电磁感应中动量定理和动量守恒定律的运用
用动量定理解决电磁感应问题
应用动量定理解决电磁感应问题的思维起点电磁感应部分历来是高考的重点、热点,出题时可将力学、电磁学等知识溶于一体,能很好地考查学生的理解、推理、分析综合及应用数学处理物理问题的能力.通过对近年高考题的研究,此部分结合动量定理的力电综合模型经常在高考题中出现。
本文结合例题分析应用动量定理解决电磁感应问题的思维起点。
一、 以累积公式q=It 结合动量定理为思维起点直导线在磁场中要受到安培力的作用,速度发生变化,安培力随之变化。
通常直导线(或线框)的运动为非匀变速直线运动,不能用牛顿运动定律结合运动学公式解题,而动量定理适用于非匀变速直线运动。
在时间△t 内安培力的冲量BLq t BLI t F =∆=∆,式中q 是通过导体截面的电量。
利用该公式结合动量定理是解答此类问题思维起点。
例1.如图所示,在匀强磁场区域内与B 垂直的平面中有两根足够长的固定金属平行导轨,在它们上面横放两根平行导体棒构成矩形回路,长度为L ,质量为m ,电阻为R ,回路部分导轨电阻可忽略,棒与导轨无摩擦,开始时图中左侧导体棒静止,右侧导体棒具有向右的初速v 0,试求两棒之间距离增长量x 的上限。
析与解:当右棒运动时,产生感应电动势,两棒中有感应电流通过,右棒受到安培力作用而减速,左棒受到安培力作用而加速。
当它们的速度相等时,它们之间的距离最大。
设它们的共同速度为v ,则据动量守恒定律可得:mv 0=2mv ,即021v v = 对于左棒应用动量定理可得:BILt= mv 所以,通过导体棒的电量q=It =BL mv 20 而q =R BLx t I 2=∆ 由上述各式可得: x =220LB R mv 。
v点评:本题结合冲量公式BLq t BLI t F =∆=∆应用动量定理,使貌似复杂的问题得到迅速解决。
例2.(原创预测题)如图所示,两水平放置的平行光滑金属导轨相距为L ,导轨左端用导线连在一起,导轨电阻不计,整个装置垂直处于磁感强度为B 的匀强磁场中,另有一根长也为L 的金属棒垂直放在导轨上,现给金属棒一向右的水平初速度v 。
动量定理及动量守恒定律在电磁感应中的应用
动量定理及动量守恒定律在电磁感应中的应用摘要:《普通高中物理课程标准》指出,高中物理课程旨在进一步提高学生的科学素养,落实“立德树人”的根本任务。
基于学科核心素养教学实施策略和方法,要落实到教育教学的全过程,本文重点介绍动量定理、动量守恒定律在电磁感应解题的运用。
关键词:动量动量守恒电磁感应应用一、动量定理:物体所受合外力的冲量等于物体的动量变化.表达式:I=Δp或Ft=mv2-mv1.二、动量守恒定律:一个系统不受外力或者所受合外力为零,这个系统的总动量保持不变.表达式:m1v1+m2v2=m1v1′+m2v2′或p=p′.三、在电磁感应中,动量定理应用于单杆切割磁感线运动,可求解变力的时间、速度、位移和电荷量.(1)求电荷量或速度:B LΔt=mv2-mv1, q= t.(2)求时间:Ft-I冲=mv2-mv1, I冲=BILΔt=BL .(3)求位移:-BILΔt=- =0-mv0,即 - s=m(0-v).四、在电磁感应中对于双杆切割磁感线运动,若双杆系统所受合外力为零,运用动量守恒定律结合能量守恒定律可求解与能量有关的问题。
例1.如图所示,在水平面上有两条导电导轨MN,PQ,导轨间距为d,匀强磁场垂直于导轨所在的平面向里,磁感应强度的大小为B,两根完全相同的金属杆1,2间隔一定的距离摆开放在导轨上,且与导轨垂直.它们的电阻均为R,两杆与导轨接触良好,导轨电阻不计,金属杆的摩擦不计.杆1以初速度v滑向杆2,为使两杆不相碰,则杆2固定与不固定两种情况下,最初摆放两杆时的最小距离之比为( C )A.1∶1B.1∶2C.2∶1D.1∶1解析:杆2固定:对回路 q1= = .对杆1:-B d·Δt=0-mv0,q1=·Δt 联立解得s1= .杆2不固定: 对回路 q2=对杆2:B d·Δt=mv2-0 全程动量守恒:mv=mv1+mv2末态两棒速度相同,v1=v2,q2=·Δt 联立解得s2= . s1∶s2=2∶1,则C选项正确.例2.如图所示,宽度为L的平行光滑的金属轨道,左端为半径为r1的四分之一圆弧轨道,右端为半径为r2的半圆轨道,中部为与它们相切的水平轨道.水平轨道所在的区域有磁感应强度为B的竖直向上的匀强磁场.一根质量为m的金属杆a 置于水平轨道上,另一根质量为M的金属杆b由静止开始自左端轨道最高点滑下,当b滑入水平轨道某位置时,a就滑上了右端半圆轨道最高点(b始终运动且a,b 未相撞),并且a在最高点对轨道的压力大小为mg,此过程中通过a的电荷量为q,a,b杆的电阻分别为R1,R2,其余部分电阻不计.在b由静止释放到a运动到右端半圆轨道最高点过程中,求:(1)在水平轨道上运动时b的最大加速度是多大;(2)自b释放到a到达右端半圆轨道最高点过程中,系统产生的焦耳热是多少;(3)a刚到达右端半圆轨道最低点时b的速度是多大.解析:(1)由机械能守恒定律得 M =Mgr1解得vb1=b刚滑到水平轨道时加速度最大,E=BLvb1, I= ,由牛顿第二定律有F安=BIL=Ma 解得a= .(2)由动量定理有-B Lt=Mvb2-Mvb1, 即-BLq=Mvb2-Mvb1解得vb2= -根据牛顿第三定律得:a在最高点受支持力N=N′=mg, mg+N=m解得va1=由能量守恒定律得Mgr1= M + m +mg2r2+Q 解得Q=BLq -3mgr2-.(3)由能量守恒定律有2mgr2= m - m解得va2=由动量守恒定律得Mvb1=Mvb3+mva2解得vb3= - .答案:(1)(2)BLq -3mgr2-(3) -例3.如图所示,将不计电阻的长导线弯折成P1P2P3,Q1Q2Q3形状,P1P2P3和Q1Q2Q3是相互平行且相距为d的光滑固定金属导轨.P1P2,Q1Q2的倾角均为θ,P2P3,Q2Q3在同一水平面上,P2Q2⊥P2P3,整个导轨在方向竖直向上、磁感应强度大小为B的匀强磁场中,质量为m电阻为R的金属杆CD从斜导轨上某处静止释放,然后沿水平导轨滑动一段距离后停下.杆CD始终垂直导轨并与导轨保持良好接触,导轨和空气阻力均不计,重力加速度大小为g,导轨倾斜段和水平段都足够长,求:(1)杆CD能达到的最大速度;( 2)杆CD在距P2Q2为L处释放,滑到P2Q2处恰达到最大速度,则沿倾斜导轨下滑的时间Δt1及在水平导轨上滑行的最大距离.解析:(1)杆CD达到最大速度时,杆受力平衡BdImcosθ=mgsinθ此时杆CD切割磁感线产生的感应电动势为E=Bdvmcosθ由欧姆定律可得Im = , 解得vm= .(2)在杆CD沿倾斜导轨下滑的过程中,动量定理有mgsinθ·Δt1-Bdcosθ·Δt1=mvm-0= = =解得Δt1= +在杆CD沿水平导轨运动的过程中,根据动量定理有 -B d·Δt2=0-mvm该过程中通过R的电荷量为 q2=Δt2,得q2=杆CD沿水平导轨运动的过程中,通过的平均电流为 = =得q2=Δt2=解得s= .答案:(1)(2) +3。
例析动量定理在电磁感应问题中的应用
△ △f
导轨 MN、 Q, P 存在 有竖 直向上的匀 强磁 场 , 磁感 .
应强度为 B, 导轨上 放着 两根 质量均 为 、 电阻均 图3
为| R的金属棒 n b 、。开 始时 , 棒 静止 , b a棒 以初 速度向 右运动 。设两棒始终不相碰 , 在运动过程 中通过 a棒 求 上 的总电荷量 。 解析 : 设棒稳 定运动后 的共 同速度为 , 对系统从 a 棒开始运动到两棒达 到共 同速度 的过程 , 应用动量守 恒 定律有 : o my mv :2 设 回路中的平均 电流 为 J 。再对 a棒 , 应用 动量定
理:
一
根据欧姆定律 , 可得平均 电流为 了 E一 : 由动量定理得 : 一B儿 ・ 一 △ 一0 联立上式 :一 点评 : 本题 实质上是利 用动量定理 求感应电荷 量。
【 2 如 图 2 例 】
B L△t I 一
— m
所示 , 足够 长 的相 距 为z 的平行金 属导轨
由法拉第 电磁感应定律得 : 一 :
【 1 如图 1 示 , 例 】 所
质量为 m 的导体棒可沿光
滑 水 平 面 的 平 行 导 轨 滑
由闭合 电路欧姆定律 :一 一 - E 』
对 a 应 用 动量 定 理 得 : l £=1 解得 : x 棒 B = 17 =1 2 A 一
又 Q=7 t = a 解得 : = Q一 点评 : 本题是利用动量定理计算电荷量的典型例子。
MN 、 Q放 置在 水平 P 面内 , 强 磁 场 竖 直 匀
通过 以上三个例题 的分析 , 会当导体切 割磁感 线 体
而产生感应 电流 , 果感应 电流不恒定 , 体所受 到的 如 导 安 培力也 不恒 定 而做变 速运 动 时 , 些 问题 如 涉及 位 有 ( 责任 编辑 易志毅)
电磁感应现象中的动量问题
③列出最终稳定时动量守恒方程;
④该过程能量转化。
三、归纳总结
1.涉及单杆问题,一般可以考虑动量定理,求解变 力的冲量,解决牛顿运动定律不易解答的非匀变速 运动问题
2.涉及双杆问题,如果系统合外力为零,一般考虑 应用动量守恒定律
PQ放在水平面上,左端向上弯曲,导轨间距为L,电阻不计,水 平段导轨所处空间存在方向竖直向上的匀强磁场,磁感应强度大 小为B。导体棒a与b的质量均为m,电阻值分别为Ra=R,Rb= 2R。b棒放置在水平导轨上足够远处,a棒在弧形导轨上距水平 面h高度处由静止释放。运动过程中导体棒与导轨接触良好且始 终与导轨垂直,重力加速度为g。求: ①当a导体棒刚进入磁场时,从动力学角度分析两导体棒的运动 过程;
一、动量定理在电磁感应问题中的应用
1.如图,金属杆ab以一定初速度v0 在光滑水平轨道上滑动,质量为m, 电阻不计,两导轨间距为L。求: ①分析金属杆ab的运动过程;
②当经历时间为 ∆t,金属杆的速度为0时,此过程 守恒在电磁感应问题中的运用 2.(P210 例5)如图所示,两根平行的光滑金属导轨MN、
专题突破练 专题四 第18练 电磁感应中的动量问题 电磁感应规律的综合应用
第18练电磁感应中的动量问题电磁感应规律的综合应用1.(多选)(2019·全国卷Ⅲ·19)如图,方向竖直向下的匀强磁场中有两根位于同一水平面内的足够长的平行金属导轨,两相同的光滑导体棒ab、cd静止在导轨上.t=0时,棒ab以初速度v0向右滑动.运动过程中,ab、cd始终与导轨垂直并接触良好,两者速度分别用v1、v2表示,回路中的电流用I表示.下列图像中可能正确的是()答案AC解析棒ab以初速度v0向右滑动,切割磁感线产生感应电动势,使整个回路中产生感应电流,判断可知棒ab受到与v0方向相反的安培力的作用而做变减速运动,棒cd受到与v0方向相同的安培力的作用而做变加速运动,它们之间的速度差Δv=v1-v2逐渐减小,整个系统产生的感应电动势逐渐减小,回路中感应电流逐渐减小,最后变为零,即最终棒ab和棒cd的速度相同,v1=v2,这时两相同的光滑导体棒ab、cd组成的系统在足够长的平行金属导轨上,选运动,水平方向上不受外力作用,由动量守恒定律有m v0=m v1+m v2,解得v1=v2=v02项A、C正确,B、D错误.2.(多选)(2022·全国甲卷·20)如图,两根相互平行的光滑长直金属导轨固定在水平绝缘桌面上,在导轨的左端接入电容为C的电容器和阻值为R的电阻.质量为m、阻值也为R的导体棒MN静止于导轨上,与导轨垂直,且接触良好,导轨电阻忽略不计,整个系统处于方向竖直向下的匀强磁场中.开始时,电容器所带的电荷量为Q,合上开关S后()A .通过导体棒MN 电流的最大值为Q RCB .导体棒MN 向右先加速、后匀速运动C .导体棒MN 速度最大时所受的安培力也最大D .电阻R 上产生的焦耳热大于导体棒MN 上产生的焦耳热答案 AD解析 开始时电容器两极板间的电压U =Q C ,合上开关瞬间,通过导体棒的电流I =U R =Q CR,随着电容器放电,通过电阻、导体棒的电流不断减小,所以在开关闭合瞬间,导体棒所受安培力最大,此时速度为零,A 项正确,C 项错误;由于回路中有电阻与导体棒,最终电能完全转化为焦耳热,故导体棒最终必定静止,B 项错误;由于导体棒切割磁感线,产生感应电动势,所以通过导体棒的电流始终小于通过电阻的电流,由焦耳定律可知,电阻R 上产生的焦耳热大于导体棒MN 上产生的焦耳热,D 项正确.3.(多选)(2022·湖南卷·10)如图,间距L =1 m 的U 形金属导轨,一端接有0.1 Ω的定值电阻R ,固定在高h =0.8 m 的绝缘水平桌面上.质量均为0.1 kg 的匀质导体棒a 和b 静止在导轨上,两导体棒与导轨接触良好且始终与导轨垂直,接入电路的阻值均为0.1 Ω,与导轨间的动摩擦因数均为0.1(设最大静摩擦力等于滑动摩擦力),导体棒a 距离导轨最右端1.74 m .整个空间存在竖直向下的匀强磁场(图中未画出),磁感应强度大小为0.1 T .用F =0.5 N 沿导轨水平向右的恒力拉导体棒a ,当导体棒a 运动到导轨最右端时,导体棒b 刚要滑动,撤去F ,导体棒a 离开导轨后落到水平地面上.重力加速度取10 m/s 2,不计空气阻力,不计其他电阻,下列说法正确的是( )A .导体棒a 离开导轨至落地过程中,水平位移为0.6 mB .导体棒a 离开导轨至落地前,其感应电动势不变C .导体棒a 在导轨上运动的过程中,导体棒b 有向右运动的趋势D .导体棒a 在导轨上运动的过程中,通过电阻R 的电荷量为0.58 C答案 BD解析 导体棒a 在导轨上向右运动,产生的感应电流方向向里,流过导体棒b 的电流方向向里,由左手定则可知安培力向左,则导体棒b 有向左运动的趋势,故C 错误;导体棒b 与电阻R 并联,有I =BL v 0.15 Ω,当导体棒a 运动到导轨最右端时,导体棒b 刚要滑动,有B ·I 2·L =μmg ,联立解得导体棒a 的速度为v =3 m/s ,导体棒a 离开导轨至落地前做平抛运动,有x=v t ,h =12gt 2,联立解得导体棒a 离开导轨至落地过程中水平位移为x =1.2 m ,故A 错误;导体棒a 离开导轨至落地前做平抛运动,水平速度切割磁感线,则产生的感应电动势不变,故B 正确;导体棒a 在导轨上运动的过程中,通过电路的电荷量为q =I ·Δt =BL ·Δx 0.15 Ω=0.1×1×1.740.15 C =1.16 C ,导体棒b 与电阻R 并联,则通过电阻R 的电荷量为q R =q 2=0.58 C ,故D 正确.4.(2022·辽宁卷·15)如图所示,两平行光滑长直金属导轨水平放置,间距为L .abcd 区域有匀强磁场,磁感应强度大小为B ,方向竖直向上.初始时刻,磁场外的细金属杆M 以初速度v 0向右运动,磁场内的细金属杆N 处于静止状态.两金属杆与导轨接触良好且运动过程中始终与导轨垂直.两杆的质量均为m ,在导轨间的电阻均为R ,感应电流产生的磁场及导轨的电阻忽略不计.(1)求M 刚进入磁场时受到的安培力F 的大小和方向;(2)若两杆在磁场内未相撞且N 出磁场时的速度为v 03,求:①N 在磁场内运动过程中通过回路的电荷量q ;②初始时刻N 到ab 的最小距离x ;(3)初始时刻,若N 到cd 的距离与第(2)问初始时刻的相同、到ab 的距离为kx (k >1),求M 出磁场后不与N 相撞条件下k 的取值范围.答案 (1)B 2L 2v 02R 方向水平向左 (2)①m v 03BL ②2m v 0R 3B 2L2 (3)2≤k <3 解析 (1)细金属杆M 以初速度v 0向右运动,刚进入磁场时,产生的电动势为E =BL v 0电流为I =E 2R则所受的安培力大小为F =BIL =B 2L 2v 02R由左手定则可知安培力的方向水平向左;(2)①金属杆N 在磁场内运动的过程中,取水平向右为正方向,由动量定理有B I L ·Δt =m ·v 03-0 且q =I ·Δt联立解得通过回路的电荷量q =m v 03BL②设杆M 在磁场中运动的位移大小为x 1,杆N 在磁场中运动的位移大小为x 2,则有Δx =x 1-x 2,有 I =E2R ,E =BL ·Δx Δt 整理可得q =BL ·Δx 2R联立可得Δx =2m v 0R 3B 2L 2 若两杆在磁场内刚好相撞,N 到ab 的最小距离为x =Δx =2m v 0R 3B 2L 2 (3)两杆出磁场后在平行光滑长直金属导轨上运动,若N 到cd 的距离与第(2)问初始时刻的相同、到ab 的距离为kx (k >1),则N 到cd 边的速度大小恒为v 03,取水平向右为正方向,根据动量守恒定律可知m v 0=m v 1+m ·v 03解得N 出磁场时,M 的速度大小为v 1=23v 0 由题意可知,此时M 到cd 边的距离为s =(k -1)x若要保证M 出磁场后不与N 相撞,则有两种临界情况:①M 减速到v 03时出磁场,速度刚好等于N 的速度,一定不与N 相撞,对M 根据动量定理有 -B I 1L ·Δt 1=m ·v 03-m ·23v 0 q 1=I 1·Δt 1=BL ·(k -1)x 2R联立解得k =2②M 运动到cd 边时,恰好减速到零,则对M 由动量定理有-B I 2L ·Δt 2=0-m ·23v 0 同理解得k =3综上所述,M 出磁场后不与N 相撞条件下k 的取值范围为2≤k <3.1.(多选)足够长的平行光滑金属导轨ab 、cd 水平放置于竖直向上的匀强磁场中,ac 之间连接阻值为R 的电阻,导轨间距为L ,导体棒ef 垂直导轨放置且与导轨接触良好,导体棒质量为m 、电阻为r .t =0时刻对导体棒施加一个水平向右的力F (图中未画出),导体棒在F 的作用下开始做初速度为零的匀加速直线运动,当导体棒运动x 距离时撤去外力F ,此时导体棒的速度大小为v 0.若不计导轨电阻,则下列说法正确的是( )A .外力F 的大小与时间的关系式为F =ma +B 2L 2at R +rB .t =0时刻外力F 的大小为m v 022xC .从撤去外力F 到导体棒停止运动,电阻R 上产生的焦耳热为12m v 02 D .从撤去外力F 到导体棒停止运动,导体棒运动的位移大小为m v 0(R +r )B 2L 2答案 ABD 解析 由题知导体棒在F 的作用下开始做初速度为零的匀加速直线运动,根据牛顿第二定律有F -B 2L 2v R +r =ma ,v =at ,整理有F =B 2L 2at R +r+ma ,A 正确;由v 02=2ax ,解得在t =0时刻F =ma =m v 022x ,B 正确;从撤去外力F 到导体棒停止运动,根据动能定理有Q =12m v 02,则R 上产生的焦耳热为Q R =R R +r Q =Rm v 022(R +r ),C 错误;从撤去外力F 到导体棒停止运动,根据动量定理有-B I Lt =0-m v 0,I ·t =BL vR +r ·t =BLx R +r ,联立解得x =m v 0(R +r )B 2L 2,D 正确. 2.(多选)(2022·湖南衡阳市二模)如图,光滑平行导轨上端接一电阻R ,导轨弯曲部分与水平部分平滑连接,导轨间距为l ,导轨水平部分左端有一竖直向上的匀强磁场,磁感应强度大小为B ,现将金属棒PQ 从导轨弯曲部分的上端由静止释放,金属棒刚进入磁场时的速度大小为v 1,离开磁场时的速度大小为v 2,改变金属棒释放的高度,使其释放高度变为原来的12,金属棒仍然可以通过磁场区域,导轨和金属棒的电阻不计,则( ) A .金属棒通过磁场区域时金属棒中的电流方向为由P 到QB .金属棒第二次离开磁场时的速度大小为v 2-(1-22)v 1C .金属棒在两次通过磁场区域的过程中电阻R 上产生的热量相等D .金属棒在两次通过磁场区域的过程中通过电阻R 的电荷量相等答案 BD解析 金属棒通过磁场区域时,由右手定则可知,金属棒中的电流方向为由Q 到P ,故A 错误;金属棒第二次释放的高度变为原来的12,由动能定理可知,进入匀强磁场时的速度大小为v 3=2v 12,金属棒通过磁场区域的过程中,根据动量定理有-B I lt =Δp ,又因为I =E R,E =ΔΦt ,所以-Bl ΔΦR=Δp ,则可知金属棒两次通过匀强磁场区域的过程中动量变化量相同,速度变化量也相同,则v 2-v 1=v 4-v 3,故金属棒第二次离开磁场时的速度大小为v 4=v 2-(1-22)v 1,故B 正确;金属棒第二次通过磁场区域的过程中所用时间长且减少的动能少,则电阻R 上产生的热量少,故C 错误;由电荷量q =ΔΦR,可知金属棒在两次通过磁场区域的过程中通过电阻R 的电荷量相等,故D 正确.3.(多选)如图所示,足够长的水平光滑金属导轨所在空间中,分布着垂直于导轨平面方向竖直向上的匀强磁场,磁感应强度大小为B .两导体棒a 、b 均垂直于导轨静止放置.已知导体棒a 质量为2m ,导体棒b 质量为m ,长度均为l ,接入电路的电阻均为r ,其余部分电阻不计.现使导体棒a 获得瞬时平行于导轨水平向右的初速度v 0.除磁场作用外,两棒沿导轨方向无其他外力作用,在两导体棒运动过程中,下列说法正确的是( )A .任何一段时间内,导体棒b 的动能增加量跟导体棒a 的动能减少量在数值上总是相等的B .任何一段时间内,导体棒b 的动量改变量跟导体棒a 的动量改变量总是大小相等、方向相反C .全过程中,通过导体棒b 的电荷量为2m v 03BlD .全过程中,导体棒b 共产生的焦耳热为m v 026答案 BCD解析 根据题意可知,两棒组成闭合回路,电流相同,故所受安培力的合力为零,动量守恒,故任何一段时间内,导体棒b 的动量改变量跟导体棒a 的动量改变量总是大小相等、方向相反,根据能量守恒定律可知,a 的动能减少量在数值上等于b 的动能增加量与产热之和,故A 错误,B 正确;两棒最终共速,根据动量守恒定律,有2m v 0=(2m +m )v ,对b 棒m v -0=B I l ·t =Blq ,联立解得q =2m v 03Bl,故C 正确;根据能量守恒定律,可知两棒共产生的焦耳热为Q =12×2m v 02-12()2m +m v 2=m v 023,而由于两棒的电阻大小相等,因此b 棒产生的焦耳热为Q b =12Q =m v 026,故D 正确. 4.(2022·山东烟台市、德州市一模)有一边长为L 、质量为m 、总电阻为R 的正方形导线框自磁场上方某处自由下落,如图所示.匀强磁场区域Ⅰ、Ⅱ的磁感应强度大小均为B ,二者宽度分别为L 、H ,且H >L .导线框恰好匀速进入区域Ⅰ,一段时间后又恰好匀速离开区域Ⅱ,重力加速度为g ,下列说法正确的是( )A .导线框离开区域Ⅱ的速度大于mgRB 2L2 B .导线框刚进入区域Ⅱ时的加速度大小为g ,方向竖直向上C .导线框进入区域Ⅱ的过程产生的焦耳热为mgHD .导线框自开始进入区域Ⅰ至刚完全离开区域Ⅱ的时间为6B 2L 3mgR答案 C解析 由题意知,导线框恰好匀速离开区域Ⅱ,则有mg =BIL =B 2L 2v R ,解得v =mgR B 2L2,A 错误;导线框进入区域Ⅰ到刚要进入区域Ⅱ过程一直做匀速运动,有v =mgR B 2L2,导线框下边刚进入磁场区域Ⅱ时,上、下边都切割磁感线,由法拉第电磁感应定律可知E 2=BL v +BL v =2BL v ,又I 2=E 2R ,联立解得I 2=2BL v R,导线框所受安培力F 2=2BI 2L ,由牛顿第二定律有F 2-mg =ma ,解得a =3g ,方向竖直向上,B 错误;开始进入区域Ⅱ时与开始离开区域Ⅱ时,速度大小相等,则导线框产生的焦耳热等于重力势能的减少量,有Q =mgH ,C 正确;导线框自开始进入区域Ⅰ至开始进入区域Ⅱ的过程中,t 1=L v =B 2L 3mgR,导线框自开始进入区域Ⅱ至开始离开区域Ⅱ过程中,由动量定理得mgt 2-F 安2Δt =m v -m v ,即mgt 2-BL 2BL 2R =0,解得t 2=2B 2L 3mgR ,导线框自开始离开区域Ⅱ至刚完全离开区域Ⅱ过程中,t 3=L v =B 2L 3mgR,故t =t 1+t 2+t 3=4B 2L 3mgR,D 错误. 5.(多选)(2022·河北省模拟)如图所示,两根相距L 且电阻不计的足够长光滑金属导轨,导轨左端为弧形,右端水平,且水平部分处于方向竖直向下、磁感应强度大小为B 的匀强磁场中.铜棒a 、b 电阻均为R 、质量均为m ,均与导轨垂直且与导轨接触良好,铜棒b 静止在导轨水平部分,铜棒a 在弧形导轨上从距离水平部分高度为h =0.5L 处由静止释放,重力加速度为g ,关于此后的过程,下列说法正确的是( )A .回路中的最大电流为gLBL RB .铜棒b 的最大加速度为gLB 2L 22mRC .铜棒b 获得的最大速度为gLD .回路中产生的总焦耳热为mgL 4答案 BD解析 铜棒a 沿弧形导轨下滑,刚进入磁场区域时,由机械能守恒定律有mgh =12m v 2,且h =0.5 L ,解得v =gL ,回路中的最大感应电动势E =BL v ,回路中的最大电流I =E 2R,联立解得I =BL gL 2R,故A 错误;铜棒b 受到的最大安培力F 安=BIL ,由牛顿第二定律有F 安=ma ,解得铜棒b 的最大加速度a =B 2L 2gL 2mR,故B 正确;铜棒a 、b 在匀强磁场中做切割磁感线运动的过程中,整体所受合外力为零,动量守恒,最终铜棒a 、b 速度相等,由动量守恒定律得m v =2m v ′,解得铜棒b 获得的最大速度为v ′=gL 2,故C 错误;由能量守恒定律得,回路中产生的总焦耳热为Q =12m v 2-12×2m v ′2=mgL 4,故D 正确. 6.(多选)(2022·广东韶关市二模)某高中科研兴趣小组利用课余时间进行研究电磁阻尼效果的研究性学习,实验示意图如图甲所示,虚线MN 右侧有垂直于水平面向下的匀强磁场,边长为1 m 、质量为0.1 kg 、电阻为0.2 Ω的正方形金属线框在光滑绝缘水平面上以大小v 0=2 m/s 的速度向右滑动并进入磁场,磁场边界MN 与线框的右边框平行.从线框刚进入磁场开始计时,线框的速度v 随滑行的距离x 变化的规律如图乙所示,下列说法正确的是( )A .图乙中x 0=1 mB .线框进入磁场的过程中,线框的加速度先不变再突然减为零C .线框进入磁场的过程中,线框中产生的焦耳热为0.1 JD .线框进入磁场的过程中,通过线框某横截面的电荷量为22C 答案 AD 解析 穿过线框的磁通量变化导致线框中产生感应电流,使线框受到安培力的作用,从而使速度改变;当线框完全进入磁场时,磁通量不变,速度不变,则由题图乙可知x 0=1 m ,A正确;线框进入磁场的过程中,安培力F =BIL ,其中I =E R =BL v R,由题图乙可知,速度减小,则安培力减小,由牛顿第二定律可知,线框的加速度减小,因此线框做变减速运动,B 错误;根据能量守恒定律可知,减少的动能全部转化为焦耳热,则有Q =ΔE k =12m v 02-12m v 2,代入数据可得Q =0.15 J ,C 错误; 线框进入磁场的过程中,取水平向右为正方向,根据动量定理可得-B 2L 2v R t =m v -m v 0,整理得v =v 0-B 2L 2x mR,结合题图乙可知,当x =1 m 时,v =1 m/s ,代入解得B =150 T ,通过线框某横截面的电荷量为q =I t =Bx 02R ,解得q =22 C ,D 正确. 7.(多选)(2022·宁夏吴忠中学三模)如图所示,两段均足够长、不等宽的光滑平行导轨固定在水平面上,较窄导轨的间距L 1=1 m ,较宽导轨的间距L 2=1.5 m .整个装置处于磁感应强度大小为B =0.5 T 、方向竖直向上的匀强磁场中,导体棒MN 、PQ 的质量分别为m 1=0.4 kg 、m 2=1.2 kg ,长度分别为1 m 、1.5 m ,电阻分别为R 1=0.3 Ω、R 2=0.9 Ω,两导体棒静止在水平导轨上.t =0时刻,导体棒MN 获得v 0=7 m/s 、水平向右的初速度.导轨电阻忽略不计,导体棒MN 、PQ 始终与导轨垂直且接触良好,导体棒MN 始终在较窄导轨上运动,取g =10 m/s 2则( )A .t =0时刻,回路中的电流为3512A B .导体棒MN 最终做匀速直线运动,速度大小为3 m/sC .通过导体棒MN 的电荷量最大值为3.4 CD .导体棒PQ 中产生的焦耳热最大值为4.2 J答案 ABD解析 t =0时刻,回路中的电流为I 0=E R =BL 1v 0R 1+R 2=3512A ,故A 正确;导体棒MN 与PQ 切割磁感线产生的电动势相互削弱,当两导体棒产生的电动势相等时,感应电流为零,所受安培力为零,故两导体棒最终做匀速直线运动,此时有BL 1v MN =BL 2v PQ ,设从导体棒MN 开始运动至导体棒MN 、PQ 做匀速运动所用的时间为Δt ,取水平向右为正方向,对导体棒MN 分析,由动量定理得-BL 1I ·Δt =m 1v MN -m 1v 0,对导体棒PQ 分析,由动量定理得BL 2I ·Δt =m 2v PQ ,又因为q =I ·Δt ,联立解得v MN =3 m/s ,v PQ =2 m/s ,q =3.2 C ,故B 正确,C 错误;由能量守恒定律得12m 1v 02=12m 1v MN 2+12m 2v PQ 2+Q 总,Q PQ =R 2R 1+R 2Q 总,代入数据联立解得Q PQ =4.2 J ,故D 正确.8.(多选)如图所示,竖直放置的两根足够长的光滑金属导轨相距L ,导轨的两端分别与电源(串联一滑动变阻器R )、定值电阻R 0、电容器(电容为C ,原来不带电)和开关S 相连.整个空间充满了磁感应强度大小为B 、方向垂直于导轨平面向外的匀强磁场.一质量为m 、电阻不计的金属棒ab 横跨在导轨上.已知电源电动势为E 、内阻为r ,不计导轨的电阻.当S 接1,滑动变阻器R 接入电路一定阻值时,金属棒ab 在磁场中恰好保持静止.当S 接2后,金属棒ab 从静止开始下落,下落距离为h 时达到稳定速度.重力加速度为g ,则下列说法正确的是( )A .当S 接1时,滑动变阻器接入电路的阻值R =EBLmgB .若将ab 棒由静止释放的同时,将S 接到3,则电容器积累的电荷量随金属棒速度v 的变化关系为Q =CBL vC .当S 接2时,金属棒ab 从静止开始到刚好达到稳定速度所经历的时间t =B 2L 2h +m 2gR 02mgR 0B 2L 2D .若将ab 棒由静止释放的同时,将S 接到3,则金属棒ab 将做匀加速直线运动,加速度大小a =mgm +CB 2L 2答案 BD解析 当S 接1时,有I =E R +r ,由平衡条件得mg =BIL ,联立解得R =EBLmg -r ,故A 错误;当S 接2,速度稳定时有mg =B 2L 2v R 0,解得v =mgR 0B 2L 2,金属棒ab 从静止开始下落,下落距离为h 时达到稳定速度,根据动量定理可得mgt -B I Lt =m v ,即mgt -B 2L 2vR 0·t =m v ,其中vt =h ,联立解得t =B 4L 4h +m 2gR 02mgR 0B 2L 2,故C 错误;若将棒ab 由静止释放的同时,将S 接到3,则电容器积累的电荷量随金属棒速度v 的变化关系为Q =CU =CBL v ,根据动量定理可得mg Δt -B I ′L Δt =m Δv ,即mg Δt -BL ·ΔQ =m Δv ,将ΔQ =CBL Δv 代入解得mg Δt -CB 2L 2Δv =m Δv ,所以a =Δv Δt =mgm +CB 2L 2,金属棒ab 将做匀加速直线运动,故B 、D 正确.9.如图所示,两电阻不计的光滑平行金属导轨固定在竖直平面内,两导轨间的距离为L ,导轨顶端连接定值电阻R ,导轨上有一质量为m 、长度为L 、电阻不计的金属杆,杆始终与导轨接触良好.整个装置处于磁感应强度大小为B 的匀强磁场中,磁场的方向垂直导轨平面向里.现使杆从M 点以v 0的速度竖直向上运动,经历时间t ,到达最高点N ,重力加速度大小为g .求t 时间内:(1)流过电阻的电荷量q ; (2)电阻上产生的焦耳热Q . 答案 (1)m v 0-mgtBL(2)12m v 02-m 2gR (v 0-gt )B 2L 2解析 (1)杆竖直向上运动的过程中,取v 0方向为正方向,根据动量定理,有-mgt -F t =0-m v 0 F =BL I q =I t联立解得q =m v 0-mgt BL(2)设杆上升的高度为h ,取v 0方向为正方向,由动量定理得-mgt -B 2L 2vR t =0-m v 0又h =v t联立解得h =mR (v 0-gt )B 2L 2杆上升过程中由能量守恒定律可知,电阻上产生的焦耳热Q =12m v 02-mgh联立解得Q =12m v 02-m 2gR (v 0-gt )B 2L 2.10.(2022·天津市一模)如图,间距为L 的两平行金属导轨右端接有电阻R ,固定在离地高为H 的平面上,空间存在着方向竖直向下、磁感应强度大小为B 的匀强磁场.质量为m 的金属杆ab 垂直导轨放置,杆获得一个大小为v 0的水平初速度后向左运动并离开导轨,其落地点距导轨左端的水平距离为s .已知重力加速度为g ,忽略一切摩擦和阻力,杆和导轨电阻不计.求:(1)杆即将离开导轨时的加速度大小a ;(2)杆穿过匀强磁场的过程中,克服安培力做的功W ; (3)杆ab 在水平导轨上运动的位移大小x .答案 (1)B 2L 2s 2mRH 2gH (2)12m (v 02-gs 22H ) (3)mR B 2L 2(v 0-s 2H2gH ) 解析 (1)杆离开导轨后做平抛运动,则有H =12gt 2,s =v t ,联立解得杆离开导轨时的速度大小为v =sg 2H杆离开导轨时,产生的感应电动势为E =BL v 感应电流大小为I =ER杆受到的安培力大小为F =BIL 根据牛顿第二定律可得F =ma联立解得杆即将离开导轨时的加速度大小为a =B 2L 2s2mRH 2gH(2)根据动能定理,可得-W =12m v 2-12m v 02则杆穿过匀强磁场的过程中,克服安培力做的功为 W =12m (v 02-gs 22H)(3)根据动量定理,可得-B I Lt =m v -m v 0 q =I t =BLxR联立解得x =mR B 2L 2(v 0-s2H2gH ).11.两足够长且不计电阻的光滑金属轨道如图甲所示放置,间距为d =1 m ,在左端弧形轨道部分高h =1.25 m 处放置一金属杆a ,弧形轨道与平直轨道的连接处平滑无摩擦,在平直轨道右端放置另一金属杆b ,杆a 、b 接入电路的电阻分别为R a =2 Ω、R b =5 Ω,在平直轨道区域有竖直向上的匀强磁场,磁感应强度大小为B =2 T .现杆b 以初速度大小v 0=5 m/s 开始向左滑动,同时由静止释放杆a ,杆a 由静止滑到水平轨道的过程中,通过杆b 的平均电流为0.3 A ;从a 下滑到水平轨道时开始计时,a 、b 运动的速度-时间图像如图乙所示(以a 运动的方向为正方向),其中m a =2 kg ,m b =1 kg ,g 取10 m/s 2,求:(1)杆a 在弧形轨道上运动的时间;(2)杆a 在水平轨道上运动过程中通过其截面的电荷量; (3)在整个运动过程中杆b 产生的焦耳热. 答案 (1)5 s (2)73 C (3)1156J解析 (1)设杆a 由静止滑至弧形轨道与平直轨道连接处时杆b 的速度大小为v b 0,对杆b 运用动量定理,有Bd I ·Δt =m b (v 0-v b 0) 由题图乙可知,v b 0=2 m/s 代入数据解得Δt =5 s.(2)对杆a 由静止下滑到平直导轨上的过程中,由机械能守恒定律有m a gh =12m a v a 2解得v a =2gh =5 m/s设最后a 、b 两杆共同的速度大小为v ′,由动量守恒定律得m a v a -m b v b 0=(m a +m b )v ′ 代入数据解得v ′=83m/s杆a 动量的变化量等于它所受安培力的冲量,设杆a 的速度从v a 到v ′的运动时间为Δt ′,则由动量定理可得-Bd I ′·Δt ′=m a (v ′-v a ),而q =I ′·Δt ′ 代入数据解得q =73C.(3)由能量守恒定律可知杆a 、b 中产生的总焦耳热为Q =m a gh +12m b v 02-12(m b +m a )v ′2=1616 J则b 杆中产生的焦耳热为Q ′=R b R a +R bQ =1156 J.错题统计(题号)对应考点错因分析动量定理在电磁感应中的应用动量守恒定律在电磁感应中的应用电磁感应中的综合问题一、动量定理、动量守恒定律在电磁感应中的应用导体棒在磁场中做变速运动,所受安培力是变力,可用动量定理求速度、位移、电荷量、时间等.对于双杆问题,若双杆所受外力为零,可用动量守恒定律分析.1.单杆运动问题已知量(其中B、L、m已知)待求量关系式(以棒减速为例)v1、v2q -B I LΔt=m v2-m v1,q=IΔtv1、v2、R总x -B2L2vΔtR总=m v2-m v1,x=vΔtF其他为恒力,v1、v2、q Δt-B I LΔt+F其他Δt=m v2-m v1,q=IΔtF其他为恒力,v1、v2、R总、x(或Δt)Δt(或x)-B2L2vΔtR总+F其他·Δt=m v2-m v1,x =vΔt2.双杆运动问题(1)等间距轨道上的双杆问题①双杆所受外力的合力为零时,若只需求末速度,可用动量守恒定律分析.②若需求电荷量、位移、时间等,则需要利用动量定理分析.(2)不等距导轨上的双杆问题由于合外力不为零,不等距导轨上的双杆问题需用动量定理分析.常见的双杆模型:题型一(等距、初速度、光滑、平行)题型二(不等距、初速度、光滑、平行)题型三(等距、恒力、光滑、平行)示意图导体棒长度L1=L2导体棒长度L1=2L2,两棒只在各自的轨道上运动导体棒长度L1=L2图像观点力学观点棒1做加速度减小的减速运动,棒2做加速度减小的加速运动;稳定时,两棒以相等的速度匀速运动棒1做加速度减小的减速运动,棒2做加速度减小的加速运动;稳定时,两棒的加速度均为零,速度之比为1∶2开始时,两棒做变加速运动;稳定时,两棒以相同的加速度做匀加速运动动量观点两棒组成的系统动量守恒两棒组成的系统动量不守恒对单棒可以用动量定理两棒组成的系统动量不守恒对单棒可以用动量定理能量观点系统动能的减少量等于产生的焦耳热系统动能的减少量等于产生的焦耳热拉力做的功一部分转化为双棒的动能,一部分转化为内能(焦耳热):W=Q+E k1+E k23.杆+电容器模型基本模型规律无外力,电容器充电(电阻阻值为R,导体棒电阻不计,电容器电容为C)无外力,电容器放电(电源电动势为E,内阻不计,导体棒电阻不计,电容器电容为C)电路特点导体棒相当于电源,电容器被充电电容器放电,相当于电源;导体棒受安培力而运动电流的特点安培力为阻力,棒减速,E减小,有I=BL v-U CR,电容器被充电,U C变大,当BL v=U C时,I=0,F安=0,棒做匀电容器放电时,导体棒在安培力作用下开始运动,同时阻碍放电,导致电流减小,直至电流为零,此时U C=BL v。
2025版高考物理一轮总复习动量观点在电磁感应中的应用考点2动量守恒定律在电磁感应中的应用(含答案)
高考物理一轮总复习考点突破:考点2 动量守恒定律在电磁感应中的应用(能力考点·深度研析)光滑的平行导轨示意图质量m b=m a电阻r b=r a长度L b=L a力学观点杆b受安培力做变减速运动,杆a受安培力做变加速运动,稳定时,两杆的加速度均为零,以相等的速度匀速运动运动图像能量观点系统动能的减少转化为内能动量观点两杆组成的系统动量守恒(2023·全国甲卷)如图,水平桌面上固定一光滑U形金属导轨,其平行部分的间距为l,导轨的最右端与桌子右边缘对齐,导轨的电阻忽略不计。
导轨所在区域有方向竖直向上的匀强磁场,磁感应强度大小为B。
一质量为m、电阻为R、长度也为l的金属棒P静止在导轨上。
导轨上质量为3m的绝缘棒Q位于P的左侧,以大小为v0的速度向P运动并与P发生弹性碰撞,碰撞时间很短。
碰撞一次后,P和Q先后从导轨的最右端滑出导轨,并落在地面上同一地点。
P在导轨上运动时,两端与导轨接触良好,P与Q始终平行。
不计空气阻力。
求:(1)金属棒P滑出导轨时的速度大小;(2)金属棒P在导轨上运动过程中产生的热量;(3)与P碰撞后,绝缘棒Q在导轨上运动的时间。
[解析](1)由于绝缘棒Q与金属棒P发生弹性碰撞,根据动量守恒和机械能守恒可得3mv 0=3mv Q +mv P12×3mv 20=12×3mv 2Q +12mv 2P 联立解得v P =32v 0,v Q =12v 0 由题知,碰撞一次后,P 和Q 先后从导轨的最右端滑出导轨,并落在地面上同一地点,则金属棒P 滑出导轨时的速度大小为v P ′=v Q =12v 0。
(2)根据能量守恒有12mv 2P =12mv P ′2+Q 解得Q =mv 20。
(3)P 、Q 碰撞后,对金属棒P 分析,根据动量定理得-B I l Δt =mv P ′-mv P 又q =I Δt ,I =E R =ΔΦR Δt =Blx R Δt 联立可得x =mv 0R B 2l 2由于Q 为绝缘棒,无电流通过,做匀速直线运动,故Q 运动的时间为t =x v Q =2mR B 2l 2。
动量观点在电磁感应中的应用
小于磁场区域的宽度。若线框进、出磁场的过程中通
过线框横截面的电荷量分别为q1、q2,线框经过位置
Ⅱ时的速度为v。则下列说法正确的是( BD)
A.q1=q2 C.v=1.0 m/s
B.q1=2q2 D.v=1.5 m/s
01 02 03 04 05 06 07 08
图2
目录
提升素养能力
解析 根据 q=ΔRΦ=BRΔS可知,线框进、出磁场的过程中通过线框横截面的电 荷量 q1=2q2,故 A 错误,B 正确;线圈从开始进入到位置Ⅱ,由动量定理- B-I1LΔt1=mv-mv0,即-BLq1=mv-mv0,同理线圈从位置Ⅱ到位置Ⅲ,由动 量定理-B-I2LΔt2=0-mv,即-BLq2=0-mv,联立解得 v=13v0=1.5 m/s,故 C 错误,D 正确。
目录
研透核心考点
解析 对 ab 棒由动量定理有-B-ILt=0-mv0,而 q=-It,即-BqL=0-mv0,当流过棒的电荷量为q2 时,有-B·q2L=mv1-mv0,解得 v1=12v0,A 错误; 当棒发生位移为 s 时,q=ΔRΦ=BRLs,则当棒发生位移为3s时,q′=ΔRΦ′=B3LRs, 可知此时流过棒的电荷量 q′=q3,代入 B-ILΔt=BLq′=mv2-mv0,解得棒的速 度为 v2=32v0,B 错误;定值电阻与导体棒释放的热量相同,在流过棒的电荷量 达到q2的过程中,棒释放的热量为 Q=1212mv20-12mv21=136mv20=3B1q6Lv0,C 正确; 同理可得整个过程中定值电阻 R 释放的热量为 Q′=21×21mv20=qB4Lv0,D 错误。
给金属棒 ab 一个水平向右的初速度 v0,金属棒沿着金属导轨滑过磁场的过程中,流 过金属棒的电流最大值为 I,最小值为12I。不计导轨电阻,金属棒与导轨始终接触良
运用动量定理及动量守恒定律的注意点
运用动量定理及动量守恒定律的注意点在研究力对改变物体的运动状态方面的效果时,牛顿第二定律已作了明确的回答.但是,牛顿定律所要解决的是力的瞬时作用效果,并不直接给出力的持续作用效果.动量定理解决了力的时间积累效果,它不涉及作用的过程,只须知道作用前后的运动量的变化,从而使一些不易处理的较复杂的问题,如:打击、碰撞等问题的解决变得简便.动量守恒定律的应用范围比牛顿定律更为广泛,大至星系的宏观系统,小至基本粒子的微观系统,在一定条件下,动量守恒定律都是成立的.运用动量定理、动量守恒定律时应注意如下几个方面:一、运用动量定理解题时,极易发生一种错误,即把式F·t=mvt-mYo中的F 理解为某一外力或某几个(不是全部)外力的合力.必须注意F是合外力.[例1]跳伞员从飞机上跳下来时不是立即张开降落伞,而是经过一段时间后降落伞才张开的.如果不张开伞下降的最后速度是50米/秒,而在伞完全张开后的速度是5米/秒,张开伞的时间是1.5秒,并假定跳伞员是竖直下落,则平均冲力为多大?[错解及分析]根据F·t=mvt-mv0.∴F=m(vt-vo)/t=mg(vt-vo)/gt=-mg(50-5)/1.5×10=-3mg.错在哪里呢?动量定理中的F是作用于质点的合外力.跳伞员在张开伞时受到向下的重力mg和向上的平均冲力F,两者属于同一数量级,故重力不可忽略。
[正确解法]取竖直向下的方向为正方向,由F合·t=mvt-mvo得(mg-F)·t=mvt-mV o∴F=-(mvt-mV o)/t+mg=3mg+mg=4mg.二、动量是矢量,动量定理和动量守恒定律的数学表达式是矢量式,在分析问题时要注意它的方向性.如果两个物体在同一直线上运动并发生相互作用,必须选某一方向的动量为正,反向的即为负,从而可以把矢量式简化为代数式.若发生的是斜碰,则必须注意碰撞前后的动量和是矢量和,不是代数和.[例2]一质量为m1=0.3千克的小球,在水平光滑的桌面上以vl=5米/秒的速度向右运动,迎面与一个质量为m2=1千克,速度为v2=3米/秒的小球相碰撞,撞后该小球恰好静止,那么碰撞后小球m1的速度是多大?方向如何?解:取两个小球为物体系,物体系所受合外力为零,动量守恒,并选取向右为正方向.m1vl+m2v2=m1v’1+m2v’2,v’2=0,∴v’1=(m1vl+m2v2)/m1=[0.3×5+1×(-3)]/0.3=-5(米/秒).v’1为负,表明v’1与vl方向相反,即方向向左.三、运用动量守恒定律解题时,必须符合定律成立的条件。
一轮复习:磁感应中的动量问题
(2)gt-Bm2Lr3+ 2gL
方法感悟 应用动量定理还可以由动量变化来求解变力的冲量。如 在导体棒做非匀变速运动的问题中,应用动量定理可以 解决牛顿运动定律不易解答的问题。
12.(2018·天津高考) 真空管道超高速列车的动力系统是一种将 电能直接转换成平动动能的装置。图1是某种动力系统的简化模 型,图中粗实线表示固定在水平面上间距为l的两条平行光滑金 属导轨,电阻忽略不计,ab和cd是两根与导轨垂直、长度均为l、 电阻均为R的金属棒,通过绝缘材料固定在列车底部,并与导轨 良好接触,其间距也为l,列车的总质量为m。列车启动前,ab、 cd处于磁感应强度为B的匀强磁场中,磁场方向垂直于导轨平面 向下,如图1所示,为使列车启动,需在M、N间连接电动势为E
的直流电源,电源内阻及导线电阻忽略不计,列车启动后电源自 动关闭。
(1)要使列车向右运行,启动时图1中M、N哪个接电源正极,并 简要说明理由; (2)求刚接通电源时列车加速度a的大小; (3)列车减速时,需在前方设置如图2所示的一系列磁感应强度为 B的匀强磁场区域,磁场宽度和相邻磁场间距均大于l。若某时刻 列车的速度为v0,此时ab、cd均在无磁场区域,试讨论:要使 列车停下来,前方至少需要多少块这样的有界磁场?
A.回路中始终存在逆时针方向的电流
B.棒 N 的最大加速度为2Bm2I2dR2
C.回路中的最大电流为2BmIdR
D.棒 N 获得的最大速度为mI
16.(2018·唐山二模)如图所示,两根平行光滑的金属导轨 M1N1P1-M2N2P2由四分之一圆弧部分与水平部分构成,导轨 末端固定两根绝缘柱,弧形部分半径r=0.8 m、导轨间距L=1 m,导轨水平部分处于竖直向上的匀强磁场中,磁感应强度大小 B=2 T,两根完全相同的金属棒a、b分别垂直导轨静置于圆弧 顶端M1M2处和水平导轨中某位置,两金属棒质量均为m=1 kg、 电阻均为R=2 Ω。金属棒a由静止释放,沿圆弧导轨滑入水平部 分,此后,金属棒b向右运动,在导轨末端与绝缘柱发生碰撞且 无机械能损失,金属棒b接触绝缘柱之前两棒已匀速运动且未发 生碰撞。金属棒b与绝缘柱发生碰撞后,在距绝缘柱x1=0.5 m 的A1A2位置与金属棒a发生碰撞,碰后停在距绝缘柱x2=0.2 m 的A3A4位置,整个运动过程中金属棒与导轨接触良好,导轨电 阻不计,g取10 m/s2。求:
动量定理与动量守恒定律的比较
动量定理与动量守恒定律的比较
动量定理和动量守恒定律都是描述物体运动状态的基本定律。
动量定理指出,当一个物体受到外力作用时,它的动量会发生变化,变化量等于外力作用时间内的动量变化率。
动量守恒定律则指出,当物体间只有内力作用时,它们的总动量保持不变。
两个定律都是基于牛顿第二定律推导而来的。
动量定理适用于描述瞬时的动量变化,比如撞击、碰撞等过程。
它可以用来计算物体在受力作用下的运动状态变化,如速度、位移等。
而动量守恒定律适用于描述长时间内的物体运动,比如行星绕太阳的运动、宇宙中物体的演化等。
它可以用来预测物体间的相对位置和速度等运动状态。
动量定理和动量守恒定律之间的关系是密切的,它们可以互相验证。
动量定理的推导基于牛顿第二定律,而牛顿第二定律的推导又基于动量守恒定律。
因此,这两个定律是相互支撑、相互补充的。
总之,动量定理和动量守恒定律是描述物体运动状态的基本定律,它们分别适用于不同的物理过程和时间尺度。
它们的相互关系是相当重要的,可以用来解释和预测物理现象。
- 1 -。
浅谈动量、动量定理和动量守恒定律的概念和应用
浅谈动量、动量定理和动量守恒定律的概念和应用作者:吕超来源:《中国科技博览》2014年第24期[摘要]物体的动量比起物体的速度,更能全面地反映物体的运动状态;动量定理和动量守恒定律比起牛顿运动定律,具有更大的普遍性和独立性。
本文介绍了动量的概念、动量定理和动量守恒定律;应用动量定理和动量守恒定律求解了典型例题,解题后有说明,点评了本题的重点、难点或解题方法,画龙点睛。
[关键词]惯性参照系,动量,冲量,动量定理,动量守恒定律。
中图分类号:TP61+3.3 文献标识码:A 文章编号:1009-914X(2014)24-0130-02一、动量的概念在经典力学中,物体的质量为,速度为,是与无关的恒量,则物体的质量和速度的乘积定义为物体的动量,即。
在相对论力学中,物体的静止质量为,光的速率为,,是的函数是变量,物体的动量仍定义为:。
物体的动量比起物体的速度,更能全面地反映物体的运动状态。
本文只限于讨论经典力学问题。
二、动量定理牛顿第二定律表述为:物体的加速度跟物体所受的合外力成正比,跟物体的质量成反比,的方向与的方向相同,即。
力和力的作用时间的乘积定义为力的冲量,即。
从牛顿第二定律出发,推导出动量定理:。
则,这是动量定理微分形式。
一段时间内力的冲量,这是动量定理积分形式。
三、动量守恒定律根据动量定理,当物体或物体系统(简称系统)不受外力或所受的合外力为零时,系统的动量守恒。
即当时,则,或,这是动量守恒定律。
当系统所受的合外力在某一方向的分量为零时,则系统的总动量在该方向的分量守恒。
这是沿某一方向的动量守恒定律。
从牛顿运动定律出发,可以推导出动量定理和动量守恒定律。
但必须指出,动量定理和动量守恒定律比起牛顿运动定律,具有更大的普遍性和独立性,例如在高速领域和微观领域里,牛顿运动定律就不成立,但是动量定理和动量守恒定律仍然成立,动量守恒定律是自然界最普遍的守恒定律之一。
四、典型例题解题应用应用动量定理和动量守恒定律解题时,必须要注意:要选取适当的系统,要在同一惯性参照系里,在同一时刻写出系统内各物体的动量及其总和,或者写出系统内各物体的动量在某一方向的分量及其总和。
动力学、动量和能量观点在磁场中的应用
动力学、动量和能量观点在电学中的应用电磁感应中的动量和能量的应用1.应用动量定理可以由动量变化来求解变力的冲量.如在导体棒做非匀变速运动的问题中,应用动量定理可以解决牛顿运动定律不易解答的问题.2.在相互平行的水平轨道间的双棒做切割磁感线运动时,由于这两根导体棒所受的安培力等大反向,合外力为零,若不受其他外力,两导体棒的总动量守恒,解决此类问题往往要应用动量守恒定律.类型1动量定理和功能关系的应用例1如图1所示,两根电阻不计的光滑金属导轨竖直放置,相距为L,导轨上端接电阻R,宽度相同的水平条形区域Ⅰ和Ⅱ内有磁感应强度为B、方向垂直导轨平面向里的匀强磁场,其宽度均为d,Ⅰ和Ⅱ之间相距为h且无磁场.一长度为L、质量为m、电阻为r的导体棒,两端套在导轨上,并与两导轨始终保持良好的接触,导体棒从距区域Ⅰ上边界H处由静止释放,在穿过两段磁场区域的过程中,流过电阻R上的电流及其变化情况相同,重力加速度为g.求:(1)导体棒进入区域Ⅰ的瞬间,通过电阻R的电流大小与方向.(2)导体棒通过区域Ⅰ的过程,电阻R上产生的热量Q.(3)求导体棒穿过区域Ⅰ所用的时间.(2018·甘肃天水模拟)如图2所示,竖直放置的两光滑平行金属导轨,置于垂直于导轨平面向里的匀强磁场中,两根质量相同的导体棒a和b,与导轨紧密接触且可自由滑动.先固定a,释放b,当b的速度达到10 m/s时,再释放a,经过1 s后,a的速度达到12 m/s,g取10 m/s2,则:(1)此时b的速度大小是多少?(2)若导轨足够长,a、b棒最后的运动状态怎样?类型2动量守恒定律和功能关系的应用1.问题特点对于双导体棒运动的问题,通常是两棒与导轨构成一个闭合回路,当其中一棒在外力作用下获得一定速度时必然在磁场中切割磁感线,在该闭合电路中形成一定的感应电流;另一根导体棒在磁场中通过时在安培力的作用下开始运动,一旦运动起来也将切割磁感线产生一定的感应电动势,对原来电流的变化起阻碍作用.2.方法技巧解决此类问题时通常将两棒视为一个整体,于是相互作用的安培力是系统的内力,这个变力将不影响整体的动量守恒.因此解题的突破口是巧妙选择系统,运用动量守恒(动量定理)和功能关系求解.(2017·湖南长沙四县三月模拟)足够长的平行金属轨道M、N,相距L=0.5 m,且水平放置;M、N左端与半径R=0.4 m的光滑竖直半圆轨道相连,与轨道始终垂直且接触良好的金属棒b和c可在轨道上无摩擦地滑动,两金属棒的质量m b=m c=0.1 kg,接入电路的有效电阻R b=R c=1 Ω,轨道的电阻不计.平行水平金属轨道M、N处于磁感应强度B=1 T的匀强磁场中,磁场方向与轨道平面垂直向上,光滑竖直半圆轨道在磁场外,如图3所示,若使b棒以初速度v0=10 m/s开始向左运动,运动过程中b、c不相撞,g取10 m/s2,求:(1)c棒的最大速度;(2)c棒达最大速度时,此棒产生的焦耳热;(3)若c棒达最大速度后沿半圆轨道上滑,金属棒c到达轨道最高点时对轨道的压力的大小.如图4所示,平行倾斜光滑导轨与足够长的平行水平光滑导轨平滑连接,导轨电阻不计.质量分别为m和12m的金属棒b和c静止放在水平导轨上,b、c两棒均与导轨垂直.图中de虚线往右有范围足够大、方向竖直向上的匀强磁场.质量为m的绝缘棒a垂直于倾斜导轨静止释放,释放位置与水平导轨的高度差为h.已知绝缘棒a滑到水平导轨上与金属棒b发生弹性正碰,金属棒b进入磁场后始终未与金属棒c发生碰撞.重力加速度为g.求:(1)绝缘棒a与金属棒b发生弹性正碰后分离时两棒的速度大小;(2)金属棒b进入磁场后,其加速度为其最大加速度的一半时的速度大小;(3)两金属棒b、c上最终产生的总焦耳热.如图所示,在光滑的水平面上,有一垂直向下的匀强磁场分布在宽度为L的区域内,现有一个边长为a(a﹤L)的正方形闭合线圈以初速度v0垂直磁场边界滑过磁场后,速度为v(v﹤v0),那么线圈()A完全进入磁场中时的速度大于(v0+v)/2B完全进入磁场中时的速度等于(v0+v)/2C完全进入磁场中时的速度小于(v0+v)/2D以上情况均有可能如图所示,在水平面上有两条导电导轨MN、PQ,导轨间距为d,匀强磁场垂直于导轨所在的平面向里,磁感应强度的大小为B ,两根完全相同的金属杆1、2间隔一定的距离摆开放在导轨上,且与导轨垂直。
08讲 动量与动量守恒定律在电磁感应中的应用解析版
2022-2023高考物理二轮复习(新高考)08讲动量与动量守恒定律在电磁感应中的应用●动量与动量守恒定律在电磁感应中的应用的思维导图●重难点突破一.动量定理在电磁感应现象中的应用:导体棒在感应电流所引起的安培力作用下运动时,当题目中涉及速度v、电荷量q、运动时间t、运动位移x时常用动量定理求解.二.动量守恒定律在电磁感应中的应用:在双金属棒切割磁感线的系统中,双金属棒和导轨构成闭合回路,安培力充当系统内力,如果它们不受摩擦力,且受到的安培力的合力为0时,满足动量守恒,运用动量守恒定律解题比较方便.●考点应用,质量为m,电阻不计,匀强1.水平放置的平行光滑导轨,间距为L,左侧接有电阻R,导体棒初速度为v磁场的磁感应强度为B,导轨足够长且电阻不计,从开始运动至停下来导体棒或金属框在感应电流所引起的安培力作用下做非匀变速直线运动时,常用的计算:-B I L Δt =0-mv 0,q =I Δt ,q =mv 0BL -B 2L 2v R Δt =0-mv 0,x =v Δt =mv 0R B 2L2例1:如图所示,固定在同一水平面内的两根平行长直金属导轨的间距为d ,其右端接有阻值为R 的电阻,整个装置处在竖直向上、磁感应强度大小为B 的匀强磁场中。
一质量为m (质量分布均匀)的导体杆ab 垂直于导轨放置,且与两导轨保持良好接触,杆与导轨之间的动摩擦因数为μ。
现杆在水平向左、垂直于杆的恒力F 作用下从静止开始沿导轨运动距离L 时,速度恰好达到最大(运动过程中杆始终与导轨保持垂直)。
设杆接入电路的电阻为r ,导轨电阻不计,重力加速度大小为g ,则此过程错误的是()A .杆的速度最大值为22()F mg RB d μ-B .流过电阻R 的电荷量为BdLR r+C .从静止到速度恰好达到最大经历的时间2222()()()m R r B d L t B d F mg R r μ+=+-+D .恒力F 做的功与安培力做的功之和大于杆动能的变化量【答案】A【详解】A .当杆的速度达到最大时,安培力为22=B d v F R r +安此时杆受力平衡,则有F-μmg-F 安=0解得22()()F mg R r v B d μ-+=A 错误,符合题意;B .流过电阻R 的电荷量为BdLq It R r R r∆Φ===++B 正确,不符合题意;C .根据动量定理有()F mg t BIt mv μ--=,q It=结合上述解得2222()()()mg R r B d L t B d F mg R r μ+=+-+C 正确,不符合题意;D .对于杆从静止到速度达到最大的过程,根据动能定理,恒力F 、安培力、摩擦力做功的代数和等于杆动能的变化量,由于摩擦力做负功,所以恒力F 、安培力做功的代数和大于杆动能的变化量,D 正确,不符合题意。
电磁感应中的动量与能量问题
补充作业(11) 电磁感应中的动量与能量问题[方法点拨] 电磁感应中的有些题目可以从动量角度着手,运用动量定理或动量守恒定律解决:①应用动量定理可以由动量变化来求解变力的冲量.如在导体棒做非匀变速运动的问题中,应用动量定理可以解决牛顿运动定律不易解答的问题.②在相互平行的水平轨道间的双棒做切割磁感线运动时,由于这两根导体棒所受的安培力等大反向,合外力为零,若不受其他外力,两导体棒的总动量守恒,解决此类问题往往要应用动量守恒定律.1.如图1所示,光滑平行金属导轨PQ 、MN 倾斜固定放置,导轨所在平面与水平面的夹角θ=30°,导轨底端连接有阻值为R 的电阻,导轨间距为L .方向垂直于导轨平面向下的有界匀强磁场的边界ab 、cd 垂直于导轨,磁场的磁感应强度大小为B ,边界ab 、cd 间距为s .将一长度为L 、质量为m 、阻值也为R 的金属棒垂直放置在导轨上,金属棒开始的位置离ab 的距离为12s ,现将金属棒由静止释放,金属棒沿导轨向下做加速运动,到达cd 位置时金属棒的加速度刚好为零,金属棒运动过程中始终垂直于导轨并与导轨接触良好,不计导轨及其他电阻,重力加速度为g ,求:图1(1)金属棒从释放到到达cd 位置的过程中,通过电阻R 的电荷量;(2)金属棒从ab 运动到cd 的时间.2.如图2甲所示,平行粗糙导轨固定在绝缘水平桌面上,间距L =0.2 m ,导轨左端接有R =1 Ω的电阻,质量为m =0.1 kg 的粗糙导体棒ab 垂直静置于导轨上,导体棒及导轨的电阻忽略不计.整个装置处于磁感应强度B =0.5 T 的匀强磁场中,磁场方向垂直导轨向下.现用与导轨平行的外力F 作用在导体棒ab 上使之一开始做匀加速运动,且外力F 随时间变化关系如图乙所示,重力加速度g =10 m/s 2,求:图2(1)比较导体棒a、b两点电势的高低;(2)前10 s导体棒ab的加速度大小;(3)若整个过程中通过R的电荷量为65 C,则导体棒ab运动的总时间是多少?3.如图3所示,足够长的水平轨道左侧部分b1b2-c1c2轨道间距为2L,右侧部分c1c2-d1d2的轨道间距为L,圆弧轨道与水平轨道相切于b1b2,所有轨道均光滑且电阻不计.在水平轨道内有斜向下与竖直方向夹角θ=37°的匀强磁场,磁感应强度大小为B=0.1 T.质量为M=0.2 kg的金属棒C垂直于轨道静止放置在右侧窄轨道上,质量为m=0.1 kg的导体棒A自圆弧轨道上a1a2处由静止释放,两金属棒在运动过程中始终相互平行且与轨道保持良好接触,A 棒总在宽轨上运动,C棒总在窄轨上运动.已知:两金属棒接入电路的有效电阻均为R=0.2 Ω,h=0.2 m,L=0.2 m,sin 37°=0.6,cos 37°=0.8,g取10 m/s2,求:图3(1)金属棒A滑到b1b2处时的速度大小;(2)金属棒C匀速运动的速度大小;(3)在两棒整个的运动过程中通过金属棒A某截面的电荷量;(4)在两棒整个的运动过程中金属棒A、B在水平轨道间扫过的面积之差.4.某小组同学在研究图4甲所示的电磁枪原理时,绘制了图乙所示的简图(为俯视图),图中两平行金属导轨间距为L固定在水平面上,整个装置处在竖直向下、磁感应强度为B的匀强磁场中,平行导轨左端电路如图所示,电源的电动势为E(内阻不计),电容器的电容为C.一质量为m、长度也为L的金属导体棒垂直于轨道平放在导轨上,忽略摩擦阻力和导轨、导线的电阻,假设平行金属导轨足够长.图4(1)将开关S接a,电源对电容器充电.a.求电容器充电结束时所带的电荷量Q;b.请在图丙中画出充电过程中电容器两极板间的电压u随电容器所带电荷量q变化的图象;借助u-q图象求出稳定后电容器储存的能量E0.(2)电容器充电结束后,将开关接b,电容器放电,导体棒由静止开始运动,不计放电电流引起的磁场影响.a.已知自由电子的电荷量为e,请你分析推导当导体棒获得最大速度之后,导体棒中某一自由电子所受的电场力与导体棒最大速度之间的关系式;b.导体棒由静止到获得最大速度的过程中,由于存在能量损失ΔE损,电容器释放的能量没有全部转化为导体棒的动能,求ΔE损.。
第6讲 动量定理和动量守恒定律
第6讲 动量定理和动量守恒定律考点考题统计考情分析动量定理的应用2023·新课标卷T 19、2022·山东卷T 2、2022·湖北卷T 7、2021·湖南卷T 2、2021·福建卷T 4、2021·湖北卷T 3、2021·山东卷T 161.动量定理、动量守恒定律属于力学的主干知识,这部分知识与牛顿第二定律、功能关系合称“解题三把金钥匙”,是解决物理问题的基本方法,是高考的重点考查内容。
2.本讲内容经常与机械能守恒定律、平抛运动、圆周运动等力学及电磁学、原子物理等知识点组成综合题。
这类题型命题情境新颖,密切联系实际,综合性强,前后两个物理过程一般通过碰撞来过渡,这就决定了动量守恒定律在解题过程中的纽带作用。
动量守恒定律的应用 2023·辽宁卷T 15、2021·湖南卷T 8、2021·山东卷T 11碰撞与反冲问题2023·湖南卷T 15、2023·全国乙卷T 25、2023·浙江6月选考T 18、2023·山东卷T 18、2022·湖北卷T 16、2022·湖南卷T 4考点一 动量定理的应用1.(多选)(2023·新课标卷)使甲、乙两条形磁铁隔开一段距离,静止于水平桌面上,甲的N 极正对着乙的S 极,甲的质量大于乙的质量,两者与桌面之间的动摩擦因数相等。
现同时释放甲和乙,在它们相互接近过程中的任一时刻( )A.甲的速度大小比乙的大B.甲的动量大小比乙的小C.甲的动量大小与乙的相等D.甲和乙的动量之和不为零命题意图 本题以分析两磁铁之间的相互作用为背景,考查动量定理、牛顿运动定律等知识,考查学生分析推理能力。
解析:BD 根据F -μmg =ma 可得a =1m F -μg ,因m 甲>m 乙,故a 甲<a 乙,则任意时刻甲的速度大小比乙的小,A 错误;m 甲>m 乙,又μ甲=μ乙,则μ甲m 甲g >μ乙m 乙g ,故甲和乙组成的系统所受合外力的冲量方向水平向左,即甲的动量大小比乙的小,B 、D 正确,C 错误。
动量守恒与动量定理
动量守恒与动量定理动量是一个物体的运动状态的量度,它是由物体的质量和速度决定的。
在物理学中,动量守恒是指在一个封闭系统中,当没有外力作用时,系统的总动量保持不变。
动量定理是指当有外力作用时,物体的动量变化率等于外力的大小乘以作用时间。
1. 动量守恒动量守恒定律是描述封闭系统中动量守恒的基本原理。
当一个封闭系统内没有外力作用时,系统的总动量保持不变。
例如,考虑一个封闭系统,由两个物体组成。
初始时,物体1的质量为m1,速度为v1;物体2的质量为m2,速度为v2。
根据动量的定义,物体1的动量为p1 = m1v1,物体2的动量为p2 = m2v2。
根据动量守恒定律,系统的总动量为p = p1 + p2 = m1v1 + m2v2。
当没有外力作用时,系统的总动量保持不变,即p = m1v1 + m2v2 = 常量。
动量守恒定律在物理学中有广泛的应用。
例如,在碰撞问题中,我们可以利用动量守恒定律来求解物体碰撞后的速度或方向的变化。
2. 动量定理动量定理是描述物体在外力作用下动量变化的基本原理。
动量定理表明,物体的动量变化率等于外力的大小乘以作用时间。
设物体质量为m,速度为v。
根据动量的定义,物体的动量为p = mv。
当物体受到外力F作用时,根据牛顿第二定律F = ma,可以得到物体的加速度为a = F/m。
将加速度代入动量定义式中,可得物体的动量变化率为dp/dt = m(dv/dt) = m(a) = F。
动量定理表明,物体的动量变化率等于外力的大小。
动量定理在解决物体的运动问题中非常有用。
通过计算外力对物体的作用时间,我们可以确定物体动量的变化情况。
例如,在推动物体的问题中,我们可以利用动量定理来计算所需的外力大小和作用时间。
3. 动量守恒与动量定理的关系动量守恒定律和动量定理是相互关联的。
当没有外力作用时,系统的总动量保持不变,即动量守恒成立。
当有外力作用时,根据动量定理,物体的动量会发生变化。
在一个封闭系统中,如果没有外力作用,根据动量守恒定律,系统的总动量保持不变。
高中物理【电磁感应中的动力学、能量、动量问题】
电磁感应中的动力学、能量、动量问题考点一电磁感应中的动力学问题1.“四步法”分析电磁感应动力学问题解决电磁感应中的动力学问题的一般思路是“先电后力”,具体思路如下:2.电磁感应中的动态分析在此类问题中,不论加速运动还是减速运动,加速度总是逐渐减小,最后达到匀速运动.具体思路如下:例1、如图所示,两平行且无限长光滑金属导轨MN、PQ与水平面的夹角为θ=30°,两导轨之间的距离为L=1 m,两导轨M、P之间接入电阻R=0.2 Ω,导轨电阻不计,在abdc区域内有一个方向垂直于两导轨平面向下的磁场Ⅰ,磁感应强度B0=1T,磁场的宽度x1=1 m;在cd连线以下区域有一个方向也垂直于导轨平面向下的磁场Ⅱ,磁感应强度B1=0.5 T.一个质量为m=1 kg的金属棒垂直放在金属导轨上,与导轨接触良好,金属棒的电阻r =0.2 Ω,若金属棒在离ab连线上端x0处自由释放,则金属棒进入磁场Ⅰ恰好做匀速运动.金属棒进入磁场Ⅱ后,经过ef时又达到稳定状态,cd与ef之间的距离x2=8 m.求(g取10 m/s2)(1)金属棒在磁场I中运动的速度大小(2)金属棒滑过cd位置是的加速度大小(3)金属棒在磁场Ⅱ中达到稳定状态时的速度大小练习1.如图甲所示,电阻不计且间距L=1 m的光滑平行金属导轨竖直放置,上端接一阻值R=2 Ω的电阻,虚线OO′下方有垂直于导轨平面向里的匀强磁场,现将质量m=0.1 kg、电阻不计的金属杆ab从OO′上方某处由静止释放,金属杆在下落的过程中与导轨保持良好接触且始终水平,已知杆ab进入磁场时的速度v0=1 m/s,下落0.3 m的过程中加速度a与下落距离h的关系图象如图乙所示,g取10 m/s2,则( )A.匀强磁场的磁感应强度为1 TB.杆ab下落0.3 m时金属杆的速度为1 m/sC.杆ab下落0.3 m的过程中R上产生的热量为0.2 JD.杆ab下落0.3 m的过程中通过R的电荷量为0.25 C考点二电磁感应中的能量问题1.电磁感应中的能量转化2、求解焦耳热Q的三种方法例2如图所示,两根光滑金属导轨平行放置在倾角为30°的斜面上,导轨宽度为L,导轨下端接有电阻R,两导轨间存在一方向垂直于斜面向上,磁感应强度大小为B的匀强磁场,轻绳一端平行于斜面系在质量为m的金属棒上,另一端通过定滑轮竖直悬吊质量为m0的小木块.第一次将金属棒从PQ位置由静止释放,发现金属棒沿导轨下滑,第二次去掉轻绳,让金属棒从PQ位置由静止释放.已知两次下滑过程中金属棒始终与导轨接触良好,且在金属棒下滑至底端MN前,都已经达到了平衡状态.导轨和金属棒的电阻都忽略不计,已知mm0=4,mgRB2L2=gh(h为PQ位置与MN位置的高度差).求:(1)金属棒两次运动到MN时的速度大小之比;(2)金属棒两次运动到MN过程中,电阻R产生的热量之比.练习2、如图所示,在粗糙绝缘水平面上有一正方形闭合线框abcd,其边长为l,质量为m,金属线框与水平面的动摩擦因数为μ.虚线框a′b′c′d′内有一匀强磁场,磁场方向竖直向下.开始时金属线框的ab 边与磁场的d ′c ′边重合.现使金属线框以初速度v 0沿水平面滑入磁场区域,运动一段时间后停止,此时金属线框的dc 边与磁场区域的d ′c ′边距离为l .在这个过程中,金属线框产生的焦耳热为( )A. 12mv 20+μmglB. B.12mv 20-μmglC. 12mv 20+2μmglD. D.12mv 20-2μmgl考点三 电磁感应中的动量问题1.动量定理在电磁感应中的应用在电磁感应中用动量定理时,通常将下面两式结合应用:BLI ·Δt =Δmv q =I Δt =n ΔΦR2.动量守恒在电磁感应中的应用在“双棒切割”系统中,在只有安培力作用下,系统的合外力为零,通常应用动量守恒求解.例 3 如图所示,两根平行光滑的金属导轨MN 、PQ 放在水平面上,左端向上弯曲,导轨间距为L ,电阻不计,水平段导轨所处空间存在方向竖直向上的匀强磁场,磁感应强度为B .导体棒a 和b 的质量均为m ,电阻值分别为R a =R ,R b =2R .b 棒放置在水平导轨上且距弯曲轨道底部L 0处,a 棒在弯曲轨道上距水平面h 高度处由静止释放.运动过程中导体棒和导轨接触良好且始终和导轨垂直,重力加速度为g .求: (1)从a 棒开始下落到最终稳定的过程中,a 棒上产生的内能? (2)当a 、b 棒运动最终稳定时,通过a 棒的总电荷量?练习3、如图所示,两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L ,导轨上面横放着两根导体棒ab 和cd ,构成矩形回路,两根导体棒的质量皆为m ,电阻皆为R ,回路中其余部分的电阻可不计.在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B .设两导体棒均可沿导轨无摩擦地滑行,开始时,棒cd 静止,棒ab 有指向棒cd 的初速度v 0,若两导体棒在运动中始终不接触,求: (1)在运动中产生的焦耳热Q 最多是多少?(2)当ab 棒的速度变为初速度的34时,cd 棒的加速度a 是多少?考点四、高考常考的“切割模型”——导体棒或导体框切割磁感线运动模型模型1——导体转动切割磁感线模型 模型2——“单棒+导轨”模型 模型3——“双棒+导轨”模型 模型4——“线框切割”模型例4、[2017·海南卷](多选)如图,空间中存在一匀强磁场区域,磁场方向与竖直面(纸面)垂直,磁场的上、下边界(虚线)均为水平面;纸面内磁场上方有一个正方形导线框abcd,其上、下两边均与磁场边界平行,边长小于磁场上、下边界的间距.若线框自由下落,从ab边进入磁场时开始,直至ab边到达磁场下边界为止,线框下落的速度大小可能( ) A.始终减小B.始终不变C.始终增加D.先减小后增加例5、(多选)足够长的光滑金属导轨ab、cd水平放置,质量为m、电阻为R的两根相同金属棒甲、乙与导轨垂直且接触良好,磁感应强度为B的匀强磁场垂直导轨平面向里,如图所示,现用F作用于乙棒上,使它向右运动,用v、a、i和P 分别表示甲棒的速度、甲棒的加速度、甲棒中的电流和甲棒消耗的电功率,下列图象可能正确的是( )练习4、如图所示,两相互平行且足够长的光滑倾斜金属导轨,导轨与水平面间的夹角为37°,导轨宽度为1.0m,上端接一个电容器。
高中物理专题复习 动量及动量守恒定律
高中物理专题复习动量及动量守恒定律一、动量守恒定律的应用1.碰撞两个物体在极短时间内发生相互作用,这种情况称为碰撞。
由于作用时间极短,一般都满足内力远大于外力,所以可以认为系统的动量守恒。
碰撞又分弹性碰撞、非弹性碰撞、完全非弹性碰撞三种。
仔细分析一下碰撞的全过程:设光滑水平面上,质量为m 1的物体A 以速度v 1向质量为m 2的静止物体B 运动,B 的左端连有轻弹簧。
在Ⅰ位置A 、B 刚好接触,弹簧开始被压缩,A 开始减速,B 开始加速;到Ⅱ位置A 、B 速度刚好相等(设为v ),弹簧被压缩到最短;再往后A 、B 开始远离,弹簧开始恢复原长,到Ⅲ位置弹簧刚好为原长,A 、B 分开,这时A 、B 的速度分别为21v v ''和。
全过程系统动量一定是守恒的;而机械能是否守恒就要看弹簧的弹性如何了。
⑴弹簧是完全弹性的。
Ⅰ→Ⅱ系统动能减少全部转化为弹性势能,Ⅱ状态系统动能最小而弹性势能最大;Ⅱ→Ⅲ弹性势能减少全部转化为动能;因此Ⅰ、Ⅲ状态系统动能相等。
这种碰撞叫做弹性碰撞。
由动量守恒和能量守恒可以证明A 、B 的最终速度分别为:121121212112,v m m m v v m m m m v +='+-='。
⑵弹簧不是完全弹性的。
Ⅰ→Ⅱ系统动能减少,一部分转化为弹性势能,一部分转化为内能,Ⅱ状态系统动能仍和⑴相同,弹性势能仍最大,但比⑴小;Ⅱ→Ⅲ弹性势能减少,部分转化为动能,部分转化为内能;因为全过程系统动能有损失(一部分动能转化为内能)。
这种碰撞叫非弹性碰撞。
⑶弹簧完全没有弹性。
Ⅰ→Ⅱ系统动能减少全部转化为内能,Ⅱ状态系统动能仍和⑴相同,但没有弹性势能;由于没有弹性,A 、B 不再分开,而是共同运动,不再有Ⅱ→Ⅲ过程。
这种碰撞叫完全非弹性碰撞。
可以证明,A 、B 最终的共同速度为121121v m m m v v +='='。
在完全非弹性碰撞过程中,系统的动能损失最大,为:()()21212122121122121m m v m m v m m v m E k +='+-=∆。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.. 高考物理电磁感应中动量定理和动量守恒定律的运用(1)如图1所示,半径为r的两半圆形光滑金属导轨并列竖直放置,在轨道左侧上方MN间接有阻值为R0的电阻,整个轨道处在竖直向下的磁感应强度为B的匀强磁场中,两轨道间距为L,一电阻也为R0质量为m的金属棒ab从MN处由静止释放经时间t到达轨道最低点cd时的速度为v,不计摩擦。
求:(1)棒从ab到cd过程中通过棒的电量。
(2)棒在cd处的加速度。
(2)如图2所示,在光滑的水平面上,有一垂直向下的匀强磁场分布在宽度为L的区域内,现有一个边长为a(a﹤L)的正方形闭合线圈以初速度v0垂直磁场边界滑过磁场后,速度为v(v﹤v0),那么线圈A.完全进入磁场中时的速度大于(v0+v)/2B.完全进入磁场中时的速度等于(v0+v)/2C.完全进入磁场中时的速度小于(v0+v)/2D.以上情况均有可能(3)在水平光滑等距的金属导轨上有一定值电阻R,导轨宽d电阻不计,导体棒AB垂直于导轨放置,质量为m ,整个装置处于垂直导轨平面向上的匀强磁场中,磁感应强度为B.现给导体棒一水平初速度v0,求AB 在导轨上滑行的距离. (4)如图3所示,在水平面上有两条导电导轨MN、PQ,导轨间距为d,匀强磁场垂直于导轨所在的平面向里,磁感应强度的大小为B,两根完全相同的金属杆1、2间隔一定的距离摆开放在导轨上,且与导轨垂直。
它们的电阻均为R,两杆与导轨接触良好,导轨电阻不计,金属杆的摩擦不计。
杆1以初速度v0滑向杆2,为使两杆不相碰,则杆2固定与不固定两种情况下,最初摆放两杆时的最少距离之比为:A.1:1B.1:2C.2:1D.1:15:如图所示,光滑导轨EF、GH等高平行放置,EG间宽度为FH间宽度的3倍,导轨右侧水平且处于竖直向上的匀强磁场中,左侧呈弧形升高。
ab、cd是质量均为m的金属棒,现让ab从离水平轨道h 高处由静止下滑,设导轨足够长。
试求: (1)ab、cd棒的最终速度;(2)全过程中感应电流产生的焦耳热。
..bacdB RMNPQ L6、:如图所示,竖直放置的两光滑平行金属导轨,置于垂直于导轨平面向里的匀强磁场中,两根质量相同的导体棒a和b,与导轨紧密接触且可自由滑动。
先固定a,释放b,当b的速度达到10m/s时,再释放a,经过1s后,a的速度达到12m/s,则(1)此时b的速度大小是多少?(2)若导轨很长,a、b棒最后的运动状态。
7、:两根平行的金属导轨,固定在同一水平面上,磁感强度B=0.5T的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计。
导轨间的距离l=0.20m,两根质量均为m=0.10kg的平行金属杆甲、乙可在导轨上无摩擦地滑动,滑动过程中与导轨保持垂直,每根金属杆的电阻为R=0.50Ω。
在t=0时刻,两杆都处于静止状态。
现有一与导轨平行,大小为0.20N的恒力F作用于金属杆甲上,使金属杆在导轨上滑动。
经过T=5.0s,金属杆甲的加速度为a=1.37 m/s2,求此时两金属杆的速度各为多少?8.(12丰台期末12分)如图所示,两根足够长的平行金属导轨固定于同一水平面内,导轨间的距离为L,导轨上平行放置两根导体棒ab和cd,构成矩形回路。
已知两根导体棒的质量均为m、电阻均为R,其它电阻忽略不计,整个导轨处于竖直向上的匀强磁场中,磁感应强度为B,导体棒均可沿导轨无摩擦的滑行。
开始时,导体棒cd静止、ab有水平向右的初速度v0,两导体棒在运动中始终不接触。
求:(1)开始时,导体棒ab中电流的大小和方向;(2)从开始到导体棒cd达到最大速度的过程中,矩形回路产生的焦耳热;(3)当ab棒速度变为43v0时,cd棒加速度的大小。
9、如图,相距L的光滑金属导轨,半径为R的1/4圆弧部分竖直放置、直的部分固定于水平地面,MNQP 范围内有方向竖直向下、磁感应强度为B的匀强磁场.金属棒ab和cd垂直导轨且接触良好,cd静止在磁场中,ab从圆弧导轨的顶端由静止释放,进入磁场后与cd没有接触.已知ab的质量为m、电阻为r,cd的质量为3m、电阻为r.金属导轨电阻不计,重力加速度为g.(1)求:ab到达圆弧底端时对轨道的压力大小(2)在图中标出ab刚进入磁场时cd棒中的电流方向(3)若cd离开磁场时的速度是此刻ab速度的一半,求:cd离开磁场瞬间,ab受到的安培力大小10、(20分)如图所示,电阻均为R的金属棒a.b,a棒的质量为m,b棒的质量为M,放在如图所示光滑的轨道的水平部分,水平部分有如图所示竖直向下的匀强磁场,圆弧部分无磁场,且轨道足够长;开始给a棒一水平向左的的初速度v0,金属棒a.b与轨道始终接触良好.且a棒与b棒始终不相碰。
请问:(1)当a.b在水平部分稳定后,速度分别为多少?损失的机械能多少?(2)设b棒在水平部分稳定后,冲上圆弧轨道,返回到水平轨道前,a棒已静止在水平轨道上,且b 棒与a棒不相碰,然后达到新的稳定状态,最后a,b的末速度为多少?(3)整个过程中产生的内能是多少?11.(18分)如图所示,电阻不计的两光滑金属导轨相距L,放在水平绝缘桌面上,半径为R的1/4圆弧部分处在竖直平面内,水平直导轨部分处在磁感应强度为B,方向竖直向下的匀强磁场中,末端与桌面边缘平齐。
两金属棒ab、cd垂直于两导轨且与导轨接触良好。
棒ab质量为2 m,电阻为r,棒cd的质量为m,电阻为r。
重力加速度为g。
开始棒cd静止在水平直导轨上,棒ab从圆弧顶端无初速度释放,进入水平直导轨后与棒cd始终没有接触并一直向右运动,最后两棒都离开导轨落到地面上。
棒ab 与棒cd落地点到桌面边缘的水平距离之比为3: 1。
求:(1)棒ab和棒cd离开导轨时的速度大小;(2)棒cd在水平导轨上的最大加速度;(3)两棒在导轨上运动过程中产生的焦耳热。
12.(20分)如图所示,宽度为L的平行光滑的金属轨道,左端为半径为r1的四分之一圆弧轨道,右端为半径为r2的半圆轨道,中部为与它们相切的水平轨道。
水平轨道所在的区域有磁感应强度为B的竖直向上的匀强磁场。
一根质量为m的金属杆a置于水平轨道上,另一根质量为M的金属杆b由静止开始自左端轨道最高点滑下,当b滑入水平轨道某位置时,a就滑上了右端半圆轨道最高点(b始终运动且a、b未相撞),并且a在最高点对轨道的压力大小为mg,此过程中通过a的电荷量为q,a、b棒的电阻分别为R1、R2,其余部分电阻不计。
在b由静止释放到a运动到右端半圆轨道最高点过程中,求:(1)在水平轨道上运动时b的最大加速度是多大?(2)自b释放到a到达右端半圆轨道最高点过程中系统产生的焦耳热是多少?(3)a刚到达右端半圆轨道最低点时b的速度是多大?13.两足够长且不计其电阻的光滑金属轨道,如图所示放置,间距为d=100cm,在左端斜轨道部分高h=1.25m处放置一金属杆a,斜轨道与平直轨道以光滑圆弧连接,在平直轨道右端放置另一金属杆b,杆A.b电阻R a=2Ω,R b=5Ω,在平直轨道区域有竖直向上的匀强磁场,磁感强度B=2T。
现杆b以初速度v0=5m/s开始向左滑动,同时由静止释放杆a,杆a滑到水平轨道过程中,通过杆b的平均电流为0.3A;a下滑到水平轨道后,以a下滑到水平轨道时开始计时,A.b运动图象如图所示(a运动方向为正),其中m a=2kg,m b=1kg,g=10m/s2,求(1)杆a落到水平轨道瞬间杆a的速度v;(2)杆a 在斜轨道上运动的时间;(3)在整个运动过程中杆b产生的焦耳热。
B abc dRr1ba r2B..MNQ B B a b d d C DIII14.(12分)如图所示,两根间距为L 的金属导轨MN 和PQ ,电阻不计,左端向上弯曲,其余水平,水平导轨左端有宽度为d 、方向竖直向上的匀强磁场I ,右端有另一磁场II ,其宽度也为d ,但方向竖直向下,磁场的磁感强度大小均为B 。
有两根质量均为m 、电阻均为R 的金属棒a 和b 与导轨垂直放置,b 棒置于磁场II 中点C 、D 处,导轨除C 、D 两处(对应的距离极短)外其余均光滑,两处对棒可产生总的最大静摩擦力为棒重力的K 倍,a 棒从弯曲导轨某处由静止释放。
当只有一根棒作切割磁感线运动时,它速度的减小量与它在磁场中通过的距离成正比,即v x ∆∝∆。
求:(1)若a 棒释放的高度大于h 0,则a 棒进入磁场I 时会使b 棒运动,判断b 棒的运动方向并求出h 0为多少?(2)若将a 棒从高度小于h 0的某处释放,使其以速度v 0进入磁场I ,结果a 棒以2v 的速度从磁场I 中穿出,求在a 棒穿过磁场I 过程中通过b 棒的电量q 和两棒即将相碰时b 棒上的电功率P b 为多少?15.(2014届海淀期末10分)如图21所示,两根金属平行导轨MN 和PQ 放在水平面上,左端向上弯曲且光滑,导轨间距为L ,电阻不计。
水平段导轨所处空间有两个有界匀强磁场,相距一段距离不重叠,磁场Ⅰ左边界在水平段导轨的最左端,磁感强度大小为B ,方向竖直向上;磁场Ⅱ的磁感应强度大小为2B ,方向竖直向下。
质量均为m 、电阻均为R 的金属棒a 和b 垂直导轨放置在其上,金属棒b 置于磁场Ⅱ的右边界CD 处。
现将金属棒a 从弯曲导轨上某一高处由静止释放,使其沿导轨运动。
设两金属棒运动过程中始终与导轨垂直且接触良好。
(1)若水平段导轨粗糙,两金属棒与水平段导轨间的最大摩擦力均为51mg ,将金属棒a 从距水平面高度h 处由静止释放。
求:①金属棒a 刚进入磁场Ⅰ时,通过金属棒b 的电流大小; ②若金属棒a 在磁场Ⅰ内运动过程中,金属棒b 能在导轨上保持静止,通过计算分析金属棒a 释放时的高度h 应满足的条件;(2)若水平段导轨是光滑的,将金属棒a 仍从高度h 处由静止释放,使其进入磁场Ⅰ。
设两磁场区域足够大,求金属棒a 在磁场Ⅰ内运动过程中,金属棒b 中可能产生焦耳热的最大值。
图21ⅠⅡB 2B MPQNCDb a..参考答案:1、2、 4S1:S 2=2:1。
5、(1)自由下滑,机械能守恒:①由于、串联在同一电路中,任何时刻通过的电流总相等,金属棒有效长度,故它们的磁场力为:②在磁场力作用下,、各作变速运动,产生的感应电动势方向相反,当时,电路中感应电流为零(),安培力为零,、运动趋于稳定,此时有:所以 ③、受安培力作用,动量均发生变化,由动量定理得:④⑤联立以上各式解得:,(2)根据系统的总能量守恒可得:6、解析 (1) 当棒先向下运动时,在和以及导轨所组成的闭合回路中产生感应电流,于是棒受到向下的安培力,棒受到向上的安培力,且二者大小相等。
释放棒后,经过时间t ,分别以和为研究对象,根据动量定理,则有:代入数据可解得:..Ib a cdBRMN PQ(2)在、棒向下运动的过程中,棒产生的加速度,棒产生的加速度。