计量经济学的三种检验144页PPT
合集下载
计量经济学课件PPT课件
非线性模型转换方法
多项式回归
通过引入自变量的高次项,将非线性关系转化为线性 关系进行处理。
变量变换
对自变量或因变量进行某种函数变换,以改善模型的 拟合效果。
非参数回归
不假定具体的函数形式,通过数据驱动的方式拟合非 线性关系。
实例分析:金融时间序列预测
数据准备
收集金融时间序列数据,如股票 价格、交易量等,并进行预处理。
模型选择依据
Hausman检验,LM检验等。
实例分析:经济增长收敛性问题研究
研究背景
探讨不同国家或地区间经济增长差异及其收 敛性。
模型构建
选择合适的面板数据模型,设定经济增长收 敛假设。
实证分析
收集相关数据,运用计量经济学软件进行回 归分析,检验收敛性假设是否成立。
结论与政策建议
根据实证结果得出结论,提出促进经济增长 收敛的政策建议。
机器学习算法与计量经济学模型结合
将机器学习算法与传统计量经济学模型相结合,形成更具解释性和预测能力的混合模型。
大数据背景下计量经济学挑战与机遇
01
大数据背景概述
数据量巨大、类型多样、处理速度快等 特点。
02
计量经济学面临的挑 战
数据质量、计算效率、模型可解释性等 问题。
03
计量经济学面临的机 遇
利用大数据技术挖掘更多信息,提高模 型预测精度和政策评估效果;同时推动 计量经济学理论和方法的发展创新。
Geary's C指数
与Moran's I指数类似,也是用于检验全局空间自相关。
LISA集聚图 用于检验局部空间自相关,可以直观展示空间集聚或异常 值区域。
空间滞后和空间误差模型选择
空间滞后模型(SLM)
计量经济学中的统计检验
PPT文档演模板
计量经济学中的统计检验
修正的决定系数
PPT文档演模板
计量经济学中的统计检验
需要说明的问题
v 在实际应用中,我们往往希望所建立模型的决定系 数或修正的决定系数越大越好。但应注意,决定系 数只是对模型拟合优度的度量,决定系数或修正的 决定系数越大,只能说明列入模型的解释变量对被 解释变量整体的影响程度很大,并不能说明模型中 各个解释变量对被解释变量的影响程度显著。因此 在选择模型时,不能单纯地凭决定系数的高低来断 定模型的优劣,有时从模型的经济意义和整体可靠 程度的角度出发,可以适当降低对决定系数的要求。
PPT文档演模板
计量经济学中的统计检验
回归模型的统计检验
v 统计检验指的是根据统计学的理论,确定回 归参数估计值的统计可靠性。
v 统计检验主要包括:回归方程估计标准误差 的评价、拟合优度检验、回归模型的总体显 著性检验和回归系数的显著性检验等。
v 这里主要讨论拟合优度检验、回归模型的总 体显著性检验、回归系数的显著性检验等。
PPT文档演模板
计量经济学中的统计检验
平方和的分解
PPT文档演模板
计量经济学中的统计检验
平方和分解的意义
v TSS=RSS+ESS v 被解释变量Y总的变动(差异)=解释变量X
引起的变动(差异)+除X以外的因素引起的 变动(差异) v 如果X引起的变动在Y的总变动中占很大比例, 那么X很好地解释了Y;否则,X不能很好地 解释Y。
v 事实上,研究模型的拟合优度时,常常并不简单地仅依靠多 重决定系数,更常考虑的是修正的决定系数。
PPT文档演模板
计量经济学中的统计检验
修正的决定系数
v 修正的决定系数对决定系数进行调整的思路 是:将残差平方和与总离差平方和分别除以各 自的自由度,以剔除变量个数对拟合优度的 影响。
计量经济学全套课件(完整)
2024/1/27
7
计量经济学研究目的与意义
2024/1/27
01
研究意义
02 推动经济学研究的定量化、精确化和科学 化。
03
为政府、企业和个人提供经济分析和决策 支持。
04
促进经济学的理论创新和实践应用。
8
2023
PART 02
经典线性回归模型
REPORTING
2024/1/27
9
一元线性回归模型
REPORTING 3
计量经济学定义与特点
01
计量经济学定义:计量经济学是运用数学、统计学和经济 学等方法,对经济现象进行定量分析和预测的一门学科。
02
计量经济学特点
03
以经济理论为基础,运用数学和统计学方法进行实证分析 。
2024/1/27
04
强调数据的收集、整理和分析,注重数据的可靠性和有效 性。
计量经济学模型估计
详细阐述如何在EViews软件中估计和检验各种计量经济学模型,如线 性回归模型、时间序列模型等。
26
Stata软件操作指南
Stata软件安装与启动
提供Stata软件的安装教程和启动指 南。
数据管理
介绍如何在Stata中进行数据的导入 、导出、合并和整理等操作。
2024/1/27
图形与可视化
等,以及针对模型问题的修正方法,如加权最小二乘法、广义最小二乘
法等。
12
2023
PART 03
广义线性模型与非线性模 型
REPORTING
2024/1/27
13
广义线性模型概述
2024/1/27
01
广义线性模型(GLM)是一种灵活的统计模型,用 于描述因变量与一组自变量之间的关系。
2024版计量经济学(很好用的完整)ppt课件
贝叶斯计量经济学的定义
基于贝叶斯定理和概率分布理论进行计量分析的经济学分支。
贝叶斯先验分布的设定
根据历史数据、专家经验等因素设定参数的先验分布,作为后续推 断的基础。
贝叶斯计量模型的估计方法
包括马尔科夫链蒙特卡罗方法、变分贝叶斯方法等,用于估计模型 参数和进行统计推断。
机器学习在计量经济学中应用
机器学习算法在计量经济学中的应用场景
广义线性模型介绍
1
定义
广义线性模型是一类用于回归分析的统计 模型,它扩展了线性模型的框架,允许响 应变量遵循非正态分布,并且可以通过一 个链接函数与解释变量建立线性关系。
2
组成
广义线性模型由三部分组成——随机成分、 系统成分和链接函数。随机成分指定响应 变量的分布类型和参数,系统成分描述解 释变量与响应变量之间的线性关系,链接 函数则将随机成分和系统成分连接起来。
06
计量经济学软件应用
EViews软件介绍及操作指南
01
EViews软件概述
EViews是一款功能强大的计量 经济学软件,广泛应用于数据 分析、模型估计和预测等领域。
02
数据导入与预处理
介绍如何在EViews中导入数据、 进行数据清洗和预处理等操作。
03
模型估计与检验
详细讲解EViews中线性回归模 型、时间序列模型等模型的估 计方法,以及模型的检验和诊 断。
THANKS
包括变量选择、模型诊断、预测等。
监督学习在计量经济学中的应用
通过训练数据集学习模型,然后利用测试数据集评估模型性能。
非监督学习在计量经济学中的应用
通过聚类、降维等技术发现数据中的潜在结构和模式。
深度学习在计量经济学中的应用
计量经济学 第三章 模型检验PPT课件
主要包括拟合优度检验、模型的显著性检验、变量 的显著性检验及参数的区间估计。
精品ppt
6
一、拟合优度检验
拟合优度检验:对样本回归直线与样本观测值之 间拟合程度的检验。 度量拟合优度的指标:判定系数(可决系数) R2
问题:采用普通最小二乘估计方法,已经保证 了模型最好地拟合了样本观测值,为什么还要 检验拟合程度?
精品ppt
24
精品ppt
25
精品ppt
26
精品ppt
27
例子:Eviews中的计算
精品ppt
28
(4)参数的的置信区间检验
精品ppt
29
精品ppt
30
精品ppt
31
精品ppt
32
精品ppt
33
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
精品ppt
2
经济检验的种类:
A、系数的符号 B、系数的大小 C、相互关系
还有些属于隐含的经济理论要求,这些比较难 以直接从回归的系数中得到检验,学习计量经 济学必须对经济理论有很好的把握。比如,消 费函数中,MPC<APC的要求等。
精品ppt
3
应该指出的是,不是所有的应用计量经济学论 文都必须要先建立一个理论模型的,有些现实 问题可能不能直接用一些经典理论来说明,也 有可能这种理论根本不存在,这时候,就可以 完全通过计量分析建立模型,说明现实问题了。
精品ppt
7
这是因为虽然OLS保证了残差的平方和最小, 但无论对于什么的数据都可以使用OLS求得回 归方程,可这些回归方程也许没有意义,比如 下面的三个拟合图形:
精品ppt
8
精品ppt
精品ppt
6
一、拟合优度检验
拟合优度检验:对样本回归直线与样本观测值之 间拟合程度的检验。 度量拟合优度的指标:判定系数(可决系数) R2
问题:采用普通最小二乘估计方法,已经保证 了模型最好地拟合了样本观测值,为什么还要 检验拟合程度?
精品ppt
24
精品ppt
25
精品ppt
26
精品ppt
27
例子:Eviews中的计算
精品ppt
28
(4)参数的的置信区间检验
精品ppt
29
精品ppt
30
精品ppt
31
精品ppt
32
精品ppt
33
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
精品ppt
2
经济检验的种类:
A、系数的符号 B、系数的大小 C、相互关系
还有些属于隐含的经济理论要求,这些比较难 以直接从回归的系数中得到检验,学习计量经 济学必须对经济理论有很好的把握。比如,消 费函数中,MPC<APC的要求等。
精品ppt
3
应该指出的是,不是所有的应用计量经济学论 文都必须要先建立一个理论模型的,有些现实 问题可能不能直接用一些经典理论来说明,也 有可能这种理论根本不存在,这时候,就可以 完全通过计量分析建立模型,说明现实问题了。
精品ppt
7
这是因为虽然OLS保证了残差的平方和最小, 但无论对于什么的数据都可以使用OLS求得回 归方程,可这些回归方程也许没有意义,比如 下面的三个拟合图形:
精品ppt
8
精品ppt
计量经济学精品PPT资料
同样地,容易得出
E b 0 E B 0 w i u i B 0 w i E u i B 0
(3) 有效性(最小方差性),即在所有线性无偏
估计量中,最小二乘法估计量b0, b1具有最小方 (差1)。先求b0与b1的方差
Varb1Var kiYi ki2Var B0B1Xi ui
ui ~ N(0, u2)
3.2—3.3 最小二乘估计量的性质
1. 系数B1, B2的OLS估计
当模型参数估计出后,需考虑参数估计值的 精度,即是否能代表总体参数的真值,或者说需 考察参数估计量的统计性质。
一个用于考察总体的估计量,可从如下几个 方面考察其优劣性:
(1)线性性,即它是否是另一随机变量的线性 函数;
P li m b P li m B k u 一元线性模型中,Bi (i=0,1)的置信区间
严格地说,这只是被解释变量的预测值的1 估计值,而不是预测值。1
ii
在u是正态分布的假设下,Y是正态分布,则b0 、 b1也服从正态分布,因此,
普通最小二乘估计量(ordinary least Squares Estimators)称为最佳线性无偏估计量(best linear unbiased estimator, BLUE)
Cov(X, u)=0
假设3. 给定Xi,扰动项的期望或均值为零,即:
E(u|Xi)=0;
PRF : E(Y|Xi)=B1+B2Xi
扰动项ui的条件分布
假设4. ui的方差为常数,即同方差假定: Var(ui)=2
PRF : Yi=B1+B2Xi
PRF : Yi=B1+B2Xi
同方差
异方差
假设5. 无自相关假定,即: Cov(ui, uj)=0, ij
计量经济学ppt课件(完整版)
注意事项
在进行模型选择与比较时,需要注意避免过拟合和欠拟合问题,以及确保模型的稳定性和可靠性。此外 ,还需要关注模型的异方差性、共线性等问题,以确保模型的准确性和有效性。
04
时间序列分析及应用
时间序列基本概念及性质
01
时间序列定义
按时间顺序排列的一组数据,反映 现象随时间变化的发展过程。
时间序列类型
03
广义线性模型与非线性模型
广义线性模型介绍
定义
广义线性模型是一类用于描述响 应变量与一组预测变量之间关系 的统计模型,其特点在于响应变 量的期望值通过一个连接函数与 预测变量的线性组合相关联。
连接函数
连接函数是广义线性模型中一个 关键组成部分,它将响应变量的 期望值与预测变量的线性组合连 接起来。常见的连接函数包括恒 等连接、对数连接、逆连接等。
模型的统计性质
深入探讨多元线性回归模型的统计性质,包括无偏性、有效性和一致性等,并解释这些 性质在多元回归分析中的重要性。
多重共线性问题
详细讲解多重共线性的概念、产生原因、后果以及诊断和处理方法,如逐步回归、岭回 归等。
回归模型检验与诊断
模型的拟合优度 介绍衡量模型拟合优度的指标, 如可决系数、调整可决系数等, 并解释这些指标在实际应用中的 意义。
微观计量经济学在因果推断和政策评 估方面发挥着重要作用。目前,研究 者们关注于如何运用实验设计、工具 变量、双重差分等方法识别和处理内 生性问题,以更准确地估计因果关系 和评估政策效果。
高维数据处理与机器 学习
随着大数据时代的到来,高维数据处 理成为微观计量经济学面临的新挑战 。目前,研究者们正在探索如何将机 器学习等先进的数据分析技术应用于 微观计量经济学中,以处理高维数据 和挖掘更多的有用信息。
在进行模型选择与比较时,需要注意避免过拟合和欠拟合问题,以及确保模型的稳定性和可靠性。此外 ,还需要关注模型的异方差性、共线性等问题,以确保模型的准确性和有效性。
04
时间序列分析及应用
时间序列基本概念及性质
01
时间序列定义
按时间顺序排列的一组数据,反映 现象随时间变化的发展过程。
时间序列类型
03
广义线性模型与非线性模型
广义线性模型介绍
定义
广义线性模型是一类用于描述响 应变量与一组预测变量之间关系 的统计模型,其特点在于响应变 量的期望值通过一个连接函数与 预测变量的线性组合相关联。
连接函数
连接函数是广义线性模型中一个 关键组成部分,它将响应变量的 期望值与预测变量的线性组合连 接起来。常见的连接函数包括恒 等连接、对数连接、逆连接等。
模型的统计性质
深入探讨多元线性回归模型的统计性质,包括无偏性、有效性和一致性等,并解释这些 性质在多元回归分析中的重要性。
多重共线性问题
详细讲解多重共线性的概念、产生原因、后果以及诊断和处理方法,如逐步回归、岭回 归等。
回归模型检验与诊断
模型的拟合优度 介绍衡量模型拟合优度的指标, 如可决系数、调整可决系数等, 并解释这些指标在实际应用中的 意义。
微观计量经济学在因果推断和政策评 估方面发挥着重要作用。目前,研究 者们关注于如何运用实验设计、工具 变量、双重差分等方法识别和处理内 生性问题,以更准确地估计因果关系 和评估政策效果。
高维数据处理与机器 学习
随着大数据时代的到来,高维数据处 理成为微观计量经济学面临的新挑战 。目前,研究者们正在探索如何将机 器学习等先进的数据分析技术应用于 微观计量经济学中,以处理高维数据 和挖掘更多的有用信息。
《计量经济学》ppt课件(2024)
02
最小二乘估计量的 性质
包括线性、无偏性、有效性等, 这些性质保证了估计量的优良特 性。
03
最小二乘法的计算
通过求解正规方程组或使用专门 的软件,可以得到参数的估计值 。
2024/1/29
9
经典线性回归模型假设条件及检验
1 2
经典线性回归模型的假设条件
包括线性关系、误差项独立同分布、无多重共线 性等,这些假设是模型有效的基础。
发展历程
从20世纪初的萌芽阶段,到20世 纪中叶的快速发展,再到21世纪 的广泛应用和不断创新。
4
计量经济学研Βιβλιοθήκη 对象与任务研究对象主要研究经济现象的数量关系,包括 经济变量之间的关系、经济系统的运 行规律等。
任务
揭示经济现象背后的数量规律,为经 济政策制定和评估提供科学依据,推 动经济学的理论创新和实践应用。
应用
非参数估计方法广泛应用于各种实际问题中,如金融市场的波动率估计、生物医学中的生存分析、环境科学中的 气候变化预测等。其优点在于灵活性高,能够适应各种复杂的数据分布,但同时也存在计算量大、对样本量要求 较高等问题。
2024/1/29
20
半参数估计方法原理及应用
原理
半参数估计方法结合了参数和非参数估 计方法的优点,既对总体分布做出一定 的假设,又利用样本数据进行推断。其 核心思想是通过引入一些辅助信息或约 束条件,降低模型的复杂度,提高估计 的精度和稳定性。
25
面板数据模型参数估计与检验
2024/1/29
参数估计方法
最小二乘法(OLS)、广义最小二乘法(GLS) 、极大似然估计(MLE)等。
参数检验
t检验、F检验、LM检验等,用于检验参数的显著 性。
计量经济学课件全完整版
ARIMA模型
自回归移动平均模型,适用于平 稳和非平稳时间序列的预测,通 过识别、估计和诊断模型参数来 实现预测。
05
面板数据分析方法及应用
面板数据基本概念及特点
面板数据定义
面板数据,也叫时间序列截面数据或混合数 据,是指在时间序列上取多个截面,在这些 截面上同时选取样本观测值所构成的样本数 据。
介绍空间滞后模型(SLM)、空间误差模型(SEM)等空间计量经济模型的建立与估 计方法,包括极大似然估计、广义矩估计等。
贝叶斯计量经济学原理及应用
01
02
贝叶斯统计推断基础
阐述贝叶斯统计推断的基本原理和方法, 包括先验分布、后验分布、贝叶斯因子 等概念。
贝叶斯计量经济模型 的建立与估计
介绍贝叶斯线性回归模型、贝叶斯时间 序列模型等贝叶斯计量经济模型的建立 与估计方法,包括马尔科夫链蒙特卡罗 (MCMC)模拟等。
模型假设
广义线性模型假设响应变量与解释变量之间存在一 种可通过链接函数转化的线性关系,而非线性模型 则不受此限制,可以拟合任意复杂的非线性关系。
模型诊断与检验
对于广义线性模型,常用的诊断方法包括残差分析、 拟合优度检验等;对于非线性模型,由于模型的复 杂性,诊断方法可能更加多样化,包括交叉验证、 可视化分析等。
与其他社会科学的关系 计量经济学也可以应用于其他社会科学领域,如 社会学、政治学等,对社会科学现象进行定量分 析。
计量经济学发展历史及现状
发展历史
计量经济学起源于20世纪初,随着计算机技术的发展和普及,计量经济学得到 了广泛的应用和发展。
现状
目前,计量经济学已经成为经济学领域的重要分支,广泛应用于宏观经济、微 观经济、金融、国际贸易等领域。同时,随着大数据和人工智能技术的发展, 计量经济学面临着新的机遇和挑战。
自回归移动平均模型,适用于平 稳和非平稳时间序列的预测,通 过识别、估计和诊断模型参数来 实现预测。
05
面板数据分析方法及应用
面板数据基本概念及特点
面板数据定义
面板数据,也叫时间序列截面数据或混合数 据,是指在时间序列上取多个截面,在这些 截面上同时选取样本观测值所构成的样本数 据。
介绍空间滞后模型(SLM)、空间误差模型(SEM)等空间计量经济模型的建立与估 计方法,包括极大似然估计、广义矩估计等。
贝叶斯计量经济学原理及应用
01
02
贝叶斯统计推断基础
阐述贝叶斯统计推断的基本原理和方法, 包括先验分布、后验分布、贝叶斯因子 等概念。
贝叶斯计量经济模型 的建立与估计
介绍贝叶斯线性回归模型、贝叶斯时间 序列模型等贝叶斯计量经济模型的建立 与估计方法,包括马尔科夫链蒙特卡罗 (MCMC)模拟等。
模型假设
广义线性模型假设响应变量与解释变量之间存在一 种可通过链接函数转化的线性关系,而非线性模型 则不受此限制,可以拟合任意复杂的非线性关系。
模型诊断与检验
对于广义线性模型,常用的诊断方法包括残差分析、 拟合优度检验等;对于非线性模型,由于模型的复 杂性,诊断方法可能更加多样化,包括交叉验证、 可视化分析等。
与其他社会科学的关系 计量经济学也可以应用于其他社会科学领域,如 社会学、政治学等,对社会科学现象进行定量分 析。
计量经济学发展历史及现状
发展历史
计量经济学起源于20世纪初,随着计算机技术的发展和普及,计量经济学得到 了广泛的应用和发展。
现状
目前,计量经济学已经成为经济学领域的重要分支,广泛应用于宏观经济、微 观经济、金融、国际贸易等领域。同时,随着大数据和人工智能技术的发展, 计量经济学面临着新的机遇和挑战。
计量经济学学习教材PPT课件
这里Y为因变量,X为自变量/解释变量。假定两者之间存在先行关 系。
(在不同情况下,数学模型的形式不一样,也可能是多个方程连立, 有多个解释变量)
5
③建立计量经济学模型
由于经济变量之间的关系不是确定的(以函数形式准确表达),必 须修改数理模型,建立计量模型:
Y a bX u
u为误差项,代表了影响变量间非确定关系的其他因素的影响。 这是一个线性回归模型。 Y 斜率为b Y 斜率为b
美国
中国 香港 日本
2.7
14.2 6.3 1.0
2.3
13.5 6.1 0.3
3.5
12.6 5.4 0.6
2.0
10.5 3.9 1.5
2.8
9.6 4.6 3.9
3.9
8.8 5.3 1.4
3.9
7.8 -5.1
11 -2.8
第二章 一元线性回归模型
第一节 经典正态线性回归模型(CNLRM)
- 户数
总支出
- 6
462
- 5
445
115 7
707
- 6
计量经济学:数值估计,检验 3、计量经济学与数理经济学
数理经济学:以数学形式表述经济理论,不涉及理论的可度量性和经 验方面的可论证性。
计量经济学:利用数理经济学的数学方程式,并把之改造成适合于经 验检验的形式。
2
4、计量经济学与经济统计学 经济统计:经济数据的收集、加工,不利用数据来检验经济理论。 计量经济学:以经济统计数据为原始资料进行分析。
5、计量经济学与数理统计
数理统计:是计量经济学的基本工具,但由于经济数据的特殊性, 力量经济学需要特殊的处理方法。
3
二、计量经济学的建模过程
计量经济学的三种检验
8
完全多重共线性
• 完全共线性(Perfect collinearity)的例子 :
– X1 X2 X3 – 10 50 52 – 15 75 75 – 18 90 97 – 24 120 129 – X1 和 X2 是完全线性相关的:
• X2 = 5X1
9
完全多重共线性 • 若X2 = 5X1 • 将其代入Y’=b0 ’ +b1 ’ X1+b2 ’ X2 +b3 ’ X3 Y’=b0 ’ +b1 ’ X1 +b2 ’ * 5X1 +b3 ’ X3 = b0 ’ +(b1 ’ + 5b2 ’ ) X1 +b3 ’ X3 = b0 ’ +A X1 +b3 ’ X3 • 三变量模型 • 无法从A值中得到b1 ’ 、b2’的值
35
总结
• 检验多重共线性有许多种不同的方法, 但却没有一种检验方法能够使我们彻底 解决多重共线性问题。 • 多重共线性是一个程度的问题,它是与 样本相关的一种现象。 • 有时我们必须综合运用以上各种手段来 诊断多重共线性的严重程度。 • 总之,没有一个简单的办法判断多重共 线性问题。
36
补救措施
42
消费支出对于收入和财富的回归方程
• • • •
40个观察值: Y=2.0907+0.7299 X1 +0.0605 X2 t= (0.8713) (6.0014) (2.0641) R2 =0.9672
43
重新考虑模型
• 模型的不恰当设定可能是回归模型存在共 线性的原因。
– 省略一些重要的变量 – 没有正确选择模型的函数形式
12
多重共线性的性质
• 可以获得原始系数的一个线性组合的估 计值。 • 当解释变量之间存在完全线性相关或完 全多重共线性时,不可能获得所有参数 的唯一估计值。 • 既然我们不能获得它们的唯一估计值, 也就不能根据某一样本做任何统计推论 (也即假设检验)
完全多重共线性
• 完全共线性(Perfect collinearity)的例子 :
– X1 X2 X3 – 10 50 52 – 15 75 75 – 18 90 97 – 24 120 129 – X1 和 X2 是完全线性相关的:
• X2 = 5X1
9
完全多重共线性 • 若X2 = 5X1 • 将其代入Y’=b0 ’ +b1 ’ X1+b2 ’ X2 +b3 ’ X3 Y’=b0 ’ +b1 ’ X1 +b2 ’ * 5X1 +b3 ’ X3 = b0 ’ +(b1 ’ + 5b2 ’ ) X1 +b3 ’ X3 = b0 ’ +A X1 +b3 ’ X3 • 三变量模型 • 无法从A值中得到b1 ’ 、b2’的值
35
总结
• 检验多重共线性有许多种不同的方法, 但却没有一种检验方法能够使我们彻底 解决多重共线性问题。 • 多重共线性是一个程度的问题,它是与 样本相关的一种现象。 • 有时我们必须综合运用以上各种手段来 诊断多重共线性的严重程度。 • 总之,没有一个简单的办法判断多重共 线性问题。
36
补救措施
42
消费支出对于收入和财富的回归方程
• • • •
40个观察值: Y=2.0907+0.7299 X1 +0.0605 X2 t= (0.8713) (6.0014) (2.0641) R2 =0.9672
43
重新考虑模型
• 模型的不恰当设定可能是回归模型存在共 线性的原因。
– 省略一些重要的变量 – 没有正确选择模型的函数形式
12
多重共线性的性质
• 可以获得原始系数的一个线性组合的估 计值。 • 当解释变量之间存在完全线性相关或完 全多重共线性时,不可能获得所有参数 的唯一估计值。 • 既然我们不能获得它们的唯一估计值, 也就不能根据某一样本做任何统计推论 (也即假设检验)
相关主题