期权定价

合集下载

期权的定价

期权的定价

期权的定价期权定价是金融学中重要的一部分,它可以帮助投资者确定期权的合理价值,并基于此做出相应的投资决策。

期权定价模型主要有两种,即BSM模型(Black-Scholes-Merton 模型)和二叉树模型。

BSM模型是最早也是最经典的期权定价模型之一。

该模型是由Fisher Black、Myron Scholes 和 Robert C. Merton于1973年提出的。

该模型的核心思想是建立一个无风险投资组合,其和期权组合有相同的收益率。

通过对组合进行数学推导,可以得到期权价格的解析公式。

BSM模型的前提假设包括:市场不存在摩擦成本、资产价格符合几何布朗运动、市场无风险利率恒定、无红利支付、市场不存在套利机会等。

有了这些假设,可以通过标的资产价格、行权价格、剩余期限、无风险利率、标的资产波动率和期权类型等因素来计算期权的市场价值。

与BSM模型不同,二叉树模型采用离散化的方法进行期权定价。

该模型将剩余期限分为若干个时间步长,并在每个时间步长内考虑标的资产价格的上涨和下跌情况。

通过逐步计算,可以得到期权价格的近似值。

二叉树模型的优点在于它可以应用于各种类型的期权,并且容易理解和计算。

无论是BSM模型还是二叉树模型,期权定价都是基于一定的假设和参数。

其中,最关键的参数是标的资产的波动率。

波动率代表了市场对标的资产未来价格变动的预期。

根据波动率的不同,期权的价格也会有所变化。

其他参数如标的资产价格、行权价格、剩余期限和无风险利率等也会对期权定价产生影响。

需要注意的是,期权定价模型只是对期权价格的估计,并不保证期权的实际市场价格与估计值完全相同。

实际市场存在许多因素都会导致期权价格的变动,例如市场情绪、供需关系、经济指标等。

因此,在进行期权交易时,投资者需要结合市场情况和自身风险偏好做出相应的决策。

总之,期权定价是金融学中的重要内容,通过定价模型可以帮助投资者确定期权的合理价格。

BSM模型和二叉树模型是常用的定价方法,但投资者需要注意,这些模型只是对期权价格的估计,实际市场价格可能有所变动。

金融工程中的期权定价模型

金融工程中的期权定价模型

金融工程中的期权定价模型一、期权定义期权是金融工具中的一种,是指在未来某个时间,按照约定的价格、数量和期限,有权买入或者卖出某种标的资产的一种金融合约。

通过买入期权,持有人可以在未来某个时间以约定的价格买进标的资产;通过卖出期权,交易人可以获得期权费用,承担未来某个时间按照约定价格进行买卖的义务。

期权的本质是对未来的权利,是一种寄予了未来的期望和信心。

二、期权定价方法期权定价是指通过计算期权价格,来实现期权交易的方法或模型。

期权定价的理论基础主要包括两个主流模型:布莱克-斯科尔斯模型和考克斯-鲁宾斯坦模型。

下面我们分别来介绍一下这两种期权定价模型。

1. 布莱克-斯科尔斯模型布莱克-斯科尔斯模型,是由弗兰克-布莱克和梅伦-斯科尔斯在1973年提出的一种期权定价模型。

这个模型的核心思想是将期权看作是一种债券和股票组成的投资组合,通过对这个投资组合的定价,来推导出期权的价格。

布莱克-斯科尔斯模型的核心公式如下:C = SN(d1) - Xe^(-rt)N(d2)P = Xe^(-rt)N(-d2) - SN(-d1)其中,C表示看涨期权的价格,P表示看跌期权的价格;S表示标的资产的价格,X表示行权价格;N()表示标准正态分布函数的值,其中d1和d2分别表示如下:d1 = [ln(S/X) + (r + σ^2/2)t] / σ√td2 = d1 - σ√t这个模型中,需要考虑的参数有标的资产的价格S、行权价格X、波动率σ、存续期t、无风险利率r。

其中,波动率是最重要的参数,它的大小决定了标的资产的风险水平,因此,布莱克-斯科尔斯模型中的波动率是需要通过历史数据或者其他方法进行计算和估算的。

2. 考克斯-鲁宾斯坦模型考克斯-鲁宾斯坦模型,是由约翰-考克斯和斯蒂芬-鲁宾斯坦在1979年提出的一种期权定价模型。

这个模型的最大特点是引入了离散时间的概念,将连续时间的布莱克-斯科尔斯模型离散化,以适应实际的市场需求。

期权定价的三种方法

期权定价的三种方法

期权定价的三种方法期权是一种权利,持有者有权买卖证券或商品的特定数量。

期权的定价对投资者来说至关重要,因为它决定了期权的价值。

为了定价期权,投资者需要先了解市场和期权的各种因素,然后选择一种有效的定价方法。

本文将介绍期权定价的三种方法,分别是Black-Scholes 模型、蒙特卡罗模拟法和实际条件定价法。

Black-Scholes模型是一种简单而有效的期权定价模型,由美国经济学家贝克-施罗斯和美国数学家史蒂文-黑格森于1973年提出。

Black-Scholes模型假设期权价格受到无风险利率、资产价格、波动率和时间等因素的影响,通过分析复杂的概率函数实现定价。

Black-Scholes模型以期权价值收益率为基准,以确定期权价格是否有利于投资者。

另一种期权定价方法是蒙特卡罗模拟法,它能够模拟出异常动态市场中期权价格的情况。

蒙特卡罗模拟法可以预测风险事件如何影响期权价格,并计算不同投资决策下期权价格的变化。

它根据投资者的投资组合来确定抗风险性,以提供可靠的期权定价评估结果。

最后一种期权定价方法是实际条件定价法,它是基于真实的市场数据定价的。

实际条件定价法主要考虑的因素包括期权的行使价格、期权期限、可买入或卖出的股票价格等。

它可以考虑期权的复杂性,从而帮助投资者做出更精确的定价决策。

总之,期权定价方法有Black-Scholes模型、蒙特卡罗模拟法和实际条件定价法。

期权投资者可以根据他们对期权的理解以及对市场变化的看法,来灵活使用这些方法,以进行有效的期权定价。

期权定价是一个有挑战性的过程,但是把握住期权定价的技巧可以帮助投资者实现更好的投资回报。

许多期权定价模型都是针对特定市场环境的,所以投资者在使用期权定价方法时,需要充分考虑当前市场环境中的多种因素,以确保最优的定价结果。

此外,投资者也需要定期更新期权定价模型,以便于更好地捕捉新的变化并且按照新的变化作出有效的期权定价决定。

第十二章 期权定价理论 《金融工程学》PPT课件

第十二章  期权定价理论  《金融工程学》PPT课件

➢ 由于方程中不存在风险偏好,那么风险将不会对其解产生影响,因此 在对期权进行定价时,可以使用任何一种风险偏好,甚至可以提出一 个非常简单的假设:所有投资者都是风险中性的
12.2布莱克—斯科尔斯(B-S)模型
(6)Black-Scholes期权定价公式 Black-Scholes微分方程,对于不同的标的变量 S 的不同衍生证券,会 有许多解,解这个方程时得到的特定衍生证券的定价公式 f 取决于使用 的边界条件,对于股票的欧式看涨期权,关键的边界条件为: f=Max(ST-K,0) (12—28) 由风险中性可知,欧式看涨期权的价格C是期望值的无风险利率贴现的
第12章 期权定价理论
12.1 期权价格概述
➢ 12.1.1期权定价概述
➢ 在所有的金融工程工具中,期权是一种非常独特的工具。因为期 权给予买方一种权利,使买方既可以避免不利风险又可以保留有 利风险,所以期权是防范金融风险的最理想工具。但要获得期权 这种有利无弊的工具,就必须支付一定的费用,即期权价格
一定的假设条件下得到的,这些条件包括:股票价格满足布朗运动;
股票的收益率服从正态分布;期权的有效期内不付红利。该公式的不
足之处是它允许有负的股票价格和期权价格,这显然和实际是不相符
合的,而且该公式没有考虑货币的时间价值。由于其理论的不完备,
计算结果的不准确,再加上当时市场的不发达,因此该定价公式在当
N(d)=
1
d
e
x2
2
dx
2
(12—3)
这些公式都应有以下假设: (1)没有交易费。 (2)可以按无风险利率借入或贷出资金
12.2布莱克—斯科尔斯(B-S)模型
➢ 对期权的定价理论进行开创性研究的学者是法国的Bachelier。1900

期权定价期权定价公式

期权定价期权定价公式

期权定价—期权定价公式什么是期权定价?期权定价是指确定期权在市场上的合理价格的过程。

期权是一种金融工具,它授予买方在未来某一特定时间点购买或出售标的资产的权利,而不是义务。

期权的价格取决于多种因素,包括标的资产价格、行使价格、到期时间、无风险利率和波动率等。

期权定价的目标是确定一个公平的市场价格,使得买卖双方在交易中均获得合理回报。

对于买方来说,期权的价格应该对应于未来可能获得的收益;对于卖方来说,期权的价格应该对应于承担的风险以及可能获得的收益。

期权定价公式的重要性期权定价公式是用于计算期权合理价格的数学模型。

它基于一些假设和前提条件,通过对相关变量进行运算,得出期权的价格。

期权定价公式对于市场参与者来说具有重要意义,它为投资者提供了一个参考,可以帮助他们做出更明智的投资决策。

期权定价公式的提出可以追溯到20世纪70年代初,当时经济学家Fischer Black 和 Myron Scholes 提出了著名的Black-Scholes模型。

该模型基于一些假设,包括期权在到期前不支付股息、标的资产价格在特定时间内的变动是连续且满足几何布朗运动以及市场不存在无风险套利机会等。

Black-Scholes模型是第一个用于计算期权价格的理论模型,它提供了一个简单而有效的方法来评估期权的价格。

在此之后,许多其他的期权定价模型相继被提出,如Binomial模型、Trinomial模型、Monte Carlo模拟和Heston模型等。

这些模型都是基于不同的假设和计算方法,用于满足不同的情景和需求。

期权定价公式的基本要素期权定价公式通常包括以下几个基本要素:1.标的资产价格(S):标的资产是期权所关联的基础资产,它可以是股票、商品、外汇等。

标的资产价格是期权定价的一个重要变量,它代表了期权的内在价值。

2.行使价格(X):行使价格是期权合约约定的价格,买方可以在到期时基于该价格购买或者出售标的资产。

行使价格与标的资产价格之间的差异会影响期权的价值。

期权的定价及策略

期权的定价及策略

期权的定价及策略期权是一种金融工具,给予持有者在未来一段时间内以事先协定的价格买入或卖出标的资产的权利,而非义务。

期权的定价和策略是投资者在使用期权时需要考虑的重要因素。

下面将详细探讨期权的定价和策略。

一、期权的定价1.标的资产的价格:标的资产的价格是期权定价的主要因素之一、购买期权的投资者希望未来标的资产价格上涨,而卖出期权的投资者则希望标的资产价格下跌。

2.行权价格:期权价格中的行权价格也是影响期权定价的重要因素之一、购买看涨期权的投资者希望标的资产价格上涨超过行权价格,而购买看跌期权的投资者希望标的资产价格下跌低于行权价格。

3.波动率:波动率是期权定价中的重要因素之一、较高的波动率意味着标的资产价格可能会有更大的波动,从而增加了购买期权的投资者获利的机会,因此较高的波动率会导致期权价格上涨。

4.无风险利率:无风险利率也是影响期权定价的重要因素之一、越高的无风险利率意味着购买期权的成本更高,因此会导致期权价格的上涨。

5.行权时间:期权价格还受到行权时间的影响。

行权期限越长,购买期权的成本也越高,因此期权价格会随着行权时间的延长而上涨。

二、期权的策略根据期权在买入或卖出时的不同操作方式,期权的策略可以分为多种类型,常见的期权策略包括:1.买入看涨期权:当投资者预期标的资产价格将上涨时,可以购买看涨期权。

这种策略可以使投资者在未来以较低的价格买入标的资产,并在标的资产价格上涨时获得差价收益。

2.买入看跌期权:当投资者预期标的资产价格将下跌时,可以购买看跌期权。

这种策略可以使投资者在未来以较低的价格卖出标的资产,并在标的资产价格下跌时获得差价收益。

3.卖出看涨期权:当投资者预期标的资产价格将保持稳定或下跌时,可以卖出看涨期权。

这种策略可以使投资者通过卖出期权的权利金获得收益,同时如果标的资产价格保持不变或下跌,投资者还可以保留权利金作为收益。

4.卖出看跌期权:当投资者预期标的资产价格将保持稳定或上涨时,可以卖出看跌期权。

期权定价

期权定价

第三节期权定价期权定价:如果某一期权合约在未来某个日子到期,那么,什么是该期权合约在今天的公平(真实)价值?权利金的价值应该是多少?二项式定价模型、风险中性概率、布莱克-斯科尔斯定价模型(一)二项式定价模型(BOPM)1.单期两状态期权定价假定在期权到期时股票价格只有两种可能:股票价格或者涨到给定的较高水平,或者降到给定的较低的价格。

举例:考虑经过1期后到期的欧式看涨期权,期权的执行价格为50元。

假设今天的股票价格为50元。

假设标的股票不支付股利(除非明确说明)。

在1期后,股价有可能上升10元或者下降10元。

单期无风险利率为6%。

将这些信息汇总,由如下的二叉树来表示。

二叉树为具有两个分支的时间线,每个时点代表着那段时间内可能发生的事件:01股票债券看涨期权股票债券∆表示购买的股票数量,B表示对债券的初令始投资。

∆+=B60 1.0610∆+=40 1.060B求解关于∆和B的联立方程,方程的解为:∆= 0.5,B = -18.8679。

看涨期权的价格必定等于复制组合的当前市场价值。

复制组合的当前价值等于:50500.518.87 6.13B ∆+=⨯-= 元看涨期权的当前价格为6.13元。

既然已经清楚了期权定价的基本理念,将上述定价过程一般化股票期权确定股票的数量∆和债券的头寸B ,以便使得复制组合的支付在股价上涨或下跌时,与期权的支付相匹配:(1)u f u S r B C ∆++=(1)d f d S r B C ∆++= (7.3.11式) 求解∆和B ,得到二项式模型中的复制组合:u d u d C C S S -∆=-1d d f C S B r -∆=+ (7.3.12式) 期权在今天的价值C 就等于复制组合的成本: C S B =∆+ (7.3.13式) 上式相对简单,它不要求待估价的期权必须为看涨期权,也可应用它来为未来支付取决于股价的任何证券进行估值。

[例7-14] 假设某股票的现行市价为60元,经过1期后,股价将上涨20%或下跌10%。

期权定价公式

期权定价公式

期权定价公式期权定价公式是:期权价格=内在价值+时间价值。

期权定价模型,由布莱克与斯科尔斯在20世纪70年代提出。

该模型认为,只有股价的当前值与未来的预测有关;变量过去的历史与演变方式与未来的预测不相关。

模型表明,期权价格的决定非常复杂,合约期限、股票现价、无风险资产的利率水平以及交割价格等都会影响期权价格。

期权是购买方支付一定的期权费后所获得的在将来允许的时间买或卖一定数量的基础商品的选择权。

期权价格是期权合约中唯一随市场供求变化而改变的变量,其高低直接影响到买卖双方的盈亏状况,是期权交易的核心问题。

在国际衍生金融市场的形成发展过程中,期权的合理定价是困扰投资者的一大难题。

随着计算机、先进通讯技术的应用,复杂期权定价公式的运用成为可能。

简单期权定价模型。

我们把股价随机末态简化为两个等效的等概率量子态,要么50%的概率上涨到+1X的右边一个标准差处,要么50%的概率下跌到-1X的左边一个标准差处。

显然,对于认购期权,在-1X末态的行权收益是0;在+1X末态的行权收益是S*(1+σ)-K。

其中S是当前(初态)股价,K是到期日的行权价。

根据初态=末态期望值的原理,认购期权价格C=0.5*0+0.5*[S*(1+σ)-K]= 0.5*[S*(1+σ)-K]。

这对于平值和浅度虚值期权是适用的。

对于平值期权K=S,C=0.5*S*σ。

比如,当前股价S=3.3元,月波动率为σ=6%,那么行权价K=3.3元,剩余T=30天期限的平值认购期权价格就是,C=0.5*3.3*6%=0.0990元。

对于深度实值期权,当股价末态为-1X处,仍然会有行权收益。

所以,认购期权价格C=0.5*[S*(1-σ)-K]+0.5*[S*(1+σ)-K]=S-K。

比方说,对于深度实值期权实三K=3.0元,当股价从当前价S=3.3元下跌至末态(-1X处)ST=3.1元,仍然会有3.1-3.0=0.1元的行权收益。

所以,实三期权价格C=S-K=3.3-3.0=0.3元。

期权定价理论知识

期权定价理论知识

2023-11-04CATALOGUE目录•期权定价模型概述•经典期权定价模型•期权定价的随机过程基础•期权定价理论的扩展与应用•期权定价的风险与回报分析•期权定价理论的发展趋势与挑战01期权定价模型概述期权定义期权是一种合约,赋予其持有人在一定时期内以指定价格买卖标的资产的权利。

期权特性期权具有非线性收益特性,买方收益曲线为非线性,卖方收益曲线为线性。

期权定义与特性期权所涉及的资产,可以是股票、商品、外汇等。

标的资产期权的到期时间,一般为未来某一具体日期。

到期日期权的行权价格,即买卖标的资产的价格。

行权价期权的行权方式,包括美式和欧式两种。

行权方式期权定价模型的基本概念期权定价模型的种类与分类期权的持有者只能在到期日行权。

欧式期权美式期权看涨期权看跌期权期权的持有者可以在到期日及之前任何时间行权。

赋予持有者在未来某一时期以指定价格购买标的资产的权利。

赋予持有者在未来某一时期以指定价格出售标的资产的权利。

02经典期权定价模型Black-Scholes模型通过构造一个包含股票和债券的组合,推导出欧式期权价格所满足的微分方程。

利用已知的债券价格和股票价格,通过求解微分方程得到期权价格。

假设股票价格服从几何布朗运动,且无风险利率和波动率均为常数。

二叉树模型基于离散时间框架,模拟股票价格的变化过程。

假设股票价格只能向上或向下移动,且移动的幅度和概率均已知。

通过反向推导的方式,计算出期权的预期收益,并利用无风险利率折现得到期权的现值。

期权定价的数值方法有限差分法通过求解偏微分方程的数值近似解,得到期权价格。

网格法通过在期权收益函数中构造网格,计算网格点对应的期权价值,并利用无风险利率折现得到期权的现值。

蒙特卡洛模拟法通过模拟股票价格的随机过程,计算出期权的预期收益,并利用无风险利率折现得到期权的现值。

03期权定价的随机过程基础随机过程一组随机变量,每个变量对应一个时间点。

随机过程的分类根据性质不同,随机过程可分为平稳和非平稳、确定性和随机性等。

003.期权定价(一)

003.期权定价(一)

第二节 期权定价本节考点1.期权平价公式与无套利价格区间2.二叉树模型3.B-S-M 期权定价模型考点1:期权平价公式与无套利价格区间★★★【符号】c 欧式看涨期权价值K 期权的行权价格p 欧式看跌期权价值S 0S T 股票的当前价格T 时刻股票的价格C 美式看涨期权价值r 在T 时刻到期的无风险投资利率(连续复利)P 美式看跌期权价值T 期权的期限期权价格是否合理,如何为期权进行定价,成为期权投资的最核心问题。

依据期权价值依赖的因素,在无套利市场中,期权的价格有着合理的估值范围,以无分红标的资产的期权为例,期权的价格应满足以下条件。

(一)上限看涨期权给其持有者以行权价格买入标的资产的权利。

无论发生什么情况,期权的价格都不会超出标的资产价格,因此,标的资产价格是看涨期权价格的上限:c≤S 0,C≤S 0如果以上不等式不成立,那么套利者可以购买标的资产并同时卖出看涨期权来获取无风险盈利。

美式看跌期权持有者有权以行权价格K 卖出标的资产。

无论标的资产价格变得多么低,期权的价值都不会高于行权价格:P≤K欧式看跌期权在T 时刻的价值不会超出K ,因此其当前价格不会超过K的贴现值,即:如果以上不等式不成立,那么套利者可以通过卖出期权,并同时将所得收入以无风险利率进行投资,即可以获取无风险盈利。

(二)无孳息标的资产的欧式看涨期权下限无孳息标的资产的欧式看涨期权下限为:【推导过程】考虑A/B 两个投资组合:组合A :一份欧式看涨期权加上在时间T 提供收益K 的零息债券;组合B :一单位标的资产。

在组合A 中,T 时刻零息债券的价值为K 。

在时间T ,如果S T >K ,投资者卖出零息债券并获得资金K ,继而行使看涨期权,用资金K 获得标的资产,组合A 的价值为S T 。

如果S T因此,T 时刻组合A 的价值为:max (S T ,K ),组合B 在T 时刻的价值为S T 。

【推导过程】(三)无孳息标的资产的欧式看跌期权下限无孳息标的资产的欧式看跌期权下限为:【推导过程】考虑A/B两个投资组合组合A:一份欧式看跌期权加上1单位标的资产;组合B:在时间T时刻收益为K的零息债券。

第十三章 期权的定价

第十三章 期权的定价
第十三章 期权的定价 第一节 期权价格的特性
一、 内在价值和时间价值 期权价格等于期权的内在价值加上时间价值。
(一)期权的内在价值 期权的内在价值(Intrinsic Value)是指多方行使期权
时可以获得的收益的现值。 欧欧式式看看涨涨期期权权的的内内在在价价值值为等(于STS--XX)e的-r(现T-t)值, 而。有无收收益益资资产产
组合A:一份欧式看涨期权加上金额为X的现金
组合B:一份美式看跌期权加上一单位标的资产
如果美式期权没有提前执行,则在T时刻组合B的价值为 m于a组x(合STB,X。),而此时组合A的价值为。因此组合A的价值大
如果美式期权在τ 时刻提前执行,则在τ 时刻,组合B的 价值为X,而此时组合A的价值大于等于X。因此组合A的 价值也大于组合B。
我们只要将上述组合A的现金改为Xer(Tt) +D,并经过类 似的推导,就可得出有收益资产欧式看涨期权价格的 下限为:
cm ax [SD X e r(T t),0 ]
(13.5)
2.欧式看跌期权价格的下限
(1)无收益资产欧式看跌期权价格的下限
考虑以下两种组合:
组合C:一份欧式看跌期权加上一单位标的资产
(二)期权价格的下限
1.欧式看涨期权价格的下限 (1)无收益资产欧式看涨期权价格的下限 为了推导出期权价格下限,我们考虑如下两个
组合: 组合A:一份欧式看涨期权加上金额为 Xer(Tt)
的现金; 组合B:一单位标的资产 T时刻,组合A 的价值为:max(ST, X) 而组合B的价值为ST。
当然,当标的资产市价低于协议价格时,期权 多方是不会行使期权的,因此期权的内在价值 应大于等于0。
(二)期权的时间价值

期权定价理论

期权定价理论

期权定价理论期权定价理论是衡量期权合约价格的数学模型。

它基于一系列假设和推导出的公式,通过评估期权的相关因素来确定其合理的市场价格。

这些因素包括标的资产价格、期权执行价格、期限、波动率以及无风险利率等。

期权的定价理论中最著名的模型是布莱克-斯科尔斯模型(Black-Scholes Model)。

该模型基于以下假设:市场无摩擦,即不存在交易费用和税收;标的资产价格服从连续时间的几何布朗运动;期权可以在任意时间点以市场价格进行买卖。

布莱克-斯科尔斯模型通过以下公式计算欧式期权的价格:C = S0 * N(d1) - X * e^(-r * T) * N(d2)其中,C是期权的市场价格,S0是标的资产的当前价格,N()是标准正态分布函数,d1和d2分别是两个维度上的标准正态分布变量,X是期权的行权价格,r是无风险利率,T是期权剩余时间。

布莱克-斯科尔斯模型的原理是通过构建组合,使得期权价格与标的资产价格的变动相对冲,从而消除风险。

通过调整组合中的权重,可以确定合理的期权价格。

这一模型在市场上得到广泛应用,被视为期权定价的标准模型之一。

除了布莱克-斯科尔斯模型外,还有其他一些期权定价模型,如考虑股息的期权定价模型、跳跃扩散模型等。

这些模型在不同情况下,可以更准确地预测期权价格。

需要注意的是,期权定价理论是基于一系列假设和前提条件建立的。

市场实际情况中可能存在不符合这些假设的情况,因此实际期权价格可能与模型计算结果存在一定的差异。

此外,期权定价也受到市场供求关系、交易量以及市场情绪等因素的影响。

总之,期权定价理论是一种基于数学模型的方法,用于评估期权合约的合理价格。

布莱克-斯科尔斯模型是最著名的期权定价模型之一,通过构建相对冲抗风险的组合来确定期权价格。

然而,需要注意实际市场中的差异和其他影响因素。

期权定价理论是金融衍生品定价的核心理论之一,它对金融市场的有效运行和风险管理起着重要作用。

期权是一种约定,赋予期权持有人在未来某个特定时间以特定价格买入或卖出某个标的资产的权利,而不是义务。

第九章期权定价ppt可编辑修改课件

第九章期权定价ppt可编辑修改课件

(一)欧式看涨期权与看跌期权之间的平价关系
1,无收益资产的欧式期权 考虑如下两个组合:
组合A:一份欧式看涨期权加上金额为Xer(T t) 的现金
组合B:一份有效期和协议价格与看涨期权相同的欧式看跌 期权加上一单位标的资产
2024/8/2
在期权到期时,两个组合的价值均为max(ST,X)。由于欧 式期权不能提前执行,因此两组合在时刻t必须具有相等的
2024/8/2
(五)标的资产的收益
由于标的资产分红付息等将减少标的资产的价格, 而协议价格并未进行相应调整,因此在期权有效期内 标的资产产生收益将使看涨期权价格下降,而使看跌 期权价格上升。
2024/8/2
期权价格的影响因素
变量
欧式看涨 欧式看跌 美式看涨 美式看跌
标的资产的市价 +



期权协议价格 -
(9.4)
2024/8/2
例题
考虑一个不付红利股票的欧式看涨期权,此 时股票价格为20元,执行价格为18元,期权价 格为3元,距离到期日还有1年,无风险年利率 10%。问此时市场存在套利机会吗?如果存在, 该如何套利?
(2)有收益资产欧式看涨期权价格的下限
我们只要将上述组合A的现金改为 D Xer(T ,t) 其中D 为期权有效期内资产收益的现值,并经过类似的推导,就 可得出有收益资产欧式看涨期权价格的下限为:
9.1 期权价格的特性
一、期权价格的构成 期权价格等于期权的内在价值加上时间价值。
1,内在价值 内在价值是指期权持有者立即行使该期权合约
所赋予的权利时所能获得的总收益。 看涨期权的内在价值为max{S-X,0} 看跌期权的内在价值为max{X-S,0}
2024/8/2

期权定价公式

期权定价公式
2
期权 二 B-S期权定价模型
➢标的资产价格满足几何布朗运动
dS dt dz
S ➢欧式看涨期权价格 f 满足的微分方程
f rSf 12S22f rf
t S 2 S2
3
期权 二 B-S期权定价模型
定价公式——
cS N (d 1)X e r(T t)N (d 2)
期权价格 的影响因

其中,N(x)为标准正态分布函数,
➢利用期权获利 ➢出售看跌期权获利
看空股票而股票 不跌不涨怎么获
利?
空头看跌期权,也称为出售无担保的看跌期权。有 抵补的看跌期权——
空头股票+空头看跌期权=空头看涨期权
p o
o
p
p o
16
8
期权 二 B-S期权定价模型
期权定价公式的计算——两个概念 ➢历史波动率——从标的资产价格的历史数据中计 算出价格收益率的标准差 ➢隐含波动率——利用B-S期权定价公式,从市场 上期权报价反算出波动率数据
9
期权 二 B-S期权定价模型
期权定价公式的应用
证券组合保险:实现能够确定最 大损失的投资策略
➢评估组合保险成本
➢给可转债定价 ➢为认沽权证估值
可转债=债权+看涨期权 可赎回:债权+看涨期权多头 (转换权)+看涨期权空头(赎
回权)
认沽权证的执行导致发行更多的 股票,有稀释效应
10
期权
三 基本期权策略
➢利用期权套期保值 ➢利➢用有期担权保获的利看跌期权
➢➢用出看 售涨 看期 涨权期套权期获保利值空头头寸 ➢➢出出售售看有跌抵期补权的获看利涨期权以防市场走低 ➢➢转利好用市期况权获利 ➢利➢用出期售权看转涨好期市权况转好市况 ➢出售看跌期权转好市况

第六章期权定价理论

第六章期权定价理论
增长率为无风险利率(不计复利),即
VT () V0 () (1 r)V0 ()
2024/1/11
25
由此得:
ST cT 0
(3.1)
由于在到期时刻股票价格有两种可能性,所以在组合的价值也有 两种可能性,但由于构造的是无风险组合,那么我们有
STu
cTu
S
d T
cTd
由(3.1)和(3.2),我们知:
2024/1/11
30
(t,t dt)
2、B—S微分方程
构造组合:
c S
选取适当的 ,使得在 (t,t dt) 时段内, 是无风险的。
利用无套利理论和ITO引理,即可得到著名的B——S微分方程
c t
rS
c S
1 2S2
2
2c S 2
rc
2024/1/11
31
3、B——S期权定价公式
2024/1/11
19
cT 45 40 5
根据期权到期时的收益
cT ST 40
由题设,在到期日,期权的价值亦有两种可能性:若股票价格上
扬,期权的收益为 cT 45 40 5;若股票价格下跌,则 cT 35 40 0 ,即期权一文不值。
基本思想:无套利定价法 在开始时刻,构造一个投资组合
32
根据欧式看涨看跌的平价公式,对于无收益资产的看跌期 权,其定价公式为:
pt Xe r(T t) N (d 2 ) SN (d1 )
2024/1/11
33
例 已知A公司股票的价格 S(t)服从几何布朗运动,即满足随机方程:
dSt St
0.2dt 0.35dWt
公司股票现在的市价是$92,到期期限为50天、执行价格为$95的该公司 股票欧式看涨期权的价格是多少?(无风险利率为7.12%)

第三章 期权定价

第三章  期权定价

3.1.1 期权的概念
期权 期权费 期权价格 基础资产或标的资产 期权的到期日、或执行日、履约日 欧式期权 美式期权 约定价格、履约价格或执行价格

3.1.2 期权的基本类型

买方期权(Call Option)和卖方期权(Put Option)
买方期权也称看涨期权,是指赋予投资者在合

经整理后,得:
=0.42


这表明,无风险资产组合实现套期保值目的应按 0.42:1的比例构成,即在买进0.42股票的同时必 须卖出1份看涨期权合约。 此时,无论未来资产价格上涨还是下跌,资产组 合的价值均为20.2元。

根据有效市场的假设,在不冒风险的情况下,人 们在金融市场上只能赚得无风险利率。换言之, 资产组合在当前的价值是其在到期日的价值 (20.2元)按无风险利率进行贴现后的现值。假 定市场上的无风险利率(年率)为10%,因为期 限为3个月,转为年数为1/4年,在连续复利的条 件下则有: 因为,期初资产组合的成本为 ×60-C,所以 它应该与到期日价值的现值相等,于是有:
P IVP TVP max(0, K S ) TVP


期权是一项递耗资产,即期权的时间价值会随着 合约距离其到期日越来越近而减少。在期权合约 的到期日,假如期权没有内在价值,它便一文不 值。 下面我们举一例子来说明时间价值与合约到期日 期限的关系。
期权价格C
0
25
30
35
股票市价S

期权价格是期权购买者为获得期权权利要向期权 出售者所支付的期权费,是期权价值的市场反映。 所谓“内在价值”就是期权的沽盈价,反映了期 权持有者现在就执行期权的可获利程度。 显然,根据期权价格为期权内在价值与时间价值 之和的定义,我们可以把期权价格表示为:

期权定价方法综述

期权定价方法综述
期权定价方法综述
目录
01 一、期权定价方法
03 结论
02
二、应用前景与未来 发展
04 参考内容
期权定价是金融衍生品市场的重要部分,对于期权交易、投资组合构建以及 风险管理都有着至关重要的作用。本次演示将对期权定价的主要方法进行综述, 包括欧式期权、美式期权和日式期权,并分析比较它们的优缺点。此外,还将探 讨期权定价方法的应用前景和未来发展方向。
(2)蒙特卡洛模拟:该方法通过模拟大量股票价格路径,计算美式期权的 预期收益,从而得到期权价格。蒙特卡洛模拟的优点在于它可以处理复杂的期权, 如多资产、多期权等。然而,它需要大量的计算资源,且可能受到模拟误差的影 响。
3、日式期权定价方法
日式期权是指只有在到期日行权的期权,其定价方法主要有以下两种:
(1)Black-Scholes-Merton模型:该模型基于Black-Scholes模型,但允 许美式期权在到期日之前行权。这需要对Black-Scholes模型的公式进行修改, 并加入提前行权的条件。该模型的优点在于它可以处理美式期权,并考虑到提前 行权的风险。然而,它仍然受到Black-Scholes模型的一些限制。
(1)三叉树模型:该模型通过构造股票价格的三叉树图形,模拟期权在多 个时间段内的价格变化。三叉树模型考虑了分红的影响,适用于日式期权的定价。 然而,它需要主观设定一些参数,且对于大规模计算的要求较高。
(2)静态复制方法:该方法通过构建一个投资组合,使其在到期日的收益 与期权收益相同,从而得到期权的定价。静态复制方法的优点在于它简单易懂, 可以用于不同类型和执行价格的期权。然而,它可能受到市场流动性的限制。
影响因素
实物期权定价的影响因素十分复杂,主要包括以下几类:标的资产价格波动 率、无风险利率、行权价格、到期时间、标的资产潜在增长机会等。这些因素对 实物期权价格的影响程度并不相同,需要通过实证研究进行检验。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第八章期权定价的二叉树模型
8.1 一步二叉树模型
我们首先通过一个简单的例子介绍二叉树模型。

例8.1 假设一只股票的当前价格是$20,三个月后该股票价格有可能上升到$22,也有可能下降到$18. 股票价格的这种变动过程可通过图8.1直观表示出来。

在上述二叉树中,从左至右的节点(实圆点)表示离散的时间点,由节点产生的分枝(路径)表示可能出现的不同股价。

由于从开始至期权到期日只考虑了一个时间步长,图8.1表示的二叉树称为一步(one-step)二叉树。

这是最简单的二叉树模型。

一般地,假设一只股票的当前价格是,基于该股票的欧式期权价格为。

经过一个时间步(至到期日T)后该股票价
格有可能上升到相应的期权价格为;也有可能下降到相应的期权价格为. 这种过程可通过一步(one-step)二叉树表示出来,如图8.2所示。

我们的问题是根据这个二叉树对该欧式股票期权定价。

为了对该欧式股票期权定价,我们采用无套利(no arbitrage)假设,即市场上无套利机会存在。

构造一个该股票和期权
的组合(portfolio),组合中有股的多头股票和1股空头期权。

如果该股票价格上升到,则该组合在期权到期
日的价值为;如果该股票价格下降到,则该组合在期权到期日的价值为。

根据无套利假设,该组合在股票上升和下降两种状态下的价值应该相等,即有
由此可得
(8.1)
上式意味着是两个节点之间的期权价格增量与股价增量之比率。

在这种情况下,该组合是无风险的。

以表示无风险
利率,则该组合的现值(the present value)为,又注意到该组合的当前价值是,故有

将(8.1)代入上式,可得基于一步二叉树模型的期权定价公式为
(8.2)
(8.3)
需要指出的是,由于我们是在无套利(no arbitrage)假设下讨论欧式股票期权的定价,因此无风险利率应该满足:
.
现在回到前面的例子中,假设相应的期权是一个敲定价为$21,到期日为三个月的欧式看涨权,无风险的年利率为12%,求该期权的当前价值。

已知:且在期权到期日,
当时,该看涨权的价值为而当时,该看涨权的价值为
根据(8.3)和(8.2),可得
.
上述期权定价公式(8.2)和(8.3)似乎与股价上升或下降的概率无关,实际上,在我们推导期权价值时它已经隐含在股票价
格中了。

不妨令股价上升的概率为,则股价下降的概率就是,在时间的期望股票价格为
如果我们假设市场是风险中性的(risk neutral),则所有证券的价格都以无风险利率增加,故有
于是,我们有
由此可得
与(8.3)比较,我们发现:,这就是参数的含义,我们称之为风险中性状态下股价上升的概率。

8.2 两步二叉树模型
在一步二叉树模型中,股票和期权的价格只经过一个时间步的演化,如果初始时间距期权到期日的时间间隔太长,有可能造成计算误差太大的缺陷。

因此,在初始时间与期权到期日之间增加离散的时间点,缩短计算的时间步长,有助于提高计算精度。

现在我们将初始时间距期权到期日的时间T分成两个相等的时间步,则每个时间步长。

假设一只股票的初始价
格是,基于该股票的欧式期权价格为,且每经过一个时间步,该股票价格或者增加到当前价格的倍,
或者下降到当前价格的倍。

股票和期权价格的演化过程可通过如图8.3所示的二叉树表示出来,这种含有两个时间步长的二叉树称为两步二叉树(Two-step binomial trees)模型。

我们的问题是根据这个二叉树对该欧式股票期权定价。

类似于一步二叉树模型的期权定价方法,采用无套利(no arbitrage)假设,由前向后(backward)逐步计算期权价值,我们得到
(8.4)
其中,
(8.5)
在(8.4)中,分别是风险中性状态下最后一个时间步股价到达上节点,中间节点和下节点的概率。

因此,期权的初始价值可认为是期权在到期日的期望价值贴现。

例8.2 假设一只股票的初始价格是$50,且每过1年该股票价格或者上升20%,或者下降20%,无风险利率为5%,现有一个基于该股票,敲定价为$52且2年后到期的欧式看跌权,试用二叉树模型确定该期权的价值。

分析将初始时间到期权到期日的2年时间分成相等的两个时间步,则股票和期权价格的演化进程可通过图4直观表示出
来。

依题意,已知:
且在期权到期日,当时,该看跌权的价值为
当时,该看跌权的价值为
当时,该看跌权的价值为
根据(8.5),可得
再由(8.4),即可求得该看跌权的初始价值为
.
8.3 多步二叉树模型
一步和两步二叉树模型太简单了,实际使用的二叉树要求具有多个离散的时间步长来计算期权的价值。

通常从初始时间到期权到期日需要分成30或更多个时间步长。

两步二叉树模型的欧式股票期权定价公式容易推广到多步二叉树模型的情形。

如果我们将初始时间距期权到期日的时间T
分成个相等的时间步,则每个时间步长。

令股票的初始价格为,且每经过一个时间步,股
价或向上增加到当前价格的倍,或向下下降到当前价格的倍,无风险利率为的,则在期
权到期日,股票价格有种可能结果:它们在风险中性状态下出现的概率
分别是:其中
(8.6)
令为与种股票价格对应的期权价值,为期权的敲定价,则在无套利假设下,股票看涨权在到期日的价值为
股票看跌权在到期日的价值为
将该期权在到期日的期望价值贴现,我们即可得到期权的(初始)价值为
(8.7)
关于参数的取值,Cox,Ross和Rubinstein给出了由股票价格波动率确定的公式:
(8.8)
8.4 二叉树模型的美式股票期权定价
上面我们讨论了应用二叉树模型给欧式股票期权定价。

实际上,二叉树模型还可给美式股票期权定价。

美式和欧式股票期权在到期日的价值是相同的。

不同的是,美式股票期权的定价过程要求在到期前每一个离散时间点上判断提早执行(early exercise)是否最优,并计算对应的期权价值。

假设股票价格经历了个时间步的演化到达期权到期日,且每一个时间步长为,这可用一个步二叉树描述(图
形省略)。

若股票的初始价格为,且每经过一个时间步,股价或向上增加到当前价格的倍,或向下下
降到当前价格的倍,无风险利率为的,则在第个时间步后,二叉树上产生个节点,
自上而下分别用表示,则节点对应的股票价格为期权价
值用表示。

如果在节点处期权没有被提早执行,则期权价值可通过式(8.2)和(8.3)来计算,即
(8.9)
(8.10)
如果在节点处期权被提早执行是最优的,则期权价值就是提早执行的收益(payoff),令为期权的敲定价,对股票看涨权,有
(8.11)
对股票看跌权,有
(8.12)
显然,美式股票期权在节点处的价值应该取中的较大者,即
(8.13)
由于美式股票期权在期权到期日的价值是已知的,因此美式股票期权的定价应该由前向后逐步计算,这也称作向后推演
(backwards induction)。

先由第步(期权到期日)的个节点上的期权价值通过公式(8.9)~(8.13)推出第
步对应的个节点上的期权价值,依此下去,我们可以得到初始时间上的期权价值。

下面通过一个例题具体介绍美式股票期权的二叉树定价过程。

例8.3 若例7.2考察的股票期权是美式的,试对该美式股票期权定价。

分析股票价格的演化进程见图8.5。

与欧式股票期权一样,在期权到期日,该美式看跌权的价值自上而下分别为
(8.12),可得~根据式(8.9)
故有
(8.12),可得~再由式(8.9)
美式看跌权的(初始)价值为
.。

相关文档
最新文档