动量定理在电磁感应问题中的妙用

合集下载

2025高考物理总复习动量观点在电磁感应中的应用

2025高考物理总复习动量观点在电磁感应中的应用

考点一 动量定理在电磁感应中的应用
即 BLvP=BL2vQ,解得 2vP=vQ 因为当 P、Q 在水平轨道上运动时,它们 所受到的合力并不为零,设 I 为回路中的电 流,P 棒和 Q 棒受到的平均安培力大小 FP=B I L FQ=12B I L
考点一 动量定理在电磁感应中的应用
因此P、Q组成的系统动量不守恒。设P棒从进入水平轨道开始到速 度稳定所用的时间为Δt,规定向右为正方向,对P、Q分别应用动量 定理得-FPΔt=-B I LΔt=mvP-mv FQΔt=B I L2Δt=mvQ-0,又 2vP=vQ 联立解得 vP= 25gh,vQ=25 2gh
< 考点一 >
动量定理在电磁感应中的应用
考点一 动量定理在电磁感应中的应用
导体棒或金属框在感应电流所引起的安培力作用下做非匀变速直线运动 时,当题目中涉及速度v、电荷量q、运动时间t、运动位移x时常用动量 定理求解。
考点一 动量定理在电磁感应中的应用
1.“单棒+电阻”模型
(1)水平放置的平行光滑导轨,间距为L,左侧接有电阻,阻值为R,导体
mv2R+B2L2x 此时运动时间Δt2=___m_g_R_s_i_n_θ___
考点一 动量定理在电磁感应中的应用
例1 如图所示,一光滑轨道固定在架台上,轨道由倾斜和水平两段组成, 倾斜段的上端连接一电阻R=0.5 Ω,两轨道间距d=1 m,水平部分两轨 道间有一竖直向下、磁感应强度大小B=0.5 T的匀强磁场。一质量为m= 0.5 kg、长为l=1.1 m、电阻忽略不计的导体棒,从轨道上距水平面h1= 0.8 m高处由静止释放,通过磁场区域后从水平轨道末端水平飞出,落地 点与水平轨道末端的水平距离x2=0.8 m,水平轨 道距水平地面的高度h2=0.8 m。通过计算可知(g 取10 m/s2,不计空气阻力)

动量定理及动量守恒定律在电磁感应中的应用

动量定理及动量守恒定律在电磁感应中的应用

动量定理及动量守恒定律在电磁感应中的应用摘要:《普通高中物理课程标准》指出,高中物理课程旨在进一步提高学生的科学素养,落实“立德树人”的根本任务。

基于学科核心素养教学实施策略和方法,要落实到教育教学的全过程,本文重点介绍动量定理、动量守恒定律在电磁感应解题的运用。

关键词:动量动量守恒电磁感应应用一、动量定理:物体所受合外力的冲量等于物体的动量变化.表达式:I=Δp或Ft=mv2-mv1.二、动量守恒定律:一个系统不受外力或者所受合外力为零,这个系统的总动量保持不变.表达式:m1v1+m2v2=m1v1′+m2v2′或p=p′.三、在电磁感应中,动量定理应用于单杆切割磁感线运动,可求解变力的时间、速度、位移和电荷量.(1)求电荷量或速度:B LΔt=mv2-mv1, q= t.(2)求时间:Ft-I冲=mv2-mv1, I冲=BILΔt=BL .(3)求位移:-BILΔt=- =0-mv0,即 - s=m(0-v).四、在电磁感应中对于双杆切割磁感线运动,若双杆系统所受合外力为零,运用动量守恒定律结合能量守恒定律可求解与能量有关的问题。

例1.如图所示,在水平面上有两条导电导轨MN,PQ,导轨间距为d,匀强磁场垂直于导轨所在的平面向里,磁感应强度的大小为B,两根完全相同的金属杆1,2间隔一定的距离摆开放在导轨上,且与导轨垂直.它们的电阻均为R,两杆与导轨接触良好,导轨电阻不计,金属杆的摩擦不计.杆1以初速度v滑向杆2,为使两杆不相碰,则杆2固定与不固定两种情况下,最初摆放两杆时的最小距离之比为( C )A.1∶1B.1∶2C.2∶1D.1∶1解析:杆2固定:对回路 q1= = .对杆1:-B d·Δt=0-mv0,q1=·Δt 联立解得s1= .杆2不固定: 对回路 q2=对杆2:B d·Δt=mv2-0 全程动量守恒:mv=mv1+mv2末态两棒速度相同,v1=v2,q2=·Δt 联立解得s2= . s1∶s2=2∶1,则C选项正确.例2.如图所示,宽度为L的平行光滑的金属轨道,左端为半径为r1的四分之一圆弧轨道,右端为半径为r2的半圆轨道,中部为与它们相切的水平轨道.水平轨道所在的区域有磁感应强度为B的竖直向上的匀强磁场.一根质量为m的金属杆a 置于水平轨道上,另一根质量为M的金属杆b由静止开始自左端轨道最高点滑下,当b滑入水平轨道某位置时,a就滑上了右端半圆轨道最高点(b始终运动且a,b 未相撞),并且a在最高点对轨道的压力大小为mg,此过程中通过a的电荷量为q,a,b杆的电阻分别为R1,R2,其余部分电阻不计.在b由静止释放到a运动到右端半圆轨道最高点过程中,求:(1)在水平轨道上运动时b的最大加速度是多大;(2)自b释放到a到达右端半圆轨道最高点过程中,系统产生的焦耳热是多少;(3)a刚到达右端半圆轨道最低点时b的速度是多大.解析:(1)由机械能守恒定律得 M =Mgr1解得vb1=b刚滑到水平轨道时加速度最大,E=BLvb1, I= ,由牛顿第二定律有F安=BIL=Ma 解得a= .(2)由动量定理有-B Lt=Mvb2-Mvb1, 即-BLq=Mvb2-Mvb1解得vb2= -根据牛顿第三定律得:a在最高点受支持力N=N′=mg, mg+N=m解得va1=由能量守恒定律得Mgr1= M + m +mg2r2+Q 解得Q=BLq -3mgr2-.(3)由能量守恒定律有2mgr2= m - m解得va2=由动量守恒定律得Mvb1=Mvb3+mva2解得vb3= - .答案:(1)(2)BLq -3mgr2-(3) -例3.如图所示,将不计电阻的长导线弯折成P1P2P3,Q1Q2Q3形状,P1P2P3和Q1Q2Q3是相互平行且相距为d的光滑固定金属导轨.P1P2,Q1Q2的倾角均为θ,P2P3,Q2Q3在同一水平面上,P2Q2⊥P2P3,整个导轨在方向竖直向上、磁感应强度大小为B的匀强磁场中,质量为m电阻为R的金属杆CD从斜导轨上某处静止释放,然后沿水平导轨滑动一段距离后停下.杆CD始终垂直导轨并与导轨保持良好接触,导轨和空气阻力均不计,重力加速度大小为g,导轨倾斜段和水平段都足够长,求:(1)杆CD能达到的最大速度;( 2)杆CD在距P2Q2为L处释放,滑到P2Q2处恰达到最大速度,则沿倾斜导轨下滑的时间Δt1及在水平导轨上滑行的最大距离.解析:(1)杆CD达到最大速度时,杆受力平衡BdImcosθ=mgsinθ此时杆CD切割磁感线产生的感应电动势为E=Bdvmcosθ由欧姆定律可得Im = , 解得vm= .(2)在杆CD沿倾斜导轨下滑的过程中,动量定理有mgsinθ·Δt1-Bdcosθ·Δt1=mvm-0= = =解得Δt1= +在杆CD沿水平导轨运动的过程中,根据动量定理有 -B d·Δt2=0-mvm该过程中通过R的电荷量为 q2=Δt2,得q2=杆CD沿水平导轨运动的过程中,通过的平均电流为 = =得q2=Δt2=解得s= .答案:(1)(2) +3。

例析动量定理在电磁感应问题中的应用

例析动量定理在电磁感应问题中的应用
i 一 : 一Ls B
△ △f
导轨 MN、 Q, P 存在 有竖 直向上的匀 强磁 场 , 磁感 .
应强度为 B, 导轨上 放着 两根 质量均 为 、 电阻均 图3
为| R的金属棒 n b 、。开 始时 , 棒 静止 , b a棒 以初 速度向 右运动 。设两棒始终不相碰 , 在运动过程 中通过 a棒 求 上 的总电荷量 。 解析 : 设棒稳 定运动后 的共 同速度为 , 对系统从 a 棒开始运动到两棒达 到共 同速度 的过程 , 应用动量守 恒 定律有 : o my mv :2 设 回路中的平均 电流 为 J 。再对 a棒 , 应用 动量定
理:

根据欧姆定律 , 可得平均 电流为 了 E一 : 由动量定理得 : 一B儿 ・ 一 △ 一0 联立上式 :一 点评 : 本题 实质上是利 用动量定理 求感应电荷 量。
【 2 如 图 2 例 】
B L△t I 一
— m
所示 , 足够 长 的相 距 为z 的平行金 属导轨
由法拉第 电磁感应定律得 : 一 :
【 1 如图 1 示 , 例 】 所
质量为 m 的导体棒可沿光
滑 水 平 面 的 平 行 导 轨 滑
由闭合 电路欧姆定律 :一 一 - E 』
对 a 应 用 动量 定 理 得 : l £=1 解得 : x 棒 B = 17 =1 2 A 一
又 Q=7 t = a 解得 : = Q一 点评 : 本题是利用动量定理计算电荷量的典型例子。
MN 、 Q放 置在 水平 P 面内 , 强 磁 场 竖 直 匀
通过 以上三个例题 的分析 , 会当导体切 割磁感 线 体
而产生感应 电流 , 果感应 电流不恒定 , 体所受 到的 如 导 安 培力也 不恒 定 而做变 速运 动 时 , 些 问题 如 涉及 位 有 ( 责任 编辑 易志毅)

电磁感应现象中的动量问题

电磁感应现象中的动量问题
②判断该过程中系统动量是否守恒;
③列出最终稳定时动量守恒方程;
④该过程能量转化。
三、归纳总结
1.涉及单杆问题,一般可以考虑动量定理,求解变 力的冲量,解决牛顿运动定律不易解答的非匀变速 运动问题
2.涉及双杆问题,如果系统合外力为零,一般考虑 应用动量守恒定律
PQ放在水平面上,左端向上弯曲,导轨间距为L,电阻不计,水 平段导轨所处空间存在方向竖直向上的匀强磁场,磁感应强度大 小为B。导体棒a与b的质量均为m,电阻值分别为Ra=R,Rb= 2R。b棒放置在水平导轨上足够远处,a棒在弧形导轨上距水平 面h高度处由静止释放。运动过程中导体棒与导轨接触良好且始 终与导轨垂直,重力加速度为g。求: ①当a导体棒刚进入磁场时,从动力学角度分析两导体棒的运动 过程;
一、动量定理在电磁感应问题中的应用
1.如图,金属杆ab以一定初速度v0 在光滑水平轨道上滑动,质量为m, 电阻不计,两导轨间距为L。求: ①分析金属杆ab的运动过程;
②当经历时间为 ∆t,金属杆的速度为0时,此过程 守恒在电磁感应问题中的运用 2.(P210 例5)如图所示,两根平行的光滑金属导轨MN、

一轮复习:磁感应中的动量问题

一轮复习:磁感应中的动量问题
(1)ab边刚进入磁场时,ba间电势差的大小Uba; (2)cd边刚进入磁场时,导体框的速度。ຫໍສະໝຸດ 3BL (1) 4 2gL
(2)gt-Bm2Lr3+ 2gL
方法感悟 应用动量定理还可以由动量变化来求解变力的冲量。如 在导体棒做非匀变速运动的问题中,应用动量定理可以 解决牛顿运动定律不易解答的问题。
12.(2018·天津高考) 真空管道超高速列车的动力系统是一种将 电能直接转换成平动动能的装置。图1是某种动力系统的简化模 型,图中粗实线表示固定在水平面上间距为l的两条平行光滑金 属导轨,电阻忽略不计,ab和cd是两根与导轨垂直、长度均为l、 电阻均为R的金属棒,通过绝缘材料固定在列车底部,并与导轨 良好接触,其间距也为l,列车的总质量为m。列车启动前,ab、 cd处于磁感应强度为B的匀强磁场中,磁场方向垂直于导轨平面 向下,如图1所示,为使列车启动,需在M、N间连接电动势为E
的直流电源,电源内阻及导线电阻忽略不计,列车启动后电源自 动关闭。
(1)要使列车向右运行,启动时图1中M、N哪个接电源正极,并 简要说明理由; (2)求刚接通电源时列车加速度a的大小; (3)列车减速时,需在前方设置如图2所示的一系列磁感应强度为 B的匀强磁场区域,磁场宽度和相邻磁场间距均大于l。若某时刻 列车的速度为v0,此时ab、cd均在无磁场区域,试讨论:要使 列车停下来,前方至少需要多少块这样的有界磁场?
A.回路中始终存在逆时针方向的电流
B.棒 N 的最大加速度为2Bm2I2dR2
C.回路中的最大电流为2BmIdR
D.棒 N 获得的最大速度为mI
16.(2018·唐山二模)如图所示,两根平行光滑的金属导轨 M1N1P1-M2N2P2由四分之一圆弧部分与水平部分构成,导轨 末端固定两根绝缘柱,弧形部分半径r=0.8 m、导轨间距L=1 m,导轨水平部分处于竖直向上的匀强磁场中,磁感应强度大小 B=2 T,两根完全相同的金属棒a、b分别垂直导轨静置于圆弧 顶端M1M2处和水平导轨中某位置,两金属棒质量均为m=1 kg、 电阻均为R=2 Ω。金属棒a由静止释放,沿圆弧导轨滑入水平部 分,此后,金属棒b向右运动,在导轨末端与绝缘柱发生碰撞且 无机械能损失,金属棒b接触绝缘柱之前两棒已匀速运动且未发 生碰撞。金属棒b与绝缘柱发生碰撞后,在距绝缘柱x1=0.5 m 的A1A2位置与金属棒a发生碰撞,碰后停在距绝缘柱x2=0.2 m 的A3A4位置,整个运动过程中金属棒与导轨接触良好,导轨电 阻不计,g取10 m/s2。求:

动量定理的六种妙用

动量定理的六种妙用

动量定理的六种妙用江西省新干中学曾菊宝动量定理的内容是物体所受合外力的冲量等于物体动量的变化,即I=△p。

动量定理表明冲量是物体动量发生变化的原因,冲量是物体动量变化的量度。

这里所说的冲量必须是物体所受的合外力的冲量。

动量定理可以用牛顿第二定律导出,但适用范围比牛顿第二定律要广。

在不涉及加速度和位移的情况下,研究运动和力的关系时,用动量定理求解一般较为方便,而且能得到迅速解答,达到事半功倍的效果。

一、用动量定理求变力的冲量问题例1以角速度ω沿半径为R的圆周做匀速圆周运动的质点m,它的周期为T,则此质点经过时间T/2的过程中所受合外力冲量大小为()A.0 B.2mωR C.Tmω2R/2 D.mωR解析质点经过半个周期末速度与初速度方向相反,大小相等。

由动量定理得I=△p=m v-(-mv)=2mv=2mwR。

故答案为选项B。

评析用I=Ft求的是恒力的冲量,而本题质点在运动的过程中,所受的合外力是变力(方向在不断变化),因此不能用I=Ft来求解。

变力的冲量可用动量定理来计算。

二、用动量定理求解平均力问题例2质量是60kg的建筑工人,不慎从高空跌下,由于弹性安全带的保护作用,最后使人悬挂在空中。

已知弹性安全带缓冲时间为1.2s,安全带原长5m,求安全带所受的平均作用力。

(g=10m/s2)解析人开始下落为自由落体运动,下落到弹性安全带原长时的速度为V02=2gh,则v0=2gh=10m/s取人为研究对象,在人和安全带相互作用的过程中,人受到重力mg和安全带的平均冲力F,取力F方向为正方向,由动量定理得(F-mg)t=0-(-mv0),F=mg+mv0/t=1 100N(方向竖直向上)。

安全带所受的平均作用力F´=1 100N(方向竖直向下)。

评析动量定理既适用于恒力作用下的问题,也适用于变力作用下的问题,如果是在变力作用下的问题,由动量定理求出的力是在时间t内的平均值。

三、用动量定理巧解连续作用问题例3一个迎面截面积为50m2、初速度为10km/s的宇宙飞船在飞行中进入宇宙尘埃区域,该区域的尘埃密度ρ=2.0×10-4kg/m3,为了使飞船的速度不改变,推力F应增加多少?(飞船与尘埃的碰撞是完全非弹性碰撞,空气阻力不计)解析本题中飞船速度不变,但附着在船前沿的尘埃质量不断增加。

08讲 动量与动量守恒定律在电磁感应中的应用解析版

08讲 动量与动量守恒定律在电磁感应中的应用解析版

2022-2023高考物理二轮复习(新高考)08讲动量与动量守恒定律在电磁感应中的应用●动量与动量守恒定律在电磁感应中的应用的思维导图●重难点突破一.动量定理在电磁感应现象中的应用:导体棒在感应电流所引起的安培力作用下运动时,当题目中涉及速度v、电荷量q、运动时间t、运动位移x时常用动量定理求解.二.动量守恒定律在电磁感应中的应用:在双金属棒切割磁感线的系统中,双金属棒和导轨构成闭合回路,安培力充当系统内力,如果它们不受摩擦力,且受到的安培力的合力为0时,满足动量守恒,运用动量守恒定律解题比较方便.●考点应用,质量为m,电阻不计,匀强1.水平放置的平行光滑导轨,间距为L,左侧接有电阻R,导体棒初速度为v磁场的磁感应强度为B,导轨足够长且电阻不计,从开始运动至停下来导体棒或金属框在感应电流所引起的安培力作用下做非匀变速直线运动时,常用的计算:-B I L Δt =0-mv 0,q =I Δt ,q =mv 0BL -B 2L 2v R Δt =0-mv 0,x =v Δt =mv 0R B 2L2例1:如图所示,固定在同一水平面内的两根平行长直金属导轨的间距为d ,其右端接有阻值为R 的电阻,整个装置处在竖直向上、磁感应强度大小为B 的匀强磁场中。

一质量为m (质量分布均匀)的导体杆ab 垂直于导轨放置,且与两导轨保持良好接触,杆与导轨之间的动摩擦因数为μ。

现杆在水平向左、垂直于杆的恒力F 作用下从静止开始沿导轨运动距离L 时,速度恰好达到最大(运动过程中杆始终与导轨保持垂直)。

设杆接入电路的电阻为r ,导轨电阻不计,重力加速度大小为g ,则此过程错误的是()A .杆的速度最大值为22()F mg RB d μ-B .流过电阻R 的电荷量为BdLR r+C .从静止到速度恰好达到最大经历的时间2222()()()m R r B d L t B d F mg R r μ+=+-+D .恒力F 做的功与安培力做的功之和大于杆动能的变化量【答案】A【详解】A .当杆的速度达到最大时,安培力为22=B d v F R r +安此时杆受力平衡,则有F-μmg-F 安=0解得22()()F mg R r v B d μ-+=A 错误,符合题意;B .流过电阻R 的电荷量为BdLq It R r R r∆Φ===++B 正确,不符合题意;C .根据动量定理有()F mg t BIt mv μ--=,q It=结合上述解得2222()()()mg R r B d L t B d F mg R r μ+=+-+C 正确,不符合题意;D .对于杆从静止到速度达到最大的过程,根据动能定理,恒力F 、安培力、摩擦力做功的代数和等于杆动能的变化量,由于摩擦力做负功,所以恒力F 、安培力做功的代数和大于杆动能的变化量,D 正确,不符合题意。

电磁感应问题中动量定理应用归类

电磁感应问题中动量定理应用归类

电磁感应问题中动量定理应用归类在电磁感应问题中,动量定理是一个非常有用的应用。

它可以用来分析电磁场和运动物体之间的相互作用,并且可以帮助我们更好地理解这些现象。

动量定理的基本原理是,物体的动量在没有外力作用时保持不变。

在电磁感应问题中,我们经常会遇到电磁场对运动物体的影响,这些影响可以通过动量定理来描述。

首先,考虑一个导体在磁场中运动的情况。

根据动量定理,该导体的动量可以用下面的公式表示:p = mv其中,p表示动量,m表示物体的质量,v表示物体的速度。

当导体在磁场中运动时,它会受到磁场的作用力,这个力可以表示为:F = qvB其中,F表示作用力,q表示导体的电荷量,B表示磁感应强度。

根据牛顿第二定律,作用力等于物体的质量乘以加速度,因此可以得到导体的加速度公式:a = F/m = qvB/m接下来,我们可以将导体的加速度代入动量公式中,得到:dp/dt = m(v+av) - mv = qvBv这个公式描述了导体受到磁场作用时动量的变化情况。

可以看出,如果导体的速度垂直于磁场方向,那么将会产生一个垂直于它们之间的力,这个力将导致导体的动量发生变化。

如果导体的速度和磁场方向不垂直,则磁场对动量的影响将会产生一个沿着运动方向的分量和一个垂直于运动方向的分量。

类似地,我们也可以应用动量定理来分析电场和运动物体之间的相互作用。

在这种情况下,物体的动量可以表示为:p = γmv其中,γ表示相对论因子,m表示物体的质量,v表示物体的速度。

当物体在电场中运动时,它会受到电场力的作用,这个力可以表示为:F = qE其中,F表示作用力,q表示物体的电荷量,E表示电场强度。

由于相对论效应的存在,物体的动量在这种情况下并不是简单地等于mv,而是等于γmv。

因此,在运用动量定理时,我们需要使用修正后的动量公式。

最后,需要指出的是,动量定理在电磁感应问题中的应用非常广泛,不仅可以用来描述导体和电场的相互作用,还可以用来分析电磁波和物质之间的相互作用,以及其他一些相关的问题。

高中物理:动量定理在电磁感应中的应用

高中物理:动量定理在电磁感应中的应用

高中物理:动量定理在电磁感应中的应用碰撞与动量这部分内容对进一步学习物理学科是非常重要的,因为动量守恒定律是解决经典力学和微观物理问题的重要工具和方法之一。

动量动量定理1、动量、冲量2、动量变化量和动量变化率3、动量、冲量4、应用动量定理解题的一般步骤(1)选定研究对象,明确运动过程(2)受力分析和运动的初、末状态分析(3) 选正方向,根据动量定理列方程求解动量动量定理动量定理揭示了冲量和动量变化量之间的关系.1.应用动量定理的两类简单问题(1) 应用I=Δp求变力的冲量和平均作用力.物体受到变力作用,不能直接用I=Ft求变力的冲量.(2) 应用Δp=Ft求恒力作用下的曲线运动中物体动量的变化.曲线运动中,作用力是恒力,可求恒力的冲量,等效代换动量的变化量.2.动量定理使用的注意事项(1) 用牛顿第二定律能解决的问题,用动量定理也能解决,题目不涉及加速度和位移,用动量定理求解更简便.(2) 动量定理的表达式是矢量式,运用它分析问题时要特别注意冲量、动量及动量变化量的方向,公式中的F是物体或系统所受的合力.3.动量定理在电磁感应现象中的应用在电磁感应现象中,安培力往往是变力,可用动量定理求解有关运动过程中的时间、位移、速度等物理量.动量守恒定律1、动量守恒定律内容如果一个系统不受外力,或者所受外力的矢量和为零,这个系统的总动量保持不变.这就是动量守恒定律.2、动量守恒定律表达式(1) m1v1+m2v2=m1v′1+m2v′2,两个物体组成系统相互作用前后,动量保持不变.(2) Δp1=-Δp2,相互作用的两物体组成的系统,两物体的动量变化量大小相等、方向相反.(3) Δp=0,系统的动量变化量为零.3、对动量守恒定律的理解(1) 矢量性:只讨论物体相互作用前后速度方向都在同一条直线上的情况,这时要选取一个正方向,用正负号表示各矢量的方向.(2) 瞬时性:动量是一个状态量,动量守恒指的是系统任一瞬时的动量恒定.(3) 相对性:动量的大小与参考系的选取有关,一般以地面为参考系.(4) 普适性:①适用于两物体系统及多物体系统;②适用于宏观物体以及微观物体;③适用于低速情况及高速情况.动量守恒定律的简单应用1、应用动量守恒定律的条件(1) 系统不受外力或系统所受的合外力为零.(2) 系统所受的合外力不为零,比系统内力小得多.(3) 系统所受的合力不为零,在某个方向上的分量为零.2、运用动量守恒定律解题的基本思路(1) 确定研究对象并进行受力分析和过程分析;(2) 确定系统动量在研究过程中是否守恒;(3) 明确过程的初、末状态的系统动量;(4) 选择正方向,根据动量守恒定律列方程.3、动量守恒条件和机械能守恒条件的比较(1) 守恒条件不同:系统动量守恒是系统不受外力或所受外力的矢量和为零;机械能守恒的条件是只有重力或弹簧弹力做功,重力或弹簧弹力以外的其他力不做功.(2) 系统动量守恒时,机械能不一定守恒.(3) 系统机械能守恒时,动量不一定守恒.动量定理在电磁感应中的应用电磁感应中的动力学问题往往比较复杂,运用动量和能量的观点可以清晰、简洁地解决问题。

新高考下动量、动量守恒定律在“电磁感应”中的应用

新高考下动量、动量守恒定律在“电磁感应”中的应用

新高考下动量、动量守恒定律在“电磁感应”中的应用引言:电磁感应是物理学中重要的概念之一,涉及到动量和动量守恒定律的应用。

在新高考的物理考试中,动量和动量守恒定律的运用在解题过程中显得尤为重要。

本文将重点探讨动量和动量守恒定律在“电磁感应”中的应用,通过实例分析具体案例,帮助读者更好地理解和掌握相关知识。

一、电磁感应的基本原理1.电磁感应的概念电磁感应是指磁场相对运动产生电场,或者电场相对运动产生磁场的现象。

电磁感应是电动势和电流产生的基础,也是电磁感应定律的基础。

2.法拉第电磁感应定律法拉第电磁感应定律表明,在导线中出现磁通量的变化时,将会诱导出产生的电动势。

即:ε = -dΦ/dt其中,ε表示产生的感应电动势,Φ表示磁通量,t表示时间。

二、动量和动量守恒定律在电磁感应中的应用1.动量的概念动量是物体运动的物理量,它等于物体的质量乘以速度。

在电磁感应中,动量与产生的电动势和磁通量的变化有着密切的关系。

2.动量守恒定律在电磁感应中的应用动量守恒定律是指在闭合系统中,系统的总动量保持不变。

这一定律在电磁感应中有着重要的应用。

例如,在变压器的工作过程中,通过电磁感应产生的电动势使得电流变化,而电流的变化又产生磁场的变化,最终会导致动量的变化。

根据动量守恒定律,系统的总动量始终保持不变。

具体应用案例:假设在一个闭合回路中,有一匀强磁场B。

开始时,闭合回路中没有电流,磁场作用在回路上,这时由于运动的原因(例如运动的金属杆较彼处在一个大的强磁场区域)而产生的感应电动势,从而电流可以在回路中开始流动。

根据动量守恒定律,电流的产生导致磁场中的能量转化为电场中的能量,并且导致产生的电磁场中的能量。

引入动量守恒定律,可以描述上述过程中的动量变化。

在开始时,闭合回路中的动量为零,由于磁场作用,金属杆开始运动,动量开始发生变化。

随着动量的变化,电动势产生,从而电流开始流动。

通过运用动量守恒定律,我们可以定量描述磁场能量和电场能量之间的转化过程。

电磁感应问题中动量定理应用归类

电磁感应问题中动量定理应用归类

电磁感应问题中动量定理应用归类电磁感应是物理学中非常重要的一个分支,与动量定理的关系也
非常密切。

动量定理是物理学中的基本定律之一,它表明了物体的动
量会随时间的推移而改变,这种变化与物体所受的力的大小和方向有关。

在电磁感应问题中,动量定理可以应用于以下几个方面。

1. 电动势的产生
电动势是指电路中电势差的改变所导致的电场力,即带电体感应
产生的电势差。

当外界场改变时,导体中的电子会受到作用力,从而
导致电子动量改变,从而产生电动势。

此时,根据动量定理,受到该
作用力的物质越多,电势差的变化就越大。

2. 磁场的产生
在电磁感应问题中,动量定理还可以应用于磁场的产生。

因为磁
场实际上是由运动电荷产生的,因此当电流流过导体时,会导致电子
的运动并产生动量。

根据动量定理,当电流越大时,电子运动就越快,从而导致的磁场也就越强。

3. 电磁波的传播
电磁波是由振动电场和磁场相互作用产生的,它们通过相互作用
来传播。

在电磁波传播过程中,电磁波会将电子推动,并导致其产生
动量变化。

根据动量定理,越多的电子受到作用力,电磁波的能量就
越大,传播的速度也就越快。

总之,动量定理是应用于电磁感应问题的一个非常重要的定律,它可以帮助我们更好地理解电磁现象的产生和传播。

在物理学的学习和应用中,我们要充分利用这一定律,将其应用到实际问题中,为科学技术的发展做出贡献。

电磁感应问题中动量定理应用归类

电磁感应问题中动量定理应用归类

电磁感应问题中动量定理应用归类电磁感应的动量定理是指当导体中存在磁场变化时,会在导体内产生感应电动势,并产生电流,而电流会受到磁场力的作用,导致导体受到一个力,从而产生动量变化。

在电磁感应问题中,动量定理可以应用于多个方面。

下面将对其中的几个应用进行归类和讨论。

1. 等离子体推动:等离子体是一个带电粒子(离子和电子)的气体,在磁场中可以受到磁场力的作用而运动。

根据动量定理,等离子体在受到磁场力的作用下会产生动量变化,从而改变运动状态。

这个应用在等离子体推动引擎和等离子体推进器中有着重要的应用。

2. 磁体推动:在磁场中,导体中的电流会受到磁场力的作用,从而产生一个受力的导体。

根据动量定理,磁体在受到磁场力的作用下会产生动量变化,从而改变运动状态。

这个应用在磁悬浮列车和磁漂浮车辆中有着重要的应用。

3. 电磁铁打击力:电磁铁是一种利用电流在导线中产生磁场的装置。

当电流通过导线时,会在铁芯中产生磁场并产生一个力,这个力可以用动量定理来计算。

根据动量定理,电磁铁在产生磁场的同时也会受到与磁场力相等但方向相反的力,从而产生动量变化。

4. 电磁感应制动:电磁感应制动是一种利用电磁感应现象来制动运动物体的方法。

当运动物体进入磁场区域时,会产生感应电流,而这个感应电流会受到磁场力的作用,从而产生一个制动力。

根据动量定理,运动物体在受到制动力的作用下会产生动量变化,从而减速停止。

综上所述,电磁感应问题中动量定理的应用主要包括等离子体推动、磁体推动、电磁铁打击力和电磁感应制动等方面。

这些应用都是基于电流受到磁场力的作用,从而导致物体受到一个力,从而产生动量变化。

这些应用在工程和科学领域中有重要的应用,对于我们理解电磁感应和能量传递也有着重要的意义。

电磁感应问题中动量定理应用归类

电磁感应问题中动量定理应用归类

电磁感应问题中动量定理应用归类电磁感应是电学的一个重要分支,它描述了磁场和电场交互作用的现象。

在这个过程中,一个恒定的磁场会在一个导体中产生一个阻尼运动,并且电流也会在其中生成。

这一过程应用了产生电动势的定律,即法拉第电磁感应定律。

动量定理则对于电磁感应过程中的动量守恒起着重要作用,如将动量定理应用于电磁感应问题中,可以更好地理解相关物理现象,提高我们的物理理解和分析问题的能力。

1.动量定理的基本概念动量定理是物理学中研究运动学的重要定理之一。

它不仅可以帮助我们更好地理解自然界中的运动现象,还能解释各种力学现象的本质。

动量定理内容如下:物体的动量变化率等于施加在物体上的合外力。

其中动量是质量和速度的乘积,即动量p=mv,其中p是动量,m是质量,v是速度。

合外力指施加在物体上的所有力的矢量和,其大小和方向由物体所处的环境和状态确定。

2.动量定理在电磁感应中的应用在电磁感应中,动量定理具有重要意义。

在电磁感应过程中,当一个导体通过磁场时,这个磁场会产生一个运动阻力,从而使导体运动速度降低。

这就是动量定理在电磁感应中的应用。

其中,动量定理可通过法拉第电磁感应定律得出,即磁通量改变剩余电荷所导致的电场。

当导体移动时,磁场以一定范围控制导体中的电子运动。

在这个过程中,当导体中的所有电荷向一个方向移动时,电子会受到合力,并且导体运动速度会降低。

这个动量由阻尼力提供,而阻尼又是由其与磁场的相互作用引起的。

此外,当电流被生成时,它还可以通过磁场和电场的相互作用来影响导体的运动。

动量定理可以帮助我们更好地理解这一复杂的过程。

在电磁感应过程中,动量定理告诉我们,当导体受到电磁力时,它的速度将会变化。

当导体停止运动时,电荷分布在导体上将会发生改变。

这一过程会继续,直到电流达到稳定状态为止。

3.电磁感应的动量定理应用案例一种常见的电磁感应案例是感应式加热。

感应式加热是一种运用电磁感应原理,通过电流在导体中产生的热来加热物体的加热方式。

例析妙用动量定理解决电磁学中问题

例析妙用动量定理解决电磁学中问题

例析妙用动量定理解决电磁学中问题摘要:自从2017年高考改革增加选修3-5模块为必考内容,众所周知动量是3-5的主要内容,而动量观点、能量观点与力学观点是解决动力学问题的三种途径。

如今动量变成必考模块,使学生的知识架构更加完善,在解题思维方面视野将更加开阔,总体来说对于学生解决物理问题还是有帮助的。

但通过平时教学发现大部分学生在运用动量定理解决有关电磁学问题是较薄弱的。

本文通过典例分析加深学生对动量定理在电磁学中运用的认识。

关键词:动量定理电磁感应冲量安培力洛伦兹力电容器1.动量定理解决叠加场中恒力(电场力、重力)与洛伦兹力作用下的运动问题在解决这类问题之前,先分析下运动电荷所受洛伦兹力的冲量,假设在xoy平面存在一垂直该平面的匀强磁场,磁感应强度为B,有一带电量为q的带电粒子,以速度v在磁场中做匀速圆周运动。

某时刻速度方向如图1所示。

分别将v、f正交分解,可知:在时间t内f沿x轴方向的冲量为:同理,f在y轴方向的冲量为:【例1】如图所示,某空间同时存在场强为E、方向竖直向下的匀强电场以及磁感应强度为B、方向垂直纸面向里的匀强磁场。

从该叠加场中某点P由静止释放一个带电粒子,质量为m,电量为+q(粒子受到的重力忽略不计),其运动轨迹如图中虚线所示。

求带电粒子在电、磁场中下落的最大高度H?解答:设小球运动到最低位置时速度最大为v,方向水平任意时刻v沿x轴正向、y轴负向的分速度分别为vx ,vy.。

与vy.对应的洛仑兹力水平分力方向沿x轴正向,小球由静止释放到最低点的过程中,在水平方向上,应用动量定理得:······①小球由静止释放到最低点的过程中,由动能定理得:······②联立①②可得:如果上例1中,重力不可忽略不计(已知重力加速度为g),实际上水平方向上动量定理①式不变,全程由动能定理得:·····③联立①③同样可得:1.动量定理解决电磁感应中电荷量相关问题根据电流的定义式,式中q是时间t内通过导体截面的电量;又欧姆定律,R是回路中的总电阻;结合电磁感应中可以得到安培力的冲量公式,此公式的特殊性决定了它在解题过程中的特殊应用。

动量定理在电磁感应中的妙用

动量定理在电磁感应中的妙用

动量定理在电磁感应中的妙用
李大东
【期刊名称】《数理化解题研究:高中版》
【年(卷),期】2010(000)008
【摘要】一、动量定理求电荷量在电磁感应中,往往会遇到被研究对象在变化安培力作用下,做变速运动求电量的问题.解决这类问题的方法是:避开中间过程,分析各有关物理量的初、末状态情况,思维切入点是分析运动稳定时的速度:【总页数】2页(P31-32)
【作者】李大东
【作者单位】河北省武邑中学,053400
【正文语种】中文
【中图分类】G633.7
【相关文献】
1.动量定理在电磁感应中的妙用 [J], 吝友安
2.动量定理在电磁感应问题中的妙用 [J], 郭轶琳
3.动量定理在电磁感应问题中的妙用 [J], 叶波峰
4.动量定理在电磁感应问题中的妙用 [J], 刘自胜
5.动量定理在电磁感应中的应用 [J], 程柱建
因版权原因,仅展示原文概要,查看原文内容请购买。

动量观点在电磁感应中的应用

动量观点在电磁感应中的应用

小于磁场区域的宽度。若线框进、出磁场的过程中通
过线框横截面的电荷量分别为q1、q2,线框经过位置
Ⅱ时的速度为v。则下列说法正确的是( BD)
A.q1=q2 C.v=1.0 m/s
B.q1=2q2 D.v=1.5 m/s
01 02 03 04 05 06 07 08
图2
目录
提升素养能力
解析 根据 q=ΔRΦ=BRΔS可知,线框进、出磁场的过程中通过线框横截面的电 荷量 q1=2q2,故 A 错误,B 正确;线圈从开始进入到位置Ⅱ,由动量定理- B-I1LΔt1=mv-mv0,即-BLq1=mv-mv0,同理线圈从位置Ⅱ到位置Ⅲ,由动 量定理-B-I2LΔt2=0-mv,即-BLq2=0-mv,联立解得 v=13v0=1.5 m/s,故 C 错误,D 正确。
目录
研透核心考点
解析 对 ab 棒由动量定理有-B-ILt=0-mv0,而 q=-It,即-BqL=0-mv0,当流过棒的电荷量为q2 时,有-B·q2L=mv1-mv0,解得 v1=12v0,A 错误; 当棒发生位移为 s 时,q=ΔRΦ=BRLs,则当棒发生位移为3s时,q′=ΔRΦ′=B3LRs, 可知此时流过棒的电荷量 q′=q3,代入 B-ILΔt=BLq′=mv2-mv0,解得棒的速 度为 v2=32v0,B 错误;定值电阻与导体棒释放的热量相同,在流过棒的电荷量 达到q2的过程中,棒释放的热量为 Q=1212mv20-12mv21=136mv20=3B1q6Lv0,C 正确; 同理可得整个过程中定值电阻 R 释放的热量为 Q′=21×21mv20=qB4Lv0,D 错误。
给金属棒 ab 一个水平向右的初速度 v0,金属棒沿着金属导轨滑过磁场的过程中,流 过金属棒的电流最大值为 I,最小值为12I。不计导轨电阻,金属棒与导轨始终接触良

第一篇 专题四 微专题6 动量观点在电磁感应中的应用

第一篇 专题四 微专题6 动量观点在电磁感应中的应用

微专题6动量观点在电磁感应中的应用命题规律 1.命题角度:动量定理、动量守恒定律在电磁感应中的应用.2.常用方法:建立单杆切割中q、x、t的关系模型;建立双杆系统模型.3.常考题型:选择题、计算题.考点一动量定理在电磁感应中的应用在导体单杆切割磁感线做变加速运动时,若牛顿运动定律和能量观点不能解决问题,可运用动量定理巧妙解决问题求解的物理量应用示例电荷量或速度-B I LΔt=m v2-m v1,q=IΔt,即-BqL=m v2-m v1位移-B2L2vΔtR总=0-m v0,即-B2L2xR总=0-m v0时间-B I LΔt+F其他Δt=m v2-m v1即-BLq+F其他Δt=m v2-m v1 已知电荷量q、F其他(F其他为恒力)-B2L2vΔtR总+F其他Δt=m v2-m v1,即-B2L2xR总+F其他Δt=m v2-m v1 已知位移x、F其他(F其他为恒力)例1(多选)(2022·河南开封市二模)如图所示,在光滑的水平面上有一方向竖直向下的有界匀强磁场.磁场区域的左侧,一正方形线框由位置Ⅰ以4.5 m/s的初速度垂直于磁场边界水平向右运动,经过位置Ⅱ,当运动到位置Ⅲ时速度恰为零,此时线框刚好有一半离开磁场区域.线框的边长小于磁场区域的宽度.若线框进、出磁场的过程中通过线框横截面的电荷量分别为q1、q2,线框经过位置Ⅱ时的速度为v.则下列说法正确的是()A.q1=q2B.q1=2q2C.v=1.0 m/s D.v=1.5 m/s答案 BD解析 根据q =ΔΦR =BS R可知,线框进、出磁场的过程中通过线框横截面的电荷量q 1=2q 2,故A 错误,B 正确;线圈从开始进入到位置Ⅱ,由动量定理-B I 1L Δt 1=m v -m v 0,即-BLq 1=m v -m v 0,同理线圈从位置Ⅱ到位置Ⅲ,由动量定理-B I 2L Δt 2=0-m v ,即-BLq 2=0-m v ,联立解得v =13v 0=1.5 m/s ,故C 错误,D 正确. 例2 (2022·浙江省精诚联盟联考)如图(a)所示,电阻为2R 、半径为r 、匝数为n 的圆形导体线圈两端与水平导轨AD 、MN 相连.与导体线圈共圆心的圆形区域内有竖直向下的磁场,其磁感应强度随时间变化的规律如图(b)所示,图(b)中的B 0和t 0均已知.PT 、DE 、NG 是横截面积和材料完全相同的三根粗细均匀的金属棒.金属棒PT 的长度为3L 、电阻为3R 、质量为m .导轨AD 与MN 平行且间距为L ,导轨EF 与GH 平行且间距为3L ,DE 和NG 的长度相同且与水平方向的夹角均为30°.区域Ⅰ和区域Ⅱ是两个相邻的、长和宽均为d 的空间区域.区域Ⅰ中存在方向竖直向下、磁感应强度大小为B 0的匀强磁场.0~2t 0时间内,使棒PT 在区域Ⅰ中某位置保持静止,且其两端分别与导轨EF 和GH 对齐.除导体线圈、金属棒PT 、DE 、NG 外,其余导体电阻均不计,所有导体间接触均良好且均处于同一水平面内,不计一切摩擦,不考虑回路中的自感.(1)求在0~2t 0时间内,使棒PT 保持静止的水平外力F 的大小;(2)在2t 0以后的某时刻,若区域Ⅰ内的磁场在外力作用下从区域Ⅰ以v 0的速度匀速运动,完全运动到区域Ⅱ时,导体棒PT 速度恰好达到v 0且恰好进入区域Ⅱ,该过程棒PT 产生的焦耳热为Q ,求金属棒PT 与区域Ⅰ右边界的初始距离x 0和该过程维持磁场匀速运动的外力做的功W ;(3)若磁场完全运动到区域Ⅱ时立刻停下,求导体棒PT 运动到EG 时的速度大小v .答案 (1)0~t 0时间内F =nB 02πLr 23Rt 0;t 0~2t 0时间内F =0 (2)d -3mR v 0B 02L 2 3Q +12m v 02 (3)v 0-23B 02L 33mR解析 (1)在0~t 0时间内,由法拉第电磁感应定律得E =n ΔB Δt S =n B 0t 0πr 2 由闭合电路欧姆定律得I =E 3R =nB 0πr 23Rt 0故在0~t 0时间内,使PT 棒保持静止的水平外力大小为F =F A =BIL =nB 02πLr 23Rt 0在t 0~2t 0时间内,磁场不变化,回路中电动势为零,无电流,则外力F =0(2)PT 棒向右加速运动过程中,取向右的方向为正方向,由动量定理得B 02L 2Δx 3R=m v 0 得Δx =3mR v 0B 02L2 所以x 0=d -Δx =d -3mR v 0B 02L2 PT 棒向右加速过程中,回路中的总焦耳热为Q 总=3Q由功能关系和能量守恒定律得W =3Q +12m v 02 (3)棒PT 从磁场区域Ⅱ左边界向右运动距离x 时,回路中棒PT 的长度为l x =233x +L 回路中总电阻为R 总x =R L ⎝⎛⎭⎫l x +2233x +2R =R L ⎝⎛⎭⎫233x +L +2233x +2R =R L(23x +3L ) 回路中电流为I x =B 0l x v x R 总x =B 0(233x +L )v x R L (23x +3L )=B 0L v x 3R 棒PT 所受安培力大小为F A x =B 0I x l x =B 02L v x l x 3R棒PT 从磁场区域Ⅱ左边界运动到EG 过程中,以v 0方向为正方向,由动量定理得-∑B 02L v x l x 3RΔt =m v -m v 0即-B 02LS 梯3R=m v -m v 0 其中S 梯=23L 2所以v =v 0-23B 02L 33mR .考点二 动量守恒定律在电磁感应中的应用双杆模型 物理模型 “一动一静”:甲杆静止不动,乙杆运动,其实质是单杆问题,不过要注意问题包含着一个条件——甲杆静止,受力平衡 两杆都在运动,对于这种情况,要注意两杆切割磁感线产生的感应电动势是相加还是相减;系统动量是否守恒分析方法 动力学观点 通常情况下一个金属杆做加速度逐渐减小的加速运动,而另一个金属杆做加速度逐渐减小的减速运动,最终两金属杆以共同的速度匀速运动 能量观点两杆系统机械能减少量等于回路中产生的焦耳热之和 动量观点对于两金属杆在平直的光滑导轨上运动的情况,如果两金属杆所受的外力之和为零,则考虑应用动量守恒定律处理问题例3 (2022·辽宁卷·15)如图所示,两平行光滑长直金属导轨水平放置,间距为L .abcd 区域有匀强磁场,磁感应强度大小为B ,方向竖直向上.初始时刻,磁场外的细金属杆M 以初速度v 0向右运动,磁场内的细金属杆N 处于静止状态.两金属杆与导轨接触良好且运动过程中始终与导轨垂直.两杆的质量均为m ,在导轨间的电阻均为R ,感应电流产生的磁场及导轨的电阻忽略不计.(1)求M 刚进入磁场时受到的安培力F 的大小和方向;(2)若两杆在磁场内未相撞且N 出磁场时的速度为v 03,求:①N 在磁场内运动过程中通过回路的电荷量q ;②初始时刻N 到ab 的最小距离x ;(3)初始时刻,若N 到cd 的距离与第(2)问初始时刻的相同、到ab 的距离为kx (k >1),求M 出磁场后不与N 相撞条件下k 的取值范围.答案 (1)B 2L 2v 02R方向水平向左 (2)①m v 03BL ②2m v 0R 3B 2L2 (3)2≤k <3解析 (1)细金属杆M 以初速度v 0向右运动,刚进入磁场时,产生的电动势为E =BL v 0电流的大小为I =E 2R则所受的安培力大小为F =BIL =B 2L 2v 02R由左手定则可知安培力的方向水平向左;(2)①金属杆N 在磁场内运动的过程中,取水平向右为正方向,由动量定理有B I L ·Δt =m ·v 03-0 且q =I ·Δt联立解得通过回路的电荷量q =m v 03BL②设杆M 在磁场中运动的位移大小为x 1,杆N 在磁场中运动的位移大小为x 2,则有Δx =x 1-x 2,有 I =E2R ,E =BL ·Δx Δt 整理可得q =BL ·Δx 2R联立可得Δx =2m v 0R 3B 2L 2 若两杆在磁场内刚好相撞,N 到ab 的最小距离为x =Δx =2m v 0R 3B 2L 2 (3)两杆出磁场后在平行光滑长直金属导轨上运动,若N 到cd 的距离与第(2)问初始时刻的相同、到ab 的距离为kx (k >1),则N 到cd 边的速度大小恒为v 03,取水平向右为正方向,根据动量守恒定律可知m v 0=m v 1+m ·v 03解得N 出磁场时,M 的速度大小为v 1=23v 0 由题意可知,此时M 到cd 边的距离为s =(k -1)x若要保证M 出磁场后不与N 相撞,则有两种临界情况:①M 减速到v 03时出磁场,速度刚好等于N 的速度,一定不与N 相撞,对M 根据动量定理有 -B I 1L ·Δt 1=m ·v 03-m ·23v 0 q 1=I 1·Δt 1=BL ·(k -1)x 2R联立解得k =2②M 运动到cd 边时,恰好减速到零,则对M 由动量定理有-B I 2L ·Δt 2=0-m ·23v 0 同理解得k =3综上所述,M 出磁场后不与N 相撞条件下k 的取值范围为2≤k <3.1.(多选)如图所示,水平金属导轨P 、Q 间距为L ,M 、N 间距为2L ,P 与M 相连,Q 与N 相连,金属棒a 垂直于P 、Q 放置,金属棒b 垂直于M 、N 放置,整个装置处在磁感应强度大小为B 、方向竖直向上的匀强磁场中.现给a 棒一大小为v 0的初速度,方向水平向右.设两部分导轨均足够长,两棒质量均为m ,在a 棒的速度由v 0减小到0.8v 0的过程中,两棒始终与导轨接触良好.在这个过程中,以下说法正确的是( )A .俯视时感应电流方向为顺时针B .b 棒的最大速度为0.4v 0C .回路中产生的焦耳热为0.1m v 02D .通过回路中某一截面的电荷量为2m v 025BL答案 BC解析 a 棒向右运动,根据右手定则可知,俯视时感应电流方向为逆时针,故A 错误;由题意分析可知,a 棒减速,b 棒加速,设a 棒的速度大小为0.8v 0时b 棒的速度大小为v ,取水平向右为正方向,根据动量定理,对a 棒有-B I L Δt =m ·0.8v 0-m v 0,对b 棒有B I ·2L Δt =m v ,联立解得v =0.4v 0,此后回路中电流为0,a 、b 棒都做匀速运动,即b 棒的最大速度为0.4v 0,故B 正确;根据能量守恒定律有Q =12m v 02-[12m (0.8v 0)2+12m (0.4v 0)2]=0.1m v 02,故C 正确;对b 棒,由2B I L ·Δt =m v 得,通过回路中某一截面的电荷量q =I ·Δt =m v 2BL =m v 05BL,故D 错误.2.(2022·安徽阜阳市质检)如图,两平行光滑金属导轨ABC 、A ′B ′C ′的左端接有阻值为R 的定值电阻Z ,间距为L ,其中AB 、A ′B ′固定于同一水平面上(图中未画出)且与竖直面内半径为r 的14光滑圆弧形导轨BC 、B ′C ′相切于B 、B ′两点.矩形DBB ′D ′区域内存在磁感应强度大小为B 、方向竖直向上的匀强磁场.导体棒ab 的质量为m 、阻值为R 、长度为L ,ab 棒在功率恒定、方向水平向右的推力作用下由静止开始沿导轨运动,经时间t 后撤去推力,然后ab 棒与另一根相同的导体棒cd 发生碰撞并粘在一起,以32gr 的速率进入磁场,两导体棒穿过磁场区域后,恰好能到达CC ′处.重力加速度大小为g ,导体棒运动过程中始终与导轨垂直且接触良好,不计导轨的电阻.(1)求该推力的功率P ; (2)求两导体棒通过磁场右边界BB ′时的速度大小v ;(3)求两导体棒穿越磁场的过程中定值电阻Z 产生的焦耳热Q ;(4)两导体棒到达CC ′后原路返回,请通过计算判断两导体棒能否再次穿过磁场区域.若不能穿过,求出两导体棒停止的位置与DD ′的距离x .答案 (1)36mgr t (2)2gr (3)323mgr (4)不能 3mR 2gr B 2L 2解析 (1)设两导体棒碰撞前瞬间ab 棒的速度大小为v 0,在推力作用的过程中,由动能定理有Pt =12m v 02 设ab 与cd 碰后瞬间结合体的速度大小为v 1,由题意知v 1=32gr ,由动量守恒定律有m v 0=2m v 1联立解得P =36mgr t(2)对两导体棒沿圆弧形导轨上滑的过程分析,由机械能守恒定律有12×2m v 2=2mgr 解得v =2gr(3)两棒碰撞并粘在一起,由电阻定律可知,两导体棒的总电阻为R 2,阻值为R 的定值电阻Z 产生的焦耳热为Q ,故两棒产生的总焦耳热为Q 2,由能量守恒定律有 -(Q +Q 2)=12×2m v 2-12×2m v 12 解得Q =323mgr(4)设导体棒第一次穿越磁场的时间为t 1,该过程回路中的平均电流为I ,DD ′与BB ′的间距为x 1,由动量定理有-B I Lt 1=2m v -2m v 1根据法拉第电磁感应定律和电路相关知识有I t 1=BLx 13R 2解得x 1=6mR 2gr B 2L 2由机械能守恒定律可知,导体棒再次回到BB ′处时的速度大小仍为v =2gr ,导体棒再次进入磁场向左运动的过程中,仍用动量定理和相关电路知识,并且假设导体棒会停在磁场中,同时设导体棒在磁场中向左运动的时间为t 2,导体棒进入磁场后到停止运动的距离为Δx ,该过程回路中的平均电流为I ′,同前述道理可分别列式为-B I ′Lt 2=0-2m v I ′t 2=BL ·Δx 3R2解得Δx =3mR 2gr B 2L 2显然Δx <x 1,假设成立,故导体棒不能向左穿过磁场区域,导体棒停止的位置与DD ′的距离x =x 1-Δx =3mR 2gr B 2L 2. 专题强化练1.(多选)(2022·河南信阳市高三质量检测)如图所示,两根足够长相互平行、间距d =0.20 m 的竖直导轨,下端连接阻值R =0.50 Ω的电阻.一根阻值也为0.50 Ω、质量m =1.0×10-2 kg 的导体棒ab 搁置在两端等高的挡条上.在竖直导轨内有垂直纸面的匀强磁场,磁感应强度B =0.50 T(图中未画出).撤去挡条,棒开始下滑,经t =0.25 s 后下降了h =0.29 m .假设棒始终与导轨垂直,且与导轨接触良好,不计一切摩擦阻力和导轨电阻,重力加速度取10 m/s 2.下列说法正确的是( )A .导体棒能获得的最大速度为20 m/sB .导体棒能获得的最大速度为10 m/sC .t =0.25 s 时间内通过导体棒的电荷量为2.9×10-2 CD .t =0.25 s 时导体棒的速度为2.21 m/s答案 BCD解析 导体棒获得最大速度时,导体棒受力平衡,有mg =F 安=BId ,解得I =1 A ,又由E =Bd v m ,I =E 2R ,解得v m =10 m/s ,故A 错误,B 正确;在下落0.29 m 的过程中有E =ΔΦt,I =E 2R ,q =I t ,可知q =ΔΦ2R ,其中ΔΦ=ΔS ·B =0.2×0.29×0.5 Wb =0.029 Wb ,解得q =2.9× 10-2 C ,故C 正确;由动量定理有(mg -B I d )t =m v ,通过导体棒的电荷量为q =I t =Bdh 2R,可得v =gt -B 2hd 22Rm,代入数据解得v =2.21 m/s ,故D 正确. 2.(多选)(2022·山东青岛市黄岛区期末)如图,光滑平行金属导轨MN 、PQ 固定在水平桌面上,窄轨MP 间距0.5 m ,宽轨NQ 间距1 m ,电阻不计.空间存在竖直向上的磁感应强度B =1 T 的匀强磁场.金属棒a 、b 水平放置在两导轨上,棒与导轨垂直并保持良好接触,a 棒的质量为0.2 kg ,b 棒的质量为0.1 kg ,若a 棒以v 0=9 m/s 的水平初速度从宽轨某处向左滑动,最终与b 棒以相同的速度沿窄轨运动.若a 棒滑离宽轨前加速度恰好为0,窄导轨足够长.下列说法正确的是( )A .从开始到两棒以相同速度运动的过程,a 、b 组成的系统动量守恒B .金属棒a 滑离宽轨时的速度大小为3 m/sC .金属棒a 、b 最终的速度大小为6 m/sD .通过金属棒横截面的电荷量为0.8 C答案 BD解析 由于两导轨的宽度不相等,根据F =BIL ,知a 、b 两个金属棒所受水平方向的安培力之和不为零,系统动量不守恒,故A 错误;a 棒滑离宽轨前加速度恰好为0,即做匀速运动,a 棒匀速运动时,两棒切割磁感线产生的电动势大小相等,有BL b v b =BL a v a ,L a =2L b ,得末速度v b =2v a ,对a 棒根据动量定理可得-B I L a Δt =m a v a -m a v 0,对b 棒根据动量定理可得B I L b Δt =m b v b ,联立代入数据解得v a =3 m/s ,v b =6 m/s ,故B 正确;a 棒滑离宽轨道进入窄轨道后,a 、b 两个金属棒所受水平方向的安培力之和为零,系统动量守恒,设a 、b 两个金属棒最终的共同速度为v ′,则m a v a +m b v b =(m a +m b )v ′,解得v ′=4 m/s ,故C 错误;b 金属棒始终在窄轨道上运动,对b 金属棒全过程利用动量定理可得B I ′L b ·Δt ′=m b v ′,q =I ′·Δt ′,即BL b q =m b v ′,代入数据得q =0.8 C ,故D 正确.3.(多选)(2022·北京市模拟)如图,两根足够长的固定的光滑平行金属导轨位于同一水平面内,两导轨间的距离为L.导轨上面横放着两根导体棒1和2,构成矩形回路.两根导体棒的质量皆为m ,接入电路电阻皆为R ,回路中其余部分的电阻可不计,在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度大小为B .初始棒2静止,棒1有指向棒2的初速度v 0.若两导体棒在运动中始终不接触,则( )A .棒1的最小速度为零B .棒2的最大加速度为B 2L 2v 02mRC .棒1两端电压的最大值为BL v 0D .棒2产生的最大热量为18m v 02 答案 BD解析 当导体棒1开始运动时,回路中有感应电流,两导体棒受到大小相等的安培力作用,棒1做减速运动,棒2做加速运动,当两棒速度相等时,回路中电流等于零,两棒受力平衡,都做匀速直线运动,此时棒1的速度最小,A 错误;当导体棒1刚开始运动时,导体棒2的加速度最大,有E =BL v 0,此时回路中的电流I =E R +R =BL v 02R,由牛顿第二定律可得F =BIL =B BL v 02R L =B 2L 2v 02R =ma ,得a =B 2L 2v 02mR,B 正确;当导体棒1刚开始运动时,回路中的感应电动势最大,感应电流最大,则棒1两端电压最大值为U 1=IR =ER 2R =12BL v 0,C 错误;当两棒的速度相等时,系统产生的焦耳热最多,从开始运动到稳定的运动过程中,两棒的总动量守恒,设向右为正方向,由动量守恒定律可得m v 0=2m v ,由能量守恒定律可得12m v 02=12×2m v 2+Q ,导体棒2产生的最大热量为Q 2=12Q ,联立解得Q 2=18m v 02,D 正确.4.(多选)(2022·广西北海市一模)如图所示,在水平桌面上固定两条足够长的相距L =1.0 m 的平行光滑金属导轨,导轨的左端连接阻值R =3.0 Ω的电阻,导轨上放有垂直导轨的金属杆P ,金属杆的质量m =0.1 kg ,接入电路的电阻r =2.0 Ω,整个空间存在磁感应强度大小B =0.5 T 、竖直向下的匀强磁场.初始时刻金属杆在水平向右的恒力F 的作用下,向右做速度v =4 m/s 的匀速直线运动,经1.5 s 后撤去恒力F .整个运动过程中金属杆P 始终与导轨垂直且接触良好,导轨电阻不计,则从初始时刻到金属杆停止运动的过程中( )A .电阻R 上产生的热量为1.0 JB .电阻R 上产生的热量为1.2 JC .金属杆向右运动的位移为14 mD .金属杆向右运动的位移为16 m 答案 BC解析 金属杆匀速运动时,所受安培力大小为F 安=BIL =B BL vR +r L ,根据金属杆受力平衡得F=F 安,代入数据解得F =0.2 N ,前1.5 s 内金属杆运动的位移为x 1=v t =6 m ,水平恒力F 做的功W =Fx 1=1.2 J ,从初始时刻到金属杆停止运动的过程中,根据能量守恒定律得W +12m v 2=Q r +Q R ,其中Q r ∶Q R =r ∶R =2∶3,代入数据解得Q R =1.2 J ,故A 错误,B 正确;撤去恒力F 后,金属杆的加速度满足-B 2L 2v R +r =ma ,等式两边同时乘非常短的时间Δt ,即-B 2L 2vR +r Δt =ma Δt ,整理得-B 2L 2R +r Δx =m Δv ,整理得B 2L 2R +r x 2=m v ,所以撤去恒力F 后,金属杆继续运动的位移为x 2=m ()R +rB 2L 2v =8 m ,从初始时刻到金属杆停止运动的过程中,金属杆向右运动的位移x =x 1+x 2=14 m ,故C 正确,D 错误.5.(多选)如图所示,两条足够长、电阻不计的平行导轨放在同一水平面内,相距l .磁感应强度大小为B 的范围足够大的匀强磁场垂直于导轨平面向下.两根质量均为m 、电阻均为r 的导体杆a 、b 与两导轨垂直放置且接触良好,开始时两杆均静止.已知b 杆光滑,a 杆与导轨间最大静摩擦力大小为F 0.现对b 杆施加一与杆垂直且大小随时间按图乙所示规律变化的水平外力F ,已知在t 1时刻,a 杆开始运动,此时拉力大小为F 1,下列说法正确的是(最大静摩擦力等于滑动摩擦力)( )A .当a 杆开始运动时,b 杆的速度大小为2F 0rB 2l2B .在0~t 1这段时间内,b 杆所受安培力的冲量大小为2mF 0r B 2l 2-12F 1t 1C .在t 1~t 2这段时间内,a 、b 杆的总动量增加了(F 1+F 2)(t 2-t 1)2D .a 、b 两杆最终速度将恒定,且两杆速度大小之差等于t 1时刻b 杆速度大小 答案 AD解析 在整个运动过程中,a 、b 两杆所受安培力大小相等,当a 杆开始运动时,所受的安培力大小等于最大静摩擦力F 0,则B 2l 2v 2r =F 0,解得b 杆的速度大小为v =2F 0rB 2l 2,选项A 正确;由动量定理得I F -I 安=m v ,F -t 图线与横轴围成的面积表示I F 的大小,知I F =12F 1t 1,解得I 安=I F -m v =12F 1t 1-2mF 0rB 2l 2,选项B 错误;在t 1~t 2这段时间内,外力F 对a 、b 杆的冲量为I F ′=(F 1+F 2)(t 2-t 1)2,因a 杆受摩擦力作用,可知a 、b 杆所受合力的总冲量小于(F 1+F 2)(t 2-t 1)2,即a 、b 杆的总动量增加量小于(F 1+F 2)(t 2-t 1)2,选项C 错误;由于最终外力F =F 0,故此时对两杆整体,所受合力为零,两杆所受的安培力均为F 0,处于稳定状态,因开始时b 杆做减速运动,a 杆做加速运动,故a 、b 两杆最终速度将恒定,速度大小之差满足B 2l 2Δv 2r=F 0,即Δv =v ,速度大小之差等于t 1时刻b 杆速度大小,选项D 正确.6.(2022·天津市红桥区第二次质检)如图所示,两足够长的光滑金属导轨竖直放置,相距为L ,一理想电流表与两导轨相连,匀强磁场与导轨平面垂直.一质量为m 、有效电阻为R 的导体棒在距磁场上边界h 处由静止释放.导体棒进入磁场后流经电流表的电流逐渐减小,最终稳定为I .整个运动过程中,导体棒与导轨接触良好,且始终保持水平,不计导轨的电阻,重力加速度大小为g .求:(重力加速度取10 m/s 2)(1)导体棒的最大速度v m ,磁感应强度的大小B ; (2)电流稳定后,导体棒运动速度的大小v ;(3)若导体棒进入磁场后恰经t 时间达到稳定,这段时间的位移x 大小. 答案 (1)2gh mg IL (2)I 2R mg (3)(mgt +m 2gh -I 2R g )RB 2L 2解析 (1)由题意得导体棒刚进入磁场时的速度最大,设为v m , 由机械能守恒定律得12m v m 2=mgh解得v m =2gh电流稳定后,导体棒做匀速运动,此时导体棒受到的重力和安培力平衡, 则有:BIL =mg 解得:B =mgIL(2)感应电动势E =BL v 感应电流I =ER解得v =I 2Rmg(3)导体棒进入磁场t 时间运动的过程由动量定理有mgt -B I Lt =m v -m v m 又q =I t =ΔΦR =BLxR,解得x =(mgt +m 2gh -I 2R g )RB 2L2.7.(2022·陕西西安市一模)如图所示,有两光滑平行金属导轨,倾斜部分和水平部分平滑连接,BE 、CH 段用特殊材料制成,光滑不导电,导轨的间距L =1 m ,左侧接R =1 Ω的定值电阻,右侧接电容C =1 F 的电容器,ABCD 区域、EFGH 区域均存在垂直于导轨所在平面向下、磁感应强度B =1 T 的匀强磁场,ABCD 区域长s =0.3 m .金属杆a 、b 的长度均为L =1 m ,质量均为m =0.1 kg ,a 的电阻为r =2 Ω,b 的电阻不计.金属杆a 从距导轨水平部分h =0.45 m 的高度处由静止滑下,金属杆b 静止在BEHC 区域,金属杆b 与金属杆a 发生弹性碰撞后进入EFGH 区域,最终稳定运动.求:(重力加速度g 取10 m/s 2)(1)金属杆a 刚进入ABCD 区域时通过电阻R 的电流I ; (2)金属杆a 刚离开ABCD 区域时的速度v 2的大小; (3)金属杆b 稳定运动时的速度v 4的大小; (4)整个运动过程中金属杆a 上产生的焦耳热. 答案 (1)1 A (2)2 m/s (3)211 m/s (4)16J解析 (1)金属杆a 从开始运动到进入ABCD 区域,由动能定理有mgh =12m v 12解得v 1=3 m/s刚进入ABCD 区域时E =BL v 1 I =E R +r 联立解得I =1 A(2)金属杆a 从进入ABCD 区域到离开ABCD 区域, 由动量定理有-B I L ·t =m v 2-m v 1I t =BL v R +r t =BLsR +r解得v 2=2 m/s(3)金属杆a 、b 碰撞过程中,有m v 2=m v 2′+m v 3 12m v 22=12m v 2′2+12m v 32 解得v 3=2 m/s ,v 2′=0分析可知,杆b 进入磁场后,电容器充电,杆b 速度减小,匀速运动时,杆b 产生的感应电动势与电容器两端电压相同,且通过杆b 的电荷量就是电容器储存的电荷量,由动量定理有-BLq =m v 4-m v 3 qC=BL v 4 联立解得v 4=211m/s(4)杆a 仅在ABCD 区域中运动时产生焦耳热,即Q =r R +r (12m v 12-12m v 22)=16 J.8.如图所示,MN 、PQ 为足够长的水平光滑金属导轨,导轨间距L =0.5 m ,导轨电阻不计,空间有竖直向下的匀强磁场,磁感应强度B =1 T ;两直导体棒ab 、cd 均垂直于导轨放置,导体棒与导轨始终接触良好.导体棒ab 的质量m 1=0.5 kg ,电阻R 1=0.2 Ω;导体棒cd 的质量m 2=1.0 kg ,电阻R 2=0.1 Ω.将cd 棒用平行于导轨的水平细线与固定的力传感器连接,给ab 一个水平向右、大小为v 0=3 m/s 的初速度,求:(1)导体棒ab 开始运动瞬间两端的电压U ab ; (2)力传感器示数F 随ab 运动距离x 的变化关系;(3)若导体棒ab 向右运动的速度为1.5 m/s 时剪断细线,求此后回路中产生的焦耳热. 答案 (1)0.5 V(2)F =2.5-2518x (N)(0≤x ≤1.8 m)(3)0.375 J解析 (1)导体棒ab 开始运动瞬间产生的感应电动势E =BL v 0=1×0.5×3 V =1.5 V 回路的电流I =E R 1+R 2= 1.50.2+0.1 A =5 A导体棒ab 开始运动瞬间两端的电压 U ab =IR 2=0.5 V(2)设导体棒ab 向右运动x 时的速度为v , 则根据动量定理得 -B I L Δt =m 1v -m 1v 0 而I =ER 1+R 2,E=ΔΦΔt=BLxΔtab棒所受安培力F安=BI′L=B2L2vR1+R2cd棒与ab棒所受安培力大小相等,故力传感器的示数F=F安,联立得F=B2L2R1+R2[v0-B2L2xm1(R1+R2)]代入数据得F=2.5-2518x (N)(0≤x≤1.8 m)(3)若导体棒ab向右运动的速度为1.5 m/s时剪断细线,此后ab做减速运动,cd做加速运动,当两棒速度相等时达到稳定状态,由动量守恒定律可知m1v1=(m1+m2)v′回路中产生的焦耳热等于损失的机械能,则Q=12m1v12-12(m1+m2)v′2代入数据解得Q=0.375 J.。

专题四 第17课时 动量观点在电磁感应中的应用

专题四 第17课时 动量观点在电磁感应中的应用

第17课时动量观点在电磁感应中的应用命题规律 1.命题角度:动量定理、动量守恒定律在电磁感应中的应用.2.常考题型:选择题或计算题.高考题型1动量定理在电磁感应中的应用在导体单杆切割磁感线做变加速运动时,若牛顿运动定律和能量观点不能解决问题,可运用动量定理巧妙解决问题求解的物理量应用示例电荷量或速度-B I LΔt=m v2-m v1,q=IΔt.位移-B2L2vΔtR总=0-m v0,即-B2L2xR总=0-m v0时间-B I LΔt+F其他Δt=m v2-m v1即-BLq+F其他Δt=m v2-m v1已知电荷量q、F其他(F其他为恒力)-B2L2vΔtR总+F其他Δt=m v2-m v1,vΔt=x 已知位移x、F其他(F其他为恒力)例1(多选)如图1所示,左端接有阻值为R的定值电阻且足够长的平行光滑导轨CE、DF 的间距为L,导轨固定在水平面上,且处在磁感应强度为B、竖直向下的匀强磁场中,一质量为m、电阻为r的导体棒ab垂直导轨放置且静止,导轨的电阻不计.某时刻给导体棒ab 一个水平向右的瞬时冲量I,导体棒将向右运动,最后停下来,则此过程中()A.导体棒做匀减速直线运动直至停止运动B.电阻R上产生的焦耳热为I22mC.通过导体棒ab横截面的电荷量为IBLD.导体棒ab运动的位移为I(R+r) B2L2例2(2018·天津卷·12)真空管道超高速列车的动力系统是一种将电能直接转换成平动动能的装置.如图2甲是某种动力系统的简化模型,图中粗实线表示固定在水平面上间距为l的两条平行光滑金属导轨,电阻忽略不计.ab和cd是两根与导轨垂直、长度均为l、电阻均为R 的金属棒,通过绝缘材料固定在列车底部,并与导轨良好接触,其间距也为l,列车的总质量为m.列车启动前,ab、cd处于磁感应强度为B的匀强磁场中,磁场方向垂直于导轨平面向下,如图甲所示.为使列车启动,需在M、N间连接电动势为E的直流电源,电源内阻及导线电阻忽略不计.列车启动后电源自动关闭.(1)要使列车向右运行,启动时图甲中M、N哪个接电源正极,并简要说明理由.(2)求刚接通电源时列车加速度a的大小.(3)列车减速时,需在前方设置如图乙所示的一系列磁感应强度为B的匀强磁场区域,磁场宽度和相邻磁场间距均大于l.若某时刻列车的速度为v0,此时ab、cd均在无磁场区域,试讨论:要使列车停下来,前方至少需要多少块这样的有界磁场?例3如图3所示,两根质量均为m=2 kg的金属棒垂直放在光滑的水平导轨上,左右两部分导轨间距之比为1∶2,导轨间有大小相等但左、右两部分方向相反的匀强磁场,两棒电阻与棒长成正比,不计导轨电阻.现用250 N的水平拉力F向右拉CD棒,CD棒运动s=0.5 m 时其上产生的焦耳热为Q2=30 J,此时两棒速率之比为v A∶v C=1∶2,现立即撤去拉力F,设导轨足够长且两棒始终在不同磁场中运动,求:(1)在CD棒运动0.5 m的过程中,AB棒上产生的焦耳热;(2)撤去拉力F瞬间,两棒的速度大小v A和v C;(3)撤去拉力F后,两棒最终匀速运动的速度大小v A′和v C′.高考题型2动量守恒定律在电磁感应中的应用“双轨+双杆”模型如图4,方向竖直向下的匀强磁场中有两根位于同一水平面内的足够长的平行金属导轨,两相同的光滑导体棒ab、cd静止在导轨上.t=0时,ab棒以初速度v0向右滑动.运动过程中,ab、cd棒始终与导轨垂直并接触良好.模型分析:双轨和两导体棒组成闭合回路,通过两导体棒的感应电流相等,所受安培力大小也相等,ab棒受到水平向左的安培力,向右减速;cd棒受到水平向右的安培力,向右加速,最终导体棒ab、cd共速,感应电流消失,一起向右做匀速直线运动,该过程导体棒ab、cd组成的系统所受合外力为零,动量守恒:m ab v0=(m ab+m cd)v共,若ab棒、cd棒所在导轨不等间距,则动量不守恒,可考虑运用动量定理求解.例4(多选)(2019·全国卷Ⅲ·19)如图5,方向竖直向下的匀强磁场中有两根位于同一水平面内的足够长的平行金属导轨,两相同的光滑导体棒ab、cd静止在导轨上.t=0时,棒ab以初速度v0向右滑动.运动过程中,ab、cd始终与导轨垂直并接触良好,两者速度分别用v1、v2表示,回路中的电流用I表示.下列图像中可能正确的是()例5如图6,两光滑金属导轨相距L,平直部分固定在离地高度为h的绝缘水平桌面上,处在磁感应强度为B、方向竖直向下的匀强磁场中,弯曲部分竖直固定并与水平部分平滑连接.金属棒ab、cd垂直于两导轨且与导轨接触良好.棒ab的质量为2m,电阻为r2,棒cd的质量为m,电阻为r,开始棒cd静止在水平直导轨上,棒ab从高出平直部分h处无初速度释放,进入水平直导轨后与棒cd始终没有接触,最后棒cd落地时与桌边的水平距离也为h.导轨电阻不计,重力加速度为g.求:(1)棒ab 落地时与桌边的水平距离;(2)棒cd 即将离开导轨时,棒ab 的加速度大小.1.如图7所示,足够长的两平行光滑水平直导轨的间距为L ,导轨电阻不计,垂直于导轨平面有磁感应强度大小为B 、方向竖直向上的匀强磁场;导轨左端接有电容为C 的电容器、开关S 和定值电阻R ;质量为m 的金属棒垂直于导轨静止放置,两导轨间金属棒的电阻为r .初始时开关S 断开,电容器两极板间的电压为U .闭合开关S ,金属棒运动,金属棒与导轨始终垂直且接触良好.下列说法正确的是( ) A .闭合开关S 的瞬间,金属棒立刻开始向左运动 B .闭合开关S 的瞬间,金属棒的加速度大小为BULmRC .金属棒与导轨接触的两点间的最小电压为零D .金属棒最终获得的速度大小为BCULm +B 2L 2C2.如图8所示,在大小为B的匀强磁场区域内,垂直磁场方向的水平面中有两根固定的足够长的金属平行导轨,在导轨上面平放着两根导体棒MN和PQ,两棒彼此平行且相距d,构成一矩形回路.导轨间距为l,导体棒的质量均为m,电阻均为R,导轨电阻可忽略不计.设导体棒可在导轨上无摩擦地滑行,初始时刻MN棒静止,给PQ棒一个向右的初速度v0,求:(1)当PQ棒速度减为0.6v0时,MN棒的速度v及加速度a的大小;(2)MN、PQ棒间的距离从d增大到最大的过程中,通过回路的电荷量q及两棒间的最大距离x.3.如图9所示,平行光滑金属导轨由水平部分和倾斜部分组成,且二者平滑连接.导轨水平部分MN的右侧区域内存在方向竖直向上的匀强磁场,磁感应强度大小为B=0.4 T.在距离磁场左边界线MN为d=1.2 m处垂直导轨放置一个导体棒a,在倾斜导轨高h=0.8 m处垂直于导轨放置导体棒b.将b棒由静止释放,最终导体棒a和b速度保持稳定.已知导轨间距L =0.5 m,两导体棒质量均为m=0.1 kg,电阻均为R=0.1 Ω,g=10 m/s2,不计导轨电阻,导体棒在运动过程中始终垂直于导轨且接触良好,忽略磁场边界效应.求:(1)导体棒b刚过边界线MN时导体棒a的加速度大小;(2)从初始位置开始到两棒速度稳定的过程中,感应电流在导体棒a中产生的热量Q;(3)两棒速度稳定后二者之间的距离.专题强化练1.(多选)如图1所示,方向竖直向下的匀强磁场中,有两根位于同一水平面内的足够长的平行金属导轨,两根相同的光滑导体棒ab 、cd ,质量均为m ,静止在导轨上.t =0时,棒cd 受到一瞬时冲量作用而以初速度v 0向右滑动.运动过程中,ab 、cd 始终与导轨垂直并接触良好,回路中的电流用I 表示.下列说法中正确的是( ) A .两棒最终的状态是cd 静止,ab 以速度v 0向右滑动 B .两棒最终的状态是ab 、cd 均以12v 0的速度向右匀速滑动C .ab 棒的速度由零开始匀加速增加到最终的稳定速度D .回路中的电流I 从某一个值I 0逐渐减小到零2.(多选)如图2所示,两条相距为d 且足够长的平行光滑金属导轨位于同一水平面内,其左端接阻值为R 的定值电阻.电阻为R 、长为d 的金属杆ab 在导轨上以初速度v 0水平向左运动,其左侧有边界为PQ 、MN 的匀强磁场,磁感应强度大小为B .该磁场以恒定速度v 0匀速向右运动,金属杆进入磁场后,在磁场中运动t 时间后达到稳定状态,导轨电阻不计,则( ) A .当金属杆刚进入磁场时,杆两端的电压大小为Bd v 0 B .当金属杆运动达到稳定状态时,杆两端的电压大小为Bd v 0 C .t 时间内金属杆所受安培力的冲量等于0 D .t 时间内金属杆所受安培力做的功等于03.(多选)如图3所示,两条相距为L 的光滑平行金属导轨位于水平面(纸面)内,其左端接一阻值为R 的定值电阻,导轨平面与磁感应强度大小为B 的匀强磁场垂直,导轨电阻不计.导体棒ab 垂直导轨放置并接触良好,接入电路的电阻也为R .若给棒以平行导轨向右的初速度v 0,当通过棒横截面的电荷量为q 时,棒的速度减为零,此过程中棒发生的位移为x .则在这一过程中( ) A .导体棒做匀减速直线运动B .当棒发生的位移为x 2时,通过棒横截面的电荷量为q 2C .在通过棒横截面的电荷量为q3时,棒运动的速度为v 03D .定值电阻R 产生的热量为BqL v 044.(多选)如图4所示,宽度为L 的光滑金属框架MNPQ 固定于水平面,并处在磁感应强度大小为B 的匀强磁场中,磁场方向竖直向下,框架的电阻分布不均匀.将质量为m 、长为L 的金属棒ab 垂直放置在框架上,并且与框架接触良好.现给棒ab 向左的初速度v 0,其恰能做加速度大小为a 的匀减速直线运动,则在棒ab 的速度由v 0减为v 的过程中,下列说法正确的是( )A .棒ab 的位移大小为v 02-v 22aB .通过棒ab 的电荷量为m ()v 0-v BLC .框架PN 段的热功率增大D .棒ab 产生的焦耳热为12m ()v 02-v 2[争分提能练]5.(多选)如图5,间距为l 的两平行光滑金属导轨(电阻不计)由水平部分和弧形部分平滑连接而成,其水平部分足够长,虚线MM ′右侧存在方向竖直向下大小为B 的匀强磁场.两平行金属杆P 、Q 的质量分别为m 1、m 2,电阻分别为R 1、R 2,且始终与导轨保持垂直.开始两金属杆处于静止状态,Q 在水平轨道上距MM ′为x 0,P 在距水平轨道高为h 的倾斜轨道上,重力加速度为g .现由静止释放P ,一段时间后,两金属杆间距稳定为x 1,则在这一过程中( ) A .稳定后两导轨间的电势差为m 1Bl m 1+m 22ghB .当Q 的加速度大小为a 时,P 的加速度大小为m 1m 2aC .通过Q 的电荷量为Bl (x 0-x 1)R 1+R 2D .P 、Q 产生的焦耳热为m 1m 2ghm 1+m 26.如图6所示,间距L =1 m 的平行且足够长的导轨由倾斜、水平两部分组成,倾斜部分倾角θ=37°,在倾斜导轨顶端连接一阻值R =1 Ω的定值电阻,质量m =1 kg 的金属杆MN 垂直导轨放置且始终接触良好,并在整个区域加一垂直于倾斜导轨所在斜面向下、磁感应强度B =1 T 的匀强磁场.现让金属杆MN 从距水平导轨高度h =1.2 m 处由静止释放,金属杆在倾斜导轨上先加速再匀速运动,然后进入水平导轨部分,再经过位移x =1 m 速度减为零.已知金属杆与导轨间的动摩擦因数μ=0.5,导轨与金属杆的电阻不计,金属杆在导轨两部分衔接点机械能损失忽略不计,重力加速度g =10 m/s 2,sin 37°=0.6,cos 37°=0.8.求: (1)金属杆匀速运动时的速度大小;(2)金属杆在倾斜导轨运动阶段,通过电阻R 的电荷量和电阻R 产生的焦耳热;(3)金属杆在水平导轨上运动时所受摩擦力的冲量大小.7.如图7所示,相互平行、相距L的两条金属长导轨固定在同一水平面上,电阻可忽略不计,空间有方向竖直向下的匀强磁场,磁感应强度为B,质量均为m、长度均为L、电阻均为R 的导体棒甲和乙,可以在长导轨上无摩擦左右滑动.开始时,甲导体棒具有向左的初速度v,乙导体棒具有向右的初速度2v,求:(1)开始时,回路中电流大小I;(2)当一根导体棒速度为零时,另一根导体棒的加速度大小a;(3)运动过程中通过乙导体棒的电荷量最大值q m.8.如图8所示,MN、PQ为足够长的水平光滑金属导轨,导轨间距L=0.5 m,导轨电阻不计,空间有竖直向下的匀强磁场,磁感应强度B=1 T;两直导体棒ab、cd均垂直于导轨放置,导体棒与导轨始终接触良好.导体棒ab的质量m1=0.5 kg,电阻R1=0.2 Ω;导体棒cd的质量m2=1.0 kg,电阻R2=0.1 Ω.将cd棒用平行于导轨的水平细线与固定的力传感器连接,给ab一个水平向右、大小为v0=3 m/s的初速度,求:(1)导体棒ab开始运动瞬间两端的电压U ab;(2)力传感器示数F随ab运动距离x的变化关系;(3)若导体棒ab向右运动的速度为1.5 m/s时剪断细线,求此后回路中产生的焦耳热.[尖子生选练]9.(多选)如图9所示,两条足够长、电阻不计的平行导轨放在同一水平面内,相距l .磁感应强度大小为B 的范围足够大的匀强磁场垂直于导轨平面向下.两根质量均为m 、电阻均为r 的导体杆a 、b 与两导轨垂直放置且接触良好,开始时两杆均静止.已知b 杆光滑,a 杆与导轨间最大静摩擦力大小为F 0.现对b 杆施加一与杆垂直且大小随时间按图乙所示规律变化的水平外力F ,已知在t 1时刻,a 杆开始运动,此时拉力大小为F 1,下列说法正确的是(最大静摩擦力等于滑动摩擦力)( )A .当a 杆开始运动时,b 杆的速度大小为2F 0rB 2l2B .在0~t 1这段时间内,b 杆所受安培力的冲量大小为2mF 0r B 2l 2-12F 1t 1C .在t 1~t 2这段时间内,a 、b 杆的总动量增加了(F 1+F 2)(t 2-t 1)2D .a 、b 两杆最终速度将恒定,且两杆速度大小之差等于t 1时刻b 杆速度大小第17课时动量观点在电磁感应中的应用命题规律 1.命题角度:动量定理、动量守恒定律在电磁感应中的应用.2.常考题型:选择题或计算题.高考题型1动量定理在电磁感应中的应用在导体单杆切割磁感线做变加速运动时,若牛顿运动定律和能量观点不能解决问题,可运用动量定理巧妙解决问题例1(多选)(2020·福建福清市线上检测)如图1所示,左端接有阻值为R的定值电阻且足够长的平行光滑导轨CE、DF的间距为L,导轨固定在水平面上,且处在磁感应强度为B、竖直向下的匀强磁场中,一质量为m、电阻为r的导体棒ab垂直导轨放置且静止,导轨的电阻不计.某时刻给导体棒ab一个水平向右的瞬时冲量I,导体棒将向右运动,最后停下来,则此过程中()图1A .导体棒做匀减速直线运动直至停止运动B .电阻R 上产生的焦耳热为I 22mC .通过导体棒ab 横截面的电荷量为I BLD .导体棒ab 运动的位移为I (R +r )B 2L 2答案 CD解析 导体棒获得向右的瞬时初速度后切割磁感线,回路中出现感应电流,导体棒ab 受到向左的安培力,向右减速运动,由B 2L 2v R +r=ma 可知由于导体棒速度减小,则加速度减小,所以导体棒做的是加速度越来越小的减速运动直至停止运动,A 错误;导体棒减少的动能E k =12m v 2=12m ⎝⎛⎭⎫I m 2=I 22m ,根据能量守恒定律可得E k =Q 总,又根据串并联电路知识可得Q R =R R +rQ 总=I 2R 2m (R +r ),B 错误;根据动量定理可得-B I L Δt =0-m v ,I =m v ,q =I Δt ,可得q =I BL ,C 正确;由于q =I Δt =E R +r Δt =ΔΦR +r =BLx R +r , 将q =I BL 代入可得,导体棒ab 运动的位移x =I (R +r )B 2L 2,D 正确. 例2 (2018·天津卷·12)真空管道超高速列车的动力系统是一种将电能直接转换成平动动能的装置.如图2甲是某种动力系统的简化模型,图中粗实线表示固定在水平面上间距为l 的两条平行光滑金属导轨,电阻忽略不计.ab 和cd 是两根与导轨垂直、长度均为l 、电阻均为R 的金属棒,通过绝缘材料固定在列车底部,并与导轨良好接触,其间距也为l ,列车的总质量为m .列车启动前,ab 、cd 处于磁感应强度为B 的匀强磁场中,磁场方向垂直于导轨平面向下,如图甲所示.为使列车启动,需在M 、N 间连接电动势为E 的直流电源,电源内阻及导线电阻忽略不计.列车启动后电源自动关闭.图2(1)要使列车向右运行,启动时图甲中M 、N 哪个接电源正极,并简要说明理由.(2)求刚接通电源时列车加速度a 的大小.(3)列车减速时,需在前方设置如图乙所示的一系列磁感应强度为B 的匀强磁场区域,磁场宽度和相邻磁场间距均大于l .若某时刻列车的速度为v 0,此时ab 、cd 均在无磁场区域,试讨论:要使列车停下来,前方至少需要多少块这样的有界磁场?答案 (1)见解析 (2)2BEl mR(3)见解析 解析 (1)列车要向右运动,安培力方向应向右.根据左手定则,接通电源后,两根金属棒中电流方向分别为由a 到b 、由c 到d ,故M 接电源正极.(2)由题意,启动时ab 、cd 并联,设回路总电阻为R 总,由电阻的串并联知识得R 总=R 2① 设回路总电流为I ,根据闭合电路欧姆定律有I =E R 总② 设两根金属棒所受安培力之和为F ,有F =IlB ③根据牛顿第二定律有F =ma ④联立①②③④式得a =2BEl mR⑤ (3)设列车减速时,cd 进入磁场后经Δt 时间ab 恰好进入磁场,此过程中穿过两金属棒与导轨所围回路的磁通量的变化量为ΔΦ,平均感应电动势为E 1,由法拉第电磁感应定律有E 1=ΔΦΔt⑥ 其中ΔΦ=Bl 2⑦设回路中平均电流为I ′,由闭合电路欧姆定律有I ′=E 12R⑧设cd 受到的平均安培力为F ′,有F ′=I ′lB ⑨以向右为正方向,设Δt 时间内cd 受安培力冲量为I 冲,有I 冲=-F ′Δt ⑩同理可知,回路出磁场时ab 受安培力冲量仍为上述值,设回路进出一块有界磁场区域安培力冲量为I 0,有I 0=2I 冲⑪设列车停下来受到的总冲量为I 总,由动量定理有I 总=0-m v 0⑫联立⑥⑦⑧⑨⑩⑪⑫式得I 总I 0=m v 0R B 2l 3⑬ 讨论:若I 总I 0恰为整数,设其为n ,则需设置n 块有界磁场;若I 总I 0不是整数,设I 总I 0的整数部分为N ,则需设置N +1块有界磁场.例3 如图3所示,两根质量均为m =2 kg 的金属棒垂直放在光滑的水平导轨上,左右两部分导轨间距之比为1∶2,导轨间有大小相等但左、右两部分方向相反的匀强磁场,两棒电阻与棒长成正比,不计导轨电阻.现用250 N 的水平拉力F 向右拉CD 棒,CD 棒运动s =0.5 m 时其上产生的焦耳热为Q 2=30 J ,此时两棒速率之比为v A ∶v C =1∶2,现立即撤去拉力F ,设导轨足够长且两棒始终在不同磁场中运动,求:图3(1)在CD 棒运动0.5 m 的过程中,AB 棒上产生的焦耳热;(2)撤去拉力F 瞬间,两棒的速度大小v A 和v C ;(3)撤去拉力F 后,两棒最终匀速运动的速度大小v A ′和v C ′.答案 (1)15 J (2)4 m/s 8 m/s (3)6.4 m/s 3.2 m/s解析 (1)设两棒的长度分别为l 和2l ,所以电阻分别为R 和2R ,由于电路中任何时刻电流都相等,根据焦耳定律Q =I 2Rt 可知Q 1∶Q 2=1∶2,则AB 棒上产生的焦耳热Q 1=15 J.(2)根据能量守恒定律有Fs =12m v A 2+12m v C 2+Q 1+Q 2又v A ∶v C =1∶2,联立两式并代入数据得v A =4 m/s ,v C =8 m/s.(3)撤去拉力F 后,AB 棒继续向左做加速运动,而CD 棒向右做减速运动,当两棒切割磁感线产生的电动势大小相等时电路中电流为零,两棒开始做匀速运动,此时两棒的速度满足Bl v A ′=B ·2l v C ′即v A ′=2v C ′规定水平向左为正方向,对两棒分别应用动量定理有 F A ·t =m v A ′-m v A ,-F C ·t =m v C ′-m v C .由F =B I L 可知F C =2F A ,故有v A ′-v Av C -v C ′=12联立以上各式解得v A ′=6.4 m/s ,v C ′=3.2 m/s. 高考题型2 动量守恒定律在电磁感应中的应用“双轨+双杆”模型如图4,方向竖直向下的匀强磁场中有两根位于同一水平面内的足够长的平行金属导轨,两相同的光滑导体棒ab 、cd 静止在导轨上.t =0时,ab 棒以初速度v 0向右滑动.运动过程中,ab 、cd 棒始终与导轨垂直并接触良好.图4模型分析:双轨和两导体棒组成闭合回路,通过两导体棒的感应电流相等,所受安培力大小也相等,ab 棒受到水平向左的安培力,向右减速;cd 棒受到水平向右的安培力,向右加速,最终导体棒ab 、cd 共速,感应电流消失,一起向右做匀速直线运动,该过程导体棒ab 、cd 组成的系统所受合外力为零,动量守恒:m ab v 0=(m ab +m cd )v 共,若ab 棒、cd 棒所在导轨不等间距,则动量不守恒,可考虑运用动量定理求解.例4 (多选)(2019·全国卷Ⅲ·19)如图5,方向竖直向下的匀强磁场中有两根位于同一水平面内的足够长的平行金属导轨,两相同的光滑导体棒ab 、cd 静止在导轨上.t =0时,棒ab 以初速度v 0向右滑动.运动过程中,ab 、cd 始终与导轨垂直并接触良好,两者速度分别用v 1、v 2表示,回路中的电流用I 表示.下列图像中可能正确的是( )图5答案 AC解析 棒ab 以初速度v 0向右滑动,切割磁感线产生感应电动势,使整个回路中产生感应电流,判断可知棒ab 受到与v 0方向相反的安培力的作用而做变减速运动,棒cd 受到与v 0方向相同的安培力的作用而做变加速运动,它们之间的速度差Δv =v 1-v 2逐渐减小,整个系统产生的感应电动势逐渐减小,回路中感应电流逐渐减小,最后变为零,即最终棒ab 和棒cd 的速度相同,v 1=v 2,这时两相同的光滑导体棒ab 、cd 组成的系统在足够长的平行金属导轨上运动,水平方向上不受外力作用,由动量守恒定律有m v 0=m v 1+m v 2,解得v 1=v 2=v 02,选项A 、C 正确,B 、D 错误.例5 (2021·山东泰安市高三期末)如图6,两光滑金属导轨相距L ,平直部分固定在离地高度为h 的绝缘水平桌面上,处在磁感应强度为B 、方向竖直向下的匀强磁场中,弯曲部分竖直固定并与水平部分平滑连接.金属棒ab 、cd 垂直于两导轨且与导轨接触良好.棒ab 的质量为2m ,电阻为r 2,棒cd 的质量为m ,电阻为r ,开始棒cd 静止在水平直导轨上,棒ab 从高出平直部分h 处无初速度释放,进入水平直导轨后与棒cd 始终没有接触,最后棒cd 落地时与桌边的水平距离也为h .导轨电阻不计,重力加速度为g .求:图6(1)棒ab 落地时与桌边的水平距离;(2)棒cd 即将离开导轨时,棒ab 的加速度大小.答案 (1)32h (2)B 2L 26mr gh 2解析 (1)棒cd 离开桌面后做平抛运动,平抛初速度为v 0=h 2hg =gh 2设棒ab 进入水平直导轨时的速度为v ,由机械能守恒得12×2m ×v 2=2mgh , 解得v =2gh进入磁场后,ab 、cd 两棒所受的安培力等大反向,作用时间相等,系统动量守恒,由动量守恒定律有,2m v =2m ·v ′+m v 0可得:棒ab 的速度为v ′=342gh 棒cd 离开磁场后由于电路断开,棒ab 水平方向一直做匀速直线运动,所以棒ab 落地时与桌边的水平距离为d =v ′×2h g =342gh ×2h g =32h (2)棒cd 即将离开导轨时,两棒的瞬时速度分别为v ab =v ′=342gh ,v cd =v 0=gh 2此时闭合回路中的感应电动势为E =BL (v ab -v cd )=BL 2gh 2 回路中的电流为I =E R ab +R cd =BL 3r gh 2所以棒ab 的加速度大小为a ab =F 安m ab =BIL 2m =B 2L 26mrgh 2.1.如图7所示,足够长的两平行光滑水平直导轨的间距为L ,导轨电阻不计,垂直于导轨平面有磁感应强度大小为B 、方向竖直向上的匀强磁场;导轨左端接有电容为C 的电容器、开关S 和定值电阻R ;质量为m 的金属棒垂直于导轨静止放置,两导轨间金属棒的电阻为r .初始时开关S 断开,电容器两极板间的电压为U .闭合开关S ,金属棒运动,金属棒与导轨始终垂直且接触良好.下列说法正确的是( )图7A .闭合开关S 的瞬间,金属棒立刻开始向左运动B .闭合开关S 的瞬间,金属棒的加速度大小为BUL mRC .金属棒与导轨接触的两点间的最小电压为零D .金属棒最终获得的速度大小为BCUL m +B 2L 2C答案 D解析 由左手定则可知,闭合开关S 的瞬间,金属棒所受安培力方向向右,金属棒立刻获得向右的加速度,开始向右运动,A 错误;闭合开关S 的瞬间,金属棒的加速度大小a =BUL m (R +r ),B 错误;当金属棒切割磁感线产生的电动势跟电容器两极板之间的电压相等时,金属棒中电流为零,此后,金属棒将匀速运动下去,两端的电压达到最小值,故金属棒与导轨接触的两点间的最小电压不会为零,C 错误;设闭合开关S 后,电容器的放电时间为Δt ,金属棒获得的速度为v ,由动量定理可得B C (U -BL v )Δt L ·Δt =m v -0,解得v =BCUL m +B 2L 2C,D 正确. 2.(2021·重庆市西南大学附中高三月考)如图8所示,在大小为B 的匀强磁场区域内,垂直磁场方向的水平面中有两根固定的足够长的金属平行导轨,在导轨上面平放着两根导体棒MN 和PQ ,两棒彼此平行且相距d ,构成一矩形回路.导轨间距为l ,导体棒的质量均为m ,电阻均为R ,导轨电阻可忽略不计.设导体棒可在导轨上无摩擦地滑行,初始时刻MN 棒静止,给PQ 棒一个向右的初速度v 0,求:图8(1)当PQ 棒速度减为0.6v 0时,MN 棒的速度v 及加速度a 的大小;(2)MN 、PQ 棒间的距离从d 增大到最大的过程中,通过回路的电荷量q 及两棒间的最大距离x .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档