材料力学第二章
材料力学——第二章剪切
材料力学
练习2、在厚t=10毫米的钢板上冲出如图所 示的孔, 钢板的剪切极限应力为τ0=300MP a,求冲力P=?
R=50 100
材料力学
练习3、夹剪夹住直径为d=3毫米的铅丝,铅丝 的剪切极限应力为:τ0=100MPa,求力P=?
P
200
50
材料力学
§2-3 挤压的实用计算
铆钉在接触面上产生变形
F
bF
LL
材料力学
取一根杆为研究对象,受力分析
F/2
A Lb
剪切面
F
由剪切强度条件:
F/2
Fs F / 2 [ ]
A Lb
F
L 2b[ j ] 100mm
确定挤压面 由挤压强度条件:
jy
Fb Ajy
F /2
b
[
jy
]
F 2b[ jy ]
材料力学
钢板在接触面处的变形
材料力学
挤压: 连接件和被连接件在接触面上相互压紧.
挤压变形
P
铆钉与钢板在接触处相互压紧,在铆钉或 铆钉孔处因相互压紧而产生塑性变形;
挤压力:局部接触面上的总压力(外力);
或者挤压面上传递的力。
材料力学
挤压面:
两个构件之间相互接触的局部接触面,用 Abs 表示; 挤压面与外载荷垂直;
]
2 Pbs
h[ bs
]
2 64 10 240
103 (
m
)
53.3mm
L maxL1,L2 53.3mm
材料力学
例3 两矩形截面木杆,用两块钢板连接如图示。已知拉杆的 截面宽度 b=25cm,沿顺纹方向承受拉力F=50KN,木材的
材料力学第二章
钢拉杆
8.5m
解: ① 整体平衡求支反力 q
HA
RA
钢拉杆
8.5m
RB
X 0 HA 0 mB 0 RA 19.5kN
② 局部平衡求 轴力: q HC ③应力: RC
mC 0 N 26.3kN
HA
RA ④强度校核与结论: N
max
N 4P A d2
max 0 /2127.4/263.7MPa
127 .4 a (1cos 2a ) (1cos 60)95.5MPa 2 2
127 .4 a sin 2a sin6055.2MPa 2 2
0
0
§2-4 材料在拉伸和压缩时的力学性能 力学性能:材料在外力作用下表现的有关强度、变形方面的特性。 一、试验条件及试验仪器 1、试验条件:常温(20℃);静载(及其缓慢地加载); 标准试件。
由杆2的强度条件得
FN 2 A2 P A2 co sa P 8 8.6kN
(c) 确定许可载荷。 杆系的许可载荷必须同时满足1、2杆的强度要求,所以 应取上述计算中小的值,即许可载荷为[P]=88.6kN
L x A B
分析:
V ABDLBD;
P C
ABD N B / ; LBD h / sin 。
h
D
L x
XA
A
B
YA
NB
P
C
解: BD杆内力N( ): 取AC为研究对象,如图
mA 0 , (NBDsin ) (hctg ) Px
PL NBD hcos
遇到向左的P, 轴力N 增量为正; 遇到向右的P , 轴力N 增量为负。
材料力学第二章
拉伸和压缩是杆件基本受力与变形形式 中最简单的一种,所涉及的一些基本原理与方 法比较简单,但在材料力学中却有一定的普遍 意义。
承受轴向载荷的拉(压)杆在工程中的应用 非常广泛。
一些机器和结构中所用的各 种紧固螺栓,在紧固时,要对螺 栓施加预紧力,螺栓承受轴向拉 力,将发生伸长变形。
承受轴向载荷的拉(压)杆在工程中的应用 非常广泛。
FN F A A
0 , max p sin cos sin sin 2 45 , max 2
2
A A F F F cos F F F p cos cos A A A p 2 k
一 试 件 和 实 验 条 件
常 温 、 静 载
材料压缩时的力学性能
二 塑 性 材 料 ( 低 碳 钢 ) 的 压 缩
p —
S —
比例极限
e —
弹性极限
屈服极限 E --- 弹性摸量
拉伸与压缩在屈服 阶段以前完全相同。
材料压缩时的力学性能
三 脆 性 材 料 ( 铸 铁 ) 的 压 缩 脆性材料的抗拉与抗压性质不完全 相同 压缩时的强度极限远大于拉伸时的 强度极限 bc bt
观察变形:
横向线ab、cd仍为直线,且仍垂直于杆轴 线,只是分别平行移至a’b’、c’d’。
F
a b
a
b
c
d
c d
F
平面假设—变形前原为平面的横截面, 变形后仍保持为平面且仍垂直于轴线。
直杆轴向拉伸或压缩时横截面上的内力和应力
从平面假设可以判断: (1)所有纵向纤维伸长相等
(2)因材料均匀,故各纤维受力相等 (3)内力均匀分布,各点正应力相等,为常量
材料力学第二章
拉压杆横截面上的应力Stresses over the cross section 1.试验观察 Experimental observation
变形后横线仍为直线,仍垂直于杆件轴线,只是间距增大. Transversal line after deformation : straight; perpendicular to the axis.
E= tanα -elastic modulus 弹性模量
1.等直杆或小锥度杆Straight bar(or stepped bar) with uniform section, or with small taper ; 2.外力过轴线 The applied force P acts through the centroid of the cross section; 3.当外力均匀地加在截面上,此式对整个杆件都 适用,否则仅适用于离开外力作用处稍远的截面 The normal stress distribution in an axially loaded member is uniform, except in the near vicinity of the applied load (known as Saint-Venant's Principle) .
§4~5 Mechanical Properties of Materials
材料的力学性能 拉伸试验与应力-应变图Tensile Tests and Stress-Strain Diagram 低碳钢拉伸应力-应变曲线Tensile Stress-Strain Curve for Mild Steel 卸载与再加载路径Unloading and Reloading Path 名义屈服极限Conditional Yield Limit 脆性材料拉伸应力-应变曲线Stress-Strain Curves for Brittle Materials 复合与高分子材料的力学性能Strength Properties of Composite Materials
材料力学-第二章
第二单元第二章 杆件的轴向拉压应力与材料的力学性能§2-1 引言工程实例: 连杆、螺栓、桁架、房屋立柱、桥墩……等等。
力学特征: 构件:直杆外力:合力沿杆轴作用(偏离轴线、怎样处理?)内力:在轴向载荷作用下,杆件横截面上的唯一内力分量为轴力N ,它们在该截面的两部分的大小相等、方向相反。
规定拉力为正,压力为负。
变形:轴向伸缩§2-2 拉压杆的应力一、拉压杆横截面上的应力(可演示,杆件受拉,上面所划的横线和纵线仍保持直线,仅距离改变,表明横截面仍保持为平面)平面假设→应变均匀→应力均匀AN=σ或A P =σ(拉为正,压为负)二、Saint-Venant 原理(1797-1886,原理于1855年提出)问题:杆端作用均布力,横截面应力均布。
杆端作用集中力,横截面应力均布吗? 如图, 随距离增大迅速趋于均匀。
局部力系的等效代换只影响局部。
它已由大量试验和计算证实,但一百多年以来,无数数学力学家试图严格证明它,至今仍未成功。
这是固体力学中一颗难以采撷的明珠。
三、拉压杆斜截面上的应力(低碳钢拉伸,沿45°出现滑移线,为什么?)0cos =-P Ap αα ασ=α=αcos cos AP p ασ=α=σαα2cos cos pασ=α=ταα22sin sin p ()0=ασ=σm ax ()452=ασ=τmax方位角α:逆时针方向为正剪应力τ:使研究对象有顺时针转动趋势为正。
例1和例2,看书p17,18§2-3 材料拉伸时的力学性能(构件的强度、刚度和稳定性,不仅与构件的形状、尺寸和所受外力有关,而且与材料的力学性能有关。
拉伸试验是最基本、最常用的试验。
)一、拉伸试验P18: 试样 拉伸图绘图系统放大变形传感器力传感器--→→→→二、低碳钢拉伸时的力学性能材料分类:脆性材料(玻璃、陶瓷和铸铁)、塑性材料(低碳钢:典型塑性材料)四个阶段:线性阶段(应力应变成正比,符合胡克定律,正比阶段的结束点称为比例极限)、屈服阶段(滑移线)(可听见响声,屈服极限s σ)、强化阶段(b σ强度极限)、局部变形(颈缩)阶段(名义应力↓,实际应力↑) 三(四个)特征点:比例极限、(接近弹性极限)、屈服极限、强度极限(超过强度极限、名义应力下降、实际应力仍上升)。
材料力学第二章
第二章 剪切与挤压1.剪切力互等定理适用情况有下列四种答案:(A ) 纯剪切应力状态;(B ) 平面应力状态,而不论有无正应力作用;(C ) 弹性范围(即前应力不超过剪切比例极限);(D ) 空间任意应力状态;正确答案是 。
2.图示A 和B 的直径都有为d ,则两者中最大剪应力为:(A ) 24d a bP π; (B ) ()24d a P b a π+; (C )()24d b P b a π+; (D ) 24db aP π;正确答案是 。
3.铆接头的连接板厚度 t = d ,则铆钉剪应力 =τ ,挤压应力 bs σ= 。
P/2P/24.图示在拉力P 的作用下的螺栓,已知材料的剪切许用应力 []τ 是拉伸许用应力][σ的0.6倍。
螺栓直径 d 和螺栓头高度h 的合理比值是 。
5.拉杆头部尺寸如图所示,已知 []τ =100MPa ,许用挤压应力[]MPa bs 200=σ 。
校核拉杆头部的强度。
6.在铆接头中,已知钢板的 MPa 170][=σ ,铆钉的 MPa 140][=τ ,许用挤压应力 MPa bs 320][=σ 。
拭校核强度。
7.在金属板上冲圆孔时,把板放在有圆孔的砧上,用圆柱形的冲头向下冲,如图所示(砧孔和冲头的直径应与要冲的孔直径相配合)。
设有厚度t = 6 mm 的金属板,要冲出直径d = 20 mm 的圆孔。
已知板的剪切强度极限 MPa b 330=τ 。
试求冲头应加于板上的压力 b Pb=100 t=10 t=108.把三块尺寸相同的木块胶合起来,如图所示。
若P=10KN时,该胶合联接被剪开,试计算胶合处的平均抗剪强度。
9.图示木榫接头,F=50KN,试求接头的剪切与挤压应力。
材料力学第2章
2-2截面,即BC段:
BC
FN 2 30 103 N 100MPa 6 2 A2 300 10 m
FN 4 20 103 N 100MPa 6 2 A3 200 10 m
(压应力)
3-3截面,即DE段:
DE
(压应力)
23
材料力学
出版社
科技分社
2.3.3 拉压杆斜截面上的应力
4
材料力学
出版社
科技分社
由上可知苹果把中的内力和外力(重力)是有关 系的,它随外力作用而产生,是由于外力的作用而 引起的“附加内力”,有别于物体中微观粒子间的 作用力,这就是材料力学中的内力。 2.2.2 轴力、截面法、轴力图 当直杆轴向拉伸或压缩时,所产生的内力是沿杆 件轴线的,故称为轴力。由于内力是受力物体内相邻 部分的相互作用力,可用截面法来分析内力 。
32
材料力学
出版社
科技分社
例题 2.5
解: 由于杆的轴力FN沿杆长是变化的,材料有两种 ,截面为变截面,所以在运用式(2-10)计算 杆长度改变量时,应按FN 、E、A的变化情况, 分别计算每段长度的改变量,最后的代数和即 为杆纵向总变形量Δl 。
先画出杆的轴力图, 见(b)图。各段的纵向 伸长或缩短量分别为:
5
材料力学
出版社
科技分社
截面法的基本步骤如下:
1)截开: 2)代替: 3)平衡:
F
x
0 : FN F 0, FN F
轴力的正负号规定: a.拉杆的变形是沿纵向伸长, 其轴力规定为正,称为拉力; b.压杆的变形是沿纵向缩短,其轴力规定为负,称 为压力。
6
材料力学
出版社
科技分社
为了表示轴力随横截面位臵而变化的情况,可选 取一定的比例,用平行于杆轴线的坐标表示横截面 的位臵,用垂直于杆轴线的坐标表示横截面上轴力 的数值,从而绘出表示轴力与截面位臵关系的图线 ,称为轴力图。习惯上将正值的轴力画在坐标轴的 上侧,负值的轴力画在下侧。轴力图上可以确定最 大轴力的数值及其所在横截面的位臵。
材料力学第二章-轴向拉伸与压缩
1
2
P
P
1
2
FN1
3 P
3
P FN2
PP FN3
FN 1 P FN 2 0 FN 3 P
1
2
4、作内力图
P
P
P
3 P
1 FN
P
2
3
P x
[例2] 图示杆旳A、B、C、D点分别作用着大小为5P、8P、 4P、 P 旳力,方向如图,试画出杆旳轴力图。
OA PA
B PB
C PC
D PD
q
u 正应力旳正负号要求:
sx
sx sx
s
x
P
u 对变截面杆, 当截面变化缓慢时,横截面上旳 正应力也近似为均匀分布,可有:
s (x) FN (x)
A( x)
合力作用线必须与杆件轴线重叠;
圣维南原理
若用与外力系静力等 效旳合力替代原力系, 则这种替代对构件内应 力与应变旳影响只限于 原力系作用区域附近很 小旳范围内。 对于杆件,此范围相当 于横向尺寸旳1~1.5倍。
h
解: 1) BD杆内力N
取AC为研究对象,受力分析如图
mA 0 , (FNsinq ) (hctgq) Px 0
FN
Px
hcosq
2) BD杆旳最大应力: s max FN max PL A hAcosq
突变规律: 1、从左边开始,向左旳力产生正旳轴力,轴力图向上突变。 2、从右边开始,向右旳力产生正旳轴力,轴力图向上突变。 3、突变旳数值等于集中力旳大小。
即:离端面不远处,应力分布就成为均匀旳。
§2–3 直杆轴向拉压时斜截面上旳应力
一、斜截面上旳内力
n
材料力学第二章 轴向拉伸和压缩
2、计算各杆轴向变形
C
l 2 =1m a =170mm
B'
B2
F
l1 0.48mm
3、由变形的几何条件确定B点的位移 分别以A为圆心,AB1为半径,C为圆 心,CB1为半径画弧,相较于B’点,
B"
小变形条件,可以用切线代替弧线。
材料力学
第2章 轴向拉伸和压缩
FN FN ( x)
轴力方程
即为轴力图。
即:FN随x的变化规律
以x为横坐标,以FN为纵坐标,绘制FN F( )的关系图线, N x
FN
正的轴力画在x轴的上侧,负的画在下侧.
x
材料力学
第2章 轴向拉伸和压缩
例题1
等值杆受力如图所示,试作其轴力图
F =25kN F 4=55kN 4 1=40kN F
纵向线 即: 原长相同
变形相同
横截面上各点的纵向线应变相等
c
拉压杆变形几何方程.
反映了截面上各点变形之间的几何关系.
材料力学
第2章 轴向拉伸和压缩
§2-2 横截面上的正应力 应力分布规律 找变形规律 研究思路: 试验观察 综合几何方面、物理方面、静力学方面推导应力计算公式
一、几何方面
F
a' b'
材料力学
第2章 轴向拉伸和压缩
第二章 轴向拉伸和压缩
材料力学
第2章 轴向拉伸和压缩
• • • • • •
本章主要内容 轴力及轴力图 横截面上的应力 拉压杆的变形、胡克定律 强度计算 材料的力学性质
材料力学
第2章 轴向拉伸和压缩
§2-1 概述 一、工程实际中的轴向拉压杆
材料力学第2章
轴向拉伸和压缩
1
§2.1 轴向拉伸和压缩的概念
当作用于杆上的外力合力的作用线与直杆的轴线 重合时,杆的主要变形是纵向伸长或缩短,这类 构件称为拉杆或压杆。 如图 所示三 角架中的AC 杆为拉杆, BC杆为压杆 。
2
右图所示的桁架 中的杆也是主要 承受拉伸或压缩 变形的。
轴向拉力和轴向压力的 概念可由右图给出,上 图为轴向拉力;下图为 轴向压力。
若设BC段内立柱的单位长度自重为q2、横截面面 积为A2,则:
q2 γ A2 19kN/m 0.37m 0.37m 2.6kN/m
3
15
例题 2.2
(b)图:这是在集中荷载单 独作用下,柱的轴力图。图 中的负号表示轴力为压力。
(c)图:这是在自重荷载单 独作用下,柱的轴力图。即 在B处的轴力为:
①画一条与杆的轴线平行且与杆等长的直线作基 线; ②将杆分段,凡集中力作用点处均应取作分段点; ③用截面法,通过平衡方程求出每段杆的轴力; 画轴力图时,截面轴力一般先假设为正的,这样 ,计算结果是正的,则就表示为拉力,计算结果 是负的,就表示为压力。 ④按大小比例和正负号,将各段杆的轴力画在基 线两侧,并在图上表示出数值和正负号。
7
例题 2.1
图a所示等直杆,求各段内截面上的轴力并作出 轴力图的轴力图。
8
例题 2.1
解: (1) 求约束反力
由平衡方程求出约束力 FR=10 kN。 (2)求各杆段截面轴力 杆件中AB段、BC段、CD段、DE段的轴力是不 同的。分别用四个横截面:1-1、2-2、3-3、4-4 ,截杆并取四个部分为研究对象。
25kN
(e)
20kNFxFra bibliotek 0 : FN 3 F3 F4 0
材料力学第02章 拉伸、压缩与剪切
⊕
Ⅰ - ○ 20 kN
⊕
F
x
0
FN1
Ⅰ 80kN Ⅱ
FN2 60 80 0
FN2 20kN
FN2 第三段:
Ⅲ
30kN
60kN
F
x
0
Ⅱ
FN3 30 0
FN3 30kN
FN3
Ⅲ
例2
3kN
画图示杆的轴力图
2kN 2kN 10 kN 4kN 8kN
A
3kN
B
C
D
脆性材料 u ( bc) bt
u
n
n —安全因数 —许用应力
塑性材料的许用应力
脆性材料的许用应力
s
ns
bt
nb
p 0.2 n s bc n b
§2-6
§2-7 失效、安全因数和强度计算
解: A 轴力图
A1 B
○ -
A2 60kN 20 kN C D 20 kN ⊕
AB
BC
CD
FN AB 40 103 20MPa A1 2000 FN BC 40 103 40MPa A2 1000 FN CD 20 103 20MPa A2 1000
3、轴力正负号:拉为正、 F 压为负
0 FN F 0 FN F
F
§2-2
x
4、轴力图:轴力沿杆件轴 线的变化
目录
例1
60kN
画图示杆的轴力图
Ⅰ
80kN
Ⅱ
Ⅲ 50kN
30kN
第一段:
材料力学 第02章 轴向拉伸和压缩及连接件的强度计算
弹屈 性服 阶阶 段段
强 化 阶 段
颈 缩 阶 段
33/113
2.3 材料在拉伸或压缩时的力学性能 2.3.1 低碳钢Q235拉伸时的力学性能-弹性阶段
Oa段应力与应变成正比
s Ee
s
b a
弹性模量E是直线Oa的斜率 Q235 E≈200GPa
直线部分的最高点a所对应的应力称为 比例极限,sp Oa段材料处于线弹性阶段
(2) 杆AB段上与杆轴线夹45°角(逆时针方向)斜截面上的正应力 和切应力。
A 1 300 mm B 500 kN 300 mm 2 C 3 300 kN 400 mm
26/113
D
200 kN
2.2 拉压杆截面上的内力和应力 【例2-3】解
A 1 300 mm B 500 kN 300 mm 2 C
内力相同,
但是常识告诉我们,
F F
直径细的拉杆更容易破坏。
求得各个截面上的轴力后,并不能直接判断杆件是否具有足 够的强度。必须用横截面上的应力来度量杆件的受力程度。 用横截面上的应力来度量杆件的受力程度。
18/113
2.2 拉压杆截面上的内力和应力 2.2.2 1 拉压杆横截面上的应力
a
F
c
c' d'
F4
D
FN4
F
x
0 FN4 F4 0
FN4 20 kN 拉
16/113
同一位置处左右侧截面上的内力分量具有相同的正负号
2.2 拉压杆截面上的内力和应力 【例】解
1
FR A F1
F1=40kN,F2=55kN,F3=25kN,F4=20kN
2
F2 B
材料力学第2章
扭转试样中的应力与应变
第二章
3、扭转试验的力学性能指标
试样在弹性范围内表面切应力τ和切应变γ为:
T W
d 0
3 式中,W为试样抗扭截面系数,圆柱试样 (d0 ) / 16 1、切变模量G 弹性范围内,切应力τ与切应变γ之比。 测出扭矩增量ΔT和相应扭角增量Δφ,求出切应力与切应变, 即得 32TL0
缺口引起的应力集中程度常用理论应力集中系数Kt 表示: max kt
max 缺口净截面上的最大应 力 平均应力
Kt值与材料性质无关,只决定于缺口几何形状。
缺口效应Ⅰ
引起应力集中,并改变缺口前方的应力状态,使缺 口试样或机件所受应力由原来的单向应力状态变为 两向或三向应力状态。
使塑性材料强度增高,塑性降低。
二、缺口试样静拉伸试验
缺口试样静拉伸试验又可分为轴向拉伸和偏斜拉伸两种。
第二章
常用缺口试样的抗拉强度σbn与等截面尺寸光滑试样的
抗拉强度σb的比值作为材料的缺口敏感性指标,称为缺口敏 感度,用qe或NSR。
bn qe b q ↑→缺口敏感性↓。
e
脆性材料:qe<1 ,高强度材料qe<1。表明缺口根部尚
2 L0
G
2、扭转屈服点τs 在扭转曲线或试验机扭矩读盘上读出屈服时的扭矩Ts即可得 扭转屈服点 τs T
第二章
d 04
s
s
W
3、规定非比例扭转应力τp 试样标距部分表面的非比例切应变γP达到规定数值时, 按弹性扭转公式计算的切应力,称为规定非比例扭转应 力τp
p
Tp
W
4、抗扭强度τb 试样在扭断前承受的最大扭矩Tb,利用弹性扭转公式计 算的切应力为抗扭强度。
材料力学02(第二章 轴向拉压应力与材料的力学性能)
FN 2
A
F
1.校核强度
已知F, ,A1,A2, t , c
校核结构是否安全? 解:
F 1= t ? A1 sin F 2 = c ? A2 tan
2
L
FN ,max max [ ] (1)强度校核 A FN ,max A (2)截面选择 [ ] (3)计算许可荷载 FN,max A[ ]
强度条件的应用举例
1 2
L
(1) 求内力(节点A平衡) FN1= F sin
A
FN2= - F tan
FN1
F
(2) 求应力(A1,A2横截面积)
C 1m
B
A F
C y 1m
FN1
B A F
A F
x
FN2
解: (1)节点 A 的受力如图,其平衡方程为:
F F
x y
0 0
FN2 FN1 cos 30 0 FN1 sin 30 F 0
得 FN1 2F (拉) FN 2 1.732F (压)
(2)查型钢表得两杆的面积 杆AC 杆AB
例题2 . 钢板冲孔,已知t=5mm,d=18mm,剪切极限应力 τ0=400MPa,求冲力P的大小。
• 解:(1)内力分析: • 剪力: Fs=P • 剪切面面积:A=πd t
• (2)应力分析与强度计算: • τ= Fs/ A ≥τ0 • 由上解得: P ≥ τ0 πd t =113kN
例3 、一铆钉接头如图所示,铆钉和板用同一种材料制成, 铆钉的直径d=18mm,板厚t=10mm,其[τ]=80MPa, [σbs]=200MPa,[σ]=120MPa,试校核此接头部分的强度。
材料力学 第2章
第二章杆件的内力分析第一节杆件拉伸或压缩的内力一、轴向拉伸或压缩的概念轴向拉伸或压缩:由一对大小相等、方向相反、作用线与杆件轴线重合的外力作用下引起的,沿杆件长度发生的伸长或缩短。
二、工程实例三、轴力轴力图1、轴力与杆轴线重合的内力合力。
轴力符号:拉伸为正,压缩为负。
∑=0X0122=-+F F N kNF F N 242212-=-=-= ∑=0X34=-N FkNF N143==任一截面上的轴力等于该截面一侧轴向载荷的代数和,轴向载荷矢量离开该截面者取正,指向该截面者取负。
2、轴力图正对杆的下方,以杆的左端为坐标原点,取平行于杆轴线的直线为x 轴,并称为基线,垂直于x 轴的N 轴为纵坐标。
正值绘在基线的上方,负值绘在基线的下方,最后在图上标上各截面轴力的大小。
注意:轴力图与基线形成一闭合曲线。
轴力图必须与杆件对齐。
在轴向集中力作用的截面上,轴力图将发生突变,其突变的绝对值等于轴向集中力的大小,而突变方向:集中力箭头向左时向上突变,集中力箭头向右时向下突变(图是从左向右画)。
例2-10第二节剪切的内力一、剪切的概念剪切:由一对相距很近、大小相等、方向相反的横向外力引起的横截面沿外力作用方向发生的相对错动。
剪切面或受剪面 m-m二、工程实例三、剪力第三节杆件扭转的内力一、扭转的概念扭转:由一对大小相等、方向相反、作用面都垂直于杆轴的力偶引起的杆的任意两个横截面绕杆轴线的相对转动。
ϕ:扭转角;γ:剪切角二、工程实例三、扭矩某一截面上的扭矩等于其一侧各外力偶矩的代数和。
外力偶矩矢量指向该截面的取负,离开该截面的取正。
四、 扭矩图在外力偶作用的截面上,扭矩图将发生突变,其突变的的绝对值等于该外力偶矩的大小,而突变方向:外力偶矩矢量方向向左的向上突变,向右则向下突变。
外力偶矩的计算公式:)(9550m N nP Mk ⋅=注意:kP 单位为kw ;n 单位为min r ;M 单位为m N ⋅第四节 梁弯曲时的内力一、 弯曲 变形的基本概念弯曲变形:由一对大小相等、方向相反,位于杆的纵向平面内的力偶引起的,杆件的轴线由直线变为曲线。
材料力学第二章
§2.3 材料拉伸时的力学性能
低碳钢拉伸试件图片 试件拉伸破坏断口图片
结合压缩曲线得到结论:颈缩过程,材 料的力学性质发生变化
§2.3 材料拉伸时的力学性能
塑性指标
1.延伸率
l1 l 100% l
A A1 100% A
l1----试件拉断后的长度
A1----试件拉断后断口处的最小 横截面面积
§2.3 材料拉伸时的力学性能
(4) 阶段Ⅳ——局部变形阶段 试样上出现局部收 缩——颈缩,并导致断裂。
§2.3 材料拉伸时的力学性能
低碳钢的应力—应变曲线( - e曲线)
为消除试件尺寸的影响,将低碳钢试样拉伸图 中的纵坐标和横坐标换算为应力 和应变e, F Dl 即 , 其中:A——试样横截面的原 e A l 面积, l——试样工作段的原长。
§2.2 拉伸或压缩时杆横截面上的内力和应力 若用平行于杆轴线的坐标表示横截面的位臵,用 垂直于杆轴线的坐标表示横截面上轴力的数值, 所绘出的图线可以表明轴力与截面位臵的关系, 称为轴力图。
F F F F F
FN图
F
FN图
§2.2 拉伸或压缩时杆横截面上的内力和应力
例题2.1
A
1 B 1 F2
2 C 2
实验装臵(万能试验机)
低碳钢拉伸试验录象
§2.3 材料拉伸时的力学性能
Ⅱ. 低碳钢试样的拉伸图及低碳钢的力学性能
拉伸图 纵坐标——试样的 抗力F(通常称为荷载) 横坐标——试样工 作段的伸长量
§2.3 材料拉伸时的力学性能
低碳钢试样在整个拉伸过程中的四个阶段: (1) 阶段Ⅰ——弹性阶段 变形完全是弹性的,且 Dl与F成线性关系,即此时材料的力学行为符合胡 克定律。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
材料力学-第二章
————————————————————————————————作者:————————————————————————————————日期:
2005年注册岩土工程师考前辅导精讲班
材料力学
第四讲截面的几何性质
【内容提要】
本节主要了解静矩和形心、极惯性矩和惯性积的概念,熟悉简单图形静矩、形心、惯性矩和惯性积的计算,掌握其计算公式。
掌握惯性矩和惯性积平行移轴公式的应用,熟练掌握有一对称轴的组合截面惯性矩的计算方法。
准确理解形心主轴和形心主惯性矩的概念,熟悉常见组合截面形心主惯性矩的计算步骤。
【重点、难点】
重点掌握平行移轴公式的应用,形心主轴概念的理解和有一对称轴的组合截面惯性矩的计算步骤和方法
一、静矩与形心
(一)定义
设任意截面如图4-1所示,其面积为A,为截面所在平面内的任意直角坐标系。
c 为截面形心,其坐标为,。
则
截面对z轴的静矩
截面对轴的静矩
截面形心的位置
(二)特征
1.静矩是对一定的轴而言的,同一截面对不同轴的静矩值不同。
静矩可能为
正,可能为负,也可能为零。
2.静矩的量纲为长度的三次方.即。
单位为或。
3.通过截面形心的坐标称为形心轴。
截面对任一形心轴的静矩为零;反之,若截面对某轴的静矩为零,则该轴必通过截面之形心。
4.若截面有对称轴,则截面对于对称轴的静矩必为零,截面的形心一定在该对称轴上。
5.组合截面(由若干简单截面或标准型材截面所组成)对某一轴的静矩,等于其组成部分对同一轴的静矩之代数和(图4-2),即
合截面的形心坐标为:
二、惯性矩惯性积
(一)定义
设任意截面如图4-3所示,其面积为A,为截面所在平面内任意直角坐标系。
则
图4-3
截面对轴的惯性矩
截面对y 轴的惯性矩
截面对0点的极惯性矩
截面对轴的惯性积
(二)特征
1.惯性矩是对某一坐标轴而言的.惯性积是对某一对坐标轴而言的,同一截面对不同的坐标轴,其数值不同。
极惯性矩是对点(称为极点)而言的,同一截面对不同的点,其值也不相同。
惯性矩。
极惯性矩恒为正值,而惯性积可能为正,可能为负,也可能为零。
2.惯性矩、惯性积、极惯性矩的量纲均为长度的四次方,即。
,单位为m4或mm4 3.对某一点的极惯性矩恒等于以该点为原点的任一对直角坐标轴的惯性矩之和。
即
4.惯性积是对某一对直角坐标的.若该对坐标中有一轴为截面的对称轴,则截面对这一
对坐标轴的惯性积必为零;但截面对某一对坐标轴的惯性积为零,则这对坐标中不一定有截面的对称轴。
5.组合截面对某一轴的惯性矩等于其组成部分对同一轴的惯性矩之和。
即
组合截面对某一对坐标轴的惯性积,等于其组成部分对同一对坐标轴的惯性积之和,即组合截面对某一点的极惯性矩,等于其组成部分对同一点极惯性矩之和,即
三、惯性半径
(一)定义设任意截面,其面积为A,则
截面对z轴的惯件半径
截面对y轴的惯性半径
(二)特征
1.惯性半径是对某一定坐标轴而言的。
2.惯性半径恒为正值。
3.惯性半径的量纲为长度一次方,即L,单位为m 或mm
四、惯性矩和惯性积的平行移轴公式
任意截面,面积为A,形心为C,如图4-3所示。
设z轴与形心轴平行,相距为;y轴与形心轴平行,相距为,截面对z、y轴的惯性矩、惯性积分别为、;截面对形心轴、。
的惯性矩,惯性积分别为,有如下结论
惯性矩的平行移轴公式
惯性积的平行移轴公式
分述如下:
截面对于任一轴的惯性矩.等于对其平行形心轴的惯性矩加上截面面积与两轴间距离平方之乘积。
截面对于任一直角坐标轴的惯性积.等于该截面对于平行形心坐标惯性积加上截面面积与其形心的坐标之乘积。
常用截面几何性质如表下表所示
五、形心主惯性轴与形心主惯性矩
(一)定义通过截面形心C点的一对特殊坐标轴(),其惯积( )为零,则该对坐标轴( )称为形心主惯性轴(简称形心主轴)。
截面对该一对形心主轴的惯性矩称为形心主惯性矩(简称形心主惯矩)。
(二)特征
1.通过截面形心C,至少具有一对形心主轴
2.若截面只有一根对称轴,则该轴即为形心主轴之一,另一形心主轴为通过形心,并与上述对称轴垂直的轴。
3.若截面有两根对称轴,则该两根轴即为形心主轴。
4.若截面有三根(或以上)对称轴时,则通过形心的任一根轴(所有轴)均为形心主轴,且形心主惯矩均相等。
5.若截面没有对称轴,则可由定性判定法,即根据绕形心转动轴,转至截面积最靠近分布某一轴时,截面对该轴的惯性矩最小(),此轴即为形心主轴之一,另一根通过形心与之垂直的轴为另一根惯性矩最大()的形心主轴。
6.形心主惯性矩是截面对通过同一形心C点,所有轴的惯性矩中的最大值()和最小值()。
截面对于通过同一形心C点的任意一对直角坐标轴的两个惯性矩之和恒为常数,即
7.若截面对通过形心C点的两主惯性矩相等,则通过形心c点的所有轴均为形心主轴,且所有形心主惯性矩均相等。