分数四则混合运算知识点梳理

合集下载

分数四则混合运算整理复习PPT课件

分数四则混合运算整理复习PPT课件
2 =5
2
例如:
3÷(
8
3 4
-
1 6

= 3÷ 7
8 12
=9
14
二、系统梳理
运算律:
整数的运算律适用于分数。
例如: 5
11
1 + 10

6 11
交换律:a+b=b+a ab=ba 结合律:(a+b)+c=a+(b+c)
(ab)c=a(bc)
=
5 11
+6 11
+1
10
= 1+ 1
= 1 1 10
1 292-292× 4
1
=
292
×(1 3
-4

= 292 × 4
= 219(公顷)
答:昆明湖占地面积219公顷。
x公顷
1 x公顷 4
昆明湖219公顷
万寿山占 1
1 1 4
4
解:设颐和园占地面积为x公顷。
x - 1 x =219 4 1
x ×(1 - )=219
4 3
x × = 219
4
x = 292
找单位“1”
颐和园的占地面积
颐和园的占地面积
(已知,颐和园的占地面积为292公顷) (未知,设颐和园的占地面积为x公顷)
画线段图分析 列算术式解答
列方程解答
SUCCESS
THANK YOU
2019/7/25
三、综合应用
1.计算。
(7 8
+
15 8 )+ 12
=1+ 5
12 5
= 112
3÷( 3 - 1 )
6
三、综合应用
6. 某校师生人数及占地面积变化情况如下。

分数的四则混合运算

分数的四则混合运算

分数的四则混合运算分数的四则混合运算是数学中一个基本且重要的概念,它包括加法、减法、乘法和除法四种运算方式。

在解决实际问题时,我们经常会用到这种运算,因此掌握分数的四则混合运算对我们的数学学习至关重要。

一、加法运算分数的加法运算是指将两个或多个分数相加,得到它们的和。

当两个分数的分母相同时,我们只需要将它们的分子相加,并将和的分子写在新的分数的分子位置上,而分母保持不变。

例如,计算1/4 + 2/4:将两个分数的分子相加,得到3/4,因此1/4 + 2/4 = 3/4。

当两个分数的分母不相同时,我们需要进行通分运算,即将它们的分母转化为相同的数。

通过找到两个数的最小公倍数,我们可以得到它们的通分分母,然后按照相同的分母进行计算。

例如,计算1/3 + 1/6:首先,我们求出1/3和1/6的最小公倍数为6。

然后,将1/3转化为2/6,将1/6转化为1/6,最后将它们的分子相加得到3/6。

因此1/3 +1/6 = 3/6。

二、减法运算与加法类似,当两个分数的分母相同时,我们只需要将它们的分子相减,并将差的分子写在新的分数的分子位置上,而分母保持不变。

例如,计算3/4 - 1/4:将两个分数的分子相减,得到2/4,因此3/4 - 1/4 = 2/4。

当两个分数的分母不相同时,我们同样需要进行通分运算,然后按照相同的分母进行计算。

例如,计算5/6 - 1/3:首先,我们求出5/6和1/3的最小公倍数为6。

然后,将5/6转化为5/6,将1/3转化为2/6,最后将它们的分子相减得到3/6。

因此5/6 - 1/3 = 3/6。

三、乘法运算分数的乘法运算是指将一个分数乘以另一个分数,得到它们的积。

我们只需要将两个分数的分子相乘,并将积的分子写在新的分数的分子位置上;同样地,将两个分数的分母相乘,并将积的分母写在新的分数的分母位置上。

例如,计算2/3 × 3/4:将两个分数的分子相乘得到6,将两个分数的分母相乘得到12,因此2/3 × 3/4 = 6/12。

分数四则混合运算(整理和复习)

分数四则混合运算(整理和复习)

2、现在长方形的面积是多少平方厘米?现在长方形
的面积是原来的几分之几?
3、 1任意画一个长形,再把它的长和宽分别增
4、你发现了什么规律?
加 2 ,先算出现在的长和宽,再算出现在长方形 的面积是原来的几分之几?
练习
• 1、一个长方形长12厘米,宽10厘米,把它的 1 长和宽分别增加 2 ,现在长方形的面积是多 少平方厘米?
分数四则混合运算
(整理和复习) 苏教版六年级上册
一、回顾和整理
1、分数四则混合运算的运算顺序是什么?
2、整数的运算律对分数同样适用,回忆有哪些 运算律?
3、说说解决分数应用题的解题思路是什 么?
一、回顾和整理
• 1、分数四则混合运算的运算顺序是什么? • 分数四则混合运算的顺序和整数混合运算的顺 序( )。在一个没有括号的算式里,先 算( )法,( )法,后算( )法( ) 法;有括号的要先算( )。
解决问题
3 3 1、一根绳子长20米,先用去它的 5 再用去 5 米,这 根绳子短了多少米? 1 2、六(2)班有女生27人,男生比女生多 9 ,这个班 有多少人? 2 3、小红看一本450页的故事书,已看了 5 ,剩下的比 已看的多多少页? 1 4、六(1)班有学生52人,其中女生人数的 正好是 5 男生人数的 2 ,男女生各有多少人? 3
1 2、一个长方形长增加 2 1 ,宽增加 3 ,
现在长方形的面积是原来的几分之几?
综合练习
7 3 1、 8 千米的 7 是(
)千米

3 )吨的 4 是12吨。
1 比10米长 5 米是(
)米
1 4

)千克比12千克少

• 2、甲乙两数的比是4:7,那么甲数比乙数少( ) , ( ) ( ) • 乙数比甲数多 。 ( ) 1 ( ) • 3、苹果比梨重 6 ,也就是梨比苹果轻 。 ( ) 1 • 4、一批水果第一次售出 ,第二次售出余下 1 2( ) • 的 2 ,还剩下这批水果的 。 ( ) 1 • 5、一批煤8天运走总数的 7 ,照这样计算,把这堆 • 煤全部运走需要( )天。

(完整版)分数分数、小数四则混合运算

(完整版)分数分数、小数四则混合运算

第十一讲分数分数、小数四则混合运算【知识点】一、分数与小数的互化1. 小数化成分数:原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。

2. 分数化成小数:用分母去除分子。

能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留三位小数。

3. 任何一个分数都能化为小数。

如:1/3=0.333……,1/5=0.2等。

但能化为有限小数的分数特征:首先将这个分数化为最简分数,在这个最简分数中,将分母进行分解素因数,若分母的素因数中只含有素因素2和5两,则这个分数可以化为最简分数。

否则不能。

二、分数、小数四则混合运算分数和小数的四则混合运算顺序和正整数的四则混合运算顺序相同。

整数的运算定律和运算性质都可以推广到分数和小数,同样适用于分数和小数的四则混合运算。

1、运算顺序:同级运算,从左到右依次进行运算;不同级的运算,先乘、除,后加、减;含括号的运算,先算小括号,再算中括号。

2、方法规律(1). 掌握分数加减混合运算法则、规律:同时化为小数或者同时化为分数后再计算;如果分数不能够化成有限小数,应同时化为分数。

(2). 带分数加减运算时,可以整数部分与分数部分分别计算,再合并到一起。

(3). 分数、小数乘除的混合运算法则即运算律:带分数化为假分数计算方便;某数除以一个数等于乘以这个数的倒数; 乘除混合运算顺序从左到右; 能够约分的先约分。

3、 在分数、小数的四则混合运算中,应注意以下几点:① 在进行运算之前,应考虑是把分数化为小数,还是把小数化为分数。

如果分数能够化为有限小数的,那么化为小数运算比较简单,如果分数不能化为有限小数的,那么只能化为分数运算。

② 在计算之前,要考虑运算顺序,即先算什么,再算什么。

③ 计算时,要认真审题,看清运算符号和数的特点,灵活选择合理的计算方法,数学中的运算性质、运算律在这方面有较大的作用。

通常在分数的计算中,两个分数相加、减时,能“凑整”的可以先算。

新苏教版六年级上册数学-分数四则混合运算知识题型归纳总结

新苏教版六年级上册数学-分数四则混合运算知识题型归纳总结

新苏教版六年级上册数学-分数四则混合运算知识题型归纳总结分数四则混合运算(一)知识梳理一、分数四则运算的运算法则和运算顺序1、运算法则1)加减:同分母分数相加减,分母不变,分子相加减;异分母分数相加减,先通分,再分母不变,分子相加减。

2)乘法:先约分,分子乘分子作为积的分子,分母乘分母作为积的分母。

3)除法:除以一个数就等于乘这个数的倒数。

2、运算顺序1)如果是同一级运算,一般按从左往右依次进行计算。

2)如果既有加减、又有乘除法,先算乘除法,再算加减。

3)如果有括号,先算括号里面的。

4)如果符合运算定律,可以利用运算定律进行简算。

模块一分数四则混合运算例1:计算,能用简便方法的要用简便方法。

4÷(xxxxxxxx3311) - 4×(xxxxxxxxxxxxxxxxxxxxxxxx) ÷(24) + (xxxxxxxxxxxxxxxx1129) ÷(9×[2+(1-7)])×(xxxxxxxx5314)变式1:计算,能用简便方法的要用简便方法。

27-27×(xxxxxxxx1) +(xxxxxxxxxxxxxxxx1131) ÷[1-(3+3)]×(18)+(22) -[(xxxxxxxxxxxxxxxxxxx)÷(46)×(46)+(64×(76))÷(xxxxxxxx1810)]简便计算类型归纳:模块二分数四则混合运算实际运用例2:XXX六年级共有200人,其中六(1)班人数占全年级的$\frac{1}{6}$,六(1)班和六(2)班一共有多少人?例3:小马虎在计算一个数减去$\frac{1}{3}$时漏看了小括号,这样算出的结果比正确结果大,这个数是多少?例4:一袋大米,吃了$\frac{1}{8}$后,又买来15千克倒入袋中,结果比原来重了,这袋大米现在有多少千克?变式2:食堂有82吨大米,前2天每天吃掉$\frac{3}{13}$吨,剩下的要3天吃完,平均每天可以吃多少吨?变式3:环卫工叔叔在小区里清理建筑垃圾,第一组有8人,共清理55吨,第二组有10人,共清理31吨。

分数四则混合运算知识点总结

分数四则混合运算知识点总结

分数四则混合运算知识点总结一、分数四则混合运算的运算顺序。

1. 同级运算。

- 在没有括号的算式里,如果只有加、减法或者只有乘、除法,要从左到右依次计算。

- 例如:(1)/(2)+(1)/(3)-(1)/(4),先算加法(1)/(2)+(1)/(3)=(3 + 2)/(6)=(5)/(6),再算减法(5)/(6)-(1)/(4)=(10 - 3)/(12)=(7)/(12);(2)/(3)÷(4)/(5)×(3)/(8),先算除法(2)/(3)÷(4)/(5)=(2)/(3)×(5)/(4)=(5)/(6),再算乘法(5)/(6)×(3)/(8)=(5×3)/(6×8)=(5)/(16)。

2. 两级运算。

- 在没有括号的算式里,如果既有乘、除法又有加、减法,要先算乘、除法,后算加、减法。

- 例如:(1)/(2)+(2)/(3)×(3)/(4),先算乘法(2)/(3)×(3)/(4)=(1)/(2),再算加法(1)/(2)+(1)/(2)=1;(3)/(4)-(1)/(2)÷(2)/(3),先算除法(1)/(2)÷(2)/(3)=(1)/(2)×(3)/(2)=(3)/(4),再算减法(3)/(4)-(3)/(4)=0。

3. 有括号的运算。

- 有括号的分数四则混合运算,要先算小括号里面的,再算中括号里面的,最后算括号外面的。

- 例如:[(1)/(2)-((1)/(3)-(1)/(4))]÷(1)/(5),先算小括号里的(1)/(3)-(1)/(4)=(4 - 3)/(12)=(1)/(12),再算中括号里的(1)/(2)-(1)/(12)=(6 - 1)/(12)=(5)/(12),最后算括号外的除法(5)/(12)÷(1)/(5)=(5)/(12)×5=(25)/(12)。

分数四则混合运算法则口诀(3篇)

分数四则混合运算法则口诀(3篇)

第1篇一、分数加法口诀分数加法,看似复杂,其实简单。

先通分,再相加,结果是关键。

以下口诀助你轻松掌握:同分母,直接加,分母不变,分子相加;异分母,通分法,分母求最小公倍数,分子相乘;最后,约分求最简,确保结果最完美。

二、分数减法口诀分数减法,方法类似,注意细节,操作简便。

以下口诀助你一臂之力:同分母,直接减,分母不变,分子相减;异分母,通分法,分母求最小公倍数,分子相乘;最后,约分求最简,确保结果最完美。

三、分数乘法口诀分数乘法,简单易行。

相乘分子,相乘分母,结果约分,最简为止。

以下口诀助你轻松掌握:分子相乘,分母相乘,结果是分数,约分求最简;乘积分子,乘积分母,结果是整数,无需约分。

四、分数除法口诀分数除法,关键是倒数。

相乘倒数,结果是分数,约分求最简。

以下口诀助你轻松应对:除以一个数,等于乘以它的倒数;相乘分子,相乘分母,结果是分数,约分求最简;乘积分子,乘积分母,结果是整数,无需约分。

五、分数四则混合运算口诀分数四则混合运算,先乘除,后加减,注意括号。

以下口诀助你一臂之力:先乘除,后加减,注意括号,顺序别乱;加减乘除,混合运算,先算括号,再算乘除;约分求最简,确保结果,正确无误。

六、特殊情况口诀特殊情况,注意处理,以下口诀助你应对:分母为零,无意义,运算不能继续;分子为零,结果是零,分母为零,无意义;分母相等,结果相等,分子相等,结果相等;分子分母同时乘以或除以相同的数(不为零),分数大小不变。

七、总结分数四则混合运算,看似复杂,实则简单。

只要掌握好以上口诀,运用得当,分数运算轻松自如。

在学习过程中,不断练习,提高计算速度和准确性,为以后的学习打下坚实基础。

祝你学习进步,早日成为数学小达人!第2篇在数学学习中,分数的四则混合运算是一个非常重要的内容。

为了帮助同学们更好地掌握分数的加减乘除运算,以下是一份详细的分数四则混合运算法则口诀,希望能对大家的学习有所帮助。

一、分数加减法口诀1. 分子分母同加减,加减符号要跟上。

分数的四则混合运算知识点

分数的四则混合运算知识点

分数的四则混合运算知识点分数是数学中常见的一种数形式,它由一个整数部分和一个分数部分组成。

分数可以表示部分整数,常见的分数形式包括真分数和假分数。

在数学中,我们经常需要对分数进行四则混合运算,即加法、减法、乘法和除法。

本文将介绍分数的四则混合运算的知识点和相关的运算规则。

一、分数的加法分数的加法是指两个分数相加的运算。

要将两个分数相加,首先要确保两个分数的分母相同,然后将分子相加,分母保持不变。

例如,计算1/4 + 1/3的结果,首先需要将两个分数的分母统一为12,然后相加分子,得到7/12。

如果两个分数的分母不相同,我们需要找到它们的最小公倍数,然后通过改变分数的形式,使它们的分母相同。

例如,计算1/4 + 2/3的结果,最小公倍数为12,我们可以将1/4改写为3/12,然后进行分数的加法,得到5/12。

二、分数的减法分数的减法是指两个分数相减的运算。

要将两个分数相减,和分数的加法类似,首先要确保两个分数的分母相同,然后将分子相减,分母保持不变。

例如,计算2/3 - 1/4的结果,首先需要将两个分数的分母统一为12,然后相减分子,得到5/12。

如果两个分数的分母不相同,我们需要找到它们的最小公倍数,然后通过改变分数的形式,使它们的分母相同。

例如,计算2/3 - 1/5的结果,最小公倍数为15,我们可以将2/3改写为10/15,然后进行分数的减法,得到7/15。

三、分数的乘法分数的乘法是指两个分数相乘的运算。

要将两个分数相乘,只需要将它们的分子相乘,分母相乘。

例如,计算3/4 * 2/5的结果,分子相乘得到6,分母相乘得到20,所以答案是6/20,可以进一步简化为3/10。

四、分数的除法分数的除法是指两个分数相除的运算。

要将一个分数除以另一个分数,只需要将它们的分子相除,分母相除。

例如,计算3/4 ÷ 1/2的结果,分子相除得到3,分母相除得到2,所以答案是3/2,可以进一步简化为1整又1/2。

数学分数四则混合运算

数学分数四则混合运算

1、运算顺序:分数四则混合运算的顺序与整数相同。

先算乘除法,后算加减法;有括号的先算括号里面的,后算括号外面的。

2、运算律:加法的交换律:a+b=b+a加法的结合律:(a+b)+c=a+(b+c)乘法的交换律:a×b=b×a乘法的结合律:(a×b)×c=a×(b×c)乘法的分配律:(a+b)×c=a×c+b×c3、分数四则混合运算的应用题:(1) 总数与部分数相比较的问题:【分数乘法、减法】一般解题方法:先求出未知的部分数,再用总数减部分数等于另一部分数。

(2) 已知一个数量比另一个数量多(或少)几分之几,求这个数量是多少的问题:【分数乘法、加减法】一般解题方法:先求出多(或少)的部分,再用加法或减法求出结果。

注:对于题中出现的带单位与不带单位的分数,要注意它们的意义不一样。

四则混合运算常见错误一、对于计算错误应该进行针对性的练习提高计算的准确性,可以从口算开始进行训练。

在四则混合运算中,加强基本训练的一个重要环节,就是要加强口算教学和练习。

口算是笔算的基础,笔算的技能技巧是口算的发展,笔算是由若干口算按照笔算法则计算出来的。

如:9×71一题,就要进行2次乘法口算,由此可以看出,如果口算出错误,笔算必然出错误。

因此,不仅低中年级基本口算的训练要持之以恒,随着学习内容的扩展、加深,在高年级也应同样重视。

这不仅有利于学生及时巩固概念、法则,增大课堂教学的密度,提高计算能力,而且可以在口算训练中,通过引导学生积极思维,灵活运用知识,培养学生思维的敏捷性、注意力和记忆力。

二、顺序错误主要有一下几种:1.脱式计算时,学生会出现如下错误的情况。

如:36-135÷9=15(没有把“36-”照抄下来)或36-135÷9=15-36(颠倒了两个数的位置)=21对于这类错误教师要反复讲清,为什么不能改变顺序,为什么未算的部分要照抄下来的道理。

青岛版小学数学六年级上册第六单元分数四则混合运算重点知识归纳

青岛版小学数学六年级上册第六单元分数四则混合运算重点知识归纳

青岛版小学数学六年级上册第六单元分数四则混合运算重点知识归纳知识点1 分数四则混合运算的顺序与整数四则混合运算一样,没有括号的,先算乘除,后算加减,同级运算,从左往右依次计算。

有括号的,从内到外先算括号里面的。

【说明】同级运算:加减为一级运算,乘除为二级运算。

有加减乘除,先算乘除,后算加减。

知识点2 分数四则混合运算的运算律和运算性质同整数运算律和运算性质一样1.运算律(1)加法运算律:①交换律:a+b=b+a;②结合律:a+b+c=a+(b+c);(2)乘法运算律①交换律:a×b=b×a;②结合律:a×b×c=a×(b×c);③分配律: a×(b±c)=ab±ac【注意】分配律只适用于乘法,不适用于加减法和除法。

2.运算性质(1)减法的性质公式:a-b-c=a-(b+c)(2)除法的性质公式:a÷b÷c=a÷(b×c)知识点3 分数四则混合运算法则1.加减:同分母分数相加减,分母不变,分子相加减;2.乘法:先约分,分子乘分子作为积的分子,分母乘分母作为积的分母;3.除法:除以一个数等于乘这个数的倒数。

知识点4 分数四则混合运算的简便计算1.利用乘法的分配律及其逆运算;2.利用减法的性质。

【注意】运用乘法分配律简便计算时注意因数“1”的添加如:35-27×35=35×1-27×35=35×(1-27)=35×57=37知识点4 分数四则混合运算应用1.已知整体和一部分占整体的几分之几,求另一部分的量。

列式:a-a×cb 或a×(1−cb)【说明】整体就是那个单位“1”,a是单位“1”的量。

cb表示占整体的几分之几(即分率)。

2.已知一个数以及另一个数比它多几分之几,求另一个数。

列式:a+a×几几或a×(1+几几)【重点】找准分率和单位“1”的对应关系3. 已知一个数以及另一个数比它少几分之几,求另一个数。

新苏教版六年级上册数学-分数四则混合运算知识题型归纳总结

新苏教版六年级上册数学-分数四则混合运算知识题型归纳总结

分数四则混合运算(一)知识梳理一、分数四则运算的运算法则和运算顺序 1、运算法则(1)加减:同分母分数相加减,分母不变,分子相加减:异分母分数相加减,先通分,再分母不变,分子相加减。

(2)乘法:先约分,分子乘分子作为积的分子,分母乘分母作为积的分母 (3)除法:除以一个数就等于乘这个数的倒数 2、运算顺序(1)如果是同一级运算,一般按从左往右依次进行计算 (2)如果既有加减、又有乘除法,先算乘除法、再算加减 (3)如果有括号,先算括号里面的(4)如果符合运算定律,可以利用运算定律进行简算。

模块一 分数四则混合运算例1 计算,能用简便方法的要用简便方法。

454544÷-÷784341187÷+⨯ 2011103231322-⨯-2412743⨯+)( 52424587⨯÷ 32753275⨯÷⨯5216514371⨯-÷ 9519154÷+⨯ 149)]321(2[⨯-+变式1 计算,能用简便方法的要用简便方法。

100992727⨯- 72767276+÷+ )4183(83+÷1352213518135-⨯+⨯ 361)9212721(÷-+ 41)]8341(1[÷+- 46944695⨯+⨯ 2120)768364(÷+⨯ 109185)2153(43⨯-+÷简便计算类型归纳:模块二 分数四则混合运算实际运用例2 英才小学六年级共有200人,其中六(1)班人数占全年级的41 ,六(2)班人数占全年级的4011,六(1)班和六(2)班一共有多少人?例3 小马虎在计算一个数减去53的差除以4时漏看了小括号,这样算出的结果比正确结果大109,这个数是多少?例4 一袋大米,吃了81后,又买来15千克倒入袋中,结果比原来重了21,这袋大米现在有多少千克?变式2 食堂有43吨大米,前2天每天吃掉81吨,剩下的要3天吃完,平均每天可以吃多少吨?变式3 环卫工叔叔在小区里清理建筑垃圾,第一组有8人,共清理59吨,第二组有10人,共清理513吨。

北师大版数学六年级分数混合运算:思维导图+知识梳理+例题精讲+易错题精讲

北师大版数学六年级分数混合运算:思维导图+知识梳理+例题精讲+易错题精讲
A.120× B.120×(1- )C.120×(1+ )D.120× +1
11. ()。
A.0B.1C.
12.一台冰箱原价8000元,先提价 ,再降价 ,现价与原价相比,()。
A.价格不变B.原价高C.现价高
二、填空题(满分16分)
13.一个平行四边形的高是 分米,它的底是高的 ,这个平行四边形的面积是( )平方分米。
【分析】用去的是这桶油的 ,先用乘法求出用去的重量;再用减法求出剩下的数量;买来这时桶里油的 ,则用剩下的重量乘 求出买来的重量;最后把剩下的重量和买来的重量加起来即可。
【详解】100-100×
=100-40
=60(千克)
60+60×
=60+30
=90(千克)
【点睛】根据数量关系,先求出剩下的油重,进而求出买来的油的重量是解题的关键。
32.一辆汽车从甲地到乙地,每小时行驶90km, 小时行完了全程的 ,甲地到乙地的全程是多少千米?
33.小静带着一笔钱去买书,买《太空的奥秘》花的钱数比所带钱数的 少4元,买《海洋世界》花的钱数比所带钱数的 多7元,此时还剩下21元,小静一共带了多少钱?
北师大版六年级数学分数混合运算
参考答案
1.90
四、易错专练
一、选择题(满分16分)
5.一桶油重4千克,倒出 后,再装进去 千克,这时桶里的油()。
A.比原来多B.比原来少C.和原来一样多D.无法确定
6.一台洗衣机比原价降低了120元,正好比原价降低了 ,求现价多少元?用下面的式子表示应该是( )。
A. B. C. D.
7.120的 相当于()的 。
2.“已知一部分量占总量的几分之几及另一部分量,求总量”
把总量看作单位“1”,可以根据“总量×(1-已知部分量占总量的分率)=另一部分量”列方程解答;也可以根据“总量-总量×已知部分量占总量的分率=另一部分量”列方程解答。

苏教版六年级数学上册分数四则混合运算寒假复习提升卷

苏教版六年级数学上册分数四则混合运算寒假复习提升卷
A.六、2班比六、1班多 B.六、2班比六、1班少
C.六、2班是六、1班的 D.六、1班比六、2班少
四、易错专练
一、选择题。(16分)
6.一批水果,第一天卖出 ,第二天卖出剩下的 ,这批水果()。
A.卖完了B.还剩原来的 C.还剩原来的
7.一本书有240页,小明第一天看了这本书的 ,从第二天开始,每天都比前一天多看3页,第3天小明该从第()页开始看起。
C.五月份支出比六月份少 D.五月份支出比六月份多
13.在下面的选项中,不能用等号连接的一组算式是( )。
A. ×99和 ×100﹣1
B. 和
C. 和
D. 和
二、填空ห้องสมุดไป่ตู้。(16分)
14.( )占40米的 ;80吨是( )的 ;( )比6千克少 。
15.学校食堂三月份买来450千克大米,四月份比三月份多买 ,这里是把( )看作单位“1”,则450× 表示( ),450×(1+ )表示( )。
(4)在一个算式里,如果有括号,要先算小括号里面的,再算中括号里面的,最后算中括号外面的。
2、分数四则混合运算的简便运算。
(1)整数的运算律或运算性质对于分数同样适用。
①加法交换律:a+b=b+a
②加法结合律:(a+b)+c=a+(b+c)
③乘法交换律:a×b=b×a
④乘法结合律:(a×b)×c=a×(b×c)
⑤乘法分配律:(a+b)×c=a×c+b×c
(2)恰当地运用运算律或运算性质可以使计算简便。
在加减混合运算中,加括号或去括号时要注意括号前面的符号,如果是加号,括号里面不变号;如果是减号,括号里面加变减、减变加。
知识点二:用乘法和加、减法解决稍复杂的实际问题
1.已知总量及一个部分量占总量的几分之几,求另一个部分量时,可以列形如a-a× 或a× 的算式解题(b≠0)。

分数混合运算知识点

分数混合运算知识点

04 分数四则混合运算
分数四则混合运算的法则
加法法则
同分母分数相加,分母不变,分子相加;异分母分数相加 ,先通分,再按同分母分数相加法则进行计算。
减法法则
同分母分数相减,分母不变,分子相减;异分母分数相减 ,先通分,再按同分母分数相减法则进行计算。
乘法法则
分数乘整数,用分数的分子和整数相乘的积作分子,分母 不变;分数乘分数,用分子相乘的积作分子,分母相乘的 积作分母。
Hale Waihona Puke 注意问题在乘除混合运算中,需要 注意运算顺序和运算符号 的处理,以及结果的化简 和准确性。
06 分数混合运算在生活中的 应用
在数学中的应用
解决复杂数学问题
分数混合运算在数学中广泛应用于解决各种复杂问题,如代数、几何和三角学等 领域。通过分数的加减乘除,可以简化问题并找到解决方案。
数学建模
在数学建模中,分数混合运算用于描述和解决实际问题。例如,在经济学中,可 以使用分数来表示不同商品的价格比率,并通过混合运算来计算总价格。
分数可以表示为一个整数除以另一个非 零整数。
性质
分数具有分子和分母,分子表示被分的 部分,分母表示总的部分。
分数混合运算的意义
数学意义
分数混合运算是数学中基本的运 算之一,对于理解分数的性质和 进行复杂计算具有重要意义。
实际意义
在日常生活中,很多情况下需要 处理涉及分数的计算,如分配、 比较大小等。掌握分数混合运算 有助于解决这些问题。
感谢您的观看
结果能约分的要约分。
异分母分数加减混合运算
运算规则
异分母分数相加减,先通分,然 后按照同分母分数加减法的法则
进行计算。
示例
$frac{2}{5} + frac{3}{7} = frac{2 times 7 + 3 times 5}{5 times 7} = frac{14 + 15}{35} = frac{29}{35}$

分数四则混合运算知识点梳理

分数四则混合运算知识点梳理

分数四则混合运算知识点梳理
1.分数四则混合运算运算的顺序,与我们已经学过的整数四则混合运算顺序相同。

2.整数运算定律和性质同样适用于分数四则混合运算。

分数四则混合运算的顺序,与我们已经学过的整数四则混合运算的顺序相同。

在计算过程中,能简便计算的要简便计算。

前一题按照四则运算的计算顺序进行计算。

先算小括号里面的,最后算除法;后一题先算乘法,一个数连续减去两个数等于减去这两个数的和。

计算的过程中只要按照计算顺序认真计算就可以了。

要注意在计算的过程中,分数加、减法和分数乘除法差异较大,必须分清什么时候需要通分,什么时候需要直接约分。

3.比一个数的几分之几多(少)几,有时列方程解,有时用算术方法解;如果单位“1”已经知道,就用算术方法`,如果单位“1”不知道,就设单位“1”为ⅹ,列方程解。

4.这一类应用题比基本的求一个数的几分之几是多少的应用题的数量关系稍复杂一些,题目中所求的数量不是已知的几分之几所表示的数量,而是与这个数量有关的另一个数量。

1 / 2
5.解答这一类题目的关键还是要先弄清把哪个数量看作单位“1”,先求出这个数量的几分之几是多少,再根据整数加、减法应用题的数量关系求出题目中要求的数量。

稍复杂的分数乘法应用题比简单的分数乘法应用题多了一步,分析题目的条件和问题,会发现,其实题目中的分率和所求的问题不是相对应的,这就是步数多一步的原因。

在解答时,可以求出分率对应的量,再求问题;也可以先求出问题所对应的分率,再用单位“1”×分率= 所求的量。

---精心整理,希望对您有所帮助。

分数四则混合运算知识点

分数四则混合运算知识点

分数四则混合运算知识点
四则混合运算是指在一个表达式中同时使用了加法、减法、乘法和除法运算符的运算。

以下是分数四则混合运算的几个知识点:
1. 分数的加法和减法:
- 加法:分数的加法需要找到两个分母的最小公倍数,将分数转化为相同分母后再进行加法运算。

- 减法:分数的减法与加法类似,也需要找到两个分母的最小公倍数,将分数转化为相同分母后再进行减法运算。

2. 分数的乘法和除法:
- 乘法:分数的乘法直接将分子相乘得到新的分子,分母相乘得到新的分母,然后对新的分数进行化简。

- 除法:分数的除法可以转化为乘法,即将除法转化为分子与倒数的乘法,然后进行分数的乘法运算。

3. 运算顺序:
- 乘法和除法具有优先级高于加法和减法的特性,所以需要先进行乘法和除法的计算,然后再进行加法和减法的计算。

- 如果一个表达式包含多次乘法和除法,遵循从左到右的顺序进行计算。

- 如果需要改变计算的顺序,可以使用括号来改变优先级。

4. 化简分数:
- 在进行四则混合运算时,可能会得到一个未化简的分数,需要对其进行化简。

- 化简分数是指将分子与分母的最大公约数提取出来,然后将分子和分母分别除以最大公约数。

需要注意的是,进行四则混合运算时,先进行括号内的运算,再进行乘法和除法,最后进行加法和减法。

同时,还需要注意处理好分数的化简和转化。

分数四则混合运算

分数四则混合运算

(三)数的互化1. 小数化成分数:原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。

2. 分数化成小数:用分母去除分子。

能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留三位小数。

3. 一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数;如果分母中含有2和5 以外的质因数,这个分数就不能化成有限小数。

4. 小数化成百分数:只要把小数点向右移动两位,同时在后面添上百分号。

5. 百分数化成小数:把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。

6. 分数化成百分数:通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。

7. 百分数化成小数:先把百分数改写成分数,能约分的要约成最简分数。

(四)数的整除1. 把一个合数分解质因数,通常用短除法。

先用能整除这个合数的质数去除,一直除到商是质数为止,再把除数和商写成连乘的形式。

2. 求几个数的最大公约数的方法是:先用这几个数的公约数连续去除,一直除到所得的商只有公约数1为止,然后把所有的除数连乘求积,这个积就是这几个数的的最大公约数。

3. 求几个数的最小公倍数的方法是:先用这几个数(或其中的部分数)的公约数去除,一直除到互质(或两两互质)为止,然后把所有的除数和商连乘求积,这个积就是这几个数的最小公倍数。

4. 成为互质关系的两个数:1和任何自然数互质;相邻的两个自然数互质;当合数不是质数的倍数时,这个合数和这个质数互质;两个合数的公约数只有1时,这两个合数互质。

(五)约分和通分约分的方法:用分子和分母的公约数(1除外)去除分子、分母;通常要除到得出最简分数为止。

通分的方法:先求出原来的几个分数分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。

三性质和规律(一)商不变的规律商不变的规律:在除法里,被除数和除数同时扩大或者同时缩小相同的倍,商不变。

分数的四则混合运算知识点

分数的四则混合运算知识点

分数的四则混合运算知识点分数是数学中常见的数形式,它由一个整数部分和一个分数部分组成。

在数学中,我们常常需要进行分数的四则混合运算,即加减乘除四种基本运算的组合。

本文将介绍分数的四则混合运算的知识点和相关规则。

一、分数的加法运算分数加法是指两个分数的相加操作。

当两个分数的分母相同时,只需将它们的分子相加即可,分母保持不变。

例如:1/4 + 1/4 = 2/4 = 1/2当两个分数的分母不相同时,需要找到它们的最小公倍数,将两个分数的分子与最小公倍数的乘积作为新的分子,然后将最小公倍数作为新的分母。

最后,将新的分数进行简化。

例如:1/4 + 1/3 = (1×3+1×4)/ (4×3) = 7/12二、分数的减法运算分数减法是指两个分数的相减操作。

与分数加法类似,当两个分数的分母相同时,只需将它们的分子相减即可,分母保持不变。

例如:1/2 - 1/4 = 2/4 - 1/4 = 1/4当两个分数的分母不相同时,需要找到它们的最小公倍数,将两个分数的分子与最小公倍数的乘积作为新的分子,然后将最小公倍数作为新的分母。

最后,将新的分数进行简化。

例如:1/2 - 1/3 = (1×3-1×2)/ (2×3) = 1/6三、分数的乘法运算分数乘法是指两个分数的相乘操作,即将两个分数的分子相乘作为新的分子,两个分数的分母相乘作为新的分母。

最后,将新的分数进行简化。

例如:1/2 × 3/4 = (1×3)/ (2×4) = 3/8四、分数的除法运算分数除法是指一个分数除以另一个分数的操作。

为了将除法运算转化为乘法运算,我们需要将除数的倒数作为新的分数,然后再进行分数乘法运算。

例如:1/2 ÷ 3/4 = 1/2 × 4/3 = (1×4)/ (2×3) = 4/6五、混合运算的顺序在进行分数的四则混合运算时,我们需要按照一定的顺序进行计算。

(完整版)五年级分数混合运算

(完整版)五年级分数混合运算

分数混合运算【知识点一】分数四则混合运算1、运算顺序:(1)同级运算,从左到右。

小技巧:可以随便调换位置,但要连同数字前面的运算符号一起调换。

对于二级运算,遇“÷”先变“ ×”,除数变倒数,“一线到底”约分到最简分数。

所谓“一线到底”,在加减法中,编一通分再计算,在乘除法中,遇“除” 变“乘”,一次过约分,约到不能再约分为主。

(在第一级运算中,某两分数直接加或减得整数的情况除外。

)(2)异级运算,先乘除,后加减。

(3)有括号,要先算小( )里面的,再算[ ]。

针对练习①1、计算(能简便的要简便)[1-()]÷ 257)2174(107⨯++8341+418389169(÷+ 4818125⨯⨯÷83758771+⨯+54)4365(512++⨯- ÷4 ×+×3412183418142、解方程x= x=2 (1-)x=3.653341414 -X= ×(X -)=0 x -x=3124510134133216【知识点二】分数应用题一般分数应用题解题步骤:1、审题。

2、确定单位“1”。

3、单位“1”已知,用乘法计算,单位“1”未知,用除法。

针对练习②1、列式计算1、一根电线长米,剪去一段后.剩下10.5米,问剪去了多少米?81202、邮局与居民区相距1.25千米.与工厂区相距千米.邮递员骑自行车到居民区需321小时,他用同样的速度骑自行出到工厂区需要多少时间? 1213、操场跑道一圈长千米,小华跑4圈用了小时。

他平均每小时跑多少千米?252154师傅每分钟织布米,徒弟8分钟织的布和师傅6分钟织的布同样多,徒弟每分钟织布多15少米?5李军买了千克奶糖,每千克的价钱是18元。

张强用了与李军同样多的钱买水果糖,每23千克价钱是10元。

张强买了多少千克水果糖?6利学校有学生840人,五年级学生数是全校学生总数的,一年级比五年级多人数多,8171一年级有学生多少人?7、一瓶饮料,一次喝掉一半饮料后,连瓶共重700克;如果喝掉饮料的31后,连瓶共重800克,求瓶子的重量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分数四则混合运算知识点梳理
1.分数四则混合运算运算的顺序,与我们已经学过的整数四则混合运算顺序相同。

2.整数运算定律和性质同样适用于分数四则混合运算。

分数四则混合运算的顺序,与我们已经学过的整数四则混合运算的顺序相同。

在计算过程中,能简便计算的要简便计算。

前一题按照四则运算的计算顺序进行计算。

先算小括号里面的,最后算除法;后一题先算乘法,一个数连续减去两个数等于减去这两个数的和。

计算的过程中只要按照计算顺序认真计算就可以了。

要注意在计算的过程中,分数加、减法和分数乘除法差异较大,必须分清什么时候需要通分,什么时候需要直接约分。

3.比一个数的几分之几多(少)几,有时列方程解,有时用算术方法解;如果单位“1”已经知道,就用算术方法`,如果单位“1”不知道,就设单位“1”为ⅹ,列方程解。

4.这一类应用题比基本的求一个数的几分之几是多少的应用题的数量关系稍复杂一些,题目中所求的数量不是已知的几分之几所表示的数量,而是与这个数量有关的另一个数量。

5.解答这一类题目的关键还是要先弄清把哪个数量看作单位“1”,先求出这个数量的几分之几是多少,再根据整数加、减法应用题的数量关系求出题目中要求的数量。

稍复杂的分数乘法应用题比简单的分数乘法应用题多了一步,分析题目的条件和问题,会发现,其实题目中的分率和所求的问题不是相对应的,这就是步数多一步的原因。

在解答时,可以求出分率对应的量,再求问题;也可以先求出问题所对应的分率,再用单位“1”×分率= 所求的量。

相关文档
最新文档