周期
x, y满足
(2.9)
1 u s 2U c x 1 vs 2Vc y
此时,通过采样信号 f ( mx, ny ) 能唯一地恢 复或重构出原图像信号f (x,y)。该条件称为 Nyquist采样定理。
• 2.3.1
•
标量量化
标量量化:将数值逐个量化 。 例:假设抽样信号的范围是0~5 V,将它分为8等
分,这样就有8个量化电平,分别是5/8 V,10/8 V,15/8 V,…,35/8 V。 对每一个采样将它量化为离它最近的电平。 在量化后,为了能在数字信号处理系统中处理 二进制码,还必须经过编码操作。
数字图像处理(冈萨雷斯)第二章_数字图像处理基础
(2)辨别光强度变化的能力
2.1.3亮度适应和鉴别
✓当背景光保持恒定时,改变其他光源亮度,从不能察觉到可以察觉间
变化,一般观察者可以辨别12到24级不同强度的变化.
图2.5 亮度辨 别特性的基本 实验
韦伯定理说明:
✓人眼视觉系统对亮度的对比度敏 感而非对亮度本身敏感;
39
2.4.5 图像的收缩与放大 (2)图像放大的效果比较(例2.4)
用最近领域内插法(上一行)和双线性内插法(下一行)得到的放大图像
分别将128×128,64×64, 32×32放大到1024×1024
40
2.5 像素间的一些基本关系
主要内容 相邻像素 邻接性、连通性、区域和边界 距离度量 基于像素的图像操作 图像的代数运算性、连通性、区域和边界
✓与整个适应范围相比,人眼在某一时刻能鉴别的亮度级别范围很 小(以该环境的平均亮度为中心的一个小的亮度范围);
✓亮度适应级(视觉系统当前的灵敏度级别):
人眼适应了某一环境后,该环境的平均亮度;
✓亮度适应现象:人眼并不能同时在整个范围内
工作,而是利用改变灵敏度来实现大的动态范围 内的变动;
✓当平均亮度适中时,能分辨的最大亮度和最小 亮度之比为1000:1;当平均亮度很低时,这个比 值只有10:1
27
2.4y)
f
(1,0)
f (M1,0)
f (0,1) f (0,N1)
f (1,1)
f (1,N1)
f (M1,1) f (M1,N1)
这个表达式的右侧 了定 一义 幅数字图像。 中矩 的阵 每个
元素称为图像像素。
M,N必须为正数,L为灰度级,灰度的取值范围为[0,L-1]。
数字图像处理第二章课后习题及中文版解答
数字图像处理第⼆章课后习题及中⽂版解答数字图像处理(冈萨雷斯版,第⼆版)课后习题及解答(部分)Ch 22.1使⽤2.1节提供的背景信息,并采⽤纯⼏何⽅法,如果纸上的打印点离眼睛0.2m 远,估计眼睛能辨别的最⼩打印点的直径。
为了简明起见,假定当在黄斑处的像点变得远⽐视⽹膜区域的接收器(锥状体)直径⼩的时候,视觉系统已经不能检测到该点。
进⼀步假定黄斑可⽤1.5mm × 1.5mm 的⽅阵模型化,并且杆状体和锥状体间的空间在该阵列上的均匀分布。
解:对应点的视⽹膜图像的直径x 可通过如下图题2.1所⽰的相似三⾓形⼏何关系得到,即()()220.20.014d x = 解得x =0.07d 。
根据2.1节内容,我们知道:如果把黄斑想象为⼀个有337000个成像单元的正⽅形传感器阵列,它转换成⼀个⼤⼩580×580成像单元的阵列。
假设成像单元之间的间距相等,这表明在总长为1.5 mm 的⼀条线上有580个成像单元和579个成像单元间隔。
则每个成像单元和成像单元间隔的⼤⼩为s =[(1.5 mm)/1159]=1.3×10-6 m 。
如果在黄斑上的成像点的⼤⼩是⼩于⼀个可分辨的成像单元,在我们可以认为改点对于眼睛来说不可见。
换句话说,眼睛不能检测到以下直径的点:x =0.07d<1.3×10-6m ,即d <18.6×10-6 m 。
下图附带解释:因为眼睛对近处的物体聚焦时,肌⾁会使晶状体变得较厚,折射能⼒也相对提⾼,此时物体离眼睛距离0.2 m ,相对较近。
⽽当晶状体的折射能⼒由最⼩变到最⼤时,晶状体的聚焦中⼼与视⽹膜的距离由17 mm 缩⼩到14 mm ,所以此图中选取14mm(原书图2.3选取的是17 mm)。
图题2.12.2 当在⽩天进⼊⼀个⿊暗的剧场时,在能看清并找到空座位时要⽤⼀段时间适应,2.1节(视觉感知要素)描述的视觉过程在这种情况下起什么作⽤?解:根据⼈眼的亮度适应性,1)由于户外与剧场亮度差异很⼤,因此当⼈进⼊⼀个⿊暗的剧场时,⽆法适应如此⼤的亮度差异,在剧场中什么也看不见;2)⼈眼不断调节亮度适应范围,逐渐的将视觉亮度中⼼调整到剧场的亮度范围,因此⼜可以看见、分清场景中的物体了。
第二章 数字图像处理基础
BMP图像文件格式
文件说明
属性 bfType bfSize bf1 bf2 bfOffBits biSize biWidth 所占字节数 2 4 2 2 4 4 4 起始字节 1 3 7 9 11 15 19 说明 文件类型(“BM”) 文件大小 保留 保留 第一个位图数数的偏移量 文件信息头的长度 位图的宽度(单位是象素)
位图的有关术语
像素(Pixel)
(可大可小)
采样点 (Sample)
位图的有关术语
图像分辨率: 每英寸图像含有的点或像素个数(dpi)
分辨率越高,图像细节越清晰,但文件尺寸大, 处理的时间长,对设备的要求高。
位图的有关术语
打印机分辨率: 打印图像时每英寸的点数(dpi)
激光打印机的分辨率可达600~1200dpi。
0, , 80 200 B 0, , 0 110 255, , 255 255
2.1 图像数字化
2.1.3 采样与量化参数的选择
采样间隔:影响着图像细节的再现程度,反映数字化 后的图像呈现何种的细微程度。采样间隔越大,图像的像素 数越少,空间分辨率低,质量差。严重出现像素块状的棋盘
2. 图像数字化器的性能
(1)分辨率:单位尺寸能够采样的像素数,由采样 孔的大小和像素间距的大小决定;
(2)灰度级:量化为多少等级;
(3)图像大小:允许输入图像的大小;
(4)扫描速度:采样数据的传输速度;
(5)噪声:数字化器的噪声水平。
(6)线性度:线性度是指对光强进行数字化时,灰 度正比于图像亮度的实际精确程度。
数字图像根据灰度级数的差异,可分为:
二值图像、灰度图像和彩色图像 二值图像:
数字图像处理第2章采样量化图像格式
又称输出分辨率,是指打印机输出图像时每英寸的点数(dp i)。打印机分辨率也决定了输出图像的质量,打印机分辨率越高, 可以减少打印的锯齿边缘,在灰度的半色调表现上也会较为平滑。 打印机的分辨率可达300-1200 dpi。
4) 扫描仪分辨率
单位长度上采样的像素个数。台式扫描仪的分辨率可以分
• 曲线3:
质量
细节较多的球赛观众图像 k
5
4 32 64 128 256 N
总结
一般,当限定数字图像的大小时, 为了得到质量较好的图像 可采用如下原则:
(1)对缓变的图像,应该细量化,粗采样,以避免假轮廓。
(2)对细节丰富的图像,应细采样,粗量化,以避免模糊。 对于彩色图像,是按照颜色成分——红、绿、蓝分别采样和量
2.3.3 用传感器阵列获取图像
传感器阵列
2.4 图像数字化技术
图像的数字化包括采样和量化两个过程。 设连续图像f(x, y) 经数字化后,可以用 一个离散量组成的矩阵g(i, j)(即二维数组) 来表示。
f (0,0) f (0,1) f (0, n 1)
g(i,
j)
g(1,0)
z 蓝 (Blu e) 品 红 (Magenta )
青 (Cyan ) O 红 (Red) x
绿 (Gre en) 黄 (Yello w) y
(2) 数字化采样一般是按正方形点阵取样的, 除此之外还 有三角形点阵、正六角形点阵取样。
(3)以上是用g (i, j)的数值来表示(i, j)位置点上灰度级值的
大小,即只反映了黑白灰度的关系, 如果是一幅彩色图像, 各点
的数值还应当反映色彩的变化,可用g (i, j, λ)表示,其中λ是波 长。如果图像是运动的,还应是时间t的函数,即可表示为g (i, j, λ, t)。
数字图像处理第2章
Digital Image Processing
2.1 色度学基础
颜色模型 人眼视觉的感受颜色可用色调(hue),饱和度 人眼视觉的感受颜色可用色调(hue),饱和度 ), (saturation)和亮度(brightness)来表示. (saturation)和亮度(brightness)来表示. 各种表示颜色的方法,称做颜色模型.目前使用最多 各种表示颜色的方法,称做颜色模型. 的是面向机器(如显示器,摄像机,打印机等)的RGB模型 的是面向机器(如显示器,摄像机,打印机等) RGB模型 和面向颜色处理(也面向人眼视觉) HSI(HSV)模型. 和面向颜色处理(也面向人眼视觉)的HSI(HSV)模型.
f s ( m , n ) ← f s ( x , y ) = f ( x , y ) s( x , y ) =∑
m
∑
n
f ( m x , n y )δ ( x m x , y n y )
Digital Image Processing
2.3 图像数字化
x
y
图2.3.1 采样函数s(x,y)的图示 采样函数s(x,y) s(x,y)的图示
120°
0°
240°
Digital Image Processing
2.1 色度学基础
RGB和HIS之间的模型转换: RGB和HIS之间的模型转换: 之间的模型转换
(1) RGB转换到HSI RGB转换到 转换到HSI (2) HIS转换到RGB HIS转换到 转换到RGB 常见数字图像处理流程,其中包含了RGB模型和HSI模型之间 RGB模型和HSI模型之间 常见数字图像处理流程,其中包含了RGB模型和HSI 的转换. 的转换.
I分量 I分量图 像处理
精品课件-《数字图像处理(第三版)》第2章 数字图像
其它
i 1,2,n
2.3 数字图像类型
矢量(Vector)图和位图(Bitmap),位图也称为栅格图像。 矢量图是用数学(准确地说是几何学)公式描述一幅图像。(计 算机图形学)
➢ 优点:一是它的文件数据量很小,因为存储的是其数学公式; 其二是图像质量与分辨率无关,这意味着无论将图像放大或 缩小了多少次,图像总是以显示设备允许的最大清晰度显示。
2.2.3 颜色变换
对彩色图像进行颜色变换,可实现对彩色图像的增强处理,改 善其视觉效果,为进一步处理奠定基础。 基本变换
➢ 颜色变换模型为:g(x,y)=T[ f ( x,y )] 式中:f ( x , y )是彩色输入图像,其值为一般为向量; g ( x , y )是变换或处理后的彩色图像,与 f(x,y)同维; T是在空间域上对f的操作。T对图像颜色的操作 有多种方式;
2.4 图像文件格式 数字图像有多种存储格式,每种格式一般由不同的软件公司开 发所支持。 文件一般包含文件头和图像数据。就像每本书都有封面,目录, 它们的作用类似于文件头,通过文件头我们可读取图像数据。 文件头的内容由该图像文件的公司决定,一般包括文件类型 、 文件制作者、制作时间、版本号、文件大小等内容,还有压缩方 式。
2.2.2 颜色模型
HSI 颜色模型 ➢ 色调H (Hue): 与光波的波长有关,它表示人的感官对不同 颜色的感受,如红色、绿色、蓝色等, ➢ 饱和度(Saturation): 表示颜色的纯度,纯光谱色是完合饱 和的,加入白光会稀释饱和度。饱和度越大,颜色看起来就 会鲜艳,反之亦然。 ➢ 强度I (Intensity):对应成像亮度和图像灰度,是颜色的 明亮程度。 ➢ HSI模型建立基于两个重要的事实: (1) I分量与图像的彩色 信息无关; (2) H和S分量与人感受颜色的方式是紧密相联 的。这些特点使得HSI模型非常适合彩色特性检测与分析。
数字图像处理第二章课件ppt课件
f(0,1) f(0,N1)
f(x,y)
f(1,0)
f(1,1)
f(1,N1)
f(M1,0) f(M1,0)
f(M1,N1)
F(x,y)在[0,L-1]有L个灰阶, 通常取L为2的k次幂
Chapter 2: Digital Image Fundamentals
R.C. Gonzalez, R.E. Woods
Chapter 2: Digital Image Fundamentals
R.C. Gonzalez, R.E. Woods
街区'City-Block'距离L1:
等距为4角星
D 4(p,q)xsyt
棋盘'chessboard'距离L : D 8(p,q)ma x x s,y (t)
等距为矩形
Chapter 2: Digital Image Fundamentals
R.C. Gonzalez, R.E. Woods
对像素p(x,y), q(s,t)和z(v,w), 距离函数D应满足: ① D(p,q)>=0 (D(p,q)=0, iff p=q) ② D(p,q)=D(q,p), and ③ D(p,z)<=D(p,q)+D(q,z)
例如用LM范数表示的通用Minkowski距离:
2.5 Some Basic Relationships Between Pixels 2.5.1 Neighbors of a Pixel
4邻接:
p
8邻接: p
m邻接(混合邻接):邻点q与当前像素(点)p存在4邻接前景邻点;
或
q是p的对角邻点并且p和q没有公共的前景4邻点。
m邻接是8邻接的修订,它消除了应用8邻接可能引起的模糊性 ,如图2.26b(4或8邻接共存)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
若filename中不包含路径信息,则imwrite会将文件保存到当前的工作目 录中。
43
2.2数字图像的表示
视频信号的数字化
三维电视信号
y
k-1帧
t k帧 k-1帧
F(u,v)
一 帧 电 视 画 面
x
44
2.2数字图像的表示
传统图像的描述方式与数据结构
29
2.2数字图像的表示
传
30
2.2数字图像的表示
传
31
2.2数字图像的表示
传
32
2.2数字图像的表示
链表——描述目标物体的边界
An example chain code; the reference pixel is marked by an arrow: 000077665555556600000006444444442221111112234445652211
在图像量化中,有非均匀量化技术。当灰度级低的时候用它比较有效。 但是为什么在灰度级级数高时几乎不用?
非均匀量化是为了减小量化误差,灰度级低的时候,利用非均匀量化减小量 化误差的作用明显;灰度级高的时候,图像的灰度特征本身就被分的比较细 了,量化误差已经不大,没必要再用。
28
2.2数字图像的表示
JPEG格式
静止图像压缩标准 采用有损编码方式 是一种变换编码
38
MATLAB:读取图像
读取图像
使用函数imread可以将图像读入MATLAB环境,imread的语法为 imread(‘filename’)
filename是一个含有图像文件全名的字符串
例如:
>>f=imread(‘C:\Documents and Settings\Administrator\桌面 \rose.jpg');
i j
f (i x , j y ) x i x , y j y
采样后信号的频谱
f f s ( x , y ) f f ( x, y ) f s ( x, y ) i j F (u , v) u , v x y i j
经过取样、量化和编码以后,形成数字图像
一个数字图像的实例
27
2.1图像信号的数字化
思考题
我们知道,要构成一幅数字图像需要采样和量化,如果采样和量化都 充分细的话,就可以得到好的画质。但是数据量也就变得很大。问当 数据量设为一个定值时,在什么时候将采样优先考虑?什么情况下将 量化优先考虑?
(1) 对缓变的图像, 应该细量化, 粗采样, 以避免假轮廓。 (2) 对细节丰富的图像,应细采样,粗量化, 以避免模糊(混叠)。
23
2.1图像信号的数字化
采样对图像质量的影响
24
2.1图像信号的数字化
量化对图像质量的影响
25
2.1图像信号的数字化
均匀量化误差、量化噪声、量化信噪比
量化误差:e=真值-量化值。 e 相当于“噪声”,“量化噪声”。 量化误差的均方值 设:n比特PCM编码,量化步长的相对值为1/2n ,取样值是均匀分布,
TIFF格式
37
2.2数字图像的表示
图像数据的格式化存储
GIF格式:
采用复杂的LZW(lempel ziv welch,字串表)编码方式,无损 多用于网络传输,比其他格式速度快 一个GIF文件可以存储多幅图像 带有色彩表(全局、局部色彩表) 支持图像定序显示或覆盖,支持文本覆盖 只能处理256色,不能用于存储真彩色图像
有限取样δ 阵列
实际取样脉冲阵列s(x,y)是截短 δ函数阵列d(x,y)通过冲激响应 为p(x,y)的线性滤波器产生的:
d ( x, y)
iI
i I j J
( x ix, y jy)
jJ
s ( x, y ) d ( x , y ) p ( x , y )
I
i I j J
p ( x i x, y j y )
J
取样后图像=连续图像*取样阵列
有限取样阵列
f p ( x, y) fi ( x, y) s( x, y)
f p ( x, y) fi ( x, y) s( x, y)
I
i I j J
40
MATLAB:显示图像
显示图像
在MATLAb桌面上图像一般使用imshow来显示,该函数的基本语法 为: imshow(f, G)
其中,f是一个图像数组,G是显示该图像的灰度级数。 若将G省略,默认的灰度级数是256
imshow(f, [ low high])
将所有小于或等于low的值都显示为黑色,将所有大于或等于high 的值都显示为白色
沿从A到B的直线的扫描线
6
2.1图像信号的数字化
一维连续信号的采样
7
2.1图像信号的数字化
Nyquist条件
8
2.1图像信号的数字化
9
2.1图像信号的数字化
10
2.1图像信号的数字化
经过采样后所得的信号为
f s ( x , y ) f ( x, y ) s ( x , y )
41
MATLAB:保存图像
保存图像
使用imwrite可以将图像写到磁盘上,该函数的基本语法为: imwrite(f, ‘filename’)
若filename中不包含路径信息,则imwrite会将文件保存到当前的工作目 录中。
42
2.2数字图像的表示
视频信号的数字化
视频信号的数字化也包括取样、量化、编码 扫描体制在时间 t 维已离散 扫描体制在垂直 y 维已离散 在 x 维可以自行取样
则可以证明:量化误差的均方值
Nq
i 1
2n
iv
( i 1) v
( x iv
v 1 1 )dx ( )( n ) 2 2 12 2
量化信噪比(峰值信号功率与量化噪声之比)
2 S PP 12( 2n) 10lg 10.8 6n Nq 1
(db)
可见:每抽样的编码比特数 n 直接关系到数字化的图像质量,每增减 1 比 特,就使量化信噪比增减约6分贝。 一般应用:电视广播、视频通信等,8 bit量化,已能满足。 特殊应用:高质量静止图像、遥感图像等,10比特以上精度。
函数size可给出一副图像的行数和列数
size(f) ans= 1024
1024
39
MATLAB:读取图像
读取图像
函数whos可以显示出一个数组的附加信息
whos f
Name
f
Size
1024*1024
Bytes
1048576
Class
uint8 array
Grand total is 1048976 elements using 1048976 bytes
对于静止的平面的、单色的图像来说其数学表达式可简化为:
I f ( x, y)
4
2.1图像信号的数字化
图像的采样
连续的图像信号先要在空间上进行离散化后才能被计算机处理 为了达到对原来连续图像信号较好的近似,需要多大的采样率?
5
2.1图像信号的数字化
图像的采样
是将在空间上连续的图像转换成离散的取样点(即像素)集的操作。
J
取样后的图像 f i (i x, j y ) p( x ix, y j y )
DFT
Fp (u, v) Fi (u, v) [ D(u, v) P(u, v)]
18
2.1图像信号的数字化
实际取样脉冲效应的分析
f(x,y)
y=0的截面
Fi(u,v) FT
v=0的截面
22
2.1图像信号的数字化
空间分辨率与灰度分辨率
空间分辨率——在图像空间可分辨的最小细节。采样值是决定一副图 像空间分辨率的主要参数。 灰度分辨率——在像素灰度上可分辨的最小变化。由于硬件方面的要 求,灰度级数通常是2的整数幂。
空间与灰度分辨率对图像质量的影响
采样间隔越小,所得图像像素数越多,空间分辨率高,图像质量好, 但数据量大。 量化等级越多,所得图像层次越丰富,灰度分辨率高,图像质量好, 但数据量大。
产生的影响:
取样脉冲有τ宽度,重建图像误差产生高频失真,频谱按sinc函数衰减; 点阵非无限,图像重建时就会产生边界误差和模糊现象。
结果:
用理想低通滤波器不能无失真地恢复原来的模拟信号; 但只要满足取样定理,可用近似恢复出原模拟信号。
17
2.1图像信号的数字化
实际取样脉冲效应的分析
信息科学与工程学院
数字图像处理
主讲教师:任笑真
:
:
1
第2章 数字图像基础
2.1 图像信号的数字化 2.2 数字图像的表示
2
2.1 图像信号的数字化
图像的获取与感知
各类图像都是由“照射”源和形成图像的“场景”元素对 光能的反射或吸收相结合而产生的。