医学统计学
医学统计学
第一章绪论(一)名词解释1.总体与样本2. 随机抽样3. 变异4. 等级资料5. 概率与频率6. 随机误差7. 系统误差8. 随机变量9.参数10. 统计量(二)单项选择题1.观察单位为研究中的( )。
A.样本B. 全部对象C.影响因素D. 个体2.总体是由()。
A.个体组成B. 研究对象组成C.同质个体组成D. 研究指标组成3.抽样的目的是()。
A.研究样本统计量B. 由样本统计量推断总体参数C.研究典型案例研究误差D. 研究总体统计量4.参数是指()。
A.参与个体数B. 总体的统计指标C.样本的统计指标D. 样本的总和5.关于随机抽样,下列那一项说法是正确的()。
A.抽样时应使得总体中的每一个个体都有同等的机会被抽取B.研究者在抽样时应精心挑选个体,以使样本更能代表总体C.随机抽样即随意抽取个体D.为确保样本具有更好的代表性,样本量应越大越好(三)是非题1.研究人员测量了100例患者外周血的红细胞数,所得资料为计数资料。
2.统计分析包括统计描述和统计推断。
3.计量资料、计数资料和等级资料可根据分析需要相互转化。
(四)简答题某年级甲班、乙班各有男生50人。
从两个班各抽取10人测量身高,并求其平均身高。
如果甲班的平均身高大于乙班,能否推论甲班所有同学的平均身高大于乙班?为什麽?第二章计量资料的统计描述(一)名词解释1.频数表2.算术均数3.几何均数4.中位数5.极差6.百分位数7.四分位数间距8.方差9.标准差10.变异系数(二)单项选择题1.各观察值均加(或减)同一数后()。
A.均数不变,标准差改变B.均数改变,标准差不变C.两者均不变D.两者均改变2.比较身高和体重两组数据变异度大小宜采用()。
A.变异系数B.差C.极差D.标准差3.以下指标中()可用来描述计量资料的离散程度。
A.算术均数B.几何均数C.中位数D.标准差4.偏态分布宜用()描述其分布的集中趋势。
A.算术均数B.标准差C.中位数D.四分位数间距5.各观察值同乘以一个不等于0的常数后,()不变。
医学统计学
医学统计学一、介绍医学统计学是医学领域中一门重要的学科,它通过收集、整理和分析医学数据,为医学研究和临床决策提供科学依据。
医学统计学的主要任务是使用统计方法分析各种医学数据,从中提取有意义的信息,并对结果的可靠性和有效性进行评估。
在医学研究中,医学统计学起着至关重要的作用,帮助研究人员通过数据分析对疾病的发病机制、病理生理过程和治疗效果等进行评估。
二、常见统计方法1. 描述统计学描述统计学是医学统计学的基础,它主要用于对医学数据的数量特征进行描述和总结。
常见的描述统计学方法包括:•平均值:用于描述数据的中心趋势。
•标准差:用于描述数据的离散程度。
•百分位数:用于描述数据的分布情况。
2. 推断统计学推断统计学是医学统计学的核心,它基于样本数据对总体进行推断。
常见的推断统计学方法包括:•假设检验:用于检验研究假设的真实性。
•置信区间:用于估计总体参数的范围。
•方差分析:用于比较多个样本的均值差异。
3. 生存分析生存分析是医学统计学中的一项重要内容,它主要用于研究患者的生存时间和相关因素。
常见的生存分析方法包括:•生存曲线:用于描述患者生存时间的分布情况。
•生存率:用于描述患者在某一时间点存活的概率。
•Cox比例风险模型:用于研究生存时间和危险因素的关系。
三、应用领域医学统计学广泛应用于医学研究和临床实践中,对于评估疾病的风险因素、制定预防策略、确定诊断标准和评估治疗效果等方面都起着至关重要的作用。
以下是医学统计学在不同领域的应用示例:1. 流行病学研究医学统计学在流行病学研究中发挥着重要作用。
通过收集大量的样本数据,并运用相关的统计方法,可以研究疾病的发病规律、危险因素和暴露因素等,为疾病的预防和控制提供科学依据。
2. 临床试验医学统计学在临床试验中的应用也非常重要。
通过对试验组和对照组的数据进行比较分析,可以评估新药物或治疗方法的疗效和安全性,为临床决策提供可靠依据。
3. 医疗质量评估医学统计学可以用于医疗质量评估,通过对不同医疗机构之间的数据进行比较分析,评估医疗服务的质量,为改善医疗质量提供参考。
医学统计学的基本内容
医学统计学的基本内容第一章医学统计学的基本内容第一节医学统计学的含义1、医学统计学定义医学统计学(statistics)作为一门学科的定义是:关于医学数据收集、表达和分析的普遍原理和方法。
2、医学统计学研究方法:通过大量重复观察,发现不确定的医学现象背后隐藏的统计学规律。
3、医学统计推论的基础:在一定条件下,不确定的医学现象发生可能性,即概率。
第二节、统计学的几个重要概念一(资料的类型1、计量资料(数值变量):对每一观察对象用定量的方法,测定某项指标所得的资料。
一般有度量衡单位,每个对象之间有量的区别。
2、计数资料(分类变量):对观察对象按属性或类型分组计数所得的资料。
每个对象之间没有量的差异,只有质的不同。
3、等级资料(有序分类变量):对观察对象按属性或类型分组计数,但各属性或类型之间又有程度的差别。
注意:不同类型的资料采用的统计分析方法不同;三类资料类型可以相互转化。
二、总体根据研究目的所确定的同质的所有观察对象某项变量值的集合1、有限总体:只包括在确定时间、空间范围内的有限个观察对象。
2、无限总体:没有时间、空间范围的限制,观察对象的数量是不确定的,无限的三、样本从总体中随机抽取部分观察对象,其某项变量值的集合。
从总体中随机抽取样本的目的是: 用样本信息来推断总体特征。
四、随机事件可以发生也可以不发生,可以这样发生也可以那样发生的事件。
亦称偶然事件。
五、概率描述随机事件发生可能性大小的数值,记作,,其取值范围0?P?1,一般用小数表示。
,,0,事件不可能发生必然事件(随机事件的特例);,,1,事件必然发生;,?0,事件发生的可能性愈小;,?1,事件发生的可能性愈大六、小概率事件习惯上将,?0.05或,?0.01 的随机事件称小概率事件。
表示某事件发生的可能性很小。
七、参数和统计量参数:总体指标,如总体均数、总体率,一般用希腊字母表示统计量:样本指标,如样本均数、样本率,一般用拉丁字母表示八、学习医学统计学的方法1、重点掌握“四基”:基本知识、基本概念、基本原理和基本方法;2、重视统计方法在实际中应用,重视实习和综合训练;注意学习每种统计方法的应用范围、应用条件,大多数公式只要求了解其意义和使用方法,不用记忆和探究数理推导。
医学统计学(MedicalStatistics)
2. 分类数据(categorical) :
• 变量值表现为按某属性划分的定性类别。清点各 类别个数后得到的资料称计数资料。
• 2)多分类(无序):例:副作用(有重复选 择)
• 3.等级(有序)
• 疗效:痊愈=4、显效=3、有效=2、无效=1
例:105人心脏外科病人心理反应情况
• 心理反应 病例
• 症状
数
• 焦虑
102
• 抑郁
57
• 自我认同紊乱 10
• 恐惧
5
• 合计
174
百分比 反应发生率 (%) (%) 58.6 97.14 32.8 54.28
• 例:病情分级(X1):Ⅰ , Ⅱ,Ⅲ
• 疗效(X2):痊愈、显效、有效、无效
• 病人满意度(X3): 好、中、差
•
人数
50 25 5
数据类型及赋值
• 数据(变量)类型 变量的表现
• 1.计量变量:
血压值:12.3kap
• 2.分类(定性)
• 1)两分类: 疗效:有效=1,无效=0
•
性别:男=1,女=2
六、科研工作的步骤 根据研究的目的
1.研究 设计
设计考虑:
研究对象、 指标、例 数、如何 准确得到 数据。
2.收集 资料
来源:
3.整理 资料
目的:
1.日常工作 记录、病历。
2.专门的调 查和实验。
使资料系 统化,便 于进一步 统计分析
4.分析 资料
方法: 用统计方 法分析资 料,阐述 规律性, 得出结论。
《医学统计学》完整课件
,不损害受试者身心健康。
保护隐私
对受试者个人信息和数据进行严格保 密,防止数据泄露和滥用,确保个人
隐私不受侵犯。
公正选择受试者
遵循公平、公正原则,合理选择受试 者,避免任何形式的歧视和偏见。
数据安全与隐私保护
1 2
数据加密与备份
对医学统计数据进行加密处理,确保数据安全; 同时定期备份数据,防止数据丢失。
医学统计学的应用领域
临床试验
流行病学
在临床试验中,医学统计学用于分析试验 数据,评估治疗效果和安全性。
在流行病学研究中,医学统计学用于分析 疾病分布和影响因素,为预防和控制疾病 提供依据。
公共卫生
生物统计学
在公共卫生领域,医学统计学用于监测和 评估公共卫生状况,制定和评估公共卫生 政策。
在生物统计学中,医学统计学用于研究生 物学数据的分布和变化规律,为生物学研 究和医学研究提供支持。
生存分析中的多因素分析方法
多因素分析方法
考虑多个因素对生存时间的影响,常用方法有Cox比例风险模型和 分层分析等。
Cox比例风险模型
一种半参数模型,用于研究多个因素对生存时间的影响,并给出相 对风险比。
分层分析
将研究对象按照某些特征进行分层,然后在各层内进行统计分析,以 探讨各层内因素对生存时间的影响。
数据整理
对收集到的数据进行整理、核对和分类,确 保数据的规范化和标准化。
数据分析
选择合适的数据分析方法和技术,对数据进 行深入分析和挖掘,得出科学结论。
报告撰写
按照学术规范和要求,撰写研究报告或论文 ,客观地呈现研究结果和结论。
07
医学统计学中的伦理问题与数 据安全
医学统计学复习资料
医学统计学第一章绪论第一节医学统计学的定义和内容1.医学统计学的主要内容 :统计推断、统计描述第二节统计工作的基本步骤1.医学统计工作可分为四个步骤:统计设计搜集资料整理资料分析资料第三节统计资料的类型医学统计资料按研究指标的性质一般分为:定量资料、定性资料、等级资料一、定量资料(计量资料)定量资料(quantitative data)是用定量的方法测定观察单位(个体)某项指标数值的大小,所得的资料称定量资料。
如身高(㎝)、体重(㎏)、脉搏(次/分)、血压(kPa,mmHg)等为数值变量,其组成的资料为定量资料。
二、定性资料(计数资料)定性资料(qualitative data)是将观察单位按某种属性或类别分组,清点各组的观察单位数,所得的资料。
亦称无序分类资料。
如:男-女分组;中医的虚、实,阴、阳等分组;按生存-死亡分组;A、B、O、AB分组。
三、等级资料等级资料(ranked data)是将观察单位按属性的等级分组,清点各组的观察单位数,所得的资料为等级资料。
亦称有序分类资料。
如治疗结果分为治愈、显效、好转、无效四个等级。
:疾病的严重程度可以分为,轻、中、重;中医辨证中舌象的颜色有,淡、红、暗、紫。
♦根据需要,各类变量可以互相转化。
♦若按贫血的诊断标准将血红蛋白分为四个等级:重度贫血、中度贫血、轻度贫血、正常,可按等级资料处理。
有时亦可将定性资料或等级资料数量化,如将等级资料的治疗结果赋以分值,分别用0、1、2…等表示,则可按定量资料处理。
第四节统计学中的几个基本概念一、同质与变异同质(homogeneity)是指观察单位或研究个体间被研究指标的主要影响因素相同或基本相同。
如研究儿童的生长发育,同性别、同年龄、同地区、同民族、健康的儿童即为同质儿童。
变异(variation)由于生物个体的各种指标所受影响因素极为复杂,同质的个体间各种指标存在差异,这种差异称为变异。
如同质的儿童身高、体重、血压、脉搏等指标会有一定的差别。
课堂笔记——医学统计学
第一章医学统计中的基本概念一、医学统计工作的内容:实验设计(experiment design)、收集资料(collecting data)、整理资料(sorting data)和分析资料(analyzing data)二、变异:医学研究的对象是有机的生命体,其功能十分复杂,不同的个体在相同的条件下,对外界环境因素可以发生不同的反应,这种现象称为个体差异或称为变异三、总体(population)和样本(sample):总体是同质的个体所构成的全体。
从总体中抽取部分个体的过程称为抽样,所抽的部分称为样本,在一个样本里含有的个体数可以不同,样本包含的个体数目称为样本容量。
四、样本的特性:代表性(representation)——要求样本能够充分反应总体的特征;随机性(randomization)——需要保证总体中的每个个体都有相同的几率被抽做样本;可靠性(reliability)——实验的结果要具有可重复性,即由科研课题的样本得出的结果所推测总体的结论有较大的可信度;可比性(comparability)——指处理组(临床设计中称为治疗组)与对照组之间,除处理因素不同外,其他可能影响实验结果的因素要求基本齐同,也称为齐同对比原则。
五、误差:①系统误差(system error)②③六、概率(probability):是描述某一件事发生的可能性大小的一个量度。
习惯将P≤0.05或P≤0.01的事件称为小概率事件第二章集中趋势的统计描述一、频数表(frequency table):①概念:一种格式的统计表,即同时列出观察指标的可能取值区间及其在各区间内出现的频数。
由于这种资料的表达方式较完整地体现了观察值的分布规律,所以也称为频数分布表。
②制作图标的步骤:确定组数、确定组距、确定组段、对各组段计数及手工编制划记表。
二、直方图(histogram):①概念:直方图是以垂直条段代表频数分布的一种图形,条段的高度代表各组的频数,由纵轴标度;各组的组限由横轴标度,条段的宽度表示组距。
《医学统计学》医统-第一章绪论
医学统计中的基本概念
随机测量误差: 由于各种偶然因素的影响也会造成同一对象多次 测定的结果不完全一致。
非人为的偶然因素使得结果时高时低,没有固定倾 向,是不确定、不可预知的。
特点:没有倾向性,多次测量计算平均值可以减 小甚至消除随机测量误差。
(随机测量误差,抽样误差)。
编辑课件
医学统计中的基本概念
编辑课件
医学统计中的基本概念
误差:观测值-真实值、样本统计量-总体参数 包括:系统误差、随机测量误差、抽样误差
系统误差: 指数据搜集和测量过程中由于仪器初 始状态未调零、标准试剂未经校正、 医生掌握疗效标准偏高或偏低等原因, 造成观察结果呈倾向性的偏大或偏小, 这种误差称为系统误差。
必须克服!
编辑课件
编辑课件
第二节 医学统计学的基本内容 统计描述:描述及总结一组数据的重要特征, 目的是使实验或观察得到的数据表达清楚并便 于分析。统计描述结果的表达方式主要是统计 指标、统计表和统计图。
编辑课件
第二节 医学统计学的基本内容
统计推断:指由样本数据的特征推断总体特 征的方法,包括参数估计和假设检验。参数 估计的重要性在于可以给出区间估计;假设 检验重点则是比较参数的大小。
既有计数资料的特性,又兼有半定量的性质。 特点:每一个观察单位没有确切值
各组之间有性质上的差别或程度上的不同。
统计分析方法的选用与数据类型有密切的关系。根 据分析的需要,不同类型的变量或数据之间可以进 行转换。
编辑课件
军训服装:男装 女装 S M L XL
学霸 学酥 学渣 学灰 西安 宝鸡 渭南 咸阳 榆林
编辑课件
医学统计中的基本概念 同质:指根据研究目的所确定的观察单位其性质应大 致相同。 (同一总体中的每一个体都具有相同的性质的特征。)
医学统计学
医学统计学(statistics of medicine ):医学统计学是运用概率论与数理统计的原理及方法,结合医学实际,研究数字资料的搜集、整理分析与推断的一门学科。
医学统计工作的基本步骤:1、研究设计2、收集资料3、整理(sorting data)资料4、分析(analysis of data)资料研究单位(unit):研究中的个体(individual),是根据研究目的确定的。
观察单位可以是一个人、一个家庭、一个地区、一个样品、一个采样点等。
变量(variable):研究单位的研究特征。
例如:研究7岁男孩身高的正常值范围变量:身高变量可分为:数值变量和分类变量变量之间可以互相转换。
变量值(value of variable):变量的观察结果大小或属性。
数值变量:变量值是可以定量测量并有数值大小的变量。
分类变量:变量值为变量的属性或类别的变量。
同质(homogeneity):根据研究目的给研究单位确定的相同性质。
注意:同质实质上是指有条件的相同,不是全部相同。
只是一个相对的概念,不是绝对的相同。
变异(variation):同质研究单位中变量值间的差异。
总体(population):是根据研究目的确定的同质研究单位的全体。
更确切地说是同质研究单位某种变量值的集合。
例如:调查某地2002年正常成年男子的红细胞数的正常值范围研究单位:一个人变量:红细胞数同质:同某地、同2002年、同成年男子、同正常。
总体:1)某地所有的正常成年男子2)某地所有的正常成年男子的红细胞数样本(sample):是总体中抽取的有代表性的一部分。
注意:随机抽样(无主观性)参数(parameter):根据总体个体值统计计算出来的描述总体的特征量。
(一般用希腊字母表示)统计量(statistic):根据样本个体值统计计算出来的描述样本的特征量。
(一般用拉丁字母表示)注意:总体参数一般是不知道的统计学抽样研究的目的就是:样本统计量→总体参数误差(error)是指实际观察值与观察真值之差、样本指标与总体指标之差。
图文《医学统计学》PPT课件
提出假设、构造检验统计量、确定拒绝域、计算p值、做出决策。
t检验和方差分析
t检验
用于比较两组均数是否有差别,包括单样本t检验、配对样本t检验和独立样本t检验。
方差分析
用于比较多组均数是否有差别,包括单因素方差分析和多因素方差分析。
卡方检验和秩和检验
卡方检验
用于推断两个或多个总体率或构成比之 间有无差别,多用于分类资料的统计分 析。
特点
以医学为背景,以数据为基础, 运用统计学方法揭示医学现象的 数量特征和规律。
发展历程及现状
发展历程
医学统计学经历了从描述性统计到推 断性统计,再到现代多元统计分析的 发展历程。
现状
随着计算机技术的发展和大数据时代 的到来,医学统计学在医学研究和实 践中发挥着越来越重要的作用。
研究对象与任务
研究对象
样本量
样本中所包含的个体数目 。
随机抽样与非随机抽样
随机抽样
按照随机原则从总体中抽取样本的方法,保证每个个体被抽 中的机会相等。
非随机抽样
根据研究者的主观意愿或方便性选择样本的方法,可能导致 选择偏倚。
变量与数据类型
变量
研究中观察或测量的特征或属性。
数据类型
根据变量的性质可分为定量数据和定性数据。定量数据包括连续型数据和离散型 数据,定性数据包括分类数据和顺序数据。
医学统计学的研究对象包括生物医学数据、临床医学数据、公共卫生数据等。
任务
医学统计学的任务包括描述医学数据的分布特征、比较不同组别间的差异、分 析影响医学现象的因素、预测医学现象的发展趋势等。
02
医学统计学基本概念
总体与样本
01
02
03
总体
《医学统计学》完整课件超级经典
未来医学统计学研究方向建议
THANKS
感谢观看
卫生事业管理统计应用
医疗服务质量评价
通过统计学手段,对医疗服务质量进行评价和改进,提高患者满意度和医疗服务水平。
卫生政策效果评估
运用统计学知识,评估卫生政策的效果和实施情况,为政策制定和调整提供依据。
医学统计学的前景和挑战
06
医学统计学在医疗、公共卫生、生物技术等领域的应用越来越广泛,随着生物医学研究技术和数据采集技术的不断发展,医学统计学的应用前景更加广阔。
现代医学统计学的发展
现代医学统计学作为一门独立的学科,是在19世纪末20世纪初开始形成的。当时的一些著名医生,如英国的皮尔逊(Karl Pearson)和美国的费希尔(R. A. Fisher),对医学统计学的理论和方法做出了重要贡献。
早期的医学统计学
医学统计学的发展历程
VS
医学统计学的研究对象主要包括临床试验和流行病学调查所获得的各种数据,以及与这些数据相关的各种因素和条件。
推断性统计分析
医学统计学应用
05
临床试验设计
运用统计学原理和方法,对临床试验方案进行合理设计,确保试验数据的科学性和准确性。
诊断与疗效评估
通过统计学方法,对疾病的诊断、治疗和疗效进行评估,提高医疗质量和效果。
预后因素分析
运用统计学技术,分析影响疾病预后的因素,为制定个性化治疗方案提供依据。
临床医学统计应用
01
02
03
参数估计
利用样本数据对总体参数进行点估计和区间估计。
方差分析
通过设计矩阵、计算平方和及自由度、计算均方及F统计量等方法,研究多组数据间的差异。
回归分析
研究两个或多个变量之间的相关关系,建立回归模型,并对模型进行检验和预测。
医学统计学基本知识
医学统计学基本知识•总体(population)指同质的研究对象中所有观察单位研究指标变量值的集合。
总体通常限定于特定的时间与空间范围之内,且为有限数量的观察单位,称为有限总体;有时总体是假设的,没有时间和空间限制,观察单位数是无限的,称为无限总体。
•样本(sample)医学实践与研究中,要直接研究无限总体通常是不可能的,即使是有限总体,由于人力、物力、时间、条件等限制,要对其中每个观察单位进行研究或观察,有时也是不可能的,也不必要。
而只是从总体中随机抽取部分观察单位,其变量实测值构成样本,目的用样本指标推断总体特征。
这种推断不要经过严谨的实验设计,以样本的可靠性和代表性为基础。
样本的可靠性:主要是使样本中每一观察单位确属同质总体。
样本的代表性:使样本能充分反映总体的实际情况,要求抽样遵循随机化原则,目的是使每个观察单位被抽得的机会相等,避免主观取舍及偏性;还要保证足够的样本量,即保证足够的观察单位个数。
•参数(parameter)统计学上描述总体变量的特征称为参数。
如总体均数、中位数和众数等体参数称为样本指标。
如以样本均数()推算总体均数(m),以样本标准差(s)推算总体标准差(s)等,值得注意的是,选择统计量作为参数估计值时,通常选择无偏、有效且一致的估计量,即对总体变量渐进无偏估计量。
计量资料(measurement data)又称定量资料(quantitative data)或数值变量(numerical variable)资料。
为测定每个观察单位某项指标的大小而获得的资料。
其变量值是定量的,表现为数值大小,一般有度量衡单位。
计数资料(enumeration data)又称定性资料(qualitative data)或无序分类变量(unordered categorical variable)资料。
为将观察单位按某属性或类别分组计数,分组汇总各组观察单位数后而得到的资料。
其变量值是定性的,表现为互不相容的属性或类别,如试验结果的阴阳性,家族史的有无等等。
《医学统计学》完整课件完整版
《医学统计学》完整课件完整版一、教学内容本节课的教学内容来自于《医学统计学》的第五章,主要内容包括:t检验、方差分析、秩和检验。
二、教学目标1. 使学生了解并掌握t检验、方差分析、秩和检验的基本原理和应用。
2. 培养学生运用医学统计学方法分析和解决实际问题的能力。
3. 帮助学生建立正确的统计学思维方式,提高科学研究素养。
三、教学难点与重点1. 教学难点:t检验、方差分析、秩和检验的计算方法和应用。
2. 教学重点:t检验、方差分析、秩和检验的基本原理和操作步骤。
四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔。
2. 学具:教材、笔记本、计算器。
五、教学过程1. 实践情景引入:以一项临床试验为例,介绍t检验在医学研究中的应用。
2. t检验:(1)讲解t检验的基本原理和适用条件。
(2)演示t检验的计算过程,并列举实例进行分析。
(3)引导学生通过教材示例,自行完成t检验的计算和分析。
3. 方差分析:(1)介绍方差分析的基本原理和适用条件。
(2)演示方差分析的计算过程,并列举实例进行分析。
(3)引导学生通过教材示例,自行完成方差分析的计算和分析。
4. 秩和检验:(1)讲解秩和检验的基本原理和适用条件。
(2)演示秩和检验的计算过程,并列举实例进行分析。
(3)引导学生通过教材示例,自行完成秩和检验的计算和分析。
六、板书设计板书内容主要包括t检验、方差分析、秩和检验的基本原理、适用条件、计算方法和实例分析。
七、作业设计1. 题目:某临床试验中,研究者比较了两种药物的治疗效果,随机抽取了60名患者,分别给予甲药和乙药治疗,疗程为4周。
治疗结束后,对患者的疗效进行了评价。
假设评价结果如下:甲药组:痊愈20人,显效15人,有效10人,无效5人。
乙药组:痊愈18人,显效12人,有效8人,无效12人。
请运用t检验分析两种药物的治疗效果是否存在显著性差异。
答案:(略)2. 题目:某研究者对某疾病的治疗方法进行了临床试验,随机抽取了80名患者,分别给予甲法和乙法治疗,疗程为6个月。
医学统计学重点
医学统计学重点第一章绪论1.根本概念:总体:根据研究目确实定的性质相同或相近的研究对象的某个变量值的全体。
样本:从总体中随机抽取局部个体的某个变量值的集合。
总体参数:刻画总体特征的指标,简称参数。
是固定不变的常数,一般未知。
统计量:刻画样本特征的指标,由样本观察值计算得到,不包含任何未知参数。
抽样误差:由随机抽样造成的样本统计量与相应的总体参数之间的差异。
频率:假设事件A在n次独立重复试验中发生了m次,那么称m为频数。
称m/n为事件A在n 次试验中出现的频率或相对频率。
概率:频率所稳定的常数称为概率。
统计描述:选用适宜统计指标(样本统计量)、统计图、统计表对数据的数量特征及其分布规律进行刻画和描述。
统计推断:包括参数估计和假设检验。
用样本统计指标(统计量)来推断总体相应指标(参数),称为参数估计。
用样本差异或样本与总体差异推断总体之间是否可能存在差异,称为假设检验。
2.样本特点:足够的样本含量、可靠性、代表性。
3.资料类型:〔1〕定量资料:又称计量资料、数值变量或尺度资料。
是对观察对象测量指标的数值大小所得的资料,观察指标是定量的,表现为数值大小。
每个个体都能观察到一个观察指标的数值,有度量衡单位。
〔2〕分类资料:包括无序分类资料〔计数资料〕和有序分类资料〔等级资料〕①计数资料:是将观察单位按某种属性或类别分组,清点各组观察单位的个数(频数),由各分组标志及其频数构成。
包括二分类资料和多分类资料。
二分类:将观察对象按两种对立的属性分类,两类间相互对立,互不相容。
多分类:将观察对象按多种互斥的属性分类②等级资料:将观察单位按某种属性的不同程度、档次或等级顺序分组,清点各组观察单位的个数所得的资料。
4.统计工作根本步骤:统计设计、资料收集、资料整理、统计分析。
第二章实验研究的三要素1.实验设计三要素:被试因素、受试对象、实验效应2.误差分类:随机误差〔抽样误差、随机测量误差〕、系统误差、过失误差。
3.实验设计的三个根本原那么:对照原那么、随机化分组原那么、重复原那么。
医学统计学知识点总结
知识点1.统计学是应用概率论和数理统计的基本原理和方法,研究数据的搜集、整理、分析、表达和解释的一门学科。
2.医学统计学是应用统计学的基本原理和方法,研究医学及其有关领域数据信息的搜集、整理、分析、表达和解释的一门学科。
3.统计软件包是对资料进行各种统计处理分析的一系列程序的组合。
4.统计工作的基本步骤:研究设计、搜集资料、整理资料和分析资料。
5.科研结果的好坏取决于研究设计的好坏,研究设计是统计工作中的基础和关键,决定着整个统计工作的成败。
6.统计分析包括统计描述和统计推断。
统计描述是对已知的样本(或总体)的分布情况或特征值进行分析表述;统计推断是根据已知的样本信息来推断未知的总体。
7.医学原始资料的类型有:计量资料、计数资料、等级资料。
8.计量资料是用定量的方法对每一个观察单位的某项指标进行测定所得的资料。
9.计数资料是把观察单位按某种属性(性质)或类别进行分组,清点各组观察单位数所得资料。
10.等级资料是把观察单位按属性程度或等级顺序分组,清点各组观察单位数所得资料。
各属性之间有程度的差别。
等级资料的等级顺序不能任意颠倒。
11.同质:是指所研究的观察对象具有某些相同的性质或特征。
12.变异:是同质个体的某项指标之间的差异,即个体变异或个体差异性。
13.总体是根据研究目的确定的同质研究对象的总体。
样本是总体中具有代表性的一部分个体。
14.抽样研究是通过从总体中随机抽取样本,对样本信息进行分析,从而推断总体的研究方法。
抽样误差是由随机抽样造成的样本指标与总体指标之间、样本指标与样本指标之间的差异,其根源在于总体中的个体存在变异性,只要是抽样研究,就一定存在抽样误差,不能用样本的指标直接下结论。
15.统计学的主要任务是进行统计推断,包括参数估计和假设检验。
16.概率是某随机事件发生可能性大小(或机会大小)的数值度量。
概率的取值为0≤P≤1。
小概率事件是指P≤0.05的随机事件。
17.频数表和频数分布图的用途:(1)揭示计量资料的分布类型。
医学统计学的基本内容
四、分析资料(data analysis) : 按设计的要求,根据研究目的和资料的类型,对整理出的基础数据作进一步的计算和统计学处理,并用适当的统计图表表达出来,最后结合专业做出结论。 1. 描述性统计, 2. 统计学推断和对比分析, 3. 相关分析, 4. 统计模型配合(多因素分析)。 统计分析方法要与研究目的及资料类型匹配。有好的原始资料,才有好的统计分析结果。
*
基本要求:
完整,准确,及时。 质量控制:保证统一性、可重复性
01
02
三、整理资料(data sorting): 是对收集到的原始资料去伪存真、分类汇总的过程。 要求:正确表述事物的客观概貌。 1. 对原始资料进行检查和核对。 2. 根据研究目的要求,合理分组。 ①质量分组:即将观察单位按其属性或类别(如性别、职业、疾病分类、婚姻状况等)归类分组; ②数量分组:即将观察单位按数值大小(如年龄大小、血压高低等)分组。 两种分组往往结合使用,质量分组基础上数量分组。 3. 整理与汇总:按分组要求设计整理表,进行手工汇总(划记法或分卡法)或用计算机汇总列表(整理表)。
散点图(scatter diagram):用点的位置表示两变量间的数量关系和变化趋势。
直方图(histogram):是用各矩形的面积表示各组段的频数,各矩形面积的总和为总频数,用以表示连续型资料的频数分布。
纵坐标从0开始
实例数据1
练习
202X
实例数据2
汇报人姓名
二、资料收集 (data collection): 通过合理可靠的手段或渠道获得研究所需的原始数据。是统计分析的基础。 主要来自三方面: 统计报表和报告卡: 例如,疫情报表、医院工作报表等是根据国家规定的报告制度,由医疗卫生机构定期逐级上报的统计报表。传染病和职业病发病报告卡、肿瘤发病及死亡报告卡、出生及死亡报告单等。防止漏报。 2. 日常医疗卫生工作记录 例如,门诊病历、住院病历、健康检查记录、卫生监测记录等。要做到登记完整、准确。 3. 专题调查或实验研究: 一般统计报表和医院病历资料的内容都有局限性,不能完全满足研究的要求。为了进行深入的分析,通常需要采用专题调查或实验研究。
医学统计学
布、均匀分布、Poission分布和指数分布。 – 5:Two-Independent-Samples Tests:即成组设 计的两样本均数比较的非参数检验。 – 6:Tests for Several Independent Samples:成组 设计的多个样本均数比较的非参数检验,此处 不提供两两比较方法。 – 7:Two-Related-Samples Tests:配对设计两样 本均数的非参数检验。 – 8:Tests for Several Related Samples:配伍设 计多个样本均数的非参数检验,此处同样不提 供两两比较。 ※以上5-8包括我们常用的秩和检验。
13
续表
28. 2. . 40. 30. 6. 6. 21. 6. 2. 2. 2. X1 X2 X3 40 2 0 00 2 0 90 0 1 00 2 0 60 2 0 60 0 0 80 0 1 40 2 1 10 0 1 80 0 0 70 2 1 50 0 0 TI 7. 7. 7. 7. 7. 7. 7. 8. 8. 8. 8. 9. ME STATES X1 X2 X3 TI 26 1 3. 40 2 1 20. 33 1 4. 30 0 1 20. 53 1 5. 10 0 1 21. 53 1 244. 80 2 1 21. 60 1 2. 40 0 0 23. 67 1 4. 00 0 1 26. 67 1 1. 70 0 1 28. 30 1 5. 10 0 1 31. 33 1 1. 10 0 1 37. 33 1 32. 00 0 1 66. 80 1 12. 80 0 1 73. 23 1 1. 40 0 1 124. ME STATES 17 0 57 1 00 1 87 1 77 1 00 1 33 1 33 1 77 1 83 1 57 1 20 0
医学统计学
二2
• 变量类型的区分在统计学中至关重要,它不仅决 定了统计分析方法的选择,还与识别分析的基本 单位有关、与分析结果的解释有关。
第三节 统计学的若干基本概念
二2
变量
• 出于特定研究目的,不同类型变量间可以进行转 换。一般从定量到半定量,再到定性(注意信息 量将减少)。
• 当然,为了对定性变量进行统计学处理,需要对 其进行编码处理。
• 统计学正是分析数据中变异和不确定性的一门科学和 艺术,它透过具有偶然性的现象来探测和揭示那些令 人困惑的医学问题的特征和规律,对不确定性的数据 作出科学推断。
• 因此,统计学是认识客观世界的重要工作工具和手段。
第一节 医学统计学的地位和作用
• 医学统计学:运用数理统计学的基本原理和 方法来研究医学问题的一门学科,它包括了 研究设计、数据收集、整理、分析以及分析 结果的解释和表达。
定性变量
无序分类变量
二项分类变量 多项分类变量
第三节 统计学的若干基本概念
二2
变量
定量变量要么是连续的,要么是离散的
➢ 连续变量 如年龄就是一个连续变量,因为不同人的年龄差异在理
论上可以任意地小。一般有度量衡单位。
➢ 离散变量 如家庭人口数就是一个离散变量,不同家庭的人口数可
相差0、1、2等,在这些量之间不可能取其他量。
一
总体与样本
总体
无限总体:指总体中的个体是无限的 有限总体:指总体中的个体是有限的
三节 统计学的若干基本概念
一
总体与样本
注意
总体中的“个体”(individual)在多数情形下是 人,但也可以是其他个体。
注意识别鉴别“个体”即基本单位到底是什么, 在统计分析以及结果解释中都至关重要。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一单元概述1.研究设计应包括那几方面内容?答:包括:专业设计和统计设计。
专业设计是针对专业问题进行的研究设计,如选题、形成假说等。
统计设计是针对统计数据收集和分析进行的设计,如样本来源、样本量等。
统计设计是统计分析的基础。
任何设计上的缺陷,都不能在统计分析阶段弥补和纠正。
第二单元资料描述性统计1.描述计量资料的集中趋势和离散趋势的指标有哪些?各指标的适用范围如何?答:集中趋势的指标有:算术均数、几何均数、中位数。
算术均数适用于描述对称分布资料的集中位置,尤其是正态分布资料;几何均数用来描述等比资料和对数正态分布资料的集中位置;中位数可用于任何资料。
描述离散趋势有:极差、四分位数间距、方差、标准差和变异系数。
极差和四分位数间距可用于任何分布,但两个指标都不能反映变异程度;方差和标准差常用于资料为近似正态分布;变异系数可用于多组资料间量纲不同或均数相差较大时变异程度间的比较。
2.变异系数和标准差有何区别和联系?答:区别:1.计算公式不同:CV=S/X*100%,标准差是方差的平方根。
2.单位不同:变异系数无量纲,标准差量纲和原指标一致。
3.用途不同。
联系:都是适用于对称分布的资料,尤其是正态分布的资料,并且由公式所知,在均数一定时,CV与s呈正比。
3.频数表的用途有哪些?答:1.描述资料的频数分布的特征;2.便于发现一些特大或特小的可疑值;3.将频数表作为陈述资料的形式,便于进一步的统计分析和处理;4.当样本量足够大时,可以以频数表作为概率的估计值。
4.用相对数时应注意哪些问题?答:1.在实践工作中,应注意各相对数的含义,避免以比代率的错误现象。
2.计算相对数时分母应该有足够的数量,如资料的总数过少,直接报告原数据更为可取。
3.正确计算频数指标的合并值。
4.相对数的比较具有可比性。
5.在随机抽样的情况下,从样本估计值推断总体相对数应该考虑抽样误差,因此需要对相对数指标进行参数估计和假设检验。
第三单元医学统计推断基础1.正态分布和标准正态分布的联系和区别?答:联系:均为连续型随机变量分布。
区别:标准正态分布是一种特殊的正态分布(均数为0,标准差为1)。
一般正态分布变量经标准化转换后的新变量服从标准正态分布。
4.简述二项的应用条件?答:条件为:1.每次试验只会发生两种互斥的可能结果之一,即两种互斥结果的概率之和为1;2.每次试验产生某种结果固定不变;3.重复试验是相互杜立的,即任何一次试验结果的出现不会影响其他试验结果的概率。
5.简述Q-Q图法的基本原理?答:u-变换可以把一个一般正态分布变量变换为标准正态分布变量,反之,u-变换的逆变换也可以把一个标准正态分布变量变换为一个正态变量。
Q-Q图法实际上就是首先求的小于某个x的积累频率,再通过该积累频率求得相应的u值,如果该变量服从正态分布,则点(u,x)应近似在一条直线上(u-变换直线),否则(u,x)不会近似在一条直线上。
Q-Q图法正是根据(u,x)是否近似在一条直线上来判断是否为正态分布。
第四单元参数估计与参考值范围的估计1.均数的标准差和标准误的区别和联系?答:区别和联系:标准差是描述个体值变异程度的指标,为方差的算术平方根,该变异不能通过统计方法来控制;而标准误则是指样本统计量的标准差,均数的标准误实质上是样本均数的标准差,它反映了样本均数的离散程度,也反映了样本均数与总体均数的差异,间接反映了均数的抽样误差大小。
2.简述t分布和标准正态分布间的区别与联系?答:t分布是进行小样本总体参数区间估计和假设检验的理论基础,t分布比标准正态分布的峰值低,且尾部翘的要高。
此外随着自由度的增大,t分布逐渐趋近于标准正态分布,即为自由度趋于无穷时,t分布就是标准正态分布。
3.简述医学中参考值范围的含义和制定参考值范围的一般步骤?答:含义:医学中把绝大多数正常人的某指标范围称为该指标的参考值范围,也叫正常值范围。
步骤:1.定义“正常人”,不同的指标“正常人”的定义也不同;2.选定足够数量的正常人作为研究对象;3.用统一和准确的方法测定相应的指标;4.根据不同的用途选定适当的百分界限,常用95%和99%;5.根据此指标的实际意义,决定用单侧范围还是双侧范围;6.根据此指标的分布决定计算方法,常用的计算方法有正态分布法、百分位数法。
第五单元t检验与单因素方差分析1.I型错误和II型错误有何区别与联系,这两种错位有何实际意义?答:I型错误是指实际上成立的H0所犯的“弃真”错误,其概率大小用α表示。
II型错误则是指“接受”了实际上不成立的H0所犯的“取伪”错误,其概率大小用β表示。
当样本含量n确定时,α愈小,β愈大,反之亦然。
意义:若在应用中要重点减少α,则取α=0.01;若在应用中要重点减少β,则取α=0.05,0.10,0.20甚至更高。
2.假设检验和区间估计有何联系?答:联系在于可信区间亦可以回答假设检验的问题,在判断两个或多个总体参数是否相等时,假设检验和可信区间是完全等价的。
3.为什么假设检验的结论不能绝对化?答:因为通过假设检验的结论具有概率性,其结论不可能完全正确,有可能发生两类错误。
拒绝H0是可能犯I型错误;接受H0时可能犯II型错误。
因此不能在结论中使用绝对化字词如“肯定”等。
5.如何正确选取单侧或双侧检验?答:单双侧检验首先应根据专业知识来确定,同时也应该考虑所要解决问题的目的。
1.若从专业知识判断一种方法的结果可能低于或高于另一种方法的结果,则用单侧检验;2.在尚不能从专业知识判断两种结果谁高谁低时,用双侧检验;3.若研究者对低于或高于两种结果都关系,用双侧检验;若只关系其中一种可能,用单侧检验。
一般认为双侧检验较保守和稳妥;单侧检验由于充分利用了另一侧的不可能性,故更易得出有差别的结论,但应慎用。
6.两样本t检验的应用条件?答:条件为:两样本相互独立的;所来自的总体为正态总体;两总体方差相等。
7.方差分析的应用条件?答:条件是:1.各样本是相互独立的随机样本,均服从正态分布;2.相互比较的各样本的总体方差相等,即具有方差齐性。
第六单元列联表分析1.R*C表的卡方检验中,对于理论频数太小的情况应如何处理?答:处理方法:1.增加样本含量,以达到增大理论频数的目的,该方法为首先;2.根据专业知识,删除理论频数太小的格子所对应的行或列,可能损失样本信息或随机性,慎用;3.根据专业知识,将理论频数太小的格子所对应的行或列与性质相近的或邻列合并,使重新计算的理论频数变大,但要合并的合理;4.改用双向无序的R*C表的Fisher确切概率法,该方法计算复杂,需要SAS软件实现。
第七单元非参数统计分析方法1.简述非参数检验的应用条件?答:条件:1.资料不符合参数统计法的应用条件或总体分布类型未知;2.等级资料;3.个别数值偏大或某一端为不确定数如<0.01;4.在资料满足参数统计的要求时,应首选参数法,以免降低检验效能。
4.对同一资料,又出自同一研究目的,用参数统计和非参数统计所得结果不一致时,应以何种结果为准?答:两种方法各有适用的条件。
如果资料符合参数统计的要求,如满足正态、方差齐性等条件,以参数统计的结果为准;如果资料不符合参数统计的应用条件,如总体为非正态或分布类型不明确等,以非参数统计的结果为准。
第八单元回归与相关1.试总结从样本数据判断总体回归关系是否成立的统计方法有哪些?答:用tb、tr作t检验,用F对b作方差分析,直接查r界值表。
2.直线相关与秩相关的区别与联系:答:二者的联系(1):两者嗦解决的应用问题相同,都可用来表示两个数值变量间关系的方向和密切程度;(2):两个相关系数都没有单位,取值在【-1,1】之间;(3):计算上用秩次作直线相关得到的就是秩相关系数数。
二者的区别:(1):资料要求不同,直线相关系数要求x、y从正态分布,秩相关可以是任意分布;(2):对于资料要求不同,二者分属于参数和非参数统计方法,所以符合分布条件时,直线相关的效率高于秩相关;(3):二者假设检验方法不同。
3.简述直线回归和直线相关的区别与联系答:区别:(1)资料要求不同,直线回归要求Y服从正态分布,进行回归分析时成为2型回归,直线相关要求XY都服从正态分布,进行回归分析时成为2型回归;(2):应用目的不同,说明两变量的数量关系用回归分析,说明其关联用相关分析;(3):意义不同;(4):计算方法不同;(5):取值范围不同;(6):单位不同;二者联系:(1):方向一致;(2):假设检验等价;(3):用回归解释相关,回归平方和越接近总平方和,r2越接近1,说明相关性越好。
4.经检验认为回归方程有意义,是否表明两变量间存在因果关系?答:两变量间不一定存在因果关系,直线回归定量考察应变量与自变量间的线性关系,统计学检验表明回归方程有意义,只是说明二者数量上的线性关系存在,至于内在联系的性质尚需借助医学专业知识确定。
5.秩相关特别适用于哪些资料?答:(1):不服从双变量正态分布而不宜作直线相关分析的资料;(2):总体分布类型未知的资料;(3):用等级表示的资料;(4):分布端点无确定数值的资料;(5):用相对数表示的资料。
第九章实验设计与调查设计1.简述试验中对照设立的形式答:(1):空白对照是在不施加任何处理的“空白”条件下进行观察的对照;(2):实验对照是在某种与处理因素有关的实验条件下进行观察的对照;(3):标准对照是以标准值或正常值作为对照,或对照组采用的处理方法为现有标准方法或常规方法;(4):潜在对照是不专门设立对照组,而是已过去的间就结果作为对照;(5):相互对照是不专门设立对照组,各实验组之间互为对照;(6):安慰剂对照是指对照组采用一种无药理作用的物质,但其剂量或处置上不能为受试者识别,这种物质成为安慰剂。
2.什么是随机化?随机化作用是什么?在整个实验设计和实验过程中如何实验随机化?答:随机化是使各种对比组间在大量不可控制的非研究因素的分布方面尽量保持均衡一致的重要措施,随机化保证了各对比组间的均衡可比性,也是资料统计分析时进行统计推断的前提。
随机化既机会均等,应贯穿实验设计和实施的全过程,具体体现在三方面(1)抽样随机,(2)分组随机;(3)实验顺序随机。
3.常用的抽样方法有那些?答:(1)单纯随机抽样又称简单随机抽样,其抽样原则是使调查总体中每个观察单位被选入的概率完全相同;(2)系统抽样又称机械抽样或等距抽样,即先将调查总体中得所有观察单位排序后按样本例数分段,并从第一段随机抽取一个单位作为起始点,然后以相同间隔机械的从其他段中各抽取一个观察单位构成样本;(3)分层抽样又称类型抽样或分类抽样,即先将总体中所有观察单位按某项特征或标志划分为若干类型或组别,然后再按随机原则从每一层中抽取若干观察单位组成样本;(4)整群抽样是将总体中所有观察单位按某种属性分成若干群体,然后以“群”为初级抽样单位,从所有群体中随机抽取若干群体,由这些群体中的观察单位构成样本。