2019-2020年高中数学 1.2《极坐标系》教案 新人教A版选修4-4

合集下载

2019-2020学年高中数学人教A版选修4-4学案:第二讲 一 2. 圆的参数方程 Word版含答案

2019-2020学年高中数学人教A版选修4-4学案:第二讲 一 2. 圆的参数方程 Word版含答案

2.圆的参数方程[对应学生用书P17]圆的参数方程(1)在t 时刻,圆周上某点M 转过的角度是θ,点M 的坐标是(x ,y ),那么θ=ωt (ω为角速度).设|OM |=r ,那么由三角函数定义,有cosωt =x r,sinωt =y r,即圆心在原点O ,半径为r 的圆的参数方程为⎩⎪⎨⎪⎧ x =rcosωt y =rsinωt(t 为参数).其中参数t 的物理意义是:质点做匀速圆周运动的时间.(2)若取θ为参数,因为θ=ωt ,于是圆心在原点O ,半径为r 的圆的参数方程为⎩⎪⎨⎪⎧x =rcos θy =rsin θ(θ为参数).其中参数θ的几何意义是:OM 0(M 0为t =0时的位置)绕点O 逆时针旋转到OM 的位置时,OM 0转过的角度.(3)若圆心在点M 0(x 0,y 0),半径为R ,则圆的参数方程为⎩⎪⎨⎪⎧x =x0+Rcos θy =y0+Rsin θ(0≤θ<2π).[对应学生用书P17][例1] 圆(x -r )2+y 2=r 2(r >0),点M 在圆上,O 为原点,以∠MOx =φ为参数,求圆的参数方程.[思路点拨] 根据圆的特点,结合参数方程概念求解. [解] 如图所示,设圆心为O ′,连O ′M ,∵O ′为圆心, ∴∠MO ′x =2φ. ∴⎩⎪⎨⎪⎧x =r +rcos 2φ,y =rsin 2φ.(1)确定圆的参数方程,必须根据题目所给条件,否则,就会出现错误,如本题容易把参数方程写成⎩⎪⎨⎪⎧x =r +rcos φ,y =rsin φ.(2)由于选取的参数不同,圆有不同的参数方程.1.已知圆的方程为x 2+y 2=2x ,写出它的参数方程. 解:x 2+y 2=2x 的标准方程为(x -1)2+y 2=1, 设x -1=cos θ,y =sin θ,则 参数方程为⎩⎪⎨⎪⎧x =1+cos θ,y =sin θ(0≤θ<2π).2.已知点P (2,0),点Q 是圆⎩⎪⎨⎪⎧x =cos θy =sin θ上一动点,求PQ 中点的轨迹方程,并说明轨迹是什么曲线.解:设中点M (x ,y ).则⎩⎪⎨⎪⎧x =2+cos θ2,y =0+sin θ2,即⎩⎪⎨⎪⎧x =1+12cos θ,y =12sin θ,(θ为参数)这就是所求的轨迹方程.它是以(1,0)为圆心,以12为半径的圆.[例2] 若x ,y 满足(x -1)2+(y +2)2=4,求2x +y 的最值.[思路点拨] (x -1)2+(y +2)2=4表示圆,可考虑利用圆的参数方程将求2x +y 的最值转化为求三角函数最值问题.[解] 令x -1=2cos θ,y +2=2sin θ,则有 x =2cos θ+1,y =2sin θ-2, 故2x +y =4cos θ+2+2sin θ-2. =4cos θ+2sin θ=25sin(θ+φ). ∴-25≤2x +y ≤25.即2x +y 的最大值为25,最小值为-25.圆的参数方程突出了工具性作用,应用时,把圆上的点的坐标设为参数方程形式,将问题转化为三角函数问题,利用三角函数知识解决问题.3.已知圆C ⎩⎪⎨⎪⎧x =cos θ,y =-1+sin θ与直线x +y +a =0有公共点,求实数a 的取值范围.解:法一:∵⎩⎪⎨⎪⎧x =cos θ,y =-1+sin θ消去θ,得x 2+(y +1)2=1.∴圆C 的圆心为(0,-1),半径为1. ∴圆心到直线的距离d =|0-1+a|2≤1.解得1-2≤a ≤1+2.法二:将圆C 的方程代入直线方程,得 cos θ-1+sin θ+a =0, 即a =1-(sin θ+cos θ)=1-2sin(θ+π4).∵-1≤sin(θ+π4)≤1,∴1-2≤a ≤1+2.[对应学生用书P19]一、选择题1.圆的参数方程为:⎩⎪⎨⎪⎧x =2+2cos θ,y =2sin θ(θ为参数).则圆的圆心坐标为( )A .(0,2)B .(0,-2)C .(-2,0)D .(2,0)解析:将⎩⎪⎨⎪⎧x =2+2cos θ,y =2sin θ化为(x -2)2+y 2=4,其圆心坐标为(2,0).答案:D2.直线:x +y =1与曲线⎩⎪⎨⎪⎧x =2cos θ,y =2sin θ(θ为参数)的公共点有( )A .0个B .1个C .2个D .3个解析:将⎩⎪⎨⎪⎧x =2cos θ,y =2sin θ化为x 2+y 2=4,它表示以(0,0)为圆心,2为半径的圆,由于12=22<2=r ,故直线与圆相交,有两个公共点. 答案:C3.直线:3x -4y -9=0与圆:⎩⎪⎨⎪⎧x =2cos θy =2sin θ,(θ为参数)的位置关系是( )A .相切B .相离C .直线过圆心D .相交但直线不过圆心解析:圆心坐标为(0,0),半径为2,显然直线不过圆心,又圆心到直线距离d =95<2,故选D.答案:D4.P (x ,y )是曲线⎩⎪⎨⎪⎧x =2+cos α,y =sin α(α为参数)上任意一点,则(x -5)2+(y +4)2的最大值为( )A .36B .6C .26D .25解析:设P (2+cos α,sin α),代入得: (2+cos α-5)2+(sin α+4)2 =25+sin 2α+cos 2α-6cos α+8sin α =26+10sin(α-φ).∴最大值为36.答案:A 二、填空题5.x =1与圆x 2+y 2=4的交点坐标是________. 解析:圆x 2+y 2=4的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =2sin θ,令2cos θ=1得cos θ=12,∴sin θ=±32.∴交点坐标为(1,3)和(1,-3).答案:(1,3);(1,-3)6.参数方程⎩⎪⎨⎪⎧x =3cos φ+4sin φ,y =4cos φ-3sin φ表示的图形是________.解析:x 2+y 2=(3cos φ+4sin φ)2+(4cos φ-3sin φ)2=25.∴表示圆. 答案:圆7.设Q (x 1,y 1)是单位圆x 2+y 2=1上一个动点,则动点P (x 21-y 21,x 1y 1)的轨迹方程是________.解析:设x 1=cos θ,y 1=sin θ,P (x ,y ). 则⎩⎪⎨⎪⎧x =x21-y21=cos 2θ,y =x1y1=12sin 2θ.即⎩⎪⎨⎪⎧x =cos 2θ,y =12sin 2θ,为所求.答案:⎩⎪⎨⎪⎧x =cos 2θy =12sin 2θ三、解答题8.P 是以原点为圆心,r =2的圆上的任意一点,Q (6,0),M 是PQ 中点 ①画图并写出⊙O 的参数方程;②当点P 在圆上运动时,求点M 的轨迹的参数方程. 解:①如图所示,⊙O 的参数方程⎩⎪⎨⎪⎧x =2cos θ,y =2sin θ.②设M (x ,y ),P (2cos θ,2sin θ), 因Q (6,0),∴M 的参数方程为⎩⎪⎨⎪⎧x =6+2cos θ2,y =2sin θ2,即⎩⎪⎨⎪⎧x =3+cos θ,y =sin θ.9.(新课标全国卷Ⅱ)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为ρ=2cos θ,θ∈⎣⎢⎢⎡⎦⎥⎥⎤0,π2.(1)求C 的参数方程;(2)设点D 在C 上,C 在D 处的切线与直线l :y =3x +2垂直,根据(1)中你得到的参数方程,确定D 的坐标.解:(1)C 的普通方程为(x -1)2+y 2=1(0≤y ≤1).可得C 的参数方程为⎩⎪⎨⎪⎧x =1+cos t ,y =sin t(t 为参数,0≤t ≤π).(2)设D (1+cos t ,sin t ).由(1)知C 是以G (1,0)为圆心,1为半径的上半圆.因为C 在点D 处的切线与l 垂直,所以直线GD 与l 的斜率相同,tan t =3,t =π3.故D 的直角坐标为⎝ ⎛⎭⎪⎪⎫1+cos π3,sin π3,即⎝ ⎛⎭⎪⎪⎫32,32. 10.已知直线C 1:⎩⎪⎨⎪⎧x =1+tcos α,y =tsin α(t 为参数),圆C 2:⎩⎪⎨⎪⎧x =cos θ,y =sin θ(θ为参数).(1)当α=π3时,求C 1与C 2的交点坐标;(2)过坐标原点O 作C 1的垂线,垂足为A ,P 为OA 的中点.当α变化时,求P 点轨迹的参数方程,并指出它是什么曲线.解:(1)当α=π3时,C 1的普通方程为y =3(x -1),C 2的普通方程为x 2+y 2=1. 联立方程组错误!解得C 1与C 2的交点为(1,0),⎝ ⎛⎭⎪⎪⎫12,-32. (2)C 1的普通方程为x sin α-y cos α-sin α=0. A 点坐标为(sin 2α,-cos αsin α), 故当α变化时,P 点轨迹的参数方程为⎩⎪⎨⎪⎧x =12sin2α,y =-12sin αcos α,(α为参数).P 点轨迹的普通方程为⎝ ⎛⎭⎪⎪⎫x -142+y 2=116.故P 点轨迹是圆心为⎝ ⎛⎭⎪⎪⎫14,0,半径为14的圆.。

高中数学 1.2《极坐标系》教案 新人教A版选修4-4

高中数学 1.2《极坐标系》教案 新人教A版选修4-4

极坐标系【基础知识导学】1. 极坐标系和点的极坐标极点、极轴、长度单位、角度单位和它的方向构成极坐标系的四要素,缺一不可。

规定:当点M 在极点时,它的极坐标θρ,0=可以取任意值。

2. 平面直角坐标与极坐标的区别在平面直角坐标系内,点与有序实数对(x ,y )是一一对应的,可是在极坐标系中,虽然一个有序实数对),(θρ只能与一个点P 对应,但一个点P 却可以与无数多个有序实数对对应),(θρ,极坐标系中的点与有序实数对极坐标),(θρ不是一一对应的。

3. 极坐标系中,点M ),(θρ的极坐标统一表达式Z k k ∈+),2,(θπρ。

4. 如果规定πθρ20,0<≤>,那么除极点外,平面内的点可用唯一的极坐标),(θρ表示,同时,极坐标),(θρ表示的点也是唯一确定的。

5. 极坐标与直角坐标的互化(1) 互化的前提:①极点与直角坐标的原点重合;②极轴与X 轴的正方向重合;③两种坐标系中取相同的长度单位。

(2) 互化公式⎩⎨⎧==θρθρsin cos y x ,⎪⎩⎪⎨⎧≠=+=0,tan 222x x y y x θρ。

【知识迷航指南】【例1】 在极坐标系中,描出点)3,2(πM ,并写出点M 的统一极坐标。

【点评】点)3,2(πM 的统一极坐标表示式为)32,2(ππ+k ,如果允许0<ρ,还可以表示X为)3)12(,2(ππ++-k 。

【例2】已知两点的极坐标)6,3(),2,3(ππB A ,则|AB|=______,AB 与极轴正方向所成的角为________.解:根据极坐标的定义可得|AO|=|BO|=3,∠AOB=600,即∆AOB 为等边三角形,所以|AB|=|AO|=|BO|=3, ∠ACX=65π 【点评】在极坐标系中我们没有定义两点间的距离,我们只要画出图形便可以得到结果.【例3】化下列方程为直角坐标方程,并说明表示的曲线. (1)43πθ=,()R ∈ρ (2)θθρcos 2sin +=【解】(1)根据极坐标的定义,因为x y xy -==即,43tan π,所以方程表示直线. (2)因为方程给定的ρ不恒为0,用ρ同乘方程的两边得:θρθρρcos 2sin 2+=化为直角坐标方程为,222x y y x +=+即45)21()1(22=-+-y x ,这是以(1,21)为圆心,半径为25的圆. 【点评】①若没有R ∈ρ这一条件,则方程表示一条射线.②极坐标方程化为直角坐标方程,方程两边同乘ρ,使之出现ρ2是常用的方法. 【解题能力测试】1.已知点的极坐标分别为)4,3(π-A ,)32,2(πB ,),23(πC ,)2,4(π-D ,求它们的直角坐标。

高中数学1.2.2极坐标与直角坐标的互化教案新人教版选修4_4

高中数学1.2.2极坐标与直角坐标的互化教案新人教版选修4_4

课题:2、极坐标与直角坐标的互化教学目的:知识目标:掌握极坐标和直角坐标的互化关系式能力目标:会实现极坐标和直角坐标之间的互化德育目标:通过观察、探索、发现的创造性过程,培养创新意识。

教学重点:对极坐标和直角坐标的互化关系式的理解教学难点:互化关系式的掌握授课类型:新授课教学模式:启发、诱导发现教学.教 具:多媒体、实物投影仪教学过程:一、复习引入:情境1:若点作平移变动时,则点的位置采用直角坐标系描述比较方便;情境2:若点作旋转变动时,则点的位置采用极坐标系描述比较方便问题1:如何进行极坐标与直角坐标的互化?问题2:平面内的一个点的直角坐标是)3,1(,这个点如何用极坐标表示?学生回顾理解极坐标的建立及极径和极角的几何意义正确画出点的位置,标出极径和极角,借助几何意义归结到三角形中求解二、讲解新课:直角坐标系的原点O 为极点,x 轴的正半轴为极轴,且在两坐标系中取相同的长度单位。

平面内任意一点P 的指教坐标与极坐标分别为),(y x 和),(θρ,则由三角函数的定义可以得到如下两组公式:{θρθρsin cos ==y x { x y y x =+=θρtan 222说明1上述公式即为极坐标与直角坐标的互化公式2通常情况下,将点的直角坐标化为极坐标时,取ρ≥0,0≤θ≤π2。

3互化公式的三个前提条件1. 极点与直角坐标系的原点重合;2. 极轴与直角坐标系的x 轴的正半轴重合;3. 两种坐标系的单位长度相同.三.举例应用:例1.(1)把点M 的极坐标)32,8(π化成直角坐标 (2)把点P 的直角坐标)2,6(-化成极坐标变式训练在极坐标系中,已知),6,2(),6,2(ππ-B A 求A,B 两点的距离 例2.若以极点为原点,极轴为x 轴正半轴,建立直角坐标系.(1) 已知A 的极坐标),35,4(π求它的直角坐标, (2) 已知点B 和点C 的直角坐标为)15,0()2,2(--和求它们的极坐标.ρ(>0,0≤θ<2π)变式训练把下列个点的直角坐标化为极坐标(限定ρ>0,0≤θ<π2))4,3(),4,3(),2,0(),1,1(----D C B A例3.在极坐标系中,已知两点)32,6(),6,6(ππB A . 求A,B 中点的极坐标.变式训练在极坐标系中,已知三点)6,32(),0,2(),3,2(ππP N M -.判断P N M ,,三点是否在一条直线上.四、巩固与练习:课后练习五、小 结:本节课学习了以下内容:1.极坐标与直角坐标互换的前提条件;2.互换的公式;3.互换的基本方法。

2019-2020学年高中数学《4.1.2 极坐标系(2)》教案 新人教A版选修4-4.doc

2019-2020学年高中数学《4.1.2 极坐标系(2)》教案 新人教A版选修4-4.doc

2019-2020学年高中数学《4.1.2 极坐标系(2)》教案 新人教A 版选修4-4 教学目标:1.掌握极坐标和直角坐标的互化关系式;2.会实现极坐标和直角坐标之间的互化.教学重点:对极坐标和直角坐标的互化关系式的理解.教学难点:互化关系式的掌握.教学过程:一、问题情境:1.导入练习:在极坐标系中描出下列各点:(3,)6A π,(2,)2B π,(1,)2C -π,(3,)4D -π,3(2,)4E π,5(2,)4F -π,11(2,)4G π. 2.问题:极坐标系是怎样定义的?极坐标系与直角坐标系有何异同?二、新知探究:思考:平面内的一个点的直角坐标是,这个点如何用极坐标表示?探究结果:在直角坐标系中,以原点作为极点,x 轴的正半轴作为极轴,并且两种坐标系中取相同的长度单位.点M 的直角坐标为,设点M 的极坐标为(ρ,θ)2==ρ,tan ==θ三、建构数学直角坐标系的原点O 为极点,x 轴的正半轴为极轴,且在两坐标系中取相同的长度单位.平面内任意一点P 的指教坐标与极坐标分别为),(y x 和),(θρ,则由三角函数的定义可以得到如下两组公式:{cos sin x y =ρθ=ρθ 222tan x y y x ⎧ρ=+⎪⎨θ=⎪⎩(0)x ≠ 说明1.上述公式即为极坐标与直角坐标的互化公式.2.通常情况下,将点的直角坐标化为极坐标时,取ρ≥0,0≤θ≤π2.3.互化公式的三个前提条件(1) 极点与直角坐标系的原点重合;(2) 极轴与直角坐标系的x 轴的正半轴重合;(3) 两种坐标系的单位长度相同.四、数学应用:例1 把下列点的极坐标化成直角坐标: ⑴M )32,8(π, ⑵N 7(6,)4π变式训练:在极坐标系中,已知),6,2(),6,2(ππ-B A 求A,B 两点的距离.例2 以极点为原点,极轴为x 轴正半轴,建立直角坐标系.把下列点的极坐标化成直角坐标:⑴P ,⑵Q (,⑶R变式训练:把下列个点的直角坐标化为极坐标(限定ρ>0,0≤θ<π2):)4,3(),4,3(),2,0(),1,1(----D C B A例3 在极坐标系中,已知两点)32,6(),6,6(ππB A .求A,B 中点的极坐标.变式训练:在极坐标系中,已知三点)6,32(),0,2(),3,2(ππP N M -. 判断P N M ,,三点是否在一条直线上.五、课堂练习:1.若点P 的极坐标是⎪⎭⎫ ⎝⎛67,6π,则将它化为直角坐标是___________. 2.若点P 的直角坐标是)5,5(-,则将它化为极坐标是___________.3.将下列各点的极坐标化为直角坐标:()⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛6,3,27,6,0,12,4,10,3,8ππππE D C B A ,)135,5(︒--F .4.将下列各点的直角坐标化为极坐标:),6,0(),0,4(),3,33(),35,5(),2,2(E D C B A ---)3,3(--F .5.在极坐标系中,已知三点)6,32(),0,2(,3,2ππP N M ⎪⎭⎫ ⎝⎛-. (1)将M ,N ,P 三点的极坐标化为直角坐标;(2)判断M ,N ,P 三点是否在一条直线上.6.在直角坐标系中,已知两点)2,2(),3,1(---Q P ,O 为原点.(1)将P ,Q 两点的直角坐标化为极坐标;(2)求△POQ 的面积.7.在极坐标系中,已知△ABC 三个顶点的极坐标为A(2,10°),B(-4,220°),C(3,100°),(1)求△ABC 的面积;(2)求△ABC 的AB 边上的高.六、回顾小结:掌握极坐标和直角坐标的互化七、课后作业:。

《极坐标系》教案

《极坐标系》教案

《极坐标系的概念》教学设计教材版本:人民教育出版社数学A版选修4-4《坐标系与参数方程》一、教材分析极坐标系是高中教材人教A版选修4-4第一讲第一节的内容, 是在学生已经学习过平面直角坐标系的背景下,通过生活实例、类比直角坐标系的研究方法让学生针对建立极坐标系的合理性,便捷性进行探究,自主完成极坐标系的建立,并表示点的极坐标。

为后面学习直角坐标与极坐标的互化,简单曲线的极坐标方程以及参数方程奠定基础。

二、学情分析通过前面对平面直角坐标系的学习,学生已经对坐标系有了一定的了解;极坐标的思想已经普遍地存在于日常生活中,对于极坐标系的学习应该容易接受。

三、教学设计原则及策略激发学生的兴趣,充分调动其积极性,让他们真正参与到教学活动中来。

此外,该节课的核心在于自主探究出极坐标系建立的顺其自然和合理性,并熟悉,初步会应用。

基于以上认识,我根据学生的认知特点和接受水平,对教材进行了一些处理,先从实际例子、生活常识出发,抛出问题,让学生自主探究,过程中加以指导,最终完成整节课的教学。

四、教学目标1、知识与技能:利用生活实例,体会极坐标的思想,用此思想自主建立极坐标系,并求点的极坐标;理解点的极坐标的不惟一性。

2、过程与方法:①通过自主探究体会数形结合、类比的数学思想方法。

②通过探究活动培养学生观察、分析、比较和归纳能力。

3、情感态度与价值观:用生活实例,类比直角坐标系,使学生明白建立极坐标系的好处,感觉数学源于生活用于生活。

采取探究的形式,合作交流的形式激发学生的学习兴趣。

五、教学重、难点1.重点:运用我们的生活常识,体会极坐标的思想,并用此思想建立极坐标系,表示点的极坐标。

2.难点:对点的极坐标的不惟一性(极角的不惟一)的理解六、教学方法问题探究法、讲解示范法七、教学媒体设计本节课涉及的知识点少且简单,就一个极坐标系的建立,但为了能更好的完成自主探究和节约时间,故本节课采取用多媒体课件进行辅助展示,师生共同合作交流来突出重点、突破难点。

新人教版高中数学选修4-4《极坐标与参数方程》优质教案

新人教版高中数学选修4-4《极坐标与参数方程》优质教案

(3.5学案)第1讲 极坐标系与参数方程(大题)教学目标1.会将参数方程,极坐标方程化为普通方程2.理解极坐标方程中ρ,θ含义,参数方程中直线中的t 的含义,圆与椭圆中θ几何意义,及应用教学重点:ρ,θ应用及直线参数方程中t 应用椭圆中θ应用 教学难点:椭圆中θ的含义题型一:极坐标.参数方程与普通方程互化 1.直角坐标与极坐标的互化把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,且在两种坐标系中取相同的长度单位.如图,设M 是平面内的任意一点,它的直角坐标、极坐标分别为(x ,y)和(ρ,θ),则⎩⎨⎧x =ρcos θ,y =ρsin θ,⎩⎨⎧ρ2=x 2+y 2,tan θ=yx x ≠0.2.在与曲线的直角坐标方程进行互化时,一定要注意变量的范围,要注意转化的等价性.(1).直线的参数方程过定点M(x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎨⎧x =x 0+tcos α,y =y 0+tsin α(t为参数).(2).圆的参数方程圆心为点M(x 0,y 0),半径为r 的圆的参数方程为⎩⎨⎧x =x 0+rcos θ,y =y 0+rsin θ(θ为参数).(3).圆锥曲线的参数方程(1)椭圆x 2a 2+y 2b 2=1(a>b>0)的参数方程为⎩⎨⎧x =acos θ,y =bsin θ(θ为参数).(2)抛物线y 2=2px(p>0)的参数方程为⎩⎨⎧x =2pt 2,y =2pt(t 为参数).(4).(1)参数方程的实质是将曲线上每一点的横、纵坐标分别用同一个参数表示出来,所以有时处理曲线上与点的坐标有关的问题时,用参数方程求解非常方便;(2)充分利用直线、圆、椭圆等参数方程中参数的几何意义,在解题时能够事半功倍.例1、(1)方程表示的曲线是( )A. 双曲线B.双曲线的上支C.双曲线的下支D.圆 分析:把参数方程化为我们熟悉的普通方程,再去判断它表示的曲线类型是这类问题的破解策略.解析:注意到t与互为倒数,故将参数方程的两个等式两边分别平方,再相减,即可消去含的项,即有,又注意到,可见与以上参数方程等价的普通方程为.显然它表示焦点在轴上,以原点为中心的双曲线的上支,选B.点评:这是一类将参数方程化为普通方程的检验问题,转化的关键是要注意变量范围的一致性.(2)、设P 是椭圆上的一个动点,则的最大值是 ,最小值为 .分析:注意到变量的几何意义,故研究二元函数的最值时,可转化为几何问题.若设,则方程表示一组直线,(对于取不同的值,方程表示不同的直线),显然既满足,又满足,故点是方程组的公共解,依题意得直线与椭圆总有公共点,从而转化为研究消无后的一元二次方程的判别式问题.解析:令,对于既满足,又满足,故点是方程组的公共解,依题意得,由,解得:,所以的最大值为,最小值为.点评:对于以上的问题,有时由于研究二元函数有困难,也常采用消元,但由满足的方程来表示出或时会出现无理式,这对进一步求函数最值依然不够简洁,但若通过三角函数换元,则可实现这一途径.即,因此可通过转化为的一元函数.以上二个思路都叫“参数法”.(3)、极坐标方程表示的曲线是()A. 圆B. 椭圆C. 双曲线的一支D. 抛物线分析:这类问题需要将极坐标方程转化为普通方程进行判断.解析:由,化为直角坐标系方程为,化简得.显然该方程表示抛物线,故选D.点评:若直接由所给方程是很难断定它表示何种曲线,因此通常要把极坐标方程化为直角坐标方程,加以研究.(4)、极坐标方程转化成直角坐标方程为()A. B. C. D.分析:极坐标化为直解坐标只须结合转化公式进行化解.解析:,因此选C.点评:此题在转化过程中要注意不要失解,本题若成为填空题,则更要谨防漏解.通关练习一1. 已知点M的极坐标为,下列所给出的四个坐标中不能表示点M的坐标是()A. B. C. D.2.若直线的参数方程为,则直线的斜率为()A. B. C. D.3.下列在曲线上的点是()A. B. C. D.4.将参数方程化为普通方程为()A. B. C.D.5.参数方程为表示的曲线是()A.一条直线 B.两条直线 C.一条射线 D.两条射线6.直线和圆交于两点,则的中点坐标为() A. B. C. D.7.极坐标方程表示的曲线为()A.一条射线和一个圆 B.两条直线 C.一条直线和一个圆 D.一个圆8.直线的参数方程为,上的点对应的参数是,则点与之间的距离是()A. B. C. D.9. 圆心为C,半径为3的圆的极坐标方程为10 若A,B,则|AB|=__________,___________(其中O是极点)11. ,若A、B是C上关于坐标轴不对称的任意两点,AB 的垂直平分线交x轴于P(a,0),求a的取值范围.一、选择题:1.A 解析:能表示点M的坐标有3个,分别是B、C、D.2.D 解析:3.B 解析:转化为普通方程:,当时,4.C 解析:转化为普通方程:,但是5、D 解析:表示一条平行于轴的直线,而,所以表示两条射线6.D 解析:,得,因此中点为7.C 解析:,则或8、C 解析:距离为9、解析:如下图,设圆上任一点为P(),则10、解析:在极坐标系中画出点A、B,易得,11. 解析:,,,,题型二极坐标,参数方程综合应用例2 (2019·全国Ⅱ)在极坐标系中,O为极点,点M(ρ0,θ)(ρ>0)在曲线C:ρ=4sin θ上,直线l过点A(4,0)且与OM垂直,垂足为P.(1)当θ0=π3时,求ρ0及l 的极坐标方程; (2)当M 在C 上运动且P 在线段OM 上时,求P 点轨迹的极坐标方程. 解 (1)因为M(ρ0,θ0)在C 上,当θ0=π3时,ρ0=4sin π3=2 3. 由已知得|OP|=|OA|cosπ3=2. 设Q(ρ,θ)为l 上除P 的任意一点,连接OQ ,在Rt △OPQ 中,ρcos ⎝ ⎛⎭⎪⎫θ-π3=|OP|=2.经检验,点P ⎝ ⎛⎭⎪⎫2,π3在曲线ρcos ⎝ ⎛⎭⎪⎫θ-π3=2上.所以,l 的极坐标方程为ρcos ⎝⎛⎭⎪⎫θ-π3=2.(2)设P(ρ,θ),在Rt △OAP 中,|OP|=|OA|cos θ=4cos θ,即ρ=4cos θ.因为P 在线段OM 上,且AP ⊥OM ,故θ的取值范围是⎣⎢⎡⎦⎥⎤π4,π2.所以,P 点轨迹的极坐标方程为ρ=4cos θ,θ∈⎣⎢⎡⎦⎥⎤π4,π2.跟踪演练1 在平面直角坐标系xOy 中,已知直线l :x +3y =53,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,圆C 的极坐标方程为ρ=4sin θ.射线OP :θ=π6(ρ≥0)与圆C 的交点为O ,A ,与直线l 的交点为B ,求线段AB 的长.解 由题意知ρA =4sinπ6=2, ρB =532sin ⎝ ⎛⎭⎪⎫π6+π6=5,所以|AB|=|ρA -ρB |=3.例 3 (2019·六安质检)在平面直角坐标系xOy 中,圆C 的参数方程为⎩⎨⎧x =2+2cos α,y =2sin α(α为参数),过点P(-2,0)作斜率为k 的直线l 与圆C交于A ,B 两点.(1)若圆心C 到直线l 的距离为455,求k 的值;(2)求线段AB 中点E 的轨迹方程.解 (1)由题意知,圆C 的普通方程为(x -2)2+y 2=4, 即圆C 的圆心为C(2,0),半径r =2.依题意可得过点P(-2,0)的直线l 的方程为y =k(x +2),即kx -y +2k =0, 设圆心C(2,0)到直线l 的距离为d , 则d =|2k +2k|1+k 2=|4k|1+k2=455, 解得k =±12.(2)设直线l 的参数方程为⎩⎨⎧x =-2+tcos θ,y =tsin θ(t 为参数),θ∈⎝ ⎛⎭⎪⎫-π6,π6,代入圆C :(x -2)2+y 2=4,得t 2-8tcos θ+12=0. 设A ,B ,E 对应的参数分别为t A ,t B ,t E , 则t E =t A +t B2, 所以t A +t B =8cos θ,t E =4cos θ. 又点E 的坐标满足⎩⎨⎧x =-2+t E cos θ,y =t E sin θ,所以点E 的轨迹的参数方程为⎩⎨⎧x =-2+4cos 2θ,y =4sin θcos θ,即⎩⎨⎧x =2cos 2θ,y =2sin 2θ,θ∈⎝ ⎛⎭⎪⎫-π6,π6,化为普通方程为x 2+y 2=4(1<x ≤2).例4在平面直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为ρcos θ-2ρsin θ+1=0,曲线C 的参数方程为⎩⎨⎧x =2cos α,y =3sin α(α为参数).(1)求曲线C 上的点到直线l 的距离的最大值;(2)直线l 与曲线C 交于A ,B 两点,已知点M(1,1),求|MA|·|MB|的值. 解 (1)设曲线C 上任意一点N(2cos α,3sin α), 直线l :x -2y +1=0,则点N 到直线l 的距离d =|2cos α-23sin α+1|5=⎪⎪⎪⎪⎪⎪4cos ⎝⎛⎭⎪⎫α+π3+15≤5,∴曲线C 上的点到直线l 的距离的最大值为 5. (2)设直线l 的倾斜角为θ, 则由(1)知tan θ=12,∴cos θ=255,sin θ=55. ∴直线l 的参数方程为⎩⎪⎨⎪⎧x =1+255t ,y =1+55t (t 为参数),曲线C :x 24+y 23=1,联立方程组,消元得165t 2+45t -5=0, 设方程两根为t 1,t 2,则t 1t 2=-2516, 由t 的几何意义,得|MA|·|MB|=-t 1t 2=2516. 通关练习二1.(2019·东莞调研)在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧x =34+3t ,y =a +3t(t 为参数),圆C 的标准方程为(x -3)2+(y -3)2=4.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系. (1)求直线l 和圆C 的极坐标方程; (2)若射线θ=π3与l 的交点为M ,与圆C 的交点为A ,B ,且点M 恰好为线段AB 的中点,求a 的值.解(1)∵直线l 的参数方程为⎩⎨⎧x =34+3t ,y =a +3t(t 为参数),∴在直线l 的参数方程中消去t 可得直线l 的普通方程为x -y -34+a =0,将x =ρcos θ,y =ρsin θ代入直线l 的普通方程中, 得到直线l 的极坐标方程为ρcos θ-ρsin θ-34+a =0.∵圆C 的标准方程为(x -3)2+(y -3)2=4,∴圆C 的极坐标方程为ρ2-6ρcos θ-6ρsin θ+14=0.(2)在极坐标系中,由已知可设M ⎝ ⎛⎭⎪⎫ρ1,π3,A ⎝ ⎛⎭⎪⎫ρ2,π3,B ⎝⎛⎭⎪⎫ρ3,π3,联立⎩⎨⎧θ=π3,ρ2-6ρcos θ-6ρsin θ+14=0,得ρ2-(3+33)ρ+14=0, ∴ρ2+ρ3=3+3 3. ∵点M 恰好为AB 的中点, ∴ρ1=3+332,即M ⎝⎛⎭⎪⎫3+332,π3. 把M ⎝ ⎛⎭⎪⎫3+332,π3代入ρcos θ-ρsin θ-34+a =0,得3()1+32×1-32-34+a =0,解得a =94.2.在平面直角坐标系xOy 中,曲线C 1过点P(m,2),其参数方程为⎩⎨⎧x =m +t ,y =2-t(t 为参数,m ∈R ),以O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρcos 2θ+8cos θ-ρ=0. (1)求曲线C 1的普通方程和曲线C 2的直角坐标方程;(2)若已知曲线C 1和曲线C 2交于A ,B 两点,且|PA|=2|PB|,求实数m 的值. 解 (1)C 1的参数方程⎩⎨⎧x =m +t ,y =2-t(t 为参数,m ∈R ),消参得普通方程为x +y -m -2=0.C 2的极坐标方程化为ρ(2cos 2θ-1)+8cos θ-ρ=0,两边同乘ρ得2ρ2cos 2θ+8ρcos θ-2ρ2=0,即y 2=4x. 即C 2的直角坐标方程为y 2=4x.(2)将曲线C 1的参数方程标准化为⎩⎪⎨⎪⎧x =m -22t ,y =2+22t (t 为参数,m ∈R ),代入曲线C 2:y 2=4x , 得12t 2+42t +4-4m =0, 由Δ=(42)2-4×12×(4-4m)>0,得m>-3,设A ,B 对应的参数为t 1,t 2,由题意得|t 1|=2|t 2|,即t 1=2t 2或t 1=-2t 2,当t 1=2t 2时,⎩⎨⎧t 1=2t 2,t 1+t 2=-82,t 1·t 2=24-4m,解得m =-239,满足m>-3; 当t 1=-2t 2时,⎩⎨⎧t 1=-2t 2,t 1+t 2=-82,t 1·t 2=24-4m解得m =33,满足m>-3. 综上,m =-239或33. 3.(2019·衡水中学调研)在平面直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =2+2cos φ,y =2sin φ(φ为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=4sin θ. (1)求C 1的普通方程和C 2的直角坐标方程;(2)已知直线C 3的极坐标方程为θ=α(0<α<π,ρ∈R ),A 是C 3与C 1的交点,B 是C 3与C 2的交点,且A ,B 均异于原点O ,|AB|=42,求α的值. 解 (1)由⎩⎨⎧x =2+2cos φ,y =2sin φ消去参数φ,得C 1的普通方程为(x -2)2+y 2=4.由ρ=4sin θ,得ρ2=4ρsin θ,又y =ρsin θ,x 2+y 2=ρ2, 所以C 2的直角坐标方程为x 2+(y -2)2=4. (2)由(1)知曲线C 1的普通方程为(x -2)2+y 2=4, 所以其极坐标方程为ρ=4cos θ.设点A ,B 的极坐标分别为(ρA ,α),(ρB ,α), 则ρA =4cos α,ρB =4sin α,所以|AB|=|ρA -ρB |=4|cos α-sin α| =42⎪⎪⎪⎪⎪⎪sin ⎝⎛⎭⎪⎫α-π4=42,所以sin ⎝ ⎛⎭⎪⎫α-π4=±1,即α-π4=k π+π2(k ∈Z ),解得α=k π+3π4(k ∈Z ),又0<α<π,所以α=3π4. 4.(2019·保山模拟)在平面直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴建立极坐标系.⊙O 的极坐标方程为ρ=2,直线l 的参数方程为⎩⎨⎧x =tcos α,y =-2+tsin α(t 为参数),直线l 与⊙O 交于A ,B 两个不同的点.(1)求倾斜角α的取值范围;(2)求线段AB 中点P 的轨迹的参数方程. 解 (1)直线l 的倾斜角为α,当α=π2时,直线l(即y 轴)与⊙O 交于A ,B 两个不同的点,符合题目要求;当α≠π2时,记k =tan α,直线l 的参数方程⎩⎨⎧x =tcos α,y =-2+tsin α 化为普通方程为kx -y -2=0,圆心O 到直线l 的距离d =21+k 2.因为直线l 与⊙O 交于不同的两点, 所以21+k2<2, 解得k>1或k<-1.当k<-1时,直线l 的倾斜角α的取值范围是⎝ ⎛⎭⎪⎫π2,3π4;当k>1时,α的取值范围是⎝ ⎛⎭⎪⎫π4,π2,综上,直线l 的倾斜角α的取值范围是⎝ ⎛⎭⎪⎫π4,3π4.(2)⊙O 的极坐标方程为ρ=2,其直角坐标方程为x 2+y 2=2, 因直线l 的参数方程为⎩⎨⎧x =tcos α,y =-2+tsin α(t 为参数),代入x 2+y 2=2中得,t 2-4tsin α+2=0, 故可设A(t 1cos α,-2+t 1sin α),B(t 2cos α,-2+t 2sin α),注意到t 1 ,t 2为方程的根,故t 1+t 2=4sin α, 点P 的坐标为⎝⎛⎭⎪⎫t 1+t 22cos α,-2+t 1+t 22sin α, 即(sin 2α,-1-cos 2α), 所以点P 的轨迹的参数方程为 ⎩⎨⎧x =sin 2α,y =-1-cos 2α(α为参数).。

1.2.1《极坐标系的概念》课件(新人教选修4-4).

1.2.1《极坐标系的概念》课件(新人教选修4-4).
6
C(3, )
2
F (4, )
第15页,共43页。
2
4
5
6
C E
F
A O
B X
4
D
3
G 5
3
第16页,共43页。
要求写出各点: [1]最小正极角的极坐标 [2]最大负极角的极坐标
[3]点的极坐标的统一表达式。
第17页,共43页。
本节课总结:
[1]极坐标系的建立需确定几条?
极点;极径;长度单位和角度正方向。
根据极径定义,极径是距离,当然是正的。 现在所说的“负极径”中的“负”到底是什么 意思?
有比较才能有鉴别!
把负极径时点的确定过程,与正极径时点的确 定过程相比较,看看有什么相同,有什么不同?
第21页,共43页。
五、4、正、负极径时,点的确定过程比较
画出点 (3,/4) 和(-3,/4)
M
[1]作射线OP,使XOP= /4
想一想?
极点(0,)( R) 即极点有无数个极坐标
①平面上一点的极坐标是否唯一?
②若不唯一,那有多少种表示方法? ③坐标不唯一是由谁引起的?
④不同的极坐标是否可以写出统一表达式?
第13页,共43页。
三、点的极坐标的表达式的研究
如图:OM的长度为4,
请说出点M的极坐标的其他 4
表达式。
O 思:这些极坐标之间有何异同?
就叫做M的极坐标。
O X
特别强调:表示线段OM的长度,既点M到极 点O的距离;表示从OX到OM的角度,既以OX (极轴)为始边,OM 为终边的角。
第11页,共43页。
题组一:说出下图中各点的极坐标
2
4
5
6

高中新课程数学(新课标人教A版)选修4-4《1.2.1极坐标系的的概念》课件2

高中新课程数学(新课标人教A版)选修4-4《1.2.1极坐标系的的概念》课件2

2 + y2 x ρ =________
2
y tan θ =x(x≠0)
在一般情况下,由tan θ确定角时,可根据点M所在的象限
取最小正角.
课前自主学习
课堂讲练互动
知能提升演练
教材超级链接
名师点睛
1.极坐标系的概念
极坐标系的建立有四个要素:①极点;②极轴;③长
度单位;④角度单位和它的正方向.四者缺一不可. 极坐标系就是用长度和角度来确定平面内点的位置. 2.点的极坐标:每一个有序实数对(ρ,θ)确定一个点的 位置.其中,ρ是点M的极径,θ是点M的极角. 平面上给定一点,可以写出这个点的无数多个极坐 标.根据点的极坐标(ρ,θ)的定义,对于给定的点 (ρ,θ)有无数个极坐标,可分为两类,一类为(ρ,θ+
知能提升演练
教材超级链接
(2)极坐标系内一点的极坐标的规定: 设M是平面内一点,极点O与点M的距离 极径 ,记为ρ;以极轴Ox |OM|叫做点M的_____
为始边,射线OM为终边的角xOM叫做点
(ρ,θ) 叫做点M的极坐标,记 极角 ,记为θ.有序数对_________ M的_____ M(ρ,θ) 为___________ .
极角θ在后,不能把顺序搞错了. (2)点的极坐标是不唯一的,但若限制ρ>0,0≤θ<2π,则除
极点外,点的极坐标是唯一确定的.
课前自主学习
课堂讲练互动
知能提升演练
教材超级链接
【变式1】 写出下列各点的极坐标.

π A(4,0),B1, 3
2 13 5 C3, π ,D4, π ,E2, π , , 3 12 4
对应关系?
定一点M;反过来,给定平面内一点M,它的极坐标却不是唯 一的.所以极坐标系所在平面内的点与极坐标不能建立一一 对应关系,这是极坐标系与平面直角坐标系的主要区别.

2019-2020年高中数学极坐标系的概念教案新课标人教版选修4-4(A)

2019-2020年高中数学极坐标系的概念教案新课标人教版选修4-4(A)

2019-2020年高中数学极坐标系的概念教案新课标人教版选修4-4(A)一、教学目标1.理解极坐标的概念,了解极坐标平面上的点与极坐标间的对应关系.2.会根据极坐标描点和根据点写极坐标,能认识同一点的各种极坐标.二、教材分析1.重点:极坐标系概念及其四要素.2.难点:点与极坐标的对应关系,一点对应的极坐标的通式.3.疑点:ρ<0时点与极坐标的关系,广义极坐标与狭义极坐标.三、教学过程(一)复习引入数学研究的对象是数量关系和空间形状.对空间形状的研究,最先是欧几里德所建立的一套公理定理逻辑体系,后来笛卡尔创立了解析几何学.在平面解析几何里,直角坐标系的建立,成功地把点与数联系起来了,这样就可以用数对来确定点在平面上的位置.请大家回忆,直角坐标系与直角坐标的概念和直角坐标平面上点与点的直角坐标之间的关系.学生1答:直角坐标系是两条互相垂直且相交于原点的数轴,要素是原点、单位、方向、横纵轴.点与坐标的对应关系是点的横坐标与纵坐标、点与有序实数对集合中的元素成一对一关系.(二)新课讲解P9思考引入1.定义上面的一个“距离”和一个“角度”就可以确定一个点P在平面上的位置,但这是有基础和背景作前提的,请讨论,有哪些前提?(1)基点:O;(2)方向:东;(3)长度单位;(4)角的始边和方向(东偏北)单位(度).把上述前提条件抽象成数学语言,就是:在平面内取一个定点O叫极点,引一条射线Ox叫极轴,规定长度单位、角的单位和正方向(逆时针方向为正),就构成一个极坐标系(图3-14).极坐标系的四要素:(1)极点;(2)极轴;(3)长度单位;(4)角的单位和正方向.对于平面上任一点P,用ρ表示OM的长度,叫极径,θ表示以Ox为始边、OM为终边的角(有方向有正负),叫极角,则有序实数对(ρ,θ)叫点P的极坐标,记作P(ρ,θ).2.例题讲解例1(1)写出A、B、C、D、E、F、G各点的极坐标.(五)广义的极坐标和狭义极坐标在一般情况下,ρ≥0,但在某些必要情况下,允许ρ<0.ρ<0时,P(ρ,θ).按如下规则确定(图3-16):(1)作∠xOP′=θ,(2)在P′O延长线上取|OP′|=|p|.在极坐标系中,作出下列点的极坐标:由此,我们来看极坐标平面上的点与极坐标对应关系:一个极坐标对应唯一个点;一个点对应无穷多个极坐标.设 P(ρ,θ),则其所有极坐标是P(ρ,2kπ+θ)或P(-ρ,2kπ+θ+π),k∈Z.那么可否限定ρ与θ的取值范围,使点与极坐标成一对一关系?请对下列情况进行判断:(1)ρ≥0,0≤θ<2π(除原点外成一对一);(2)ρ>0,0≤θ<2π(除原点外成一对一);(3)ρ>0,-π<θ<π(x轴负向及原点无坐标);(4)ρ<0,-π<θ≤π(除原点外成一对一);(5)ρ>0,-π≤θ<π(除原点外成一对一).显然,答案是肯定的.特别说明,教材规定,今后除特殊说明外,一般认为ρ≥0,除非说明了允许ρ<0,才考虑ρ<0的情况.但ρ≥0而未限定θ范围,仍是一坐标对一点,一点对无穷多个坐标.这就是极坐标系在某些方面比直角坐标系复杂一些的原因所在.(六)扩展在建立直角坐标系后,曾详细研究过两点间距离的问题,在极坐标中两点P1(ρ1,Q1),P2(ρ2,Q2)两点间的距离P1P2|=(七)小结(1)极坐标系四要素.(2)点与极坐标对应关系,同一点的极坐标通式.(3)极坐标系下两点间的距离公式.五、布置作业1.教材第12页第1题、第2题、第3题.2019-2020年高中数学柱、锥、台、球的结构特征教案新课标人教版必修2(A)一、教学目标1.知识与技能(1)通过实物操作,增强学生的直观感知。

高中数学《4.1.2 极坐标系(1)》教案 新人教A版选修4-4

高中数学《4.1.2 极坐标系(1)》教案 新人教A版选修4-4

江苏省西亭高级中学高中数学选修4-4《4.1.2 极坐标系(1)》教案教学目标:1.理解极坐标的概念,弄清极坐标系的结构(建立极坐标系的四要素);2.理解广义极坐标系下点的极坐标(ρ,θ)与点之间的多对一的对应关系;3.已知一点的极坐标会在极坐标系中描点,以及已知点能写出它的极坐标,体会在极坐标系和平面直角坐标系中刻画点的位置的区别,能进行极坐标和直角坐标的互化.教学重点:极坐标系的理解与应用.教学难点:极坐标系的概念.教学过程:一、问题情境:军舰巡逻在海面上,发现前方有一群水雷,如何确定它们的位置以便将它们引爆?问题1:如何刻画一个几何图形的位置?如何创建坐标系?问题2:为了简便地表示上述问题中点的位置,应创建怎样的坐标系呢?如何刻画这些点的位置?练习如图是某校园的平面示意图.假设某同学在教学楼处,请回答下列问题:1.他向东偏北60°方向走120m后到达什么位置?该位置惟一确定吗?2.如果有人打听体育馆和办公楼的位置,他应如何描述?二、探究新知:思考:右图是某校园的平面示意图,假设某同学在教学楼处,请回答下列问题:你会怎样描述图书馆.体育馆.办公楼.实验楼的相对位置?这些描述的对应位置是否惟一确定?(2)他向东偏北60°方向走120m后到达什么位置?该位置惟一确定吗?(3)如果有人打听体育馆和办公楼的位置,他应如何描述?探究结果:(1)方位描述与直角坐标描述,位置是惟一确定.(2)到达图书馆,该位置惟一确定.(3)正东方向60m处与西北方向50m处.重点在于加强直角坐标系中的有序实数对表示点的坐标,为极坐标系的引入奠定基础.三、建构数学:(一)极坐标系的建立:在平面内取一个定点O ,叫做极点.引一条射线OX ,叫做极轴.再选定一个长度单位和角度单位及它的正方向(通常取逆时针方向).这样就建立了一个极坐标系.(二)极坐标的表示与注意点:对于平面上任意一点M ,用ρ表示线段OM 的长度,用θ表示从OX 到OM 的角度,ρ叫做点M 的极径,θ叫做点M 的极角,有序数对(ρ,θ)就叫做M 的极坐标.特别强调:ρ表示线段OM 的长度,即点M 到极点O 的距离;θ表示从OX 到OM 的角度,即以OX (极轴)为始边,OM 为终边的角.特别强调:由极径的意义可知ρ≥0;当极角θ的取值范围是[0,2π)时,平面上的点(除去极点)就与极坐标(ρ,θ)建立一一对应的关系 .们约定,极点的极坐标是极径ρ=0,极角是任意角.③负极径的规定在极坐标系中,极径ρ允许取负值,极角θ也可以取任意的正角或负角.当ρ<0时,点M (ρ,θ)位于极角终边的反向延长线上,且OM=ρ.M (ρ,θ)也可以表示为))12(,()2,(πθρπθρ++-+k k 或 )(z k ∈四、数学应用:例1 写出下图中各点的极坐标:例2 在极坐标系中,1.已知两点P (5,45π),Q )4,1(π,求线段PQ 的长度; 2.已知M 的极坐标为(ρ,θ)且θ=3π,ρR ∈, 说明满足上述条件的点M 的所组成的图形.变式训练1.若ABC ∆的的三个顶点为.),67,3(),65,8(),25,5(判断三角形的形状πππC B A 2.若A .B 两点的极坐标为),(),,(2211θρθρ求AB 的长以及AOB ∆的面积.(O 为极点)例3.已知Q (ρ,θ),分别按下列条件求出点P 的极坐标.⑴P 是点Q 关于极点O 的对称点;⑵P 是点Q 关于直线2πθ=的对称点;⑶P 是点Q 关于极轴的对称点.变式训练:1.在极坐标系中,与点)6,8(π-关于极点对称的点的一个坐标是 . )6,8(),65,8(),65,8(),6,8(ππππ----D C B A 2在极坐标系中,如果等边ABC ∆的两个顶点是),45,2(),4,2(B A π求第三个顶点C 的坐标. 五、课堂练习:1.已知直角三角形两条直角边的长分别为6和8,选择两种不同的坐标系,表示它的顶点及外心的坐标.2.建立极坐标系,并画出点,6,4⎪⎭⎫ ⎝⎛πA ())32,3(,,1,3,5,45,3,2,2πππππ--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛F E D C B 3.在极坐标系中,已知⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛67,5,32,3,6,4,6,4ππππD C B A ,则AB=_________,AC=____________,AD=___________,BC=___________,BD=_____________.4.设点⎪⎭⎫ ⎝⎛3,2πA ,直线l 为过极点且垂直于极轴的直线,分别求点A 关于极轴.直线l .极点的对称点的极坐标(限定(]ππθρ,,0-∈>).5.(2006年上海高考题)在极坐标系中,设O 是极点,A .B 两点的极 坐标分别是(4,)3π.5(5,)6π-,则⊿OAB 的面积是 . 6.在极坐标系中,已知两点2(3,),(1,)33A B ππ-,求A ,B 两点间的距离. 7.在极坐标系中,已知1122(,),(,)A B ρθρθ12(0,0)ρ>ρ>,求⊿AOB 的面积.六.回顾小结:1.建立一个极坐标系需要哪些要素:极点;极轴;长度单位;角度单位和它的正方向.2.极坐标系内一点的极坐标有多少种表达式?无数种.是因为极角引起的.3.一点的极坐标有否统一的表达式?有.(ρ,2k π+θ)七.课后作业:。

人教版高中数学选修4-4《1.2 极坐标系》

人教版高中数学选修4-4《1.2 极坐标系》

过程与方法
1.通过合作探究体 会数形结合、类比 的数学思想方法;
2.培养学生观察、 分析、比较和归纳 的能力; 3.培养学生从实际 情境中提出问题、 解决问题的能力。
情感态度与价值观
1.用生活实例,类比 直角坐标系,体会极 坐标系的好处,感觉 数学源于生活应用于 生活;逐步认识数学 的科学价值、应用价 值;
生 成
提 升
观察 思考
类比 归纳
合作 交流
展示 自我
教学过程 Add Your Text
概念 生成 情境 引入 定义 诠释
小结 自述
新知 应用
一、情景引入
观察员如何描述狙击目标的位置?
一、情景引入
观察员如何描述?狙击手如何操作?
一、情景引入
一点钟方向
距离485
二、生成概念
( ρ,ѳ ) P
2.探究、自述小结方 式激发学生学习兴趣
教学重点 类比直角 坐标系, 合作探究
教学 重点
1极坐标 概念的生 成与诠释 2与直角 坐标的互 化
教学难点
教学 难点
通过实例 以问题启发
极坐标的 多值性
教法学法
情景 设疑 启发 引导 探 究 经 历 典例 剖析 巩 固 化 解 点拨 释疑 深 化
实 例
极坐标系
说课内容
教材分析 学情分析 目标分析 教学策略 教学过程 教学反思
教材分析
极坐标系
代数
坐标系
几何
平面直角坐标系
通过实例、类比思想,帮助学生理解 极坐标系的概念;
教学内容
通过自主探究完成极坐标系的建立, 能用极坐标刻画点的位置 完成与直角坐标的互化
为后面学习简单曲线的极坐标方程奠定基础

人教A版2019年高中数学选修4-4教学案: 第一讲 第2节 极坐标系_含答案

人教A版2019年高中数学选修4-4教学案: 第一讲 第2节 极坐标系_含答案

[核心必知]1.极坐标系的概念 (1)极坐标系的建立在平面内取一个定点O ,叫做极点,自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.(2)点的极坐标设M 是平面内一点,极点O 与点M 的距离|OM |叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的角xOM 叫做点M 的极角,记为θ.有序数对(ρ,θ)叫做点M 的极坐标,记作M (ρ,θ).一般地,不作特殊说明时,我们认为ρ≥0,θ可取任意实数. 2.极坐标与直角坐标的互化 (1)互化的前提条件①极坐标系中的极点与直角坐标系中的原点重合;②极轴与x 轴的正半轴重合;③两种坐标系取相同的长度单位.(2)互化公式⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ; ⎩⎪⎨⎪⎧ρ2=x 2+y 2,tan θ=yx (x ≠0)W. [问题思考]1.平面上的点与这一点的极坐标是一一对应的吗?为什么?提示:不是.在极坐标系中,与给定的极坐标(ρ,θ)相对应的点是唯一确定的;反过来,同一个点的极坐标却可以有无穷多个.如一点的极坐标是(ρ,θ)(ρ≠0),那么这一点也可以表示为(ρ,θ+2n π)或(-ρ,θ+(2n +1)π)(其中n ∈Z ).2.若ρ>0,0≤θ<2π,则除极点外,点M (ρ,θ)与平面内的点之间是否是一一对应的?提示:如果我们规定ρ>0,0≤θ<2π,那么除极点外,平面内的点可用唯一的极坐标(ρ,θ)来表示,这时,极坐标与平面内的点之间就是一一对应的关系.3.若点M 的极坐标为(ρ,θ),则M 点关于极点、极轴、过极点且垂直于极轴的直线的对称点的极坐标是什么?提示:设点M 的极坐标是(ρ,θ),则M 点关于极点的对称点的极坐标是(-ρ,θ)或(ρ,θ+π);M 点关于极轴的对称点的极坐标是(ρ,-θ);M 点关于过极点且垂直于极轴的直线的对称点的极坐标是(ρ,π-θ)或(-ρ,-θ).已知定点P ⎝⎛⎭⎫4,π3.(1)将极点移至O ′⎝⎛⎭⎫23,π6处极轴方向不变,求P 点的新坐标;(2)极点不变,将极轴顺时针转动π6角,求P 点的新坐标.[精讲详析] 本题考查极坐标系的建立及极坐标的求法.解答本题需要根据题意要求建立正确的极坐标系,然后求相应的点的极坐标.(1)设P 点新坐标为(ρ,θ),如图所示,由题意可知|OO ′|=23, |OP |=4,∠POx =π3,∠O ′Ox =π6,∴∠POO ′=π6.在△POO ′中,ρ2=42+(23)2-2·4·23·cos π6=16+12-24=4,∴ρ=2. 即|O ′P |=2.∴|OP |2=|OO ′|2+|O ′P |2,∠OO ′P =π2.∴∠OPO ′=π3.∴∠OP ′P =π-π3-π3=π3.∴∠PP ′x =2π3.∴∠PO ′x ′=2π3.∴P 点的新坐标为(2,2π3).(2)如图,设P 点新坐标为(ρ,θ),则ρ=4,θ=π3+π6=∴P 点的新坐标为(4,π2).—————————————建立极坐标系的要素是(1)极点;(2)极轴;(3)长度单位;(4)角度单位和它的正方向.四者缺一不可.极轴是以极点为端点的一条射线,它与极轴所在的直线是有区别的;极角θ的始边是极轴,它的终边随着θ的大小和正负而取得各个位置;θ的正方向通常取逆时针方向,θ的值一般是以弧度为单位的量数;点M 的极径ρ表示点M 与极点O 的距离|OM |,因此ρ≥0;但必要时,允许ρ<0.1.边长为a 的正六边形的一个顶点为极点,极轴通过它的一边,求正六边形各顶点坐标.解:由点的极坐标的定义可知,正六边形各顶点的极坐标分别为:(0,0)、(a ,0)、(3a ,π6)、(2a ,π3)、(3a ,π2)、(a ,23π)或(0,0)、(a ,0)、(3a ,-π6)、(2a ,-π3)、(3a ,-π2)、(a ,-23π).若以极点为原点,极轴为x 轴正半轴建立直角坐标系. (1)已知点A 的极坐标⎝⎛⎭⎫4,5π3,求它的直角坐标;(2)已知点B 和点C 的直角坐标为(2,-2)和(0,-15),求它们的极坐标.(ρ>0,0≤θ<2π)[精讲详析] 本题考查极坐标和直角坐标的互化.解答此题只需将已知条件代入相关公式即可.(1)∵x =ρcos θ=4·cos 5π3=2. y =ρsin θ=4sin5π3=-2 3. ∴A 点的直角坐标为(2,-23). (2)∵ρ=x 2+y 2=22+(-2)2=22, tan θ=-22=-1.且点B 位于第四象限内, ∴θ=7π4.∴点B 的极坐标为(22,7π4).又∵x =0,y <0,ρ=15, ∴点C 的极坐标为(15,3π2).(1)将极坐标(ρ,θ)化为直角坐标(x ,y )的公式是:x =ρcos θ,y =ρsin θ;(2)将直角坐标(x ,y )化为极坐标(ρ,θ)的公式是:ρ2=x 2+y 2,tan θ=yx (x ≠0),在利用此公式时要注意ρ和θ的取值范围.2.(1)把点M 的极坐标⎝⎛⎭⎫8,2π3化成直角坐标;(2)把点P 的直角坐标(6,-2)化成极坐标.(ρ>0,0≤θ<2π) 解:(1)x =8cos 2π3=-4, y =8sin2π3=43, 因此,点M 的直角坐标是(-4,43). (2)ρ=(6)2+(-2)2=22, tan θ=-26=-33,又因为点在第四象限,得θ=116π.因此,点P 的极坐标为(22,11π6).在极坐标系中,已知A ⎝⎛⎭⎫3,-π3,B ⎝⎛⎭⎫1,23π,求A 、B 两点之间的距离. [精讲详析] 本题考查极坐标与直角坐标的互化、极坐标系中两点间的距离公式.解答此题可直接利用极坐标系中两点间的距离公式求解,也可以先将极坐标化为直角坐标,然后利用两点间的距离公式求解.法一:由A (3,-π3)、B (1,2π3)在过极点O 的一条直线上,这时A 、B 两点的距离为|AB |=3+1=4,所以,A 、B 两点间的距离为4.法二:∵ρ1=3,ρ2=1,θ1=-π3,θ2=2π3,由两点间的距离公式得|AB |=ρ21+ρ22-2ρ1ρ2cos (θ1-θ2)=32+12-2×3×1×cos (-π3-23π)=10-6cos π =10+6 =16 =4.法三:将A (3,-π3),B (1,2π3)由极坐标化为直角坐标,对于A (3,-π3)有x =3cos (-π3)=32,y =3sin(-π3)=-332,∴A (32,-332).对于B (1,2π3)有x =1×cos 2π3=-12,y =1×sin2π3=32, ∴B (-12,32).∴|AB |=(32+12)2+(-332-32)2=4+12=4. ∴AB 两点间的距离为4.对于这类问题的解决方法,可以直接用极坐标内两点间的距离公式d =ρ21+ρ22-2ρ1ρ2cos (θ1-θ2)求得;也可以把A 、B 两点由极坐标化为直角坐标,利用直角坐标中两点间的距离公式d =(x 1-x 2)2+(y 1-y 2)2求得;极坐标与直角坐标的互化体现了化归的解题思想;还可以考虑其对称性,根据对称性求得.3.在极坐标系中,如果等边三角形的两个顶点是A ⎝⎛⎭⎫2,π4,B ⎝⎛⎭⎫2,54π,则求第三个顶点C 的坐标.解:由题设知,A 、B 两点关于极点O 对称,又|AB |=4,由正三角形的性质知,|CO |=23,∠AOC =π2,从而C 的极坐标为(23,34π)或(23,-π4).极坐标与直角坐标的互化在高考模拟中经常出现.本考题将极坐标与直角坐标的互化同极坐标系中两点间的距离和简单的三角恒等变换相结合考查,是高考模拟命题的一个新亮点.[考题印证]已知极坐标系中,极点为O ,将点A (4,π6)绕极点逆时针旋转π4得到点B ,且|OA |=|OB |,则点B 的直角坐标为________.[命题立意] 本题主要考查点的极坐标的求法以及直角坐标与极坐标的转化. [解析] 依题意,点B 的极坐标为(4,5π12),∵cos 5π12=cos (π4+π6)=cos π4cos π6-sin π4·sin π6=22·32-22·12=6-24, sin 5π12=sin (π4+π6)=sin π4cos π6+cos π4·sin π6=22·32+22·12=6+24, ∴x =ρcos θ=4×6-24=6-2, y =ρsin θ=6+ 2.∴点B 的直角坐标为(6-2,6+2). [答案] (6-2,6+2)一、选择题1.在极坐标系中,点M ⎝⎛⎭⎫-2,π6的位置,可按如下规则确定( )A .作射线OP ,使∠xOP =π6,再在射线OP 上取点M ,使|OM |=2 B .作射线OP ,使∠xOP =7π6,再在射线OP 上取点M ,使|OM |=2 C .作射线OP ,使∠xOP =7π6,再在射线OP 的反向延长线上取点M ,使|OM |=2 D .作射线OP ,使∠xOP =-π6,再在射线OP 上取点M ,使|OM |=2解析:选B 当ρ<0时,点M (ρ,θ)的位置按下列规定确定:作射线OP ,使∠xOP =θ,在OP 的反向延长线上取|OM |=|ρ|,则点M 就是坐标(ρ,θ)的点.2.在极坐标平面内,点M ⎝⎛⎭⎫π3,200π,N ⎝⎛⎭⎫-π3,201π,G ⎝⎛⎭⎫-π3,-200π,H ⎝⎛⎭⎫2π+π3,200π中互相重合的两个点是( )A .M 和NB .M 和GC .M 和HD .N 和H 解析:选A 由极坐标定义可知,M 、N 表示同一个点.3.若ρ1+ρ2=0,θ1+θ2=π,则点M 1(ρ1,θ1)与点M 2(ρ2,θ2)的位置关系是( ) A .关于极轴所在直线对称 B .关于极点对称C .关于过极点垂直于极轴的直线对称D .两点重合解析:选A 因为点(ρ,θ)关于极轴所在直线对称的点为(-ρ,π-θ).由此可知点 (ρ1,θ1)和(ρ2,θ2)满足ρ1+ρ2=0,θ1+θ2=π,是关于极轴所在直线对称. 4.已知极坐标平面内的点P ⎝⎛⎭⎫2,-5π3,则P 关于极点的对称点的极坐标与直角坐标分别为( )A.⎝⎛⎭⎫2,π3,(1,3)B.⎝⎛⎭⎫2,-π3,(1,-3)C.⎝⎛⎭⎫2,2π3,(-1,3)D.⎝⎛⎭⎫2,-2π3,(-1,-3)解析:选D 点P (2,-5π3)关于极点的对称点为(2,-5π3+π),即(2,-2π3),且x =2cos (-2π3)=-2cos π3=-1,y =2sin (-2π3)=-2sin π3=- 3.二、填空题5.限定ρ>0,0≤θ<2π时,若点M 的极坐标与直角坐标相同,则点M 的直角坐标为________.解析:点M 的极坐标为(ρ,θ),设其直角坐标为(x ,y ),依题意得ρ=x ,θ=y , 即x 2+y 2=x 2. ∴y =θ=0,ρ>0,∴M (ρ,0). 答案:(ρ,0)6.已知极坐标系中,极点为O ,0≤θ<2π,M ⎝⎛⎭⎫3,π3,在直线OM 上与点M 的距离为4的点的极坐标为________.解析:如图所示,|OM |=3,∠xOM =π3,在直线OM 上取点P 、Q ,使|OP |=7,|OQ |=1,∠xOP =π3,∠xOQ =4π3,显然有|PM |=|OP |-|OM |=7-3=4,|QM |=|OM |+|OQ |=3+1=4.答案:(7,π3)或(1,4π3)7.直线l 过点A ⎝⎛⎭⎫3,π3,B ⎝⎛⎭⎫3,π6,则直线l 与极轴夹角等于________.解析:如图所示,先在图形中找到直线l 与极轴夹角(要注意夹角是个锐角),然后根据点A ,B 的位置分析夹角大小.因为|AO |=|BO |=3, ∠AOB =π3-π6=π6,所以∠OAB =π-π62=5π12.所以∠ACO =π-π3-5π12=π4.答案:π48.已知点M 的极坐标为(5,θ),且tan θ=-43,π2<θ<π,则点M 的直角坐标为________.解析:∵tan θ=-43,π2<θ<π,∴cos θ=-35,sin θ=45.∴x =5cos θ=-3,y =5sin θ=4. ∴点M 的直角坐标为(-3,4). 答案:(-3,4) 三、解答题9.设点A ⎝⎛⎭⎫1,π3,直线L 为过极点且垂直于极轴的直线,分别求出点A 关于极轴,直线L ,极点的对称点的极坐标(限定ρ>0,-π<θ≤π)解:如图所示:关于极轴的对称点为 B (1,-π3)关于直线L 的对称点为C (1,2π3).关于极点O 的对称点为D (1,-2π3).10.已知点P 的直角坐标按伸缩变换⎩⎨⎧x ′=2x ,y ′=3y变换为点P ′(6,-3),限定ρ>0,0≤θ≤2π时,求点P 的极坐标.解:设点P 的直角坐标为(x ,y ),由题意得⎩⎨⎧6=2x -3=3y ,解得⎩⎨⎧x =3,y =- 3.∴点P 的直角坐标为(3,-3).ρ=32+(-3)2=23,tan θ=-33,∵0≤θ<2π,点P 在第四象限, ∴θ=11π6.∴点P 的极坐标为(23,11π6). 11.在极轴上求与点A ⎝⎛⎭⎫42,π4的距离为5的点M 的坐标. 解:设M (r ,0),因为A (42,π4), 所以 (42)2+r 2-82r ·cos π4=5. 即r 2-8r +7=0.解得r =1或r =7.所以M 点的坐标为(1,0)或(7,0).。

人教课标版高中数学选修4-4:《极坐标系》教案-新版

人教课标版高中数学选修4-4:《极坐标系》教案-新版

1.2 极坐标系一、教学目标(一)核心素养通过这节课学习,认识极坐标系、能在极坐标系下用极坐标表示点的位置,会进行极坐标和直角坐标的互化,在直观想象、数学抽象中感受极坐标的特点.(二)学习目标1.通过实例,认识极坐标系,体会用极坐标表示点的特点.2.了解用极坐标系表示点的不唯一性.3.能进行极坐标系与平面直角坐标系的互化,体会在极坐标系和平面直角坐标系中刻画点的位置的区别.(三)学习重点1.认识极坐标系的重要性.2.用极坐标刻画点的位置.3.会进行极坐标与直角坐标的互化.(四)学习难点1.理解用极坐标刻画点的位置的基本思想.2.认识点与极坐标之间的对应关系.二、教学设计(一)课前设计1.预习任务(1)读一读:阅读教材第8页至第11页,填空:极坐标系的建立:在平面内取一个定点O,叫做极点;自极点O引一条射线Ox,叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.极坐标系内一点的极坐标的规定:设M是平面内一点,极点O与点M的距离OM叫做点M的极径,记为ρ;以极轴Ox为始边,射线OM为终边的角xOM叫做点M的极角,记ρ叫做点M为θ.有序数对),(θρ,θ可取任意实数.为0≥(2)想一想:点与极坐标有什么关系?一般地,极坐标),(θρ与)2,(πθρk +)(Z k ∈表示同一个点.特别地,极点O 的坐标为))(,0(R ∈θθ.如果规定πθρ20,0<≤>,那么除极点外,平面内的点可用惟一的极坐标),(θρ表示;同时,极坐标),(θρ表示的点也是惟一确定的. (3)写一写:极坐标系与直角坐标系如何转化?把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,并在两种坐标系中取相同的单位长度.设M 是平面内任意一点,它的直角坐标是),(y x ,极坐标是),(θρ,则:=x θρcos , =y θρsin=2ρ22y x +, =θtan )0(≠x xy2.预习自测(1)在极坐标系中,下列各点中与)3,2(π表示的不是同一个点的是( )A .)35,2(π-B .)37,2(πC .)35,2(πD .)313,2(π 【知识点】极坐标系【解题过程】由于极坐标),(θρ与)2,(πθρk +)(Z k ∈表示同一个点,检验得,选项C 不是同一个点【思路点拨】根据点的极坐标定义代入验证可得 【答案】C(2)已知点A 的直角坐标为)2,0(,则点A 的极坐标为( )A .)2,2(πB .)0,2(C .)2,2(πD .)2,2(π-【知识点】极坐标与直角坐标互化【解题思路】根据极坐标与直角坐标互化公式可得:22022=+=ρ,显然2πθ=【思路点拨】由极坐标与直角坐标互化可得 【答案】A(3)已知点M 的极坐标为)4,3(π,则点M 的直角坐标为( )A .)3,3(B .)223,223(C .)233,23( D .)33,3( 【知识点】极坐标与直角坐标互化【解题思路】根据极坐标与直角坐标互化公式可得:223sin ,223cos ====θρθρy x 【思路点拨】由极坐标与直角坐标互化可得 【答案】B(4)已知A 、B 两点极坐标为)32,6(),3,4(ππ-B A ,则线段AB 中点的极坐标为________.【知识点】极坐标与直角坐标互化、中点坐标公式【解题过程】 将A,B 两点化为直角坐标得 )33,3(),32,2(--B A ,所以中点的直角坐标为)23,21(--,化为极坐标得)34,1(π【思路点拨】先化为直角坐标,利用在直角坐标系下的中点坐标公式求出中点,再化为极坐标 【答案】)34,1(π(二)课堂设计 1.知识回顾(1)平面直角坐标系中的点P 与坐标(a ,b)是一一对应的. 2.问题探究探究一 结合实例,认识极坐标系★ ●活动① 提出问题,创设情境如右图1是某校园教学平面示意图,假设某同学在教学楼处,请回答下列问题: (1)他向东偏北 60方向走m 120后到达什么位置?该位置唯一确定吗?(2)如果有人打听体育馆和办公楼的位置,他应如何描述? (学生回答)(1) 他向东偏北 60方向走m 120后到达是点C 图书馆的位置,该位置唯一确定.(2)如果去体育馆向正东方向走m 60,去办公楼向北偏西图145走m 50.上面刻画位置是以A 作为基点,并以射线AB 为参照方向,然后利用与A 距离和与AB 所成角度来描述位置,例如“东偏北 60,距离m 120”,即利用“距离”和“角度”来刻画平面上点的位置.在上一节中,我们用“在信息中心的西偏北 45方向,距离m 10680处”描述了巨响的位置.即以信息中心为基点,以正西方向为参照,用与信息中心的距离与正西方向所成的角来刻画巨响的位置.有时候它比直角坐标更方便,在现实生活中,有很多的应用,例如台风预报,地震预报,测量、航空、航海中主要采用这种方法.【设计意图】从生活实例到数学问题,引入学习极坐标系概念的必要性,形成用角和距离刻画点的位置的直觉.●活动② 互动交流,类比提炼概念我们类比建立平面直角坐标系的过程,怎样建立用距离与角度确定平面上点的位置的坐标系?(学生讨论交流)平面直角坐标系的建立是在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称直角坐标系.通常,两条数轴分别置于水平位置与垂直位置,取向右与向上的方向分别为两条数轴的正方向.水平的数轴叫做x 轴或横轴,垂直的数轴叫做y 轴或纵轴,它们的公共原点O 称为直角坐标系的原点,以点O 为原点的平面直角坐标系记作平面直角坐标系xOy .类比上述过程,我们在平面内取一个定点O ,叫做极点;自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.极坐标建立后,如何来定义平面中的点的极坐标呢? 如右图2,设M 是平面内一点,极点O 与点M 的距离OM 叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的角xOM 叫做点M 的极角,记为θ.有序数对),(θρ叫做点M 的极坐标,记为M ),(θρ.一般地,不作特殊说明时,我们认为0≥ρ,θ可取任意实数.【设计意图】从特殊到特殊,类比得到极坐标系,让学生不会觉得极坐标系来得太突然,顺其图2B 自然得到点在极坐标系中的定义. ●活动③ 巩固基础,检查反馈 例1 在极坐标系里描出下列各点.)0,3(A ,)2,3(πB ,)34,5(πC ,)65,3(πD ,)35,6(πE【知识点】极坐标系的定义、点在极坐标系中的表示【数学思想】数形结合【解题过程】根据点在极坐标的表示,ρ表示的是点到极点的距离,θ表示射线与极轴所成的角,所以个点在极坐标的位置如图. 【思路点拨】欲确定点的位置,需先确定ρ和θ的值. 【答案】如右图.同类训练 在右图3的极坐标系中描出下列点的位置:)4,3(πF ,),4(πG【知识点】极坐标系的定义、点在极坐标系中的表示【数学思想】数形结合【解题过程】根据点在极坐标的表示,ρ表示的是点到极点的距离,θ表示射线与极轴所成的角,所以个点在极坐标的位置如图3.【思路点拨】欲确定点的位置,需先确定ρ和θ的值. 【答案】如右图3.探究二 探究点与极坐标的对应关系 ●活动① 认识差异、辨析极坐标系在图1中,用点E D C B A ,,,,分别表示教学楼,体育馆,图书馆,实验楼,办公楼的位置.建立适当的极坐标系,写出各点的极坐标.我们以点A 为极点,AB 所在的射线为极轴(单位长度为m 1),GFAD CE4πOx2π 65π π34π 35π图34πOx2π 65π π34π 35π x图4建立极坐标系,则E D C B A ,,,,的极坐标分别为)43,50(),2,360(),3,120(),0,60(),0,0(πππ建立极坐标系后,给定ρ和θ,就可以在平面内惟一确定点M ,反过来,给点平面内任意一点,也可以找到她的极坐标),(θρ.但是否和平面直角坐标系中的点和直角坐标一样,极坐标和点事一一对应的关系呢?【设计意图】通过对点的极坐标的认识,为后面点的极坐标不惟一做好铺垫. ●活动② 合作探究,解决问题我们来观察下列极坐标表示的点之间有何关系呢?)26,4(),46,4(),26,4(),6,4(πππππππ-++由终边相同的角的定义可知,上述极坐标表示的是同一个点,于是:一般地,极坐标),(θρ和))(2,(Z k k ∈+πθρ表示同一个点,所以,极坐标和直角坐标不同,平面内一个点的极坐标有无数种表示.特别地,极点O 的极坐标为))(,0(R ∈θθ如果我们规定πθρ20,0<≤>,那么除极点外,平面内的点可用惟一的极坐标),(θρ表示;同时,极坐标),(θρ表示的点也是惟一确定的.同类训练 在极坐标系中,写出下图中各点的极坐标(πθρ20,0<≤>)A (4,0)B ( )C ( )D ( ) F ( ) G ( ) 【知识点】极坐标系的定义、点在极坐标系中的表示 【数学思想】数形结合【解题过程】根据点A 的极坐标,可以得到其它点的极坐标)4,2(πB ,)2,3(πC ,)65,1(πD ,)34,6(πF ,)35,5(πG .【思路点拨】(1)写点的极坐标要注意顺序:极径ρ在前,极角θ在后,不能把顺序颠倒了. (2)点的极坐标是不惟一的,但若限制ρ>0,0≤θ<2π,则除极点外,点的极坐标是惟一确定的.【答案】)4,2(πB ,)2,3(πC ,)65,1(πD ,)34,6(πF ,)35,5(πG .【设计意图】通过辨析认识点的极坐标是不唯一的,加深对极坐标系的认识. 探究三 实现极坐标与直角坐标的互化★▲ ●活动① 归纳梳理、理解实质平面内的一个点既可以用直角坐标表示,也可以用极坐标来表示,那么这两种坐标之间有何联系呢?把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,如图5所示.设M 是平面内任意一点,它的直角坐标是),(y x ,极坐标是),(θρ,于是极坐标与直角坐标的互化公式如下:⎩⎨⎧==θρθρsin cos y x ⎪⎩⎪⎨⎧≠=+=)0(tan 222x x y y x θρ 这就是极坐标和直角坐标的互化公式. 【设计意图】得到直角坐标与极坐标之间的关系. 活动② 巩固基础,检查反馈例2 分别把下列点的极坐标化为直角坐标(1))6,2(π (2))2,3(π【知识点】极坐标与直角坐标互化. 【解题过程】(1)由cos 2cos36sin 2sin16x y πρθπρθ======所以点的极坐标)6,2(π化为直角坐标为)1,3(.图5(2)由cos 3cos02sin 3sin32x y πρθπρθ======所以点的极坐标)2,3(π化为直角坐标为)3,0(.【思路点拨】将点的极坐标),(θρ化为点的直角坐标),(y x 时,运用到求角θ的正弦值和余弦值,熟练掌握特殊角的三角函数值,灵活运用三角恒等变换公式是关键. 【答案】(1) )1,3( (2) )3,0(. 同类训练 分别把下列点的极坐标化为直角坐标(1))32,4(π(2)),(ππ 【知识点】极坐标与直角坐标互化. 【数学思想】【解题过程】(1)3232sin 4sin 232cos 4cos ===-===πθρπθρy x 所以点的极坐标)32,4(π化为直角坐标为)32,2(-.(2)由cos cos sin sin 0x y ρθπππρθππ===-===所以点的极坐标),(ππ化为直角坐标为)0,(π-.【思路点拨】将点的极坐标),(θρ化为点的直角坐标),(y x 时,运用到求角θ的正弦值和余弦值,熟练掌握特殊角的三角函数值,灵活运用三角恒等变换公式是关键. 【答案】(1) )32,2(- (2) )0,(π-.例3 已知点B 、C 的直角坐标为)2,2(-,)15,0(-,求它的极坐标(ρ>0,0≤θ<2π). 【知识点】极坐标与直角坐标互化.【解题过程】∵ρ=,22)2(22222=-+=y x +122tan -=-=θ,且点位于第四象限∴θ=47π,点B 的极坐标为(22,47π).又∵x =0,y <0,ρ=15,∴点C 的极坐标为(15,23π).【思路点拨】化点的直角坐标为极坐标时,一般取πθρ20,0<≤≥,即θ取最小正角,由tanθ=xy求θ时,还需结合在直角坐标系下点),(y x 所在的象限来确定θ的值. 【答案】B(22,47π) C(15,23π).同类训练 分别把下列点的直角坐标化为极坐标(限定ρ≥0,0≤θ<2π)(1) )3,3(; (2) )1,1(-- ;(3) )0,3(-. 【知识点】极坐标与直角坐标互化. 【数学思想】【解题过程】(1)333tan ,323)3(22===+=θρ 又因为点在第一象限,所以3πθ=.所以点)3,3(的极坐标为)3,32(π. (2)111tan ,2)1()1(22=--==-+-=θρ又因为点在第三象限,所以45πθ=.所以点)1,1(--的极坐标为)45,2(π.(3)30)3(22=+-=ρ,极角为π,所以点)0,3(-的极坐标为),3(π.【思路点拨】化点的直角坐标为极坐标时,一般取πθρ20,0<≤≥,即θ取最小正角,由tanθ=xy求θ时,还需结合在直角坐标系下点),(y x 所在的象限来确定θ的值. 【答案】(1))3,32(π (2))45,2(π(3)),3(π.【设计意图】巩固检查极坐标与直角坐标互化公式. 3.课堂总结 知识梳理(1)极坐标系的建立:在平面内取一个定点O ,叫做极点;自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.(2)极坐标系内一点的极坐标的规定:设M 是平面内一点,极点O 与点M 的距离OM 叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的角xOM 叫做点M 的极角,记为θ.有序数对),(θρ叫做点M 的极坐标,记为M ),(θρ.一般地,不作特殊说明时,我们认为0≥ρ,θ可取任意实数.(3)如果规定πθρ20,0<≤>,那么除极点外,平面内的点可用惟一的极坐标),(θρ表示;同时,极坐标),(θρ表示的点也是惟一确定的.(4)把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,如图所示.设M 是平面内任意一点,它的直角坐标是),(y x ,极坐标是),(θρ,于是极坐标与直角坐标的互化公式如下:⎩⎨⎧==θρθρsin cos y x ⎪⎩⎪⎨⎧≠=+=)0(tan 222x x y y x θρ 重难点归纳(1)极坐标系就是用长度和角度来确定平面内点的位置.极坐标系的建立有四个要素:①极点;②极轴;③长度单位;④角度单位和它的正方向.四者缺一不可.(2)写点的极坐标要注意顺序:极径ρ在前,极角θ在后,不能颠倒顺序(3)若两个坐标系符合三个前提条件:(1)极点与直角坐标系的原点重合; (2) 极轴与直角坐标系的x 轴的正半轴重合; (3) 两种坐标系的单位长度相同.则其相互转化:(三)课后作业 基础型 自主突破1.极坐标系中,点)1,2(πP 到极点的距离是( ) A .0 B .1 C .2 D .π2 【知识点】极坐标的定义.【解题过程】由极坐标定义)1,2(πP 已知πρ2=,故P 到极点的距离为2π. 【思路点拨】根据极坐标的定义进行判断. 【答案】D .2.下列各点中与极坐标)7,5(π表示同一个点的是( ).)0(tan ,222≠=+=x xyy x θρ 直角坐标),(y x M极坐标),(θρMθρθρsin ,cos ==y xA .(5,67π)B .(5,157π)C .(5,67π-)D .(5,7π-) 【知识点】点在极坐标系中的表示.【数学思想】 【解题过程】根据极坐标)7,5(π和))(27,5(Z k k ∈+ππ表示同一个点,取1=k ,得选项B . 【思路点拨】极坐标),(θρ和))(2,(Z k k ∈+πθρ表示同一个点.【答案】B .3.在直角坐标系中点()3,1-P ,则它的极坐标是A .⎪⎭⎫ ⎝⎛3,2πB .⎪⎭⎫ ⎝⎛34,2πC .⎪⎭⎫ ⎝⎛-3,2πD .⎪⎭⎫ ⎝⎛-34,2π 【知识点】极坐标与直角坐标互化. 【解题过程】因为313tan ,21)3(22-=-==+-=θρ,且点在第四象限,所以选C 【思路点拨】根据极坐标与直角坐标互化来求解.【答案】C .4.已知O 为极点,π23A ⎛⎫ ⎪⎝⎭, ,7π56B ⎛⎫- ⎪⎝⎭,,则AOB S ∆= ( ) A.2 B.3 C.4 D.5错误!未找到引用源。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020年高中数学 1.2《极坐标系》教案 新人教A 版选修4-4
【基础知识导学】
1. 极坐标系和点的极坐标
极点、极轴、长度单位、角度单位和它的方向构成极坐标系的四要素,缺一不可。

规定:当点M 在极点时,它的极坐标可以取任意值。

2. 平面直角坐标与极坐标的区别
在平面直角坐标系内,点与有序实数对(x ,y )是一一对应的,可是在极坐标系中,虽然一个有序实数对只能与一个点P 对应,但一个点P 却可以与无数多个有序实数对对应,极坐标系中的点与有序实数对极坐标
不是一一对应的。

3. 极坐标系中,点M 的极坐标统一表达式。

4. 如果规定,那么除极点外,平面内的点可用唯一的极坐标表示,同时,极坐标表示的点也是唯一确定的。

5. 极坐标与直角坐标的互化
(1) 互化的前提:①极点与直角坐标的原点重合;②极轴与X 轴的正方向重合;③两
种坐标系中取相同的长度单位。

(2) 互化公式,⎪⎩
⎪⎨⎧≠=+=0,tan 222x x y y x θρ。

【知识迷航指南】
【例1】 在极坐标系中,描出点,并写出点M 的统一极坐标。

【点评】点的统一极坐标表示式为,如果允许,还可以表示为。

【例2】已知两点的极坐标,则|AB|=______,AB 与极轴正方向所成的角为________.
解:根据极坐标的定义可得|AO|=|BO|=3,∠AOB=600,即∆AOB 为等边三角形,所以
|AB|=|AO|=|BO|=3, ∠ACX=
【点评】在极坐标系中我们没有定义两点间的距离,我们只要画出图形便可以得到结果.
【例3】化下列方程为直角坐标方程,并说明表示的曲线.
(1),(
(2)
X
【解】(1)根据极坐标的定义,因为,所以方程表示直线.
(2)因为方程给定的不恒为0,用同乘方程的两边得:
化为直角坐标方程为即,这是以(1,)为圆心,半径为的圆.
【点评】①若没有这一条件,则方程表示一条射线.
②极坐标方程化为直角坐标方程,方程两边同乘,使之出现2是常用的方法.
【解题能力测试】
1.已知点的极坐标分别为,,,,求它们的直角坐标。

1. 已知点的直角坐标分别为)32,2(),3
5,0(),3,3(---C B A ,求它们的极坐标。

3.已知点M 的极坐标为,下列所给出的四个坐标中不能表示点M 的坐标的是( )
4.点P 的直角坐标为,则点P 的极坐标为( )
【潜能强化训练】
1.在极坐标中,若等边∆ABC 的两个顶点是、,那么顶点C 的坐标可能是( )
2.在极坐标系内,点关于直线的对称点坐标为( )
A (3,0)
3.若是极坐标系中的一点,则).3
5,2()..38,2()..32,2(πππ-M R Q 四点中与P 重合的点有( ) A .1个 B 2个 C 3个 D 4个
4.极坐标方程表示的曲线是( )
A 余弦曲线
B 两条相交直线
C 一条射线
D 两条射线
5.极坐标系中,点A 的极坐标是,则 (1)点A 关于极轴对称的点是_______.
(2) 点A 关于极点对称的点的极坐标是___.
(3) 点A 关于直线的对称点的极坐标是________.(规定:
【知识要点归纳】
(1)要注意直角坐标与极坐标的区别,直角坐标系中平面上的点与有序实数对是一一对应的,在极坐标系中,平面上的点与有序实数对不是一一对应的,只有在规定,)的前提下才一一对应.在解题时要注意极坐标的多和表示形式.
(2)直角坐标与极坐标互化要注意互化的前提.若要判断曲线的形状,可先将极坐标方程化为
直角坐标方程,再判断.
二、坐标系
〔解题能力测试〕
1. A ( (((0,4)B C D --
2. 34))(4,).623
A B C π
ππ 3、A 、4、C 〔潜能强化训练〕
1、B
2、D
3、C
4、D 5(1) (2) (3)。

相关文档
最新文档