回归分析(教学设计).doc

合集下载

应用回归课程教学设计

应用回归课程教学设计

应用回归分析课程设计报告课程:应用回归分析题目:人均可支配收入的分析年级:11金统专业:金融统计学号:姓名:指导教师:徐州师范大学数学科学学院基于多元线性回归模型对我国城镇居民家庭人均可支配收入的分析摘要:收入分配和消费结构都是国民经济的重要课题居民消费的主要来源是居民收入而消费又是拉动经济增长的重要因素。

本文将通过多远统计分析方法对我国各地区城镇居民收入的现状进行分析。

通过分析找出我国城镇居民收入特点及其中存在的不足。

城镇居民可支配收入是检验我国社会主义现代化进程的一个标准。

本文根据我国城镇居民家庭人均可支配收入为研究对象,选取可能影响我国城镇居民家庭人均可支配收入的城乡居民储蓄存款年底余额、城乡居民储蓄存款年增加额、国民总收入、职工基本就业情况、城镇居民家庭恩格尔系数(%)5个因素,运用多元线性回归分析建立模型,先运用普通最小二乘估计求回归系数再对方程进行异方差、自相关、和多重共线性诊断,用迭代法消除了自变量之间的自相关。

对于多重共线性问题,先是用逐步回归和剔除变量的方法,最终转变为用方差扩大因子法城乡居民储蓄存款年增加额剔除城镇居民家庭恩格尔系数(%)解决多重共线性,建立最终回归方程432108.0039.0012.0470.5305x x x y +++-=∧标准化回归方程**3*24108.0863.0031.0x x x y ++=∧以其探究最后进入回归方程的几个变量在影响城镇居民收入孰轻孰重,达到学习与生活结合的效果。

分析出影响城镇居民收入的主要原因,并对模型联系实际进行分析,以供国家进行决策做参考。

关键词:多元线性回归 异方差 自相关 多重共线性 逐步回归 方差扩大因子(一)引言:改革开放以来我国的国民经济增长迅速居民的收入水平也大幅提高但居民收入分配差距也在不断扩大。

2008年的金融危机为我国带来的后遗症还在继续影响着居民正常生活物价上涨和通货膨胀的压力仍然困扰着老百姓收入和消费支出体系的健康发展至关重要。

一元线性回归案例教学设计人教课标版(实用教案设计)

一元线性回归案例教学设计人教课标版(实用教案设计)

一元线性回归案例教学设计人教课标版(实用教案设计)教学目标- 了解一元线性回归的概念和基本原理- 掌握一元线性回归的计算方法和应用技巧- 学会通过实例分析和解决实际问题教学准备- 讲义:提供一元线性回归的讲义,明确概念和公式- 例题:准备适当数量的一元线性回归的实例题目- 计算工具:确保每个学生都有计算器或者电脑可以进行回归计算教学过程1. 引入(5分钟)- 通过一个实际场景,引入一元线性回归的概念和应用- 举例说明回归分析在实际问题中的作用和意义2. 概念讲解(10分钟)- 介绍一元线性回归的基本概念、公式和原理- 解释回归方程的含义和解释- 强调自变量和因变量之间的关系及其影响因素3. 计算方法(15分钟)- 演示一元线性回归的计算步骤和方法- 通过实例展示计算公式的具体应用- 解释残差和拟合优度的概念,说明其意义4. 实例分析(20分钟)- 提供多个一元线性回归的实例题目- 让学生依次进行回归计算和分析- 引导学生思考如何解释回归结果和给出建议5. 讨论与总结(10分钟)- 分享学生对实例分析的解答和思考- 引导学生讨论一元线性回归在其他实际问题中的应用- 总结一元线性回归的重要性和局限性教学扩展- 鼓励学生自行寻找更多的一元线性回归的实例进行分析和讨论- 引导学生了解多元线性回归的概念和应用,拓展研究内容教学评估- 布置作业:要求学生独立完成一元线性回归的实例分析报告- 考察学生对回归分析方法的理解和应用能力- 对学生的作业进行评分,并给予反馈和建议参考资料- 《数学必修3》人教课标版- 网络资源:一元线性回归的教学视频和学习资料。

《回归分析课程教案》课件

《回归分析课程教案》课件

《回归分析课程教案》课件第一章:引言1.1 课程目标让学生了解回归分析的基本概念和应用领域。

让学生掌握回归分析的基本原理和方法。

培养学生应用回归分析解决实际问题的能力。

1.2 教学内容回归分析的定义和分类回归分析的应用领域回归分析的基本原理和方法1.3 教学方法讲授法:讲解回归分析的基本概念和原理。

案例分析法:分析实际案例,让学生了解回归分析的应用。

1.4 教学资源课件:介绍回归分析的基本概念和原理。

案例:提供实际案例,让学生进行分析。

1.5 教学评估课堂讨论:学生参与课堂讨论,回答问题。

第二章:一元线性回归分析2.1 教学目标让学生了解一元线性回归分析的基本概念和原理。

让学生掌握一元线性回归模型的建立和估计方法。

培养学生应用一元线性回归分析解决实际问题的能力。

2.2 教学内容一元线性回归分析的定义和特点一元线性回归模型的建立和估计方法一元线性回归模型的检验和预测2.3 教学方法讲授法:讲解一元线性回归分析的基本概念和原理。

数据分析法:分析实际数据,让学生了解一元线性回归模型的建立和估计方法。

2.4 教学资源课件:介绍一元线性回归分析的基本概念和原理。

数据分析软件:用于一元线性回归模型的建立和估计。

2.5 教学评估课堂练习:学生进行课堂练习,应用一元线性回归分析解决实际问题。

第三章:多元线性回归分析3.1 教学目标让学生了解多元线性回归分析的基本概念和原理。

让学生掌握多元线性回归模型的建立和估计方法。

培养学生应用多元线性回归分析解决实际问题的能力。

3.2 教学内容多元线性回归分析的定义和特点多元线性回归模型的建立和估计方法多元线性回归模型的检验和预测3.3 教学方法讲授法:讲解多元线性回归分析的基本概念和原理。

数据分析法:分析实际数据,让学生了解多元线性回归模型的建立和估计方法。

3.4 教学资源课件:介绍多元线性回归分析的基本概念和原理。

数据分析软件:用于多元线性回归模型的建立和估计。

3.5 教学评估课堂练习:学生进行课堂练习,应用多元线性回归分析解决实际问题。

(完整word版)统计案例教学设计(word文档良心出品)

(完整word版)统计案例教学设计(word文档良心出品)

§3.1 回归分析的基本思想及其应用(1)教学目标(1)通过实例引入线性回归模型,感受产生随机误差的原因;(2)通过对回归模型的合理性等问题的研究,渗透线性回归分析的思想和方法; (3)能求出简单实际问题的线性回归方程.教学重点,难点线性回归模型的建立和线性回归系数的最佳估计值的探求方法.教学过程一. 引言:我们知道函数关系是一种确定性关系,而相关关系是一种非确定性关系。

回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法。

在《数学3》中,我们对两个具有线性相关关系的变量利用回归分析的方法进行了研究,其解题步骤是:画散点图,求回归直线方程,并用回归直线方程进行预报。

二.探究一对于一组具有线性相关关系的数据),(),(),,(2211n n y x y x y x ,我们知道其回归方程的截据和斜率的最小二乘估计公式为1122211()()()()nni i iii i nni ii i x x y y x ynx yb x x xn x a y bx====⎧---⎪⎪==⎪⎨--⎪⎪=-⎪⎩∑∑∑∑ 其中11n i i x x n ==∑, 11ni i y y n ==∑你能推倒出这两个计算公式吗?-------教材-P 80-81《必修3》知道,截距aˆ和斜率b ˆ分别是使 21)(),(∑=--=ni i i x y Q αββα取最小值时,βα,的值,如何求21)(),(∑=--=ni i ix yQ αββα的最小值?------见教材P 80-81三、问题情境求根据女大学生的身高预报体重的回归方程,并预报一名身高为172cm 的女大学生的体重。

根据《数学3(必修)》中的有关内容,解决这个问题的方法是:先作散点图,如下图所示:从散点图中可以看出,样本点呈条状分布,身高与体重有着较好的线性关系.因此可以用回归直线a bx y +=来刻画它们之间的关系.根据线性回归的系数公式,1221()ni i i ni i x y nx y b x n x a y bx==⎧-⎪⎪=⎪⎨-⎪⎪=-⎪⎩∑∑ 得: 可以得到线性回归方程为0.84985.712y x =-,期中849.0=b是回归直线的斜率的估计值,说明身高x 每增加1个单位时,体重y 就增加849.0个单位,这表明身高与体重具有正的线性相关关系。

应用回归分析第五版教学设计

应用回归分析第五版教学设计

应用回归分析第五版教学设计课程简介此课程为应用回归分析的第五版设计,主要包括回归分析基础知识、多元回归分析、模型拟合与评价、变量选择与建模等方面的内容。

课程旨在帮助学生掌握回归分析理论与实践技能,为其从事统计学和数据分析相关领域做好铺垫。

课程目标1.了解回归分析的基本理论与方法;2.掌握多元回归分析的步骤和技巧;3.熟悉模型拟合与评价的相关方法;4.能够独立进行变量选择和建模工作;5.能够运用所学知识解决实际问题。

教学大纲1.回归分析基础知识–简单回归分析–最小二乘法–拟合优度与拟合优度检验–回归系数的推断2.多元回归分析–多元线性回归–变量选择方法–模型诊断和改进3.模型拟合与评价–残差图和分析–拟合优度与调整拟合优度–模型比较4.变量选择与建模–逐步回归法–岭回归和lasso回归–多项式回归5.实践案例讲解–通过实例介绍如何使用回归分析解决实际问题教学方法1.理论讲解:讲解回归分析的相关理论知识;2.实践演示:通过R、Python等统计软件进行实际操作;3.案例教学:引导学生进行实际问题的分析和解决;4.课堂互动:鼓励学生提问和讨论,促进学生的理解和思考。

评分标准1.课堂表现(30%):包括课堂参与度、发言表现、思维逻辑及问题意识等方面;2.作业质量(30%):包括选题合理性、思路完整性、数据分析方法及模型选择等方面;3.期末考试(40%):包括理论知识掌握程度、实战能力及问题解决能力等方面。

参考教材1.桂红林等.《应用回归分析》(第五版). 中国人民大学出版社.2.Myers, R. H., Montgomery, D. C., & Anderson-Cook, C. M.(2016). Response surface methodology: process and productoptimization using designed experiments. John Wiley & Sons.3.Kutner, M.H, Nachtsheim, C.J., Neter, J. (2003). AppliedLinear Regression Models. McGraw-Hill.总结本课程旨在帮助学生掌握回归分析理论与实践技能,为其从事统计学和数据分析相关领域做好铺垫。

第一讲线性回归案例分析

第一讲线性回归案例分析

第一讲线性回归案例分析参与本讲的嘉宾姓名单位职称、职务罗强江苏省苏州五中特级教师张饴慈首都师范大学数学科学学院教授张思明北大附中特级教师杨彬陕西省户县一中高级教师张红娟江苏省苏州五中高级教师主持人:各位老师大家好,在前面的课里面我们主要结合算法做了一些案例的展示和讨论,从今天的课里开始进入统计概率。

今天主要围绕回归分析,最小二乘法,线性回归方程这些内容展开我们的案例和讨论。

这里我们请来的两位点评嘉宾。

我身边的这位是江苏省苏州市五中的特级教师罗强老师,也是苏州五中的校领导。

一位是首都师范大学的数学系教授(张饴慈)老师,也是我们每次培训都能见到的数学专家。

首先问张老师,在回归分析里面老师会提到很多问题。

一个是必修也有,选修也有,他们两个的差别是什么?还有回归分析的核心思想是我们要教给学生什么是最重要的。

张老师:我想回归分析主要讨论的是相关关系,在统计里面这是一个非常有用的一件事情,可以说在统计之中运用最广的就是回归思想。

在我们必修和选修之间的区别,我们必修是通过孩子们初步认识,通过例子来认识什么是相关关系?它跟函数关系有什么不一样?简单介绍一下线性回归的方程,理解找一个线性回归的直线是有用,只是初步的思想。

在选修阶段就要详细讨论,这个方程是不是有意义?如果用我们的公式来做是不是任何问题都可以套公式来做?怎样判断是不是比较符合一个线性关系?是不是要引入相关系数的概念。

在选修里面还介绍一下非线性的回归,这是从内容定位来讲。

主持人:作为这样的把控,包括在推导过程中,很多老师在我们教材里面或者标准里面对于回归方程的结果,推导要求不要求?张老师:我们在必修里面没有要求推导,在选修里面可能用到配方来推导。

公式能得到这个数,其实是二次函数的极值等问题,它计算比较麻烦,不是在这个公式本身上下工夫,也不要求孩子背这些公式。

只是希望他们会运用这样一个东西来做这个问题。

主持人:张老师对回归分析的定位做了一些分析。

下面一起来看老师们提供的两个教学片段,一个是陕西省户县一中(杨彬)老师提供,最小二乘法的教学设计。

一元线性回归模型教学设计

一元线性回归模型教学设计

一元线性回归模型教学设计一、教学目标通过本次教学,学生应该能够:1. 了解一元线性回归模型的基本概念和原理;2. 掌握一元线性回归模型的建立和求解方法;3. 能够运用一元线性回归模型解决实际问题;4. 培养学生的数据分析和模型建立能力。

二、教学内容1. 介绍一元线性回归模型的基本概念- 线性回归模型的基本思想- 回归方程和回归线的含义- 最小二乘法的原理2. 一元线性回归模型的建立和求解方法- 数据收集和变量选择- 模型建立和参数估计- 残差分析和模型检验3. 运用一元线性回归模型解决实际问题- 实际问题的建模方法- 数据处理和分析方法- 结果解释和模型评价三、教学过程1. 导入引入案例通过一个实际案例来引入一元线性回归模型的概念和应用,例如预测房价与房屋面积的关系。

2. 概念讲解- 介绍线性回归模型的基本思想和原理,以及回归方程和回归线的含义;- 解释最小二乘法的原理及其在一元线性回归模型中的应用。

3. 模型建立和参数估计- 数据收集和变量选择:讲解数据收集的方法和重要性,以及对自变量的选择;- 模型建立和参数估计:讲解如何建立一元线性回归模型并通过最小二乘法来估计模型的参数。

4. 残差分析和模型检验- 残差分析:讲解残差的概念及其在回归模型中的含义;- 模型检验:讲解常用的模型检验方法,如回归系数的显著性检验、模型拟合优度检验等。

5. 实际问题的建模和解决- 介绍实际问题的建模方法和步骤,包括数据处理、模型选择和参数估计;- 使用实际数据进行模型的建立和求解,分析结果并给出合理解释。

6. 教学案例练习提供多个一元线性回归的教学案例,供学生进行实践操作和分析讨论。

7. 总结归纳小结一元线性回归模型的基本概念、建立方法和应用步骤,提醒学生需要注意的问题和要点。

四、教学手段教学手段可以采用多种形式,如讲解、示范、案例分析、课堂练习、小组讨论等,通过多种形式的互动与合作,达到知识的传授和能力的培养。

“一元线性回归模型”教学设计

“一元线性回归模型”教学设计

一、内容和内容解析1.内容结合具体实例,了解一元线性回归模型的含义,了解模型参数的统计意义,了解最小二乘原理,掌握一元线性回归模型参数的最小二乘估计方法,会使用相关的统计软件.2.内容解析“一元线性回归模型”是北师大版《普通高中课程标准实验教科书·数学3(必修)》(以下统称“教材”)第一章“统计”第8节的内容,是统计思想方法在实际生活中的典型应用案例.在此之前学生学习了数据的统计特征,在实际中经常要研究变量之间的相关关系,以最基本的一元线性回归为载体,通过画散点图描述两个变量之间关系的统计特征,用样本的情况去估计总体的情况,启发学生理解拟合思想,尝试构造函数模型去近似刻画变量之间的相关关系,有利于进一步发展学生的统计观念,培养学生的统计应用意识和能力,也为后面进一步学习独立性检验奠定基础.本节课的教学重点为经历一次完整的统计应用活动,会画散点图直观表示两个变量之间的相关关系,理解直线拟合的思想,理解最小二乘原理,会利用计算器和Excel 软件进行数据处理,会根据最小二乘法建立一元线性回归模型解决实际问题.教材从身高与右手一拃长的相关关系研究出发,通过画散点图,观察发现所有点都在一条直线附近波动,进而判断两个变量之间线性相关,从而可以用一条直线近似刻画两个变量之间的相关关系.引入直线拟合的概念,然后思考如何确定这条直线能更合理地近似刻画这种关系.采取小组讨论的方式,引导学生从定性到定量,建立一种数学上的“理想”的拟合方式,即考虑如何使得所有样本点到一条直线的“整体距离”最小,从而引入最小二乘法,建立一元线性回归模型.会利用信息技术求出两个变量之间的线性回归方程,从而对实际问题进行预判和决策.为了创设有利于学习的实际问题情境,本节课选取中央电视台社会与法频道《见证》栏目《神眼追踪》中足迹鉴定专家神奇破案的真实案例片断导入课题,通过思考怎样根据足迹推断犯罪嫌疑人的身高引出身高与鞋码有相关关系,引导学生经历一个完整的统计活动过程,探究身高与鞋码之间的相关关系.通过从学生中现场收集数据、整理数据,利用散点图描述数据、分析数据(直线拟合,探索回归直线方程的求法),运用最小二乘法刻画数据特征求得回归直线方收稿日期:2021-01-15作者简介:黄润华(1982—),男,中学一级教师,主要从事高中数学教育教学研究.“一元线性回归模型”教学设计黄润华摘要:本节课是统计思想方法在实际生活中的典型应用案例.结合两个变量之间线性相关的具体实例,经历统计活动,理解最小二乘原理,利用计算器和Excel 软件进行数据处理,建立一元线性回归模型,从而进行实际预测,解决实际问题.了解利用回归直线刻画两个变量之间相关关系的代表性,理解回归直线必过样本点的中心,并能对统计活动结果进行反思.关键词:线性回归;统计应用;数学建模;数据处理··9程,对实际问题进行预测,对统计结果分析与反思等环节,理解统计应用的思路与过程.在由散点图得到两个变量之间线性相关的基础上,着力探讨如何确定一条直线来更好地近似刻画这种关系,进行直线拟合.通过小组讨论与交流,引导学生从定性分析到定量计算,建立一种数学上的“理想”的拟合方式,即考虑如何使得所有样本点到一条直线的“整体距离”最小,从而引入最小二乘法建立一元线性回归模型.引导学生理解任一样本点()x i ,y i 与直线上横坐标为x i 的点之间的距离是刻画点到直线的远近的一种新的形式,其平方同样可以近似刻画点到直线的远近,从便于运算的角度我们选择平方,最小二乘法的基本思想即使所有样本点到直线的“距离”的平方和最小.从而,如果能判断两个变量之间具有线性相关关系,就能利用最小二乘法求出两个变量之间的线性回归方程,从而进行预判决策.本节课旨在建立一种统计模型来近似刻画实际问题中两个变量之间的关系,在问题解决的过程中发展学生的统计观念,理解数据分析的新思路和新方法,理解方法中蕴涵的数学思想,理解方法的目的和本质,体会统计模型的必要性和合理性.引导学生陷入机械、烦琐的公式计算中,从数据处理的角度思考如何避免繁杂的运算,认识到根据最小二乘法的思想和公式研发程序是源于生产生活实际需要,有其必然性,把握数据处理的思路,注重与信息技术的融合,对于提高学生的信息素养、进一步发展学生的统计观念、培养学生数据分析和数学建模等核心素养都起着非常重要的作用.二、目标和目标解析1.目标以发展学生的统计观念为核心,践行“四基”、发展“四能”,在问题解决中着重培养学生数据分析和数学建模等素养,根据《普通高中数学课程标准(2017年版)》(以下简称《标准》)中“一元线性回归模型”的内容及要求,确定本节课的教学目标如下.(1)经历完整的统计活动过程,进一步体会应用统计的思想和方法解决实际问题.(2)会画散点图判断两个变量之间是否线性相关,理解数据分析的思路和方法.(3)掌握用最小二乘法建立一元线性回归模型刻画两个变量之间的线性相关关系的方法.(4)会用计算器和Excel 软件求线性回归方程,并能根据一元线性回归模型进行预测.(5)理解一元线性回归模型参数的含义和统计结果的意义,会进行反思.2.目标解析目标(1)解析:本节课是统计应用案例,通过对实际问题中两个变量之间相关关系的研究,经历对两个变量间呈现一个大致的整体集中趋势的近似刻画的过程,开拓统计应用的新天地,进一步培养学生的统计应用意识.目标(2)解析:通过画散点图,类比函数图象可以看出两个变量之间的大致关系,并判断它们之间是否线性相关,探索发现数据处理的新思路和新方法.目标(3)解析:通过分组讨论和思考交流,了解直线拟合的思想,理解最小二乘法是一种方便可行、直观美妙的方法,从而建立一元线性回归模型.目标(4)解析:理解运用信息技术进行数据处理的必要性,并学会利用计算器和Excel 软件求线性回归方程,理解程序背后的数学思想与方法.能根据一元线性回归模型完成计算预测,从而解决实际问题.目标(5)解析:数学源于生活,又服务于生活.结合实际理解一元线性回归模型的含义和统计结果的意义.通过对统计活动各环节的反思,逐渐理解问卷的设计、样本的选取、分析方法的运用都会对统计结果产生影响,引导学生理解对统计结果保持批判性态度的必要性和重要性.三、教学问题诊断在义务教育阶段,学生初步建立了统计观念,了解了统计活动的全过程,学习了数据收集、整理、描述和分析的基本方法.在高中阶段,学生通过统计的学习进一步发展了统计观念,能较好地把握数据分析的基本思路,对统计的基本思想与应用有了更加深刻的体会.学生不知道应该怎样刻画两个变量之间的相关关··10系.尽管经过初中的学习,学生已经具备了比较丰富的函数知识,知道了函数可以刻画两个变量之间的一种确定性关系,但是对不满足函数关系的两个变量要怎么处理会感到困难.要引导学生理解相关关系的本质是一个变量可能受到其他多个变量的影响,故它的值会呈现一定的随机性或者波动性,这种波动在大量数据中往往会呈现一定的规律性,这就是回归分析要解决的问题.对两个变量之间相关关系的刻画,本质上是利用函数模型进行近似刻画,蕴涵着转化与化归思想.在画出散点图后,引导学生观察、刻画两个变量之间关系的统计特征.在给出线性相关的基础上,到底用哪条直线近似刻画更好,学生感到很茫然.故而采取分组讨论的方式,先让学生自主尝试,彼此交流想法,体会回归的含义,画出直线,然后通过小组间的交流再去归纳共性,建立一定的“理想”标准——所有样本点和直线整体上最接近.怎么刻画所有样本点和直线整体上最接近呢?这是一个很关键的问题,要引导学生理解在横坐标一定的情况下,样本点可以理解为在平均水平上下波动,从而建立一种新的标准来刻画点到直线的远近,即用任意一点()x i ,y i 与这条直线上横坐标为x i 的点之间的距离来刻画,而不是用数学上的距离来刻画.不仅如此,绝对值还面临一个计算上的困难,而统计上在方差里已经用了平方和表示,这里的本质其实是一样的.教学中采用对话教学法,启发学生进行知识迁移.学生对系数计算公式的理解存在较大的困难.根据最小二乘法推导出来的系数计算公式比较复杂,还包括两种不同形式的表达,直接运用公式计算需要分若干步,比较麻烦.教学时引导学生逐步认识公式,分析公式结构的特点,帮助学生更好地了解公式,并逐步渗透研发程序计算的必要性,建立自然合理的教学逻辑,了解程序背后的思想方法.利用计算器和Excel 软件求线性回归方程属于新的技能,需要教师以适当的方式传授.虽然学生具备了一定的计算机操作与计算器使用技能,但涉及利用最小二乘原理求系数的值,这需要学会使用计算器有关的统计功能.为了使计算器操作程序直观化、效果有引领性,教师在课前录制“利用计算器求线性回归方程”的微课,课上播放微课传授新技能.而对于利用Excel 软件求线性回归方程,则根据其操作简单易学的特点,采取教师随堂操作演示的方式传授技能,并录制微视频供学生课后上机操作时使用,以调动学生的学习热情,辅助学生学习.本节课的教学难点是理解直线拟合的必要性与合理性,掌握建立一元线性回归模型的一般原理.为突破难点,设计了求线性回归方程的小组讨论活动和帮助小卖部决策等问题,在探究和交流中领会思想,提升统计应用的能力.四、教学媒体设计本节课思想性、整体性、应用性强,决定采用情境—启发式探究教学模式,创设有利于学生学习的环境,通过小组讨论与实践应用,引导学生理解拟合思想,培养学生的自主探究能力与合作交流能力,发展学生的统计观念,提高学生的数学应用意识.为创设情境,更好地突出重点,突破难点,本节课主要进行了如下设计.1.导入使用真实案例为了创设真实的问题情境,选取了中央电视台社会与法频道《见证》栏目的真实神探破案视频导入课题,围绕神探怎样由足迹推断出犯罪嫌疑人的身高这一核心问题,根据足迹提供的有关信息,导入身高与鞋码这两个变量之间的相关关系的研究.2.设计了画散点图的课堂活页为了让学生亲自体会描点画图描述身高与鞋码之间的相关关系的过程,专门设计了一份课堂活页,内容为平面直角坐标系,横轴表示鞋码,纵轴表示身高,标示了相应的数值,便于学生描点.展示学生作图成果,并在后面的小组讨论中继续使用,在黑板上张贴画回归直线的成果,表述作法,有效揭示了学生的思维过程.3.Excel 表格一表多用,无缝衔接在现场收集数据时,由学生负责将样本数据逐一输入Excel 表格中,运用信息技术将表格数据同步到描述数据环节和学生利用计算器根据现场数据计算线性回归方程、教师操作演示利用Excel 软件求线性回归方程等环节,实现了数据的同步无缝应用,体现了信息··11技术的实用性.4.自主录制微课,传授技能经过反复研究,为了便于学生学习如何利用计算器求线性回归方程,采取了自主录制微课的形式;为了辅助学生课后上机利用Excel软件求线性回归方程,也录制了一个微课,供学生自主学习使用,课堂上不播放.5.课件简洁优美整节课共六个环节,仅使用10张幻灯片,节奏明快,界面简洁优美,既呈现了主要思路和内容,又做到了不同环节之间必要的无缝对接,信息技术融合应用恰当.6.板书简洁有条理板书呈现了统计活动的主要过程和一元线性回归模型的基本原理,通过学生活动和小组活动成果的展示,能够引导学生更好地理解直线拟合的背景和一元线性回归模型的含义,便于学生从整体上把握整节课的学习.五、教学过程设计1.创设情境,提出问题(1)俗话说,三百六十行,行行出状元.各行各业都有许多楷模.他们是公安楷模,是人民的守护神.下面我们来看一段公安神探破案的视频.播放《见证》栏目《神眼追踪》中神探足迹鉴定专家神奇破案的真实案例片断.(2)思考:神探根据足迹推断出了犯罪嫌疑人的身高,足迹能给我们提供什么信息呢?(3)提出问题:它们之间的相关关系具体是怎样的?神探又是怎样推断的呢?(4)导入课题:一元线性回归模型.【设计意图】以真实案件视频片断导入课题,关注社会、设置悬念,从研究身高与鞋码之间的相关关系入手,也为后面反思身高与足迹之间的相关关系埋下伏笔.2.统计分析,探究交流要研究两个变量之间的相关关系,根据统计学知识,我们首先应该做什么呢?收集数据:现场收集8对鞋码与身高的数据,用Excel软件同步导入如表1所示的电子表格中.表1鞋码身高通过观察表中数据,大体上可以发现,随着鞋码的增加,身高也在增加.【设计意图】从在座学生中现场随机收集鞋码与身高的数据,使样本数据源自学生,让学生体验样本的随机性,理解样本的代表性.描述数据:观察表中数据,大体上看,随着鞋码的增加,身高也在增加.你会怎样来直观表示身高与鞋码之间的这种关系呢?类比函数图象,描点画图.不妨设鞋码为x,身高为y,得到8个数对()x1,y1,()x2,y2,…,()x8,y8,将它们对应的点描出来,所得到的图称为散点图.学生在活页上的平面直角坐标系中画出散点图.教师展示学生作图成果,张贴到黑板上,随即分析图形特点.【设计意图】引导学生类比函数去认识身高与鞋码两个变量之间的相关关系,并亲自画散点图直观表示它们之间的相关关系,为数据分析作准备,了解拟合的背景.分析数据:观察散点图,你有什么发现呢?所有点看上去都在一条直线附近波动.线性相关:如果散点图中所有点看上去都在一条直线附近波动,称变量间线性相关.此时,可以用一条直线来近似刻画它们之间的关系,这样近似的过程称为直线拟合.探究:怎样确定这条直线呢?你是怎么想的?在小组内交流,并画出这条直线.教师展示小组讨论成果,汇报各自想法,分析不同想法的共同点.【设计意图】设计确定回归直线的小组讨论活动,自主探究、交流讨论,加深对回归含义的感知,并尝试得出确定这条直线的方法.3.建立模型,理解原理各小组做法虽然不同,但其实想法是一致的,都是希望所有点和这条直线尽可能接近,也就是整体距离最小,如何用数学的方法刻画呢?··12建立模型:假设我们已经得到两个具有线性相关关系的变量的一组数据()x 1,y 1,()x 2,y 2,…,()x n ,y n ,所求回归直线方程为y =bx +a ,那么如何刻画这些点和直线y =bx +a 整体上最接近呢?思考交流:不妨先刻画任意一点P i ()x i ,y i 和直线y =bx +a 的远近,说说你的想法!①用点到直线的距离来刻画.②用点()x i ,y i 与这条直线上横坐标为x i 的点之间的距离来刻画点()x i ,y i 到直线y =bx +a 的远近,即用||y i -()bx i +a ()i =1,2,3,…,n 来刻画点()x i ,y i 到直线y =bx +a 的远近.哪一种想法更合适呢?【设计意图】设置问题串启发学生分析如何刻画一个点到回归直线的远近,从实际意义的角度创造性地定义新的标准来刻画点到直线的远近,进一步理解波动和回归的意义,渗透创新思维的培养,理解数学的应用价值.所有点()x i ,y i 到直线y =bx +a 的“整体距离”表示为Q =||y 1-()bx 1+a +||y 2-()bx 2+a +…+||y n -()bx n +a =∑i =1n||y i-()bx i+a .要求回归方程,就是要确定a ,b 的值,使Q 的值最小.绝对值方便计算吗?【设计意图】通过对绝对值运算的分析,理解图中点与直线位置关系的不确定性,即点的波动性与直线的待定性.类比方差的知识,用∑i =1n[]y i -()bx i +a 2表示所有点到直线的“整体距离”,发挥知识的正迁移作用.理解原理:由于绝对值计算不方便,在实际应用中,我们常使用Q =[]y 1-()bx 1+a 2+[]y 2-()bx 2+a 2+…+[]y n-()bxn+a 2=∑i =1n[]y i -()bx i +a 2进行计算.线性回归方程:经过推导,确定回归方程y =bx +a 中b ,a 的计算公式如下.ìíîïïïïb =∑i =1n ()x i -xˉ()y i -y ˉ∑i =1n()x i -x ˉ2=∑i =1nx i y i -nx ˉy ˉ∑i =1n x i 2-nx ˉ2,a =yˉ-bx ˉ.意义分析:第一个表达式是x i 减x ˉ乘以对应的y i减y ˉ求和,去除以x i 减x ˉ的平方和;第二个表达式是x i 乘以对应的y i 求和减x ˉyˉ积的n 倍,去除以x i 的平方和减x ˉ的平方的n 倍.公式看似复杂,但是结构优美,都是分式形式.先看第一个公式,分子分母结构相同,如果把分子中的y i 变成x i ,y ˉ变成x ˉ,则分子与分母就完全一样了;第二个公式也具有一样的结构.公式的具体推导过程大家可以在课后进行思考.使∑i =1n[]y i -()bx i +a 2最小从而求得线性回归方程的方法叫做最小二乘法.思考:由a =y ˉ-bx ˉ,得y ˉ=bx ˉ+a.你发现了什么?回归直线y =bx +a 经过点()x ˉ,y ˉ,即样本点的中心.【设计意图】根据《标准》的要求和课程安排,着重把握方法背后的数学思想方法,引导学生课后探讨使Q 最小的系数b ,a 公式的推导过程,课堂上对公式进行详实分析,充分认识公式的结构,引导学生欣赏数学美.同时,还分析得到回归直线过样本点的中心,了解回归直线的代表性.4.运行程序,计算预测设置递进式问题串:(1)有了公式,下面是否可以动手计算系数b ,a 呢?(2)是否可以用计算器?(3)用计算器肯定可以轻松很多,但是如果有成千上万个数据呢?随着信息技术的发展,根据最小二乘法的思想和公式研发程序进行数据处理成为必然.【设计意图】从公式的理解到引导学生认识运用公式计算系数b ,a 的困难,感受使用计算器的必要性,再考虑到统计往往面对的是大量的数据处理工作,用计算器替代公式计算也是非常繁杂且易出错的,从而认识到研发程序的必要性,培养学生优化运算的思维.利用计算器求回归方程(播放微课),先开启计算器,然后分如下三个步骤.①选择模式:按MODE 键,进入模式选择,按3,选择Reg 回归,再按1,选择Lin 线性.②输入数据:按SHIFT 键+CLR +1=,清空统计存储器,再逐一输入收集的数据.··13③计算统计变量,按SHIFT键,按数字键2,就切换到了S-VAR功能,按两次方向键,选择1,计算a,同样操作,选择2,计算b.具体参考操作步骤如下图所示.学生两人一组,根据刚才的数据计算a,b的值.学生报告操作结果.【设计意图】为了便于传授利用计算器求值的技能,经过反复研究,确定由教师录制微课;为了突出程序思维,将利用计算器求值的技能分为三个步骤,易懂易学、方便操作.利用Excel软件求回归方程.如果有很多数据,怎么导入呢?需要一个个输入吗?教师操作演示,顺便验证大家刚才的操作结果.具体步骤如下.①在Excel表格中选定表示鞋码与身高关系的散点图,在菜单中选定“图表”中的“添加趋势线”选项,弹出“添加趋势线”对话框.②单击“类型”标签,选定“趋势预测/回归分析类型”中的“线性”选项,单击“确定”按钮,得到回归直线.③双击回归直线,弹出“趋势线格式”对话框.单击“选项”标签,选定“显示公式”,最后单击“确定”按钮,得到回归直线的方程.计算结果为什么是一样的呢?用计算器和用Excel软件求回归方程本质上没有区别,都是根据最小二乘法的思想和公式计算.不仅如此,标准统计软件SAS和SPSS也是根据最小二乘法的思想和公式求线性回归方程.课后,教师让学生参考视频教程在计算机上操作实践.有了回归方程,我们就知道了身高与鞋码的具体相关关系,并且可以根据鞋码预测身高.例如,根据42码的鞋印预测身高大概是多少?即当x=42时,y≈175.5.【设计意图】从计算器到Excel软件,从微课传授技能到当堂操作演示,都是以教与学的需要为出发点和落脚点,引导学生分析计算器和计算机软件求线性回归方程的区别与联系,并介绍了标准的统计软件.加强信息技术与统计内容的融合,启发学生思考如何从机械、烦琐的数据处理中解脱出来,培养程序化思维,发展学生的统计观念和信息素养.配套使用Excel 软件求回归方程的微视频教程,供学生上机操作时参考.分析不同软件求回归方程的本质,渗透程序思想.5.分析反思,实际预测下面我们利用全国统计数据预测一下鞋码为42码的人对应的身高.比较两个预测的样本与结果,你有什么发现呢?反思1:预测结果差异大吗?哪个结果会相对可靠呢?为什么?反思2:事实上,视频中足迹专家的推断与实际非常吻合,他怎么能推断得这么准呢?如果只根据鞋码推断可靠吗?鞋码是一元的,足迹是多元的,专家一般都是研究多元变量的影响进行推断的.怎么进行多元回归分析呢?教师让感兴趣的学生课后思考.【设计意图】统计是根据样本的情况估计总体情况,回归分析是通过函数模型近似刻画相关变量关系的统计方法.设计分析反思活动,引导学生对统计结果的合理性进行必要的批判与质疑,从数学问题的结论再回归到生活实际,呼应本节课引入的真实问题情境,身高与鞋码之间是一元线性相关,而身高与足迹之间却是多元回归分析问题,将相关关系的思考延伸到课外,重视培养学生的统计思维和应用意识.实际预测:线性回归能够帮助我们进行实际的预判决策.学校旁边有个小卖部卖奶茶,根据表2中收集的数据,你能帮小卖部进行决策吗?看看气温是6℃时大概要准备多少杯奶茶.表2气温x/°C奶茶杯数y/杯150413271281511619104238931763654(下转第21页)··14。

教学设计3:1.2回归分析

教学设计3:1.2回归分析

回归分析的基本思想及其初步应用【教学目标】:(1)知识与技能:了解求线形回归方程的两个计算公式的推导过程,、回归平方和;了解随机误差产生的原因;了解判断刻画模型拟合效果的方法——相关指数和残差分析;了解非线性模型通过变换转化为线性回归模型。

(2)过程与方法:本节内容先从大学中女大学生的甚高和体重之间的关系入手,求出相应的回归直线方程,从中也找出存在的不足,从而有进行回归分析的必要性,进而学习相关指数,用相关指数来刻画回归的效果。

(3)情感态度与价值观:从实际问题中发现自己已有知识的不足之处,激发学生的好奇心和求知欲,培养学生不满足于已有知识,勇于求知的良好个性品质,引导学生积极进取。

【教学重点】:1.了解判断刻画模型拟合效果的方法——相关指数和残差分析;2.通过探究使学生体会有些非线性模型通过变换可以转化为线性回归模型。

【教学难点】:1.了解随机误差产生的原因,用残差平方和衡量回归方程的预报精度;2.了解判断刻画模型拟合效果的方法——相关指数和残差分析。

【教学过程设计】:器)解答过程如下:令1ln c a =,2c b =,即bx a z +=分析x 与z 之间的关系,通过画散点图(如下图),可知x 与z 之间是存在着线性回归关系,可以用最小二乘法求出线性回归方程bx a z +=列表计算出各个量 编号 1 2 3 4 5 6 7 合计 温度x /°C 212325 27 29 32 35 192 产卵数y /个 711 21 24 66 115 325 569 z =ln y1.9462.3983.045 3.1784.190 4.7455.78425.285 x i 2 441529625729841 1024 1225 5414 x i z i40.9 55.2 76.1 85.8121.5151.8202.4733.7=x 27.429 =z 3.612∑==ni i x 125414∑==ni y i y x 1733.71272.043.277541461.343.2777.733ˆ22121=⨯-⨯⨯-=--=∑∑==x n xzx n zx bni ini ii843.3ˆˆ-=⋅-=x b z a843.3272.0ˆ-=x z问题七:我们的目标是建立红铃虫的产卵数y 与温度x 的模型,如何使得到的线性回归模型再变回红铃虫的产卵数y 与温度x 的模型?师:提出问题。

应用回归分析教学设计

应用回归分析教学设计

应用回归分析教学设计简介回归分析是一种经常用于探究自变量与因变量之间关系的统计方法。

应用回归分析教学,能够使学生更好地理解相关概念和知识点,并且帮助其提升分析和解决实际问题的能力。

本文将介绍如何应用回归分析进行教学设计,以及如何帮助学生更好地理解和应用该方法。

目标本教学设计的目标是让学生:1.理解回归分析的基本原理和应用场景;2.掌握回归分析的基本步骤和方法;3.能够应用回归分析解决实际问题。

教学设计教学方法通过板书、讲解、案例演示和讨论等多种方法来进行教学。

教学内容1.回归分析的基本概念–自变量、因变量、线性关系等。

2.单变量线性回归分析–参数估计、模型诊断、应用等。

3.多元线性回归分析–参数估计、模型诊断、应用等。

4.非线性回归分析–模型拟合、参数估计、模型诊断等。

5.实际案例演示与讨论教学进程阶段一:介绍回归分析的基本概念1.首先,引导学生了解回归分析的基本概念,如自变量、因变量、线性关系等。

2.接着,通过案例演示加深学生对回归分析的理解,例如使用 Excel进行数据分析。

阶段二:单变量线性回归分析1.介绍单变量线性回归分析的基本思想,并带领学生一步步掌握其基本步骤和方法。

重点讲解参数估计和模型诊断。

2.使用实际数据进行案例演示,并引导学生讨论如何将该方法应用到其他问题。

阶段三:多元线性回归分析1.介绍多元线性回归分析的概念和基本步骤,以及参数估计和模型诊断的方法。

2.使用实际数据进行案例演示,并引导学生讨论如何将该方法应用到其他问题。

阶段四:非线性回归分析1.介绍非线性回归分析的基本思想和基本步骤,以及模型拟合和参数估计的方法。

2.使用实际数据进行案例演示,并引导学生讨论如何将该方法应用到其他问题。

阶段五:实际案例演示与讨论1.引导学生根据所学知识,自行分析和解决实际问题,例如房价预测、股价预测等。

2.对于分析结果进行讨论和总结,提高学生对回归分析的理解和应用能力。

总结应用回归分析教学设计能够帮助学生更好地理解和应用该方法,从而提高学生分析和解决实际问题的能力。

线性回归教学设计

线性回归教学设计

线性回归教学设计一、教学目标1、知识与技能目标(1)体会最小二乘法和回归分析的思想;(2)能根据线性回归方程系数公式建立线性回归方程. 2、过程与方法目标(1)经历代数法寻求回归直线方程的过程;(2)体验用计算器或工作表软件得出回归直线方程的过程. 3、情感态度与价值观通过对数据的分析和处理,增强学生应用数学知识解决实际问题的意识,体会数学应用的广泛性.二、重点难点重点:了解最小二乘法思想,会根据给出的线性回归方程系数公式建立线性回归方程. 难点:体会最小二乘法和回归分析的思想.三、教学方法:问题探究式和启发式教学方法四、教学工具:科学计算器、Excle 工作表软件以及多媒体电脑展示设备五、教学过程:1.复习引入首先展示学生上节课得出的不同直线. 然后呈现问题组一问题1: 如何评价这些直线拟合的优劣程度以及标准的合理性? 问题2:试文字语言概括最优拟合直线的标准.说明:学生可能在对得出的不同直线评价其优劣性以及标准的合理性时会提出很多不同的标准,为了防止漫无目的,教师对直线优劣性的判断提出一些基本要求,如尽可能考虑到全部数据,体现整体性,尽可能便于数学计算等,并通过对标准的逐步修正,引导学生得出最优直线的标准:从整体上看,各点与此直线最贴近. 2.探求新知给出概念:我们把整体上最贴近已知数据点的直线叫做回归直线.设回归直线方程为bx a y +=ˆ,其中b 叫做回归系数.坐标点),(i i y x 表示第i 个样本点,坐标点)ˆ,(y x i 表示回归直线方程bx a y +=ˆ上的点,点),(i i y x 和点)ˆ,(y x i 的偏离差记作)ˆ(y y i -,问题组二问题1:如何从代数的角度刻画“从整体上看,各点与此直线最贴近”?问题2:∑=-ni iyy1)ˆ(能反映这些数据点与直线的贴近程度吗?,该怎么规避呢?问题3:比较∑=-ni iyy1|ˆ|和∑=-ni iyy12)ˆ(,在“使各点与此直线的总偏离差最小”的判断上可以等同吗?我们一般选择哪一个代数式作为我们研究的对象,为什么?说明:1、学生可能会把“从整体上看,各点与此直线最贴近”理解为:“各点与此直线的离差之和最小”,这样既是求代数式∑=-ni iyy1)ˆ(的最小值.这时我们给出问题2,学生可能会想到加绝对值,也可能会想到平方.此时给出问题3.因为学生在初二下学期的统计学中的“数据的波动分析”中学习了方差的概念,并在课后的阅读与思考:“数据波动的几种度量”中了解了差的绝对值的和∑=-ni iyy1|ˆ|与差的平方和∑=-ni iyy12)ˆ(.所以在这里学生不难理解其等同性,这时可以给学生说明:为了计算方便,我们通常选择差的平方和∑=-ni iyy12)ˆ(作为研究对象来求最小值.通过三个问题的设置,逐步引导学生利用最小二乘法来求回归直线方程.2、如果有学生在问题1中把“从整体上看,各点与此直线最贴近”理解为“各点与此直线的距离之和最小”,这样既是求距离和∑=ni id1的最小值.在这里可以给学生从形的角度来解释一下(PPT ),通过图形我们看到,距离和∑=ni id1与差的绝对值的和∑=-ni iyy1|ˆ|成比例关系,所以二者在判断“整体上各点与此直线最贴近”上是等同的,为了计算方便,我们通常选择差的平方和∑=-ni iyy12)ˆ(作为研究对象来求最小值.这时给学生指出:这种使“离差平方和为最小”的方法叫做最小二乘法.这样就把学生从定性的观察引导到了定量的分析,不仅完成了几何问题代数化的过程,而且在三个问题的引导下体会到了最小二乘法的思想. 问题组三问题1:怎样用最小二乘法求回归直线方程中的b a ,?问题2:回归直线方程中的b a ,的公式为: ⎪⎪⎩⎪⎪⎨⎧-=--=∑∑==x b y a x n x y x n y x b ni i ni i i ˆˆˆ1221如何更好的认识和应用公式求出回归直线方程?说明:1、教材没有给出公式的具体推导过程,在这里我们通过一个具体的例子来推导一下: 以教材74页例1为例,即:某小卖部为了了解热茶销售量与气温之间的关系,随机统计并制作了某6天卖出热茶的量x 的前3个值带入待定的直线方程bx a y +=ˆ,得到相应的3个ˆy 的值:b a b a b a 13,18,26+++,这3个值与表中相应的实际值应该越接近越好.所以,我们用类似于估计平均数时的思想,考虑离差的平方和2132156278811431169)1334()1824()2620()ˆ()ˆ()ˆ(22222233222211+--++=--+--+--=-+-+-=a b ab a b b a b a b a y y y y yy Q先把a 看作常数,那么Q 是关于b 的二次函数.易知,当1169571394ab -=时, Q 取得最小值.同理, 把b 看作常数,那么Q 是关于a 的二次函数.当b a 1926-=时, Q 取得最小值.因此,当558.6,023.1≈-≈a b 时,Q 取的最小值,此时回归直线方程为x y023.1558.6ˆ-=. 这是根据具体实例,利用二次函数求最值的方法来求得了Q 取最小值时b a ,的值,通过这个特例,让学生简单了解了用最小二乘法求得回归直线方程中b a ,的值的过程,既避免了直接给出公式的唐突,又不用花费大量的时间进行冗繁的推理,而对于一般情况下的推导可以鼓励学生在课后自己尝试推导.并告诉学生,在选修2-3的相关章节中,我们会给出另外一种推导方式.2、通过特例了解了如何用最小二乘法求得回归直线方程中b a ,的值后,我们直接给出一般情况下的系数公式, 由于公式比较复杂,因此在运用这个公式求b a ,时,必须要有条理,先求什么,再求什么.这里可以分析b 中分式的各个组成部分,让学生熟悉每一个数据,以便求解.3、引导学生再观察回归直线方程,发现回归直线一定通过样本点中心),(y x ,在不确定问题探讨中出现的确定性的性质,再次激发学生的探究欲望,而此问题的探究,使得学生在“回归直线是两个变量具有相关关系的代表”的理解上,上升到“回归直线过双变量样本点的中心”这一高度,深化对回归直线和回归思想的理解,完成学生认知结构的再次建构. 3.应用新知:例1 在某种产品表面进行腐蚀刻线实验,得到腐蚀深度Y 与腐蚀时间x 之间相应的一组观察值如下表:(1)画出表中数据的散点图;(2)试求Y 对x 的回归直线方程;(结果保留到小数点后3位数字) (3)试预测腐蚀时间为100s 时腐蚀深度是多少? 问题组四:问题1、回归系数b ˆ的意义是什么?问题2、预测腐蚀时间为100s 时的腐蚀深度准确吗?你怎么理解回归方程的预测功能? 说明:1、这是教材的一个例题,在求回归直线方程时,我们采用的方法是:把数据列成表格,代入公式分别计算b a ,的值,进而求出回归直线方程.通过本例,教师带领学生一起来应用公式,求出回归直线方程.不仅让学生在学以致用中加深对公式结构的理解和认识,而且通过第三问的预测,体现了回归直线方程的应用价值.2、通过问题1,让学生在具体实例中对回归系数b ˆ再认识,强化了学生对数据的实际意义的认识.问题2的设置,让学生在实例中正确认识回归方程的预测功能,体会到了回归直线的应用价值.3、在学生通过具体实例,掌握了根据给出的系数公式建立回归直线方程的方法后,鼓励学生尝试使用函数型计算器(参考教材例3)和Excle 工作表软件(详细过程参见附录)来处理数据求得回归方程.需要说明的是,课标的要求是:能根据给出的线性回归方程系数公式求出线性回归方程.所以必须要让学生掌握方法一.方法二和方法三并没有用到课本所给出的公式.但是方法二和三的介绍会给学生在处理实际问题时带了很大的方便,为下一节课作好铺垫.4.小结和作业:小结:了解最小二乘法思想,会根据给出的线性回归方程系数公式建立线性回归方程. 作业:课本第79页练习A第1题;习题2-3第1题.说明:通过小结和作业,进一步明确本节课的目标,突出了教学重点. 六、教学反思1、关于本单元的教学设计是2个课时还是4个课时的思考.在进行本单元的教学设计时,我们遇到了到底安排几个课时进行教学的问题,如果把统计理解为了解概念、会使用公式解题,那么2个课时就足够了.但是课标要求通过实际问题学习统计知识,强调让学生通过解决实际问题,较为系统地经历数据收集与处理的全过程,本节虽然知识内容不多,但引入新知识的过程中承载着新的数学方法,再加上这节内容是统计必修内容的最后一节,实际上需要综合运用前面的知识,为了让学生真正动起来,提升学生运用统计知识解决实际问题的能力,正确理解统计推断的结论,在实际的教学中我安排了4个课时进行教学.2、关于如何通过几何问题代数化的过程让学生体会最小二乘法的思想的思考.如何把“从整体上看,各点与此直线最贴近”用合适的代数式刻画并化简,化几何问题为代数问题,是顺利了解“最小二乘法思想”的前提;要了解“最小二乘法思想”,还必须要求对给出的系数公式的来源进行一定的说明.而如何化简复杂的代数式,学生缺乏处理的经验,在计算能力的要求上也很高.知识发展的要求与学生能力和经验的欠缺成为本节课遇到的最大矛盾.在教学中,我认为要防止两种倾向:一是直接套用公式求解回归方程而回避说理过程;二是过多纠缠于数学刻画过程,甚至在课堂内花大量时间对回归系数公式进行推导.这两种倾向,都脱离了课标的要求,前者忽略了“最小二乘法思想”,迷失了本节课的教学目标;后者人为拔高教材要求,偏离了本节课教学的重难点.基于此,我在教学中通过问题组的设置一步步引导学生完成几何问题代数化,并通过特例,利用二次函数求最值的方法来求得了Q 取最小值时b a ,的值,突破了本节课的难点. 3、关于合理使用计算器的意义的思考.使用计算器降低了计算的难度,就可以给学生安排更多的动手操作的机会,从而使学生的活动集中于解决问题之中,这样就会使学生淡化回归直线系数公式的记忆,更多的思考如何处理数据,以及对回归方程的推断作用进行更多的全面的思考,这也符合课标对学习统计学的要求.。

回归分析教学设计

回归分析教学设计

3.2回归分析教学设计引言:新一轮课程改革要求我们在教育教学的过程当中要着力落实“以生为本”的教学理念。

所谓“以生为本”就是以学生的发展为本,关注学生的思维能力的发展,动手能力的发展及应用意识的发展。

为此,讲授本节课之前,我做了如下的准备:一、教学内容分析及学情分析:(一)教学内容分析:《回归分析》是高中数学人教B版选修2—3第三章《统计案例》的第二节内容,本节是中学阶段统计学的完结篇。

其内容与第一节《独立性检验》及必修3中的统计知识均有着密切的联系。

它是必修3中回归直线方程知识的加深和升华,也是对第一节《独立性检验》中统计方法的补充。

其实,统计学发展到今天已经有许多较成熟的统计方法,独立性检验和回归分析只是其中的两种方法。

教材把一个个的案例直接呈现在学生面前,通过探究案例,解决问题,使学生们了解这两种统计方法的基本思想、解题步骤及其初步应用。

在统计案例的教学中,应培养学生对数据的直观感觉,认识统计方法的特点(如估计结果的随机性、统计推断可能犯错误等),体会统计方法应用的广泛性,理解其方法中蕴涵的思想。

避免学生单纯记忆和机械套用公式进行计算。

教学中应鼓励学生使用计算机及统计软件等现代技术手段来处理数据,解决实际问题。

应尽量给学生提供充分的实践活动机会,要求学生在实践中体会统计思想。

学习本节课后高中阶段的统计学知识全部学完,学生应该能够独立地分析简单的统计数据,能够独立完成简单的统计分析问题。

这种能力既是到高校继续深造的需要,更是作为新时代合格公民的必备素质。

(二)学情分析1、在学习本节课之前,学生已经在初中及高中数学人教B版必修3第二章中初步掌握了统计学的相关知识,特别是已经掌握了线性相关的回归直线方程的求法,能够通过对散点图的观察发现较直观的线性相关关系并求出其回归直线方程。

2、高二学生的自主学习能力和探究能力都很强,特别在学习了本章《统计案例》第一节的独立性检验的统计思想之后,初步掌握了统计分析的思想方法,这都为本节课教学奠定了坚实的基础。

应用回归分析第四版教学设计

应用回归分析第四版教学设计

应用回归分析第四版教学设计一、教学目标本门课程旨在掌握回归分析的基本原理和实际应用,提高学生的数据分析能力和实际应用能力。

通过本课程的学习,可以使学生掌握回归分析的基本原理、熟练运用主流统计软件进行数据分析,了解回归在实际中的应用和局限性。

二、教学内容2.1 回归分析基础1.回归分析的基本概念2.简单线性回归模型及其应用3.多元回归分析及其应用2.2 假设检验与模型诊断1.参数估计与检验2.模型拟合度检验3.异常值诊断4.共线性诊断2.3 应用实践1.回归分析在生产和营销中的应用2.使用回归分析处理实际业务问题3.使用R或SPSS对实际数据进行回归分析三、教学方法本课程采用理论讲授、实验模拟、案例研究等多种教学方法。

其中理论讲授为主,辅以应用实践,注重理论和实际结合,培养学生的实际应用能力和解决问题的能力。

四、教学媒介本门课程使用多种教学媒介,包括PPT、黑板、教材、案例、SPSS 和R等主流统计软件。

其中PPT和黑板为主要的教学媒介,案例和教材为辅助,SPSS和R为学生进行实践的工具。

五、评价方式本课程采用多元化的评价方式,包括平时成绩、案例分析报告、期末论文和实验成绩等。

其中,平时成绩主要体现学生的出勤情况和参与度;案例分析报告旨在训练学生的数据分析和解决问题的能力;期末论文主要考查学生对回归分析原理和实际应用的掌握程度;实验成绩是反映学生对回归分析实践操作技能的掌握程度。

六、实施计划本课程总共授课16周,每周2次课,每次2个小时。

具体实施计划如下:周次内容周次内容1-2 回归分析基础3-4 假设检验与模型诊断5-6 简单线性回归分析及应用7-8 多元回归分析及应用9-10 回归分析在生产和营销中的应用11-12 使用回归分析处理实际业务问题13-15 使用R或SPSS对实际数据进行回归分析16 期末评价和总结,结合实践案例进行回顾和总结以上为本门课程的教学设计,旨在培养学生对回归分析的掌握和实际应用能力,提高学生的数据分析能力及解决问题的能力。

人教部编版历史八年级下册:第13课《香港和澳门的回归》教学设计3

人教部编版历史八年级下册:第13课《香港和澳门的回归》教学设计3

人教部编版历史八年级下册:第13课《香港和澳门的回归》教学设计3一. 教材分析本课是部编版历史八年级下册的第十三课,主要内容是香港和澳门的回归。

教材通过介绍香港和澳门的回归背景、过程以及回归后的发展,让学生了解我国在维护国家主权和领土完整方面的努力和成果。

教材还包括了一些相关的阅读材料和思考题,帮助学生深入理解香港和澳门回归的意义。

二. 学情分析学生在学习本课之前,已经了解了香港和澳门的一些基本情况,如地理位置、历史文化等。

但学生可能对香港和澳门回归的背景、过程和意义等方面了解不多。

因此,在教学过程中,需要引导学生关注回归的背景和过程,并通过深入分析,使学生理解回归的意义。

三. 教学目标1.知识与技能:学生能够了解香港和澳门回归的背景、过程和意义,掌握相关的历史知识。

2.过程与方法:通过自主学习、合作探究等方法,培养学生的史料实证和历史解释能力。

3.情感态度与价值观:学生能够认识我国在维护国家主权和领土完整方面的努力和成果,增强国家意识和民族自豪感。

四. 教学重难点1.教学重点:香港和澳门回归的背景、过程和意义。

2.教学难点:香港和澳门回归的背景和过程的深入理解。

五. 教学方法1.自主学习:引导学生通过阅读教材,了解香港和澳门回归的基本情况。

2.合作探究:学生进行小组讨论,深入分析香港和澳门回归的背景和过程。

3.史料实证:利用相关的历史资料,帮助学生更好地理解香港和澳门回归的意义。

4.历史解释:引导学生运用所学知识,对香港和澳门回归的背景和过程进行解释和分析。

六. 教学准备1.教材:部编版历史八年级下册。

2.历史资料:与香港和澳门回归相关的资料,如新闻报道、政府文件等。

3.多媒体设备:用于展示教材内容和相关历史资料。

七. 教学过程1.导入(5分钟)教师简要介绍香港和澳门回归的背景,激发学生的学习兴趣。

2.呈现(10分钟)学生自主阅读教材,了解香港和澳门回归的基本情况。

教师引导学生关注回归的背景和过程。

多重线性回归sas课程设计

多重线性回归sas课程设计

多重线性回归sas课程设计一、课程目标知识目标:1. 学生能理解多重线性回归的基本概念、原理和数学模型;2. 学生掌握使用SAS软件进行多重线性回归分析的操作步骤;3. 学生能解释多重线性回归分析结果中各参数的含义及其在实际问题中的应用。

技能目标:1. 学生能够运用SAS软件进行多重线性回归数据预处理;2. 学生能够运用SAS软件进行多重线性回归模型拟合和参数估计;3. 学生能够运用SAS软件进行多重线性回归模型的假设检验和结果解读。

情感态度价值观目标:1. 学生通过本课程的学习,培养对数据分析的兴趣,提高解决实际问题的能力;2. 学生在学习过程中,培养严谨的科学态度和良好的团队合作精神;3. 学生能够将所学知识应用于实际生活,提高对统计学科在现实世界中重要性的认识。

课程性质:本课程为选修课,适用于具有一定统计学基础的高年级本科生。

学生特点:学生具备基本的统计学知识和一定的软件操作能力,对数据分析有一定兴趣。

教学要求:结合SAS软件,注重理论与实践相结合,强调学生在课堂上的主体地位,鼓励学生积极参与讨论和实际操作。

通过本课程的学习,使学生能够掌握多重线性回归分析方法,并应用于实际问题。

教学过程中,将课程目标分解为具体的学习成果,便于教学设计和评估。

二、教学内容1. 多重线性回归基本概念:变量选择、模型建立、参数估计;2. SAS软件操作:数据预处理、模型拟合、结果解读;3. 多重线性回归诊断:残差分析、共线性检验、异方差性检验;4. 多重线性回归应用实例:实际数据集分析、模型优化。

教学大纲:第一周:回顾统计学基础知识,介绍多重线性回归的基本概念和原理;第二周:学习SAS软件的基本操作,进行数据预处理;第三周:多重线性回归模型拟合,参数估计及解读;第四周:多重线性回归诊断,分析模型可能存在的问题;第五周:实例分析,运用所学知识解决实际问题,进行模型优化。

教学内容与教材关联性:1. 多重线性回归基本概念与教材第二章相关;2. SAS软件操作与教材第三章相关;3. 多重线性回归诊断与教材第四章相关;4. 多重线性回归应用实例与教材第五章相关。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
程。
(2)还有一个标本不完整,它只有股骨,而肱骨不见了,现测得股骨的长度为50cm,请预 测它的肱骨长度。
编号
1
2
3
4
5
股骨长度x/cm
38
56
59
64
74
肱骨长度y/cm
41
63
70
72
84
课堂练习
研兖灌溉渠道水的流速y与水深x之间的关系,测得如下数据:
教学流程设计
复习回顾
1、回顾相关性,最小二乘法,回归方程等知识。
2、几个重要公式和记法。
n
_+ X2^X3+...+Xn1 v
X == - / X>
nnL^
i=i
〃_〃_2
lXX= £(气-')2 =£妒-nx
i=\i=\
〃_ _.
y = S W f)(叫 一N)= Z X涡一似)'/=!i=l
妇=£("〉)2=£乂2一"
教学目标
通过实际问题中的两个有关联变量的数据作出散点图,并利用散点图直观认识两变量的关系: 结合具体实例学会求线性回归方程。
教学环境
简易多媒体教学环境,教学一体机
信息技术应用思路(突出三个方面:使用哪些技术?在哪些教学环节如何使用这些技术?使 用这些技术的预期效果是?)
本节课的教学难度在于问题数据的处理,一是数据的运算难度大,数据多,短时间的计算很 难达到需要的结果;二是数据转化为图形图表难度大,学生动手能力较弱,教师演示费时; 三是数学公式麻烦,难记难写,学生有畏惧感。
为了解决以上问题,本节课主要运用以下技术手段:1、运用PPT对教学内容展示,增强教 学直观;2、运用EXCEL软件,对数据进行处理,一是直接将数据表中的数学据转化为散点 图,进而地散点图添加趋势线(拟合线),二是对数表中的数字求和,平均值,平方和等计 算,三是对数学表达式进行运算,快速出结果。3、对于课堂练习和作业也有与课堂相似的 问题,我主要是能过软件给出数据的简单处理,提供必要的计算数据,以利于学生能进行巩 固知识。
课题:北师大选修1-2第一章第一节回归分析
教材分析
教材首先安排了一个关于始祖鸟化石标本的实例,对最小二乘法建立线性回归方程进行复习, 目的是对进行复习和提高。
学生分析
由于有较长一段时间没有涉及相关知识,学生对此内容遗忘较多,复习十分必要,对公式及 求和的记法陌生,学生的数字运算能力较差,主动性不好。
(1)求出线性回归方程;
小结
本节课你有什么收获?
作业
习题第一题。
i=\i=\
〃_ _〃—=
iN 0一 工)(x -〉‘)£ mm—心〉
b = M =旦=旦
*£(也-4
i=l
a - y-bx
线性回归方程
新课
始终鸟是一种已经灭绝的动物,在一次考古活动中,科学家发现了始祖鸟的化石标本共6个,其中5个同时保存有股骨和肱骨,科学家检查了这5个股骨和肱骨标本的长度,得到数 据如表。
相关文档
最新文档