二次函数复习重点以及根的分布问题

合集下载

二次函数复习重点以及根的分布问题(完整资料).doc

二次函数复习重点以及根的分布问题(完整资料).doc

【最新整理,下载后即可编辑】初三数学培优卷:二次函数考点分析★★★二次函数的图像抛物线的时候应抓住以下五点: 开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. ★★二次函数y=ax 2+bx+c (a ,b ,c 是常数,a ≠0) 一般式:y=ax 2+bx+c ,三个点顶点式:y=a (x -h )2+k ,顶点坐标对称轴顶点坐标(-2ba,244ac b a -).顶点坐标(h ,k ) ★★★a b c 作用分析│a │的大小决定了开口的宽窄,│a │越大,开口越小,│a │越小,开口越大, a ,b 的符号共同决定了对称轴的位置,当b=0时,对称轴x=0,即对称轴为y 轴,当a ,b 同号时,对称轴x=-2ba<0,即对称轴在y 轴左侧,当a ,b•异号时,对称轴x=-2ba>0,即对称轴在y 轴右侧,c•的符号决定了抛物线与y 轴交点的位置,c=0时,抛物线经过原点,c>0时,与y 轴交于正半轴;c<0时,与y•轴交于负半轴,以上a ,b ,c 的符号与图像的位置是共同作用的,也可以互相推出. 交点式:y=a(x- x 1)(x- x 2),(有交点的情况) 与x 轴的两个交点坐标x 1,x 2 对称轴为221x x h +=一元二次方程02=++c bx ax 根的分布情况设方程()200ax bx c a ++=≠的不等两根为12,x x 且12x x <,相应的二次函数为()20f x ax bx c =++=,方程的根即为二次函数图象与x 轴的交点,它们的分布情况见下面各表(每种情况对应的均是充要条件)表一:(两根与0的大小比较即根的正负情况)分布情况 两个负根即两根都小于0 ()120,0x x << 两个正根即两根都大于0 ()120,0x x >>一正根一负根即一个根小于0,一个大于0()120x x << 大致图象(0>a )得出的结论 ()00200b a f ∆>⎧⎪⎪-<⎨⎪>⎪⎩ ()00200b a f ∆>⎧⎪⎪->⎨⎪>⎪⎩ ()00<f大致图象(0<a )得出的结论 ()00200b a f ∆>⎧⎪⎪-<⎨⎪<⎪⎩ ()00200b a f ∆>⎧⎪⎪->⎨⎪<⎪⎩ ()00>f综合结论(不讨论a ) ()00200b a a f ∆>⎧⎪⎪-<⎨⎪⋅>⎪⎩ ()00200b a a f ∆>⎧⎪⎪->⎨⎪⋅>⎪⎩ ()00<⋅f a表二:(两根与k 的大小比较)分布情况两根都小于k 即 k x k x <<21, 两根都大于k 即k x k x >>21,一个根小于k ,一个大于k 即21x k x <<大致图象(0>a )得出的结论 ()020b k a f k ∆>⎧⎪⎪-<⎨⎪>⎪⎩ ()020b k a f k ∆>⎧⎪⎪->⎨⎪>⎪⎩ ()0<k f大致图象(0<a )得出的结论 ()020b k a f k ∆>⎧⎪⎪-<⎨⎪<⎪⎩ ()020b k a f k ∆>⎧⎪⎪->⎨⎪<⎪⎩ ()0>k f综合结论(不讨论) ()020b k a a f k ∆>⎧⎪⎪-<⎨⎪⋅>⎪⎩ ()020b k a a f k ∆>⎧⎪⎪->⎨⎪⋅>⎪⎩ ()0<⋅k f akkk表三:(根在区间上的分布) 分布情况两根都在()n m ,内两根有且仅有一根在()n m ,内 (图象有两种情况,只画了一种)一根在()n m ,内,另一根在()q p ,内,q p n m <<< 大致图象(0>a )得出的结论()()0002f m f n b m na ∆>⎧⎪>⎪⎪>⎨⎪⎪<-<⎪⎩()()0<⋅n f m f()()()()000f m f n f p f q ⎧>⎪<⎪⎨<⎪⎪>⎩或()()()()00f m f n f p f q <⎧⎪⎨<⎪⎩大致图象(0<a )得出的结论()()0002f m f n b m na ∆>⎧⎪<⎪⎪<⎨⎪⎪<-<⎪⎩()()0<⋅n f m f()()()()000f m f n f p f q ⎧<⎪>⎪⎨>⎪⎪<⎩或()()()()0f m f n f p f q <⎧⎪⎨<⎪⎩ 综合结论(不讨论a ) ——————()()0<⋅n f m f()()()()⎪⎩⎪⎨⎧<<00q f p f n f m f n m ,,即在区间两侧12,x m x n<>,(图形分别如下)需满足的条件是(1)0a>时,()()f mf n<⎧⎪⎨<⎪⎩;(2)0a<时,()()f mf n>⎧⎪⎨>⎪⎩对以上的根的分布表中一些特殊情况作说明:(1)两根有且仅有一根在()nm,内有以下特殊情况:1︒若()0f m=或()0f n=,则此时()()0f m f n<不成立,但对于这种情况是知道了方程有一根为m或n,可以求出另外一根,然后可以根据另一根在区间()nm,内,从而可以求出参数的值。

二次函数根的分布和最值

二次函数根的分布和最值

二次方程根的分布与二次函数在闭区间上的最值归纳1、一元二次方程02=++c bx ax 根的分布情况设方程()200ax bx c a ++=≠的不等两根为12,x x 且12x x <,相应的二次函数为()20f x ax bx c =++=,方程的根即为二次函数图象与x 轴的交点,它们的分布情况见下面各表(每种情况对应的均是充要条件)表一:(两根与0的大小比较即根的正负情况)k k k根在区间上的分布还有一种情况:两根分别在区间()n m ,外,即在区间两侧12,x m x n <>,(图形分别如下)需满足的条件是(1)0a >时,()()00f m f n <⎧⎪⎨<⎪⎩; (2)0a <时,()()0f m f n >⎧⎪⎨>⎪⎩对以上的根的分布表中一些特殊情况作说明: (1)两根有且仅有一根在()n m ,内有以下特殊情况:1︒ 若()0f m =或()0f n =,则此时()()0f m f n <不成立,但对于这种情况是知道了方程有一根为m 或n ,可以求出另外一根,然后可以根据另一根在区间()n m ,内,从而可以求出参数的值。

如方程()2220mx m x -++=在区间()1,3上有一根,因为()10f =,所以()()()22212mx m x x mx -++=--,另一根为2m,由213m <<得223m <<即为所求; 2︒ 方程有且只有一根,且这个根在区间()n m ,内,即0∆=,此时由0∆=可以求出参数的值,然后再将参数的值带入方程,求出相应的根,检验根是否在给定的区间内,如若不在,舍去相应的参数。

如方程24260x mx m -++=有且一根在区间()3,0-内,求m 的取值范围。

分析:①由()()300f f -<即()()141530m m ++<得出15314m -<<-;②由0∆=即()2164260m m -+=得出1m =-或32m =,当1m =-时,根()23,0x =-∈-,即1m =-满足题意;当32m =时,根()33,0x =∉-,故32m =不满足题意;综上分析,得出15314m -<<-或1m =-根的分布练习题例1、已知二次方程()()221210m x mx m +-+-=有一正根和一负根,求实数m 的取值范围。

完整版)二次函数知识点复习

完整版)二次函数知识点复习

完整版)二次函数知识点复习二次函数知识点一、二次函数概念:二次函数是形如y=ax²+bx+c(a≠0)的函数。

需要强调的是,和一元二次方程类似,二次项系数a≠0,而b、c可以为零。

二次函数的定义域是全体实数。

二、二次函数的基本形式1.二次函数基本形式:y=ax²的性质:a的绝对值越大,抛物线的开口越小。

a的符号决定开口方向,顶点坐标为(0,0),对称轴为y轴。

当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。

性质:a>0时,当x增大时,y增大;当x减小时,y减小;当x=0时,y有最小值。

a<0时,当x增大时,y减小;当x减小时,y增大;当x=0时,y有最大值。

2.y=ax²+c的性质:上加下减。

a的符号决定开口方向,顶点坐标为(0,c),对称轴为y轴。

性质:a>0时,当x增大时,y增大;当x减小时,y减小;当x=0时,y有最小值c。

a<0时,当x增大时,y减小;当x减小时,y增大;当x=0时,y有最大值c。

3.y=a(x-h)²的性质:左加右减。

a的符号决定开口方向,顶点坐标为(h,0),对称轴为x=h。

性质:a>0时,当x>h时,y增大;当x<h时,y减小;当x=h 时,y有最小值。

ah时,y减小;当x<h时,y增大;当x=h时,y有最大值。

4.y=a(x-h)²+k的性质:a的符号决定开口方向,顶点坐标为(h,k),对称轴为x=h。

性质:a>0时,当x>h时,y增大;当x<h时,y减小;当x=h 时,y有最小值k。

ah时,y减小;当x<h时,y增大;当x=h时,y有最大值k。

三、二次函数图象的平移平移步骤:方法一:将抛物线解析式转化成顶点式y=a(x-h)²+k,确定其顶点坐标(h,k),具体平移方法如下:保持抛物线y=ax²的形状不变,将其顶点平移到(h,k)处,向上(k>0)或向下(k<0)平移|k|个单位。

二次函数根的分布专题(上课用)

二次函数根的分布专题(上课用)

一元二次方程根的分布专题一.一元二次方程根的基本分布——零分布设一元二次方程20(0)ax bx c a ++=≠的两个不等实根为1x ,2x①方程有两个不等正根 ⎪⎪⎪⎩⎪⎪⎪⎨⎧>=>-=+>-=∆>>00040,02121221a c x x a b x x ac b x x②方程两根一正一负 :0021<<<acx x ,则③方程有两个不等负根:⎪⎪⎪⎩⎪⎪⎪⎨⎧>=<-=+>-=∆<<00040,02121221a c x x a b x x ac b x x 即时应用:(1)若一元二次方程0)1(2)1(2=-++-m x m x m 有两个不等正根,求m 的取值范围。

(2)k 在何范围内取值,一元二次方程0332=-++k kx kx 有一个正根和一个负根?二、一元二次方程的非零分布——k 分布设一元二次方程20(0)ax bx c a ++=>的两不等实根为1x ,2x , k 为常数。

则一元二次方程根的k 分1x 2x kk kk即时应用:(1) 若方程42x +(m-2)x+(m-5)=0的两根都大于1,则求m 的取值范围.(2) 方程x 2+2px+1=0有一个根大于1,一个根小于1,求p 的取值范围.二、典型例题例1 若一元二次方程03)12(2=-+-+k x k kx 有一根为零,则另一根是正根还是负根?例2若方程2(2)40x k x -++=有两负根,求k 的取值范围.例3..若关于x 的方程2(2)210x k x k +-+-=的两实根中,一根在0和1之间,另一根在1和2之间,求实数k 的取值范围例4.已知关于x 的方程223230x x m -+-=的两根都在[-1,1]上.求实数m 的取值范围.例5.方程mx 2+2(m+1)x+m+3=0仅有一个负根,求m 的取值范围2k 1k 2k 1k 3k 2k 1k。

中考数学专题讲练二次函数与根的分布

中考数学专题讲练二次函数与根的分布

中考数学专题讲练二次函数与根的分布一.二次函数与x 轴交点1.抛物线与x 轴的交点:二次函数2y ax bx c =++的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程20ax bx c ++=的两个实数根.抛物线与x 轴的交点环境可以由对应的一元二次方程的根的鉴别式鉴定:①有两个交点⇔0∆>⇔抛物线与x 轴相交;②有一个交点(极点在x 轴上)⇔0∆=⇔抛物线与x 轴相切; ③没有交点⇔0∆<⇔抛物线与x 轴相离.2.平行于x 轴的直线与抛物线的交点:可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为k ,则横坐标是2ax bx c k ++=的两个实数根.3.抛物线与x 轴两交点之间的隔断.若抛物线2y ax bx c =++与x 轴两交点为()10A x ,,()20B x ,,由于1x 、2x 是方程20ax bx c ++=的两个根,故1212b cx x x x a a+=-⋅=,: ()()222212121212444b cb ac AB x x x x x x x x a a a a -∆⎛⎫=-=-=--=--==⎪⎝⎭. 二.二次函数与一元二次方程根的漫衍标题如下表(以0a >为例):鉴别式:24b ac ∆=-0∆>0∆=0∆<二次函数2y ax bx c =++(0)a >的图象x 2x 1Oyxx 1=x 2O yxO xy一元二次方程:20ax bx c ++=(0)a ≠的根有两相异实根12,x x =242b b aca -±-12()x x <有两相等实根 122bx x a==-没有实根知识精讲一.考点:二次函数与x 轴交点标题,利用二次函数办理一元二次方程根的漫衍标题.二.重难点:1.二次函数与x 轴交点标题即当时0y =,转化为一元二次方程20ax bx c ++=; 2.在利用二次函数剖析一元二次方程根的漫衍标题时要连合函数图像的性质来剖析. 三.易错点:利用二次函数剖析一元二次方程根的漫衍标题时首先确定开口偏向,然后再连合函数的增减性,对称轴的位置,函数值等因素最终确定一元二次方程根的漫衍环境.题模一:根的漫衍标题例1.1.1 求实数a 的取值范畴,使关于x 的方程()221260x a x a -=+++. (1)有两个实根12x x 、,且满足1204x x <<<;(2)至少有一个正根;(3)方程一个根大于0而小于2,另一个根大于4而小于6.【答案】 (1)715a -<<-;(2)1a ≤-;(3)1517a -<<-.【剖析】 (1)设2()2(1)26f x x a x a =-+++;则有:0042(0)0(4)0b af f ∆>⎧⎪⎪<-<⎪⎨⎪>⎪>⎪⎩,解得:715a -<<- (2)可以利用韦达定理来办理此题①由图1、图2,可得:121200x x x x ∆≥⎧⎪+>⎨⎪⋅>⎩;解得:31a -<≤-②由图3,可得:121200x x x x ∆>⎧⎪+>⎨⎪⋅=⎩;解得:3a =-;③由图4,可得:1200x x ∆>⎧⎨⋅<⎩;解得:3a <-综上可得1a ≤-.(3)设2()2(1)26f x x a x a =+-++;则有:(0)0(2)0(4)0(6)0f f f f >⎧⎪<⎪⎨<⎪⎪>⎩,解得1517a -<<-.例1.1.2 抛物线y=-x 2+bx+c 上部分点的横坐标x ,纵坐标y 的对应值如下表:三点剖析题模精讲从上表可知,下列说法正确的个数是( ) ①抛物线与x 轴的一个交点为(-2,0);②抛物线与y 轴的交点为(0,6);③抛物线的对称轴是x=1;④在对称轴左侧y 随x 增大而增大. A . 1 B . 2 C . 3 D . 4 【答案】C 【剖析】 从表中知道: 当x=-2时,y=0, 当x=0时,y=6,∴抛物线与x 轴的一个交点为(-2,0),抛物线与y 轴的交点为(0,6), 从表中还知道: 当x=-1和x=2时,y=4, ∴抛物线的对称轴方程为x=12(-1+2)=0.5, 同时也可以得到在对称轴左侧y 随x 增大而增大. 所以①②④正确. 故选C .例1.1.3 二次函数y=x 2+px+q 中,由于二次项系数为1>0,所以在对称轴左侧,y 随x 增大而减小,从而得到y 越大则x 越小,在对称轴右侧,y 随x 增大而减大,从而得到y 越大则x 也越大,请根据你对这句话的理解,办理下面标题:若关于x 的方程x 2+px+q+1=0的两个实数根是m 、n (m <n ),关于x 的方程x 2+px+q ﹣5=0的两个实数根是d 、e (d <e ),则m 、n 、d 、e 的巨细干系是( ) A . m <d <e <n B . d <m <n <e C . d <m <e <n D . m <d <n <e 【答案】B【剖析】 二次函数y=x 2+px+q+1图象如图所示:连合图象可知方程x 2+px+q ﹣5=0的两个实数根即为函数y=x 2+px+q+1和y=6的交点, 即d <m <n <e例1.1.4 已知二次函数2y ax bx c =++(a ≠0)的图象过点()2,0A ,()2,4B --,对称轴为直线1x =-. (1)求这个二次函数的剖析式;(2)若33x -<<,直接写出y 的取值范畴;(3)若一元二次方程20ax bx c m ++=-(0a ≠,m 为实数)在33x -<<的范畴内有实数根,直接写出m 的取值范畴.【答案】 (1)2142y x x =+-(2)9722y -≤<(3)9722m -≤<【剖析】 该题考察的是二次函数的基本性质. (1)∵对称轴为直线1x =-,图象过点()2,0A∴图象过点()4,0- ………………………………………..1分 设二次函数剖析式为()()42y a x x =+- …………………………….2分 ∵图象过点()2,4B -- 解得12a = ∴()()1422y x x =+-即2142y x x =+- (2)当时1x =-,2114422y x x =+-=-, 当时3x =-,2114222y x x =+-=- 当3x =,2114322y x x =+-= …………………………3分 ∴9722y -≤< ……………………..4分(3)将一元二次方程20ax bx c m ++=-看作二次函数2m ax bx c =++,可知m y =,由(2)可知m 的取值范畴为9722m -≤< …………………6分题模二:函数交点标题例 1.2.1 已知函数244y x x m =-+的图像与x 轴的交点坐标为(1x ,0),(2x ,0),且()()212112458x x x x x +--=,则该函数的最小值为( )A . 2B . -2C . 10D . -10【答案】D 【剖析】函数244y x x m =-+的图象与x 轴的交点坐标为(1x ,0),(2x ,0),∴1x 与2x 是2440x x m -+=的两根,∴211440x x m -+=,121x x +=,124mx x =21144x x m ∴=- ()()212112458x x x x x +--=,∴()()12112458x x x m x x +---=即()()12128x x m x x +---=()118m ∴--=,解得9m =-,∴抛物线剖析式为2214494102y x x x ⎛⎫=--=-- ⎪⎝⎭,故最小值为10-.例1.2.2 已知关于x 的函数()212y m x x m =-++图象与坐标轴只有2个交点,则m=__________.【答案】 1或0 【剖析】 解:(1)当m-1=0时,m=1,函数为一次函数,剖析式为21y x =+,与x 轴交点坐标为 (12-,0);与y 轴交点坐标(0,1),相符题意; (2)当时10m -≠,1m ≠,函数为二次函数,与坐标轴有两个交点,则过原点,且与x 轴有两个不同的交点,于是()4410m m ∆=-->,解得,21524m ⎛⎫-< ⎪⎝⎭,解得152m +<或152m ->.将()0,0代入剖析式得,0m =相符题意;(3)函数为二次函数时,还有别的一种环境是:与x 轴只有一个交点,与y 轴交于另一点,此时()4410m m ∆=--=,解得152m =±. 例1.2.3 若关于x 的一元二次方程(x ﹣1)(x ﹣2)=m 有实数根x 1、x 2,且x 1<x 2,有下列结论: ①x 1=1,x 2=2; ②m >﹣;③二次函数y=(x ﹣1)(x ﹣2)﹣m 的图象对称轴为直线x=1.5; ④二次函数y=(x ﹣1)(x ﹣2)+m 的图象与y 轴交点的一定在(0,2)的上方. 此中一定正确的有 (只填正确答案的序号). 【答案】 ②③.【剖析】 当m=0时,x 1=1,x 2=2,所以①错误;方程整理为x 2﹣3x+2﹣m=0,△=(﹣3)2﹣4(2﹣m )0,解得m >﹣,所以②正确; 二次函数为y=x 2﹣3x+2﹣m ,所抛物线的对称轴为直线x=﹣﹣1.5,所以③正确;当x=0时,y=x 2﹣3x+2+m=2+m ,即抛物线与y 轴的交点为(0,2+m ),而m >﹣,所以二次函数y=(x ﹣1)(x ﹣2)+m 的图象与y 轴交点的一定在(0,)的上方,所以④错误. 故答案为②③.例1.2.4 已知关于x 的方程()()2131220k x k x k ++-+-=.(1)讨论此方程根的环境;(2)若方程有两个整数根,求正整数k 的值;(3)若抛物线()()2131220k x k x k ++-+-=与x 轴的两个交点之间的隔断为3,求k 的值. 【答案】 (1)见剖析(2)1;3(3)0;3-【剖析】 该题考察的是二次函数与一元二次方程的综合题.(1)当时1k =-,方程44x --=0为一元一次方程,此方程有一个实数根; 当时1k ≠-,方程2(1)(31)22k x k x k ++-+-=0是一元二次方程, ∵()230k -≥,即0∆≥,∴ k 为除1-外的恣意实数时,此方程总有两个实数根. 2分 综上,无论k 取恣意实数,方程总有实数根.(2)13(3)2(1)k k x k -±-=+,11x =-,2x =421k -+.∵ 方程的两个根是整数根,且k 为正整数,∴ 当时1k =,方程的两根为1-,0;当时3k =,方程的两根为1-,1-.∴ 1k =,3. 4分(3)∵ 抛物线()()213122y k x k x k =++-+-与x 轴的两个交点之间的隔断为3, ∴,123x x -=,或213x x -=.当时123x x -=,3k =-;当时213x x -=,0k =.综上,0k =,-3. 6分随练1.1 “要是二次函数y=ax2+bx+c 的图象与x 轴有两个大众点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根.”请根据你对这句话的理解,办理下面标题:若m 、n (m <n )是关于x 的方程1﹣(x ﹣a )(x ﹣b )=0的两根,且a <b ,则a 、b 、m 、n 的巨细干系是( ) A . m <a <b <n B . a <m <n <b C . a <m <b <n D . m <a <n <b 【答案】A【剖析】 依题意,画出函数y=(x ﹣a )(x ﹣b )的图象,如图所示.函数图象为抛物线,开口向上,与x 轴两个交点的横坐标分别为a ,b (a <b ). 方程1﹣(x ﹣a )(x ﹣b )=0 转化为(x ﹣a )(x ﹣b )=1, 方程的两根是抛物线y=(x ﹣a )(x ﹣b )与直线y=1的两个交点. 由m <n ,可知对称轴左侧交点横坐标为m ,右侧为n .由抛物线开口向上,则在对称轴左侧,y 随x 增大而减少,则有m <a ;在对称轴右侧,y 随x 增大而增大,则有b <n .综上所述,可知m <a <b <n .随练1.2 已知二次函数22y x x c =++.(1)当时3c =-,求出该二次函数的图象与x 轴的交点坐标;(2)若21x -<<时,该二次函数的图象与x 轴有且只有一个交点,求c 的取值范畴. 【答案】 (1)()3,0-;()1,0(2)1c =或03c -<≤ 【剖析】 该题考察的是二次函数与x 轴交点标题. (1)由题意,得223y x x =+- 当时0y =,2230x x +-= 解得13x =-,21x =∴该二次函数的图象与x 轴的交点坐标为()3,0-,()1,0. …………………………2分 (2)抛物线22y x x c =++的对称轴为1x =-……………………………………3分 ① 若抛物线与x 轴只有一个交点,则交点为()1,0-.有012c =-+,解得1c =. ………………………………………………………4分 ② 若抛物线与x 轴有两个交点,且满足题意,则有 当时2x =-,0y ≤,∴44c -+≤0,解得0c ≤.随堂练习当时1x =,0y >,∴120c ++>,解得3c >-.∴03c -<≤.……………………………………………………………………………6分 综上所述,c 的取值范畴是1c =或03c -<≤.随练1.3 二次函数2y ax bx c =++(0a ≠,a ,b ,c 是常数)中,自变量x 与函数y 的对应值如下表:若1112m <<,则一元二次方程20ax bx c ++=(0a ≠)的两个根1x ,2x 的取值范畴是( )A . 110x -<<,223x <<B . 121x -<<-,212x <<C . 101x <<,212x <<D . 121x -<<-,234x <<【答案】A 【剖析】1112m <<,1122m ∴-<-<-,11122m <-<;由表中的数据可知,0y =在2y m =-与12y m =-之间,故对应的x 的值在1-与0之间,故223x <<. 随练1.4 若二次函数2y ax bx c =++的图象与x 轴有两个交点,坐标为A (m ,0),B (n ,0),且m n <,图象上有一点C (3,P )在x 轴下方,则下列鉴别正确的是( )A . 240b ac -≥B . 3m n <<C . ()()330m n --<D . 以上都不对【答案】D【剖析】 A .二次函数2y ax bx c =++的图象与x 轴有两个交点,坐标为A (m ,0),B (n ,0),且m n <,∴240b ac ->,故A 错误;B .a 的标记不能确定,B 错误;C .当时0a >,点C (3,P )在x 轴下方,3m n ∴<<,30m ∴->,30n -<,()()330m n ∴--<当时0a <,若点C 在对称轴的左侧,则3m n <<,30m ∴-<,30n -<,()()330m n ∴--> 若点C 在对称轴的右侧,则3m n <<,30m ∴->,30n ->,()()330m n ∴-->,则C 错误. 随练1.5 (1)关于x 的方程222320kx x k ---=有两实根,一个根小于1,另一个根大于1,求实数k 的取值范畴;(2)已知二次方程()()22210m x mx m -+++=两根,分别属于()1,0-和()1,2,求m 的取值范畴. 【答案】 (1)0k >或4k <-;(2)1142m <<. 【剖析】 (1)令2()2232f x kx x k =---,0k ≠;由题()10kf <,()22320k k k ---<,()40k k +>即0k >或4k <-; (2)由题()()()()100120ff ff ⎧-<⎪⎨<⎪⎩ ,则()()()()2121041870m m m m ⎧-+<⎪⎨--<⎪⎩,11221748m m ⎧-<<⎪⎪∴⎨⎪<<⎪⎩,1142m ∴<<.随练1.6 若关于x 的函数()()22212y a x a x a =+--+-的图像与坐标轴有两个交点,则a 的值为__________.【答案】 2-,2或174. 【剖析】 关于x 的函数()()22212y a x a x a =+--+-的图像与坐标轴有两个交点,所以可以分如下三种环境:①当函数为一次函数时,有20a +=,2a ∴=-,此时54y x =-,与坐标轴有两个交点; ②当函数为二次函数()2a ≠-,与x 轴有一个交点,与y 轴有一个交点; 函数与x 轴有一个交点,0∴∆=,()()()2214220a a a ∴--+-=,解得174a =; ③函数为二次函数时(2a ≠-),与x 轴有两个交点,与y 轴的交点和x 轴上的一个交点重合,即图象议决原点,20a ∴-=,2a =,当2a =,此时243y x x =-,与坐标轴有两个交点.随练1.7 已知二次函数()2211y kx k x =+--的图象与x 轴交点的横坐标为1x ,2x ()12x x <,那么下列结论:①方程()22110kx k x +--=的两根为1x ,2x ;②当时2x x >,0y >;③11x <-,21x >-;④21x x -=__________.【答案】 ①③.【剖析】 ①二次函数()2211y kx k x =+--的图象与x 轴交点的横坐标,即为令0y =方程的两个根,故该结论正确;②由于k 值不确定,所以抛物线的开口偏向可能向下,故该结论不一定成立; ③根据一元二次方程根与系数的干系,得1212k x x k -+=,121x x k=-,则 ()()121212112111110kx x x x x x k k-++=+++=-++=-<,11x ∴<-,21x >-,故该结论成立;④21x x -==k 的标记不确定,故该项错误.随练 1.8 已知抛物线2y x bx c =++的对称轴为2x =,若关于x 的一元二次方程20x bx c ---=在13x -<<的范畴内有两个相等的实数根,则c 的取值范畴是( ) A . 4c = B . 54c -<≤ C . 53c -<<或4c = D . 53c -<≤或4c = 【答案】D【剖析】 由对称轴2x =可知,4b =,∴抛物线24y x x c =-+,令1x =-时,5y c =+;3x =时,3y c =-;关于x 的一元二次方程20x bx c ---=在13x -<<的范畴内有两个相等的实数根,当时0∆=,即4c =,此时2x =,满足题意;当时0∆>,此时4c <,2y x bx c =++在13x -<<的范畴内与x 轴有交点,()()530c c ∴+-≤,53c ∴-≤≤;当5c =,此时1x =-或5x =,不满足题意;∴c 的范畴:53c -<≤或4c =,故选D .随练1.9 已知关于x 的一元二次方程()231210kx k x k ++++=.(1)求证:该方程必有两个实数根. (2)若该方程只有整数根,求k 的整数值(3)在(2)的条件下,在平面直角坐标系中,若二次函数()231210kx k x k ++++=与x 轴有两个不同的交点A 和B (A 在B 左侧),而且满足2OA OB =,求m 的非负整数值. 【答案】 (1)见剖析(2)1±(3)1【剖析】 该题考察的是一元二次方程综合. (1)()()()223142110k k k k ∆=++=+≥-∴该方程必有两个实数根. --------------------------1分 (2)()()()()2311311=22k k k k x kk-+±+-+±+=()()2311122k k x kk-+-+==-------------3分 ∵方程只有整数根,∴12k --应为整数,即1k应为整数 ∵k 为整数∴1k =± -------------------4分(3)根据题意,10k +≠,即1k ≠-, -------------------5分∴1k =,此时, 二次函数为223y x x m +=+∵二次函数与x 轴有两个不同的交点A 和B (A 在B 左侧) ∵m 为非负整数∴0m =或1m = ---------------------------------------------------6分当时0m =,二次函数为223y x x =+,此时3,02A ⎛⎫- ⎪⎝⎭,()0,0B不满足2OA OB =. ---------------------------------7分当时1m =,二次函数为2231y x x =++,此时()1,0A -,1,02B ⎛⎫- ⎪⎝⎭满足2OA OB =∴1m = --------------------------------8分自我总结作业1 若α、β是一元二次方程()2170mx m x m --+-=的实根,且满足10α-<<,01β<<,则m 的取值范畴是______________ 【答案】 67m <<【剖析】 该题考察的是一元二次方程与二次函数的干系.由题意,0m ≠,即二次函数()217y mx m x m =--+-与x 轴的两个交点横坐标分别为 已知二次函数过点()0,7m -,()1,6m -,()1,38m --, 故607067380m m m m ->⎧⎪-<⇒<<⎨⎪->⎩作业2 已知抛物线232y ax bx c =++,(1)若1==b a ,1-=c ,求该抛物线与x 轴大众点的坐标;(2)若1==b a ,且当时11<<-x ,抛物线与x 轴有且只有一个大众点,求c 的取值范畴;(3)若0=++c b a ,且01=x 时,对应的01>y ;12=x 时,对应的02>y ,试鉴别当时10<<x ,抛物线与x 轴是否有大众点?如有,有几个,证明你的结论;若没有,阐述理由.【答案】 (1)剖析式为1232-+=x x y ;大众点坐标为()10-,和103⎛⎫⎪⎝⎭,(2)31=c 或51c -<≤-(3)在10<<x 范畴内,该抛物线与x 轴有两个大众点【剖析】 该题考察的是二次函数综合.(1)当1==b a ,1-=c 时,抛物线为1232-+=x x y , 方程01232=-+x x 的两个根为11-=x ,312=x . ∴该抛物线与x 轴大众点的坐标是()10-,和103⎛⎫ ⎪⎝⎭,.·············································· 1’ 课后作业(2)当时1==b a ,抛物线为c x x y ++=232,且与x 轴有大众点.敷衍方程0232=++c x x ,鉴别式c 124-=∆≥0,有13c ≤. ····································· 2’ ①当时31=c ,由方程031232=++x x ,解得3121-==x x . 此时抛物线为31232++=x x y 与x 轴只有一个大众点103⎛⎫- ⎪⎝⎭,. ································· 3’ ②当时31<c , 11-=x 时,c c y +=+-=1231,12=x 时,c c y +=++=5232.由已知11<<-x 时,该抛物线与x 轴有且只有一个大众点,思虑其对称轴为31-=x , 应有1200y y ≤⎧⎨>⎩ 即1050c c +≤⎧⎨+>⎩ 解得51c -<≤-. 综上,31=c 或51c -<≤-. ········································································ 4’ (3)敷衍二次函数c bx ax y ++=232,由已知01=x 时,01>=c y ;12=x 时,0232>++=c b a y ,又0=++c b a ,∴()3222a b c a b c a b a b ++=++++=+.于是02>+b a .而c a b --=,∴02>--c a a ,即0>-c a .∴0>>c a . ································································································· 5’ ∵关于x 的一元二次方程0232=++c bx ax 的鉴别式∴抛物线c bx ax y ++=232与x 轴有两个大众点,极点在x 轴下方. ···························· 6’ 又该抛物线的对称轴3b x a=-, 由0=++c b a ,0>c ,02>+b a ,得a b a -<<-2, ∴12333b a <-<. ...………………………………………….7’ 又由已知01=x 时,01>y ;12=x 时,02>y ,查看图象,可知在10<<x 范畴内,该抛物线与x 轴有两个大众点. 8’作业3 下列关于函数()()221312y m x m x =---+的图象与坐标轴的大众点的环境:①当时3m ≠,有三个大众点;②3m =时,只有两个大众点;③若只有两个大众点,则3m =;如有三个大众点,则3m ≠.此中描述正确的是( )A . 一个B . 两个C . 三个D . 四个【答案】A【剖析】 令0y =,可得出()()2213120m x m x ---+=,()()()22231813m m m ∆=---=-, ①当3m ≠,1m =±时,函数是一次函数,与坐标轴有两个交点,故错误;②当时3m =,0∆=,与x 轴有一个大众点,与y 轴有一个大众点,总共两个,故正确; ③若只有两个大众点,3m =或1m =±,故错误;综上只有②正确.作业4 二次函数()222y x k x k =+++与x 轴交于A ,B 两点,此中点A 是个定点,A ,B 分别在原点的两侧,且6OA OB +=,则直线1y kx =+与x 轴的交点坐标为__________.【答案】 1,04⎛⎫ ⎪⎝⎭或1,08⎛⎫- ⎪⎝⎭. 【剖析】 A ,B 分别在原点的两侧,A 点在左侧,且6OA OB +=,∴设(),0A a ,则()6,0B a +,二次函数()222y x k x k =+++与x 轴的交点便是方程()2220x k x k +++=的根,()62a a k ∴++=-+,()62a a k +=,解得8a =-或2a =-;当时2a =-,4k =- ∴直线1y kx =+为直线41y x =-+,与x 轴的交点坐标为1,04⎛⎫ ⎪⎝⎭; 当时8a =-,8k = ∴直线1y kx =+为直线81y x =+,与x 轴的交点坐标为1,08⎛⎫- ⎪⎝⎭(不合题意舍去); 故直线1y kx =+与x 轴的交点坐标为1,04⎛⎫ ⎪⎝⎭. 作业5 在平面直角坐标系xoy 中,抛物线C :241y mx x =++.(1)当抛物线C 议决点A (-5,6)时,求抛物线的表达式及极点坐标;(2)若抛物线C :241y mx x =++(0m >)与x 轴的交点的横坐标都在1-和0之间(不包括-1和0),连合函数的图象,求m 的取值范畴;(3)参考(2)小问思考标题的要领办理以下标题:关于x 的方程34a x x--=在04x <<范畴内有两个解,求a 的取值范畴. 【答案】 (1)241y x x =++,极点坐标为(-2,-3);(2)34m <≤;(3)13a -<<.【剖析】 (1)抛物线C 议决点A (-5,6),625201m ∴=-+,解得1m =∴抛物线的表达式为()224123y x x x =++=+- ∴抛物线的极点坐标为(-2,-3); (2)抛物线C :241y mx x =++(0m >)与x 轴的交点的横坐标都在1-和0之间,∴当时1x =-,0y >,且0∆≥,即4101640m m -+>⎧⎨-≥⎩,解得:34m <≤;(3)方程34a x x--=的解即为方程2430x x a --+=的解,而方程2430x x a --+=的解即为抛物线243y x x a =--+与x 轴交点的横坐标方程在04x <<范畴内有两个解,∴当时0x =0y >,4x =时0y >,且0∆>,即()3016430a a -+>⎧⎪⎨--+>⎪⎩解得:13a -<<.作业6 已知关于x 的一元二次方程24120x x k -+-=有两个不等的实根,(1)求k 的取值范畴;(2)若k 取小于1的整数,且此方程的解为整数,则求出此方程的两个整数根;(3)在(2)的条件下,二次函数2412y x x k =-+-与x 轴交于A 、B 两点(A 点在B 点的左侧),D 点在此抛物线的对称轴上,若60DAB ∠=︒,求点D 的坐标.【答案】 (1)32k >-(2)11x =,23x =(3)(或(2, 【剖析】 该题考察的是二次函数综合. (1)∵方程24120x x k -+-=有两个不等的实根,∴0∆> ……………………………………………………1分即()()244121280k k ∆=--=+>- 解得32k >-………………………………………2分 (2)∵k 取小于1的整数∴1k =-或0 ………………………………………………3分∵方程的解为整数∴1k =- ………………………………………………4分 ∴此时方程为2430x x -+=解得11x =,23x = ……………………………………………5分(3)如图所示,根据(2),二次函数剖析式为243y x x =-+∴点A ,B 的坐标为()1,0A ,()3,0B∴对称轴为2x =当点D 在AB 的上方时,坐标为(,当点D 在AB 的下方时,坐标为(2,∴点D 坐标为(或(2,…………………………………………7分作业7 已知两个二次函数y 1=x 2+bx+c 和y 2=x 2+m .敷衍函数y 1,当x=2时,该函数取最小值.(1)求b 的值;(2)若函数y 1的图象与坐标轴只有2个不同的大众点,求这两个大众点间的隔断;(3)若函数y 1、y 2的图象都议决点(1,﹣2),过点(0,a ﹣3)(a 为实数)作x 轴的平行线,与函数y1、y2的图象共有4个不同的交点,这4个交点的横坐标分别是x1、x2、x3、x4,且x1<x2<x3<x4,求x4﹣x3+x2﹣x1的最大值.【答案】见剖析【剖析】。

二次函数复习知识点总结

二次函数复习知识点总结

二次函数复习知识点总结二次函数是高中数学中常见且重要的一个内容。

它的一般形式可以表示为y=ax^2+bx+c,其中a、b、c为实数且a≠0。

在二次函数中,x的次数最高为2,因此该函数的图像是一个抛物线。

以下是二次函数的复习知识点总结。

一、基本概念:1. 定义:二次函数是形如y=ax^2+bx+c的函数,其中a、b、c为实数,且a≠0。

2.首项系数:a是二次函数中x^2的系数,决定了抛物线的开口方向。

-当a>0时,抛物线开口向上;-当a<0时,抛物线开口向下。

3.y-截距:c是二次函数的常数项,表示抛物线与y轴的交点的纵坐标。

4. 零点:二次函数的零点是使得函数值为0的x值。

可以通过求解二次方程ax^2+bx+c=0来找到零点。

二、性质和图像的特征:1.对称轴:二次函数的对称轴是抛物线的对称轴,可以通过求解x=-b/2a来找到对称轴的方程。

2.最值:当抛物线开口向上时,抛物线的最小值为对称轴的纵坐标;当抛物线开口向下时,抛物线的最大值为对称轴的纵坐标。

3. 判别式:判别式Δ=b^2-4ac可以用来判断二次方程ax^2+bx+c=0的根的情况。

-当Δ>0时,方程有两个不相等实数根;-当Δ=0时,方程有两个相等实数根;-当Δ<0时,方程没有实数根。

4.开口方向:抛物线开口的方向由首项系数a决定。

5.图像:二次函数的图像是一个抛物线,可以通过首项系数a的正负和抛物线的其他特征来确定图像的形状、方向和位置。

三、函数的变换:对于二次函数y=ax^2+bx+c,可以进行水平平移、垂直平移、水平缩放等操作来得到其他的二次函数。

1. 水平平移:将函数y=ax^2+bx+c的图像沿x轴平移h个单位得到函数y=a(x-h)^2+b(x-h)+c。

平移后的抛物线的顶点坐标为(h, k),其中k是原抛物线的纵坐标。

2. 垂直平移:将函数y=ax^2+bx+c的图像沿y轴平移k个单位得到函数y=a(x^2+bx+c)+k。

二次函数复习重点以及根的分布问题

二次函数复习重点以及根的分布问题

初三数学培优卷:二次函数考点分析★★★二次函数的图像抛物线的时候应抓住以下五点: 开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. ★★二次函数y=ax 2+bx+c (a ,b ,c 是常数,a ≠0) 一般式:y=ax 2+bx+c ,三个点顶点式:y=a (x -h )2+k ,顶点坐标对称轴顶点坐标(-2b a ,244ac b a-).顶点坐标(h ,k ) ★★★a b c 作用分析│a │的大小决定了开口的宽窄,│a │越大,开口越小,│a │越小,开口越大,a ,b 的符号共同决定了对称轴的位置,当b=0时,对称轴x=0,即对称轴为y 轴,当a ,b 同号时,对称轴x=-2ba<0,即对称轴在y 轴左侧,当a ,b•异号时,对称轴x=-2ba>0,即对称轴在y 轴右侧,c•的符号决定了抛物线与y 轴交点的位置,c=0时,抛物线经过原点,c>0时,与y 轴交于正半轴;c<0时,与y•轴交于负半轴,以上a ,b ,c 的符号与图像的位置是共同作用的,也可以互相推出. 交点式:y=a(x- x 1)(x- x 2),(有交点的情况) 与x 轴的两个交点坐标x 1,x 2 对称轴为221x x h +=一元二次方程02=++c bx ax 根的分布情况设方程()200ax bx c a ++=≠的不等两根为12,x x 且12x x <,相应的二次函数为()20f x ax bx c =++=,方程的根即为二次函数图象与x 轴的交点,它们的分布情况见下面各表(每种情况对应的均是充要条件)表一:(两根与0的大小比较即根的正负情况)k k k根在区间上的分布还有一种情况:两根分别在区间()n m ,外,即在区间两侧12,x m x n <>,(图形分别如下)需满足的条件是(1)0a >时,()()00f m f n <⎧⎪⎨<⎪⎩; (2)0a <时,()()0f m f n >⎧⎪⎨>⎪⎩对以上的根的分布表中一些特殊情况作说明: (1)两根有且仅有一根在()n m ,内有以下特殊情况:1︒ 若()0f m =或()0f n =,则此时()()0f m f n <不成立,但对于这种情况是知道了方程有一根为m 或n ,可以求出另外一根,然后可以根据另一根在区间()n m ,内,从而可以求出参数的值。

微专题11 二次函数根的分布问题(解析版)

微专题11 二次函数根的分布问题(解析版)

微专题11 二次函数根的分布问题【方法技巧与总结】1、实系数一元二次方程20(0)ax bx c a ++=≠的实根符号与系数之间的关系 (1)方程有两个不等正根12,x x ⇔212124000b ac b x x a c x x a ⎧⎪∆=->⎪⎪+=->⎨⎪⎪=>⎪⎩(2)方程有两个不等负根12,x x ⇔212124000b ac b x x a c x x a ⎧⎪∆=->⎪⎪+=-<⎨⎪⎪=>⎪⎩(3)方程有一正根和一负根,设两根为12,x x ⇔120cx x a=< 2、一元二次方程20(0)ax bx c a ++=≠的根的分布问题 一般情况下需要从以下4个方面考虑: (1)开口方向;(2)判别式;(3)对称轴2bx a=-与区间端点的关系;(4)区间端点函数值的正负. 设12,x x 为实系数方程20(0)ax bx c a ++=>的两根,则一元二次20(0)ax bx c a ++=>的根的分布与其限定条件如表所示. 根的分布图像限定条件12m x x <<2()0b m a f m ∆>⎧⎪⎪->⎨⎪⎪>⎩ 12x m x <<()0f m <12x x m <<02()0b m a f m ∆>⎧⎪⎪-<⎨⎪⎪>⎩ 在区间(,)m n 内 没有实根0∆<12120x x m x x m∆==≤=≥或02()0b m a f m ∆>⎧⎪⎪-<⎨⎪⎪≥⎩02()0b n a f n ∆>⎧⎪⎪->⎨⎪⎪≥⎩()0()0f m f n ≤⎧⎨≤⎩ Onm yxOnmyxOnm yxOnm yxOnm yx在区间(,)m n 内 有且只有一个实根()0()0f m f n >⎧⎨<⎩()0()0f m f n <⎧⎨>⎩在区间(,)m n 内 有两个不等实根02()0()0b m n a f m f n ∆>⎧⎪⎪<-<⎪⎨⎪>⎪>⎪⎩【题型归纳目录】 题型一:正负根问题 题型二:根在区间的分布问题 题型三:整数根问题 题型四:范围问题【典型例题】 题型一:正负根问题例1.(2022·河南·郑州市回民高级中学高一阶段练习)已知m 为实数,命题甲:关于x 的不等式240mx mx +-<的解集为R ;命题乙:关于x 的方程22200x mx m -++=有两个不相等的负实数根.若甲、乙至少有一个为真命题,求实数m 的取值范围为_______. 【答案】(20,0]-【解析】由命题甲:关于x 的不等式240mx mx +-<的解集为R , 当0m =时,不等式40-<恒成立;OnmyxOn m yxOn myx当0m ≠时,则满足2160m m m <⎧⎨∆=+<⎩,解得160m -<<, 综上可得160m -<≤.由命题乙:关于x 的方程22200x mx m -++=有两个不相等的负实数根, 则满足2121244(20)020200m m x x m x x m ⎧∆=-+>⎪+=<⎨⎪=+>⎩,整理得2200020m m m m ⎧-->⎪<⎨⎪>-⎩,所以45020m m m m <->⎧⎪<⎨⎪>-⎩或,解得204m -<<-.所以甲、乙至少有一个为真命题时,有160m -<≤或204m -<<-, 可得200m -<≤,即实数m 的取值范围为(20,0]-. 故答案为:(20,0]-.例2.(2022·全国·高一单元测试)关于x 的方程2210ax x ++=的实数根中有且只有一个负实数根的充要条件为____________. 【答案】0a ≤或1a =【解析】若方程2210ax x ++=有且仅有一个负实数根,则当0a =时,12x =-,符合题意. 当0a ≠时,方程2210ax x ++=有实数根,则440a ∆=-≥,解得1a ≤, 当1a =时,方程有且仅有一个负实数根1x =-, 当1a <且0a ≠时,若方程有且仅有一个负实数根,则10a<,即0a <. 所以当0a ≤或1a =时,关于x 的方程2210ax x ++=的实数根中有且仅有一个负实数根.综上,“关于x 的方程2210ax x ++=的实数根中有且仅有一个负实数根”的充要条件为“0a ≤或1a =”. 故答案为:0a ≤或1a =.例3.(2022·甘肃·兰化一中高一阶段练习)若一元二次方程2330kx kx k ++-=的两根都是负数,求k 的取值范围为___________. 【答案】125k ≤-或3k > 【解析】首先0k ≠,设方程2330kx kx k ++-=的两根为12,x x ,则1212120,00x x x x x x +<⎧<<⇔⎨>⎩,所以2Δ94(3)03030k k k k kk k⎧⎪=--≥⎪⎪-<⎨⎪-⎪>⎪⎩,又0k ≠,解得125k ≤-或3k >.故答案为:125k ≤-或3k >. 例4.(2022·全国·高一专题练习)已知关于x 的二次方程2(21)210m x mx m +-+-=有一正数根和一负数根,则实数m 的取值范围是_____. 【答案】112m -<<【解析】由题意知,二次方程有一正根和一负根, 得2101021m m m +≠⎧⎪-⎨<⎪+⎩,解得112m -<<.故答案为:112m -<<例5.(2022·河南·高一阶段练习)(1)若不等式210ax bx +-<的解集是113xx ⎧⎫-<<⎨⎬⎩⎭∣,求,a b 的值; (2)若31b a =--,且关于x 的方程210+-=ax bx 有两个不同的负根,求a 的取值范围. 【解析】(1)由题意可得1-和13是方程210+-=ax bx 的两个实根,则11,3111,3b a a ⎧-+=-⎪⎪⎨-⎪-⨯=⎪⎩解得3,2a b ==.(2)因为31b a =--,所以()23110ax a x -+-=,由题可知Δ0>,则1a <-或19a >-,由题意,方程有两个负根,即310,10,a a a +⎧<⎪⎪⎨-⎪>⎪⎩解得103-<<a .综上,实数a 的取值范围是109aa ⎧⎫-<<⎨⎬⎩⎭∣. 例6.(2022·辽宁·沈阳市第八十三中学高一阶段练习)已知1x 、2x 是一元二次方程24410kx kx k -++=的两个实数根.(1)若1x 、2x 均为正根,求实数k 的取值范围;(2)是否存在实数k ,使得()()12123222x x x x --=-成立?若存在,求出k 的值;若不能存在,请说明理由.【解析】(1)由题意,一元二次方程有两个正根1x 、2x 故20,(4)16(+1)0k k k k ≠∆=-≥,即0k ≤,且121210104x x k x x k +=>⎧⎪+⎨=>⎪⎩,解得:1k <-. (2)由题意,当0∆≥,即0k ≤时,有121211,4k x x x x k ++==()()2221212121212129(1)93222+252()92442k k x x x x x x x x x x x x k k ++--=-=+-=-=-=-解得:95k =,与0k ≤矛盾.故不存在实数k ,使得()()12123222x x x x --=-成立题型二:根在区间的分布问题例7.(2022·全国·高一专题练习)已知一元二次方程x 2+ax +1=0的一个根在(0,1)内,另一个根在(1,2)内,则实数a 的取值范围为________. 【答案】5(,2)2--【解析】设f (x )=x 2+ax +1,由题意知(0)10(1)20(2)520f f a f a =>⎧⎪=+<⎨⎪=+>⎩,解得-52<a <-2.故答案为:5(,2)2--.例8.(2022·全国·高一课时练习)已知关于x 的方程220x x a -+=. (1)当a 为何值时,方程的一个根大于1,另一个根小于1?(2)当a 为何值时,方程的一个根大于1-且小于1,另一个根大于2且小于3? (3)当a 为何值时,方程的两个根都大于0?【解析】(1)二次函数22y x x a =-+的图象是开口向上的抛物线,故方程220x x a -+=的一个根大于1,另一个根小于1, 则2120a -+<,解得1a <,所以a 的取值范围是{}1a a <.(2)方程220x x a -+=的一个根大于1-且小于1,另一个根大于2且小于3,作满足题意的二次函数22y x x a =-+的大致图象,由图知,120120440960a a a a ++>⎧⎪-+<⎪⎨-+<⎪⎪-+>⎩ , 解得30a -<<.所以a 的取值范围是{}30a a -<<.(3)方程220x x a -+=的两个根都大于0,则Δ4400a a =-≥⎧⎨>⎩,解得01a <≤,所以a 的取值范围是{}01a a <≤. 例9.(2022·全国·高一专题练习)已知关于x 的一元二次方程2220x ax a -++=,当a 为何值时,该方程:有不同的两根且两根在(1,3)内. 【解析】令2()22f x x ax a =-++,因为方程2220x ax a -++=有不同的两根且两根在(1,3)内, 所以213Δ44(2)0(1)30(3)1150a a a f a f a <<⎧⎪=-+>⎪⎨=->⎪⎪=->⎩ , 解得1125<<a , 故答案为:112,5⎛⎫⎪⎝⎭例10.(2022·江苏·高一专题练习)已知二次函数()2221R y x tx t t =-+-∈.(1)若该二次函数有两个互为相反数的零点,解不等式22210x tx t -+-≥;(2)若关于x 的方程22210x tx t -+-=的两个实根均大于2-且小于4,求实数t 的取值范围. 【解析】(1)设二次函数()2221y x tx t t =-+-∈R 的两个零点分别为1x ,2x ,由已知得120x x +=,而122x x t +=,所以20t =,故0=t ,不等式22210x tx t -+-≥即210x -≥,解得1≥x 或1x ≤-,故不等式的解集为{1x x ≥或}1≤-x .(2)因为方程22210x tx t -+-=的两个实根均大于2-且小于4,所以()()()()222222Δ2t 4t 102t 422t 2t 1042t 4t 10⎧=---≥⎪⎪-<<⎨⎪--⨯-+->⎪-⨯+->⎩,即2240244308150t t t t t ≥⎧⎪-<<⎪⎨++>⎪⎪-+>⎩,解得:13t -<<,即实数t 的取值范围为{}13t t -<<.例11.(2022·全国·高一单元测试)求实数m 的范围,使关于x 的方程()221?260.x m x m +-++= (1)有两个实根,且一个比2大,一个比2小; (2)有两个实根 αβ,,且满足014αβ<<<<; (3)至少有一个正根. 【答案】(1)1m <- (2)7554m -<<- (3)1m ≤- 【分析】设()()22126y f x x m x m ==+-++,一元二次方程根的分布主要从对称轴、判别式、端点值、开口方向这几个方面来确定. (1)设()()22126y f x x m x m ==+-++.依题意有()20f <,即()441260m m +-++<,得1m <-. (2)设()()22126y f x x m x m ==+-++.依题意有()()()02601450410140f m f m f m ⎧=+>⎪=+<⎨⎪=+>⎩,解得7554m -<<-.(3)设()()22126y f x x m x m ==+-++.方程至少有一个正根,则有三种可能:①有两个正根,此时可得()()Δ0002102f m ⎧⎪≥⎪⎪>⎨⎪-⎪>⎪-⎩,即153.311m m m m m ≤-≥⎧⎪>-∴-<≤-⎨⎪<⎩或.②有一个正根,一个负根,此时可得()00f <,得3m <-. ③有一个正根,另一根为0,此时可得()6203210m m m +=⎧∴=-⎨-<⎩,.综上所述,得1m ≤-.例12.(2022·上海市七宝中学高一阶段练习)方程()2271320x a x a a -++--=的一个根在区间()0,1上,另一个根在区间()1,2上,则实数a 的取值范围为___________. 【答案】()()2,13,4--【解析】令()()227132f x x a x a a =-++--,因为程()2271320x a x a a -++--=的一个根在区间()0,1上,另一个根在区间()1,2上,所以()()()001020f f f ⎧>⎪<⎨⎪>⎩,即()22220713202821320a a a a a a a a ⎧-->⎪--+--<⎨⎪-++-->⎩,解得21a -<<-或34a <<,所以实数a 的取值范围为()()2,13,4--. 故答案为:()()2,13,4--.例13.(2022·全国·高一专题练习)关于x 的方程()2140x a x --+=在区间[]1,3内有两个不等实根,则实数a 的取值范围是_____.【答案】16(5,]3【解析】关于x 的方程()2140x a x --+=在区间[]1,3内有两个不等实根,令()()214f x x a x =--+,则有()()()2Δ1160113216031630a a f a f a ⎧=-->⎪-⎪<<⎪⎨⎪=-≥⎪=-≥⎪⎩,解得1653a <≤, 所以实数a 的取值范围是16(5,]3. 故答案为:16(5,]3例14.(2022·全国·高一单元测试)方程()2250x a x a --+-=的两根都大于2,则实数a 的取值范围是_____. 【答案】54a -<≤-【解析】由题意,方程()2250x a x a +=---的两根都大于2,令()()225f x x a x a =+---,可得()020222f a⎧⎪≥⎪>⎨⎪-⎪>⎩,即2165024a a a ⎧≥⎪+>⎨⎪->⎩,解得54a <≤--.故答案为:54a -<≤-.例15.(2022·全国·高一专题练习)已知关于x 的方程220ax x ++=的两个实根一个小于0,另一个大于1,则实数a 的取值范围是_____. 【答案】3,0【解析】显然0a ≠,关于x 的方程220ax x ++=对应的二次函数()22f x ax x =++ 当0a >时,二次函数()22f x ax x =++的图象开口向上,因为220ax x ++=的两个实根一个小于0,另一个大于1等价于二次函()22f x ax x =++的图象与x 轴的两个零点一个小于0,另一个大于1,所以()()0010f f ⎧<⎪⎨<⎪⎩,即2030a <⎧⎨+<⎩,解得a ∈∅;②当0a <时,二次函数()22f x ax x =++的图象开口向下,因为220ax x ++=的两个实根一个小于0,另一个大于1等价于二次函()22f x ax x =++的图象与x 轴的两个零点一个小于0,另一个大于1,所以()()0010f f ⎧>⎪⎨>⎪⎩,即2030a >⎧⎨+>⎩,解得30a -<<.;综上所述,实数a 的范围是3,0.故答案为:3,0.例16.(2022·全国·高一专题练习)已知方程()()22110x a x a a -+++=的两根分别在区间()0,1,()1,3之内,则实数a 的取值范围为______. 【答案】()0,1.【解析】方程()()()()2211010x a x a a x a x a ⎡⎤+++=⇒--+=⎣⎦-∴方程两根为12,1x a x a ==+,若要满足题意,则01113a a <<⎧⎨<+<⎩,解得01a <<,故答案为:()0,1.例17.(2022·上海·高一专题练习)方程2240x ax -+=的两根均大于1,则实数a 的取值范围是_______【答案】5[2,)2【解析】2240x ax -+=的两个根都大于121520Δ4160a a a >⎧⎪∴->⎨⎪=-≥⎩,解得522a ≤<可求得实数a 的取值范围为5[2,)2故答案为:5[2,)2例18.(2022·湖北·华中师大一附中高一开学考试)关于x 的方程()2290ax a x a +++=有两个不相等的实数根12,x x ,且121x x ,那么a 的取值范围是( ) A .2275a -<<B .25a > C .27a <-D .2011a -<< 【答案】D【解析】当0a =时,()2290ax a x a +++=即为20x =,不符合题意;故0a ≠,()2290ax a x a +++=即为22190x x a ⎛⎫+++= ⎪⎝⎭,令2219y x x a ⎛⎫=+++ ⎪⎝⎭,由于关于x 的方程()2290ax a x a +++=有两个不相等的实数根12,x x ,且121x x , 则()229y ax a x a =+++与x 轴有两个交点,且分布在1的两侧,故1x =时,0y <,即211190a ⎛⎫++⨯+< ⎪⎝⎭,解得211a <-,故2011a -<<,故选:D例19.(2022·全国·高一课时练习)关于x 的方程()22210x m x m +-+-=恰有一根在区间()0,1内,则实数m 的取值范围是( ) A .13,22⎡⎤⎢⎥⎣⎦B .12,23⎛⎤ ⎥⎝⎦C .1,22⎡⎫⎪⎢⎣⎭D .{}12,6723⎛⎤⋃- ⎥⎝⎦【答案】D【解析】方程2(2)210x m x m +-+-=对应的二次函数设为:()2(2)21f x x m x m =+-+-因为方程2(2)210x m x m +-+-=恰有一根属于(0,1),则需要满足: ①()()010f f ⋅<,()()21320m m --<,解得:1223m <<;②函数()f x 刚好经过点()0,0或者()1,0,另一个零点属于(0,1),把点()0,0代入()2(2)21f x x m x m =+-+-,解得:12m =, 此时方程为2302x x -=,两根为0,32,而()30,12∉,不合题意,舍去把点()1,0代入()2(2)21f x x m x m =+-+-,解得:23m =, 此时方程为23410x x -+=,两根为1,13,而()10,13∈,故符合题意;③函数与x 轴只有一个交点,横坐标属于(0,1), ()2(2)4210m m ∆=---=,解得67m =±当67m =+2(2)210x m x m +-+-=的根为27-- 若627m =-2(2)210x m x m +-+-=72,符合题意综上:实数m 的取值范围为{}12,6723⎛⎤⋃- ⎥⎝⎦故选:D题型三:整数根问题例20.(2022·上海市实验学校高一开学考试)已知12,x x 是一元二次方程24410kx kx k -++=的两个实数根.(1)是否存在实数k ,使得()()12123222x x x x --=-成立?若存在,求出k 的值;若不存在,请说明理由;(2)求使12212x x x x +-的值为整数的实数k 的整数值. 【解析】(1)假设存在实数k ,使得()()12123222x x x x --=-成立,一元二次方程24410kx kx k -++=的两个实数根,()2400Δ(4)441160k k k k k k ≠⎧∴⇒<⎨=--⋅+=-⎩,(不要忽略判别式的要求), 由韦达定理得1212114x x k x x k +=⎧⎪+⎨=⎪⎩,()()()()2221212121212129322252942k x x x x x x x x x x x x k +∴--=+-=+-=-=-, 95k ⇒=但0k <,∴不存在实数k ,使得()()12123222x x x x --=-成立.(2)()22212121221121244224411x x x x x x k x x x x x x k k +++-=-=-=-=-++,∴要使其值是整数,只需要1k +能被4整除,故1124k +=±±±,,,即021335k =---,,,,,, 0k <,235k ∴=---,,.例21.(2022·上海·高三专题练习)已知,a Z ∈关于x 的一元二次不等式260x x a -+≤的解集中有且仅有3个整数,则所有符合条件的a 的值之和是( ) A .13 B .18C .21D .26【答案】C【解析】设2()6f x x x a =-+,其图象为开口向上,对称轴为3x =的抛物线, 根据题意可得,3640a ∆=->,解得9a <,因为()0f x ≤解集中有且仅有3个整数,结合二次函数的对称性可得(2)0(1)0f f ≤⎧⎨>⎩,即4120160a a -+≤⎧⎨-+>⎩, 解得58a <≤,又,a Z ∈所以a =6,7,8,所以符合题意的a 的值之和6+7+8=21. 故选:C例22.(多选题)(2022·全国·高一课时练习)已知a ∈Z ,关于x 的一元二次不等式x 2-6x +a ≤0的解集中有且仅有3个整数,则a 的值可以是( ) A .5 B .6 C .7 D .9【答案】BC【解析】设()26f x x x a =-+,函数图象开口向上,且对称轴为3x =,因此关于x 的一元二次不等式x 2-6x +a ≤0的解集中有且仅有3个整数时,需满足()()2010f f ⎧≤⎪⎨>⎪⎩,即2226201610a a ⎧-⨯+≤⎨-⨯+>⎩,解得58a <≤,又因为a ∈Z ,所以6a =或7或8,故选:BC.例23.(2022·全国·高一专题练习)若方程()22460x kx x --+=有两个不相等的实根,则k 可取的最大整数值是______. 【答案】1【解析】方程化为()221860k x x --+=,由()Δ6424210k =-->,12k ≠解得116k <, 所以k 最大整数值是1. 故答案为:1. 题型四:范围问题例24.(2022·上海·高一专题练习)已知t 是实数,若a ,b 是关于x 的一元二次方程2210x x t -+-=的两个非负实根,则()()2211a b --的最小值是___________.【答案】3-【解析】a ,b 是关于x 的一元二次方程2210x x t -+-=的两个非负实根, ∴可得2a b +=,10ab t =-≥,1t ∴≥,又()4410t ∆=--≥ ,可得2t ≤,12t ∴≤≤,又()()()()()()222222211121a b ab a b ab a b ab --=-++=-+++()()()()2221114211a b t t ∴--=--+-+,24t =- ,又12t ≤≤, 2340t ∴-≤-≤,故答案为:3-.例25.(2022·吉林省实验中学高一阶段练习)设方程240x mx m -+=的两实根分别为12,x x . (1)当1m =时,求1211+x x 的值; (2)若120,0x x >>,求实数m 的取值范围及124x x +的最小值.【解析】(1)当1m =时,方程为2410x x -+=,2(4)4120∆=--=>,所以12124,1x x x x +=⋅=,122112114x x x x x x ∴+⋅+==. (2)因为240x mx m -+=两根120,0x x >>,所以21212Δ1640400m m x x m x x m ⎧=-≥⎪+=>⎨⎪⋅=>⎩,解得14m ≥.因为12124x x x x +=,120,0x x >>,所以12114x x +=,所以21211212121212441111194(4)()(5)524444x x x x x x x x x x x x x x ⎛+=++=++≥+⨯= ⎝, 当且仅当21124x x x x =,即1233,48x x ==时等号成立,此时91324m =>符合题意, 124x x ∴+的最小值为94. 例26.(2022·北京海淀·高一期末)已知函数()22f x x bx c =++(b ,c 为实数),()()1012f f -=.若方程()0f x =有两个正实数根1x ,2x ,则1211+x x 的最小值是( ) A .4 B .2C .1D .12【答案】B【解析】因为函数()22f x x bx c =++(b ,c 为实数),()()1012f f -=,所以1012200288b c b c +=++-, 解得4b =-,所以()224f x x x c -+=,因为方程()0f x =有两个正实数根1x ,2x ,所以()Δ168000c f c =-≥⎧⎨=>⎩,解得02c <≤,所以121212112422x x c x x x x c =++==≥, 当c =2时,等号成立,所以其最小值是2, 故选:B例27.(2022·江苏·高一)已知关于x 的方程230x kx k -++=有两个正根,那么两个根的倒数和最小值是( ) A .-2B .23C .89D .1【答案】B【解析】由题意可得∆2()4(3)0k k =--+, 解得6k 或2k ≤-,设两个为1x ,2x ,由两根为正根可得12120·30x x k x x k +=>⎧⎨=+>⎩,解得0k >, 综上知,6k . 故两个根的倒数和为12121211x x x x x x ++= 1331k k k==++,6k ,∴1106k <,3102k <, 故33112k <+, ∴12331k+,故两个根的倒数和的最小值是23. 故选:B例28.(2022·上海·华师大二附中高一期中)已知实数a b <,关于x 的不等式()210x a b x ab -+++<的解集为()12,x x ,则实数a 、b 、1x 、2x 从小到大的排列是( ) A .12a x x b <<< B .12x a b x <<< C .12a x b x <<< D .12x a x b <<<【答案】A【解析】由题可得:12x x a b +=+,121x x ab =+.由a b <,12x x <,设1x a m =+,则2x b m =-.所以212()()()1a m b m ab m b a m ab x x =+-=+--=+,所以2()1m b a m --=,21m m b a+=-.又a b <,所以0b a ->,所以0m >.故1x a >,2x b <.又12x x <,故12a x x b <<<. 故选:A.例29.(2022·福建厦门·高一期末)已知函数()()11f x x x a =-⋅--,a R ∈. (1)若0a =,解不等式()1f x <;(2)若函数()f x 恰有三个零点1x ,2x ,3x ,求123111x x x ++的取值范围.【解析】(1)当0a =时,原不等式可化为()120x x -⋅-<…①.(ⅰ)当0x ≥时,①式化为220x x --<,解得12x -<<,所以02x ≤<; (ⅰ)当0x <时,①式化为220x x -+>,解得x ∈R ,所以0x <. 综上,原不等式的解集为(),2-∞.(2)依题意,()()()2211,11,x a x a x af x x a x a x a ⎧-++--<⎪=⎨-++-≥⎪⎩.因为()10f a =-<,且二次函数()211y x a x a =-++-开口向上,所以当x a ≥时,函数()f x 有且仅有一个零点. 所以x a <时,函数()f x 恰有两个零点.所以()()()21,21410,10.a a a a f a +⎧<⎪⎪⎪=+-+>⎨⎪=-<⎪⎪⎩解得3a >.不妨设123x x x <<,所以1x ,2x 是方程()2110x a x a -++--=的两相异实根,则12121,1x x a x x a +=+⎧⎨=+⎩,所以121212111x x x x x x ++==.因为3x 是方程()2110x a x a -++-=的根,且312a x +>, 由求根公式得()23114a a x ++-+=因为函数()()2114a a g a ++-+在()3,+∞上单调递增,所以()3322x g >=31201x <<123111x x x ++.所以a 的取值范围是21,2⎛ ⎝⎭.【过关测试】一、单选题1.(2022·江苏·高一专题练习)已知p :a m <(其中R a ∈,m ∈Z ),q :关于x 的一元二次方程2210ax x ++=有一正一负两个根.若p 是q 的充分不必要条件,则m 的最大值为( ) A .1 B .0C .1-D .2【答案】C【解析】因为2210ax x ++=有一正一负两个根,所以224010a a ⎧∆=->⎪⎨<⎪⎩,解得0a <. 因为p 是q 的充分不必要条件,所以0m <,且m ∈Z ,则m 的最大值为1-. 故选:C2.(2022·江苏·高一专题练习)已知方程2(2)50x m x m +-+-=有两个不相等的实数根,且两个实数根都大于2,则实数m 的取值范围是( ) A .(5,4)(4,)--+∞ B .(5,)-+∞ C .(5,4)-- D .(4,2)(4,)--+∞【答案】C【解析】令()2(2)5m f x m x x =+-+-由题可知:()()()()2Δ02450442222242250520m m m m m m m m m m f >⎧⎧--⨯->><-⎧⎪⎪-⎪⎪>⇒<-⇒<-⎨⎨⎨⎪⎪⎪+-⨯+->>-⎩>⎩⎪⎩或 则54m -<<-,即(5,4)m ∈-- 故选:C3.(2021·北京·北师大实验中学高一期中)设方程2610x x -+=的两个不等实根分别为12,x x ,则12||x x -=( ) A .3 B .6C .22D .42【答案】D【解析】2610x x -+=,364320∆=-=>,故121261x x x x +=⎧⎨=⎩,()()2212121212||43642x x x x x x x x --=+--=故选:D.4.(2021·江苏·高一课时练习)设a 为实数,若方程220x ax a -+=在区间(1,1)-上有两个不相等的实数解,则a 的取值范围是( ). A .(,0)(1,)-∞⋃+∞ B .(1,0)-C .1,03⎛⎫- ⎪⎝⎭D .1,0(1,)3⎛⎫-+∞ ⎪⎝⎭【答案】C【解析】令2()2g x x ax a =-+,由方程220x ax a -+=在区间(1,1)-上有两个不相等的实数解可得244011(1)0(1)0a a a g g ⎧∆=->⎪-<<⎪⎨->⎪⎪>⎩,即011131a a a a <⎧⎪-<<⎪⎪⎨>-⎪⎪<⎪⎩或111131a a a a >⎧⎪-<<⎪⎪⎨>-⎪⎪<⎪⎩, 解得103-<<a , 故选:C5.(2022·全国·高一课时练习)一元二次方程()22100ax x a ++=≠有一个正实数根和一个负实数根的一个充分不必要条件是( ) A .0a < B .0a > C .1a <- D .2a <【答案】C【解析】由题意,不妨设2()21f x ax x =++,因为(0)10=>f ,且()22100ax x a ++=≠有一个正实数根和一个负实数根,所以2()21f x ax x =++的图像开口向下,即0a <, 故对于选项ABCD ,只有C 选项:1a <-是0a <的充分不必要条件. 故选:C.6.(2021·四川·树德中学高一阶段练习)设集合{}2320A x x x =-+<,集合{}2210B x ax x =--=,若A B ⋂≠∅,则实数a 的取值范围是( ) A .34,43⎡⎫⎪⎢⎣⎭B .5,34⎛⎫ ⎪⎝⎭C .3,4⎡⎫+∞⎪⎢⎣⎭D .(1,)+∞【答案】B【解析】由题意,{}2320{|12}A x x x x x =-+<=<<若A B ⋂≠∅,即方程2210ax x --=存在根在区间(1,2)(1)若102102a x x =∴--=∴=-,不成立;(2)若0a ≠,由于0x =不为方程的根,故0x ≠,则222221211210(1)1x ax x a x x x x+--=⇔==+=+- 由于21115(1,2)(,1)(1)1(,3)24x x x ∈∴∈∴+-∈综上,实数a 的取值范围是5,34⎛⎫⎪⎝⎭故选:B7.(2022·全国·高一课时练习)要使关于x 的方程()22120x a x a +-+-=的一根比1大且另一根比1小,则实数a 的取值范围是( ) A .{}12a a -<< B .{}21a a -<< C .{}2a a <- D .{}1a a >【答案】B【解析】由题意可得()2211220a a a a +-+-=+-<,解得21a -<<.故选:B.8.(2021·甘肃·天水市第一中学高一阶段练习)已知一元二次方程2(1)10()x m x m Z +++=∈有两个实数根1x ,2x ,且12013x x <<<<,则m 的值为( )A .4-B .5-C .6-D .7-【答案】A【解析】因为元二次方程2(1)10()x m x m Z +++=∈有两个实数根1x ,2x ,且12013x x <<<<,令2()(1)1f x x m x =+++,则由题意可得(0)0(1)0(3)0f f f >⎧⎪<⎨⎪>⎩,即10,30,1330,m m >⎧⎪+<⎨⎪+>⎩解得1333m -<<-,又m Z ∈,可得4m =-. 故选:A 二、多选题9.(2022·江苏南通·高一开学考试)已知不等式20(0)x ax b a ++>>的解集是{}|x x d ≠,则下列四个结论中正确的是( ). A .24a b =B .若不等式2+x ax b c +<的解集为(3,1)-,则7a b c ++=C .若不等式20x ax b +-<的解集为12(,)x x ,则120x x >D .若不等式2x ax b c 的解集为12(,)x x ,且12||4x x -=,则4c = 【答案】ABD【解析】由题意,不等式20(0)x ax b a ++>>的解集是{}|x x d ≠, 所以240a b ∆=-=,24a b ∴=,所以A 正确;对于B :2+x ax b c +<变形为2+0x ax b c +-<,其解集为(3,1)-,所以231? 314? a b c a b -+=-⎧⎪-⨯=-⎨⎪=⎩,得214a b c =⎧⎪=⎨⎪=⎩,故7a b c ++=成立,所以B 正确;对于C :若不等式20x ax b +-<的解集为12(,)x x ,由韦达定理知:21204a x xb =-=-<,所以C 错误; 对于D :若不等式2x ax bc 的解集为12(,)x x ,即20x ax b c 的解集为12(,)x x ,由韦达定理知:21212,4a x x a x x b c c +=-=-=-, 则222121212||()44()244a x x x x x x a c c -+---=,解得4c =, 所以D 正确.故选:D.10.(2021·江苏·海安高级中学高一阶段练习)一元二次方程240x x m -+=有正数根的充分不必要条件是( ) A .4m =B .5m =C .1m =D .12=-m【答案】ACD【解析】设()24f x x x m =-+,则二次函数()f x 的图象的对称轴为2x =. 当4m =时,方程即()224420x x x -+=-=,求得2x =,满足方程有正根,但由方程240x x m -+=有正数根,可得()240f m =-≤,即4m ≤,故4m =是方程240x x m -+=有正数根的充分不必要条件,故A 满足条件;当5m =时,方程即()224521x x x -+=-=-,求得x ∈∅,不满足方程有正实数根,故5m =不是方程240x x m -+=有正数根的充分条件,故排除B .当1m =时,方程即()224123x x x -+=-=,求得23=x但由方程240x x m -+=有正数根,可得()240f m =-≤,即4m ≤,故1m =方程240x x m -+=有正数根的充分不必要条件,故C 满足条件;当12=-m 时,方程即24120x x --=,求得2x =-,或6x =,满足方程有正根,但由方程240x x m -+=有正数根,可得()240f m =-≤,即4m ≤,故12=-m 方程240x x m -+=有正数根的充分不必要条件,故D 满足条件,故选:ACD .11.(2022·湖南湖南·高一期末)若方程220x x λ++=在区间()1,0-上有实数根,则实数λ的取值可以是( ) A .3- B .18 C .14 D .1【答案】BC【解析】由题意22x x λ=--在(1,0)-上有解.∵(1,0)x ∈-,∴222(1)1(0,1)x x x λ=--=-++∈,故选:BC .12.(2021·全国·高一专题练习)已知关于x 的方程()230x m x m +-+=,则下列结论中正确的是( )A .方程()230x m x m +-+=有一个正根一个负根的充要条件是{}0m m m ∈<B .方程()230x m x m +-+=有两个正实数根的充要条件是{}01m m m ∈<≤C .方程()230x m x m +-+=无实数根的充要条件是{}1m m m ∈>D .当m =3时,方程()230x m x m +-+=的两个实数根之和为0【答案】AB【解析】对A ,当0x =时,函数2(3)y x m x m =+-+的值为m ,由二次函数的图象知,方程有一正一负根的充要条件是{}|0m m m ∈<,故A 正确;对B ,若方程()230x m x m +-+=有两个正实数根1x ,2x ,即()2121234030,0,m m x x m x x m ⎧∆=--≥⎪+=->⎨⎪=>⎩解得:01m <≤,故B 正确;对C ,方程()230x m x m +-+=无实数根,即()2340m m ∆=--<,解得:19m <<,方程()230x m x m +-+=无实数根的充要条件是{}19m m m ∈<<,故C 错误; 对D ,当3m =时,方程为230x +=,无实数根,故D 错误.故答案为:AB.13.(2021·江苏·高一专题练习)已知一元二次方程()()21102x m x m Z +++=∈有两个实数根12,x x ,且12013x x <<<<,则m 的值为( )A .-2B .-3C .-4D .-5【答案】BC 【解析】设()()2112f x x m x =+++, 由12013x x <<<<,可得()()()()10200110110230193102f fm f m ⎧>⎪⎧>⎪⎪⎪<⇒+++<⎨⎨⎪⎪>⎩⎪+++>⎪⎩, 解得:25562m -<<-, 又因为m Z ∈,得3m =-或4m =-,故选:BC.三、填空题14.(2022·安徽省蚌埠第三中学高一开学考试)关于x 的方程210x ax ++=的一根大于1,一根小于1,则a 的取值范围是:__________________.【答案】a <-2【解析】∵关于x 的方程 210x ax ++=的一根大于1,另一根小于1,令2()1=++f x x ax ,则(1)20f a =+<,求得2a <- ,故答案为:2a <-15.(2021·北京师大附中高一期中)若关于x 的一元二次方程2240x ax -+=有两个实根,且一个实根小于1,另一个实根大于2,则实数a 的取值范围是________.【答案】(52,+∞) 【解析】设2()24f x x ax =-+,由题意2Δ4160(1)1240(2)4440a f a f a ⎧=->⎪=-+<⎨⎪=-+<⎩,解得52a >, 故答案为:5(,)2+∞. 16.(2021·上海·复旦附中高一期中)若关于x 的方程220x kx -+=的一根大于-1,另一根小于-1,则实数k 的取值范围为______.【答案】(),3-∞-【解析】由题意,关于x 的方程220x kx -+=的一根大于-1,另一根小于-1,设()22f x x kx =-+,根据二次函数的性质,可得()130f k -=+<,解得3k <-, 所以实数k 的取值范围为(),3-∞-.故答案为:(),3-∞-.17.(2020·上海·高一专题练习)已知集合()(){}2|320,A x x x x x R =-+-≤∈,{}2|120,B x x ax x R =--≤∈,若A B ⊆,则实数a 的取值范围是______________.【答案】[]1,1- 【解析】由()()2320x x x -+-≤,得 23020x x x ⎧-≥⎪⎨+-≤⎪⎩或 23020x x x ⎧-≤⎪⎨+-≥⎪⎩,解得 13x ≤≤,所以集合{|31A x x =-≤≤- 或}13x ≤≤,因为A B ⊆,令()212f x x ax =--,则 ()()3030f f ⎧-≤⎪⎨≤⎪⎩,即 9312093120a a +-≤⎧⎨--≤⎩,解得 11a -≤≤,所以实数a 的取值范围是[]1,1-故答案为:[]1,1-四、解答题18.(2022·全国·高一期中)命题:p 关于x 的方程20x x m ++=有两个相异负根;命题():0,q x ∃∈+∞,2390x mx -+<.(1)若命题q 为假命题,求实数m 的取值范围;(2)若这两个命题有且仅有一个为真命题,求实数m 的取值范围.【解析】(1)若命题q 为假命题,则对()0,x ∀∈+∞,2390x mx -+≥为真命题; 239mx x ∴≤+,即93m x x ≤+; 9926x x x x +≥⋅=(当且仅当9x x =,即3x =时取等号),36m ∴≤,解得:2m ≤,∴实数m 的取值范围为(],2-∞.(2)由(1)知:若命题q 为真命题,则2m >;若命题p 为真命题,则Δ1400m m =->⎧⎨>⎩,解得:104m <<;若p 真q 假,则104m <<;若p 假q 真,则2m >;综上所述:实数m 的取值范围为()10,2,4⎛⎫+∞ ⎪⎝⎭.19.(2022·湖南·高一课时练习)若一元二次方程2570x x a --=的一个根在区间()1,0-内,另一个根在区间()1,2内,求实数a 的取值范围.【解析】令2()57f x x x a =--, 则根据题意得(1)057012(0)000(1)0202(2)0201406f a a f a a f a a f a a ->⇒+->⇒<⎧⎪<⇒-⇒⎪⎨<⇒--⇒-⎪⎪>⇒-->⇒<⎩, ∴06a <<.故实数a 的取值范围(0,6).20.(2021·辽宁·昌图县第一高级中学高一期中)1.已知()()2213f x x a x =+-+.(1)如果方程()0f x =在()0,3有两个根,求实数a 的取值范围;(2)如果[]1,2x ∃∈,()0f x >成立,求实数a 的取值范围.【解析】(1)()()2213f x x a x =+-+的对称轴为1x a =-要想方程()0f x =在()0,3有两个根,需要满足()()()100001330f a f a f ⎧-<⎪>⎪⎨<-<⎪⎪>⎩解得:(1,13a ∈-(2)[]1,2x ∃∈,()22130x a x +-+>成立, 即3122x a x ⎛⎫->-+ ⎪⎝⎭在[]1,2x ∈上有解,只需1a -大于()322x g x x ⎛⎫=-+ ⎪⎝⎭的最小值,其中()322x g x x ⎛⎫=-+ ⎪⎝⎭为对勾函数,在3x ⎡∈⎣上单调递增,在)3,2x ∈上单调递减,又()131222g ⎛⎫=-+=- ⎪⎝⎭,()2372244g ⎛⎫=-+=- ⎪⎝⎭,所以最小值为()12g =- 故12a ->-,解得:1a >-,实数a 的取值范围为()1,-+∞21.(2021·上海市七宝中学高一阶段练习)设二次函数()2f x ax bx c =++,其中R a b c ∈、、.(1)若()21,94b a c a =+=+,且关于x 的不等式()28200-+<x x f x 的解集为R ,求a 的取值范围; (2)若Z a b c ∈、、,且()()01f f 、均为奇数,求证:方程()0f x =无整数根;(3)若21,21,a b k c k ==-=,当方程()0f x =有两个大于1的不等根时求k 的取值范围.【解析】(1)∵()22820440x x x -+=-+>∴()()221940f x ax a x a =++++<在R 上恒成立∵0a ≠,则()()20Δ414940a a a a <⎧⎪⎨=+-+<⎪⎩,解得12a <-综上所述:a 的取值范围为1,2⎛⎫-∞- ⎪⎝⎭.(2)∵()()0,1f c f a b c ==++,则c 为奇数,a b +为偶数 当Z x ∈时,则有:1.若a b 、均为偶数时,则2ax bx +为偶数∴()20f x ax bx c =++≠,即方程()0f x =无整数根2.若a b 、均为奇数时,则有①若x 为偶数时,则2ax bx +为偶数∴()20f x ax bx c =++≠,即方程()0f x =无整数根②若x 为奇数时,则()2ax bx x ax b +=+为偶数∴()20f x ax bx c =++≠,即方程()0f x =无整数根综上所述:方程()0f x =无整数根(3)()()2221f x x k x k =+-+由题意可得()()222Δ21402112120k k k f k k ⎧=-->⎪-⎪->⎨⎪=+>⎪⎩,解得2k<-则k 的取值范围为(),2∞--.。

二次函数知识点总复习附解析

二次函数知识点总复习附解析

二次函数知识点总复习附解析
一、定义
二次函数是由一元二次多项式表示的函数,它的形式为:
f(x)=ax2+bx+c(a≠0)。

这个函数的曲线是一条开口向上的抛物线,其
图像上的点满足二次恒定关系。

二、二次函数的性质
1、图像的形状:当a>0,抛物线的顶点是变量x的最小值;当a<0,
抛物线的顶点是变量x的最大值。

2、顶点:顶点的坐标是(-b/2a,f(-b/2a)),即(x,y)=(-b/2a,c-b^2/4a)。

3、极值:若a>0,则抛物线的变量x的最小值是顶点,即最大值是
f(-b/2a);若a<0,则抛物线的变量x的最大值是顶点,即最小值是f(-
b/2a)。

4、求根:二次函数的根是-b±√(b^2—4ac)/2a,可能有0个、1
个或2个,具体情况取决于b^2—4ac的值。

5、无穷极:抛物线的两条边都是x轴,因此抛物线的两条边都是x
轴的无穷极。

三、二次函数的应用
1、力学中的抛物线:物体受重力的作用,经过其中一点后抛出的轨
迹是抛物线,由于重力加速度的恒定性,即可用抛物线方程表示物体的轨迹。

2、统计学中的回归曲线:在一些情况下,其中一个自变量与其中一应变量之间存在着一种最佳拟合的抛物线,这种抛物线就是统计学中的回归曲线,抛物线方程数学表示就是二次函数。

二次函数知识点总结归纳及考查重点与常见题型

二次函数知识点总结归纳及考查重点与常见题型

二次函数知识点归纳及考查重点与常见题型一、二次函数概念:1.二次函数的概念:一般地,形如2y a x b x c=++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。

这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c,可以为零.二次函数的定义域是全体实数.2. 二次函数2y a x b x c=++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵a b c ,,是常数,a是二次项系数,b 是一次项系数,c 是常数项.二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。

2. 2y a x c =+的性质:上加下减。

3. ()2=-的性质:y a x h左加右减。

4. ()2y ax h k =-+的性质: 三、二次函数图象的平移 1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y ax h k =-+,确定其顶点坐标()h k ,;⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成 m c bx ax y +++=2(或mc bx ax y -++=2) ⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或cm x b m x a y +-+-=)()(2)四、二次函数()2y ax h k =-+与2y a x b x c =++的比较 从解析式上看,()2y ax h k =-+与2y a x b x c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b a c b y a xa a -⎛⎫=++ ⎪⎝⎭,其中2424b a c b h k a a -=-=,. 五、二次函数2y a x b x c=++图象的画法 五点绘图法:利用配方法将二次函数2y a x b x c =++化为顶点式2()y a x h k=-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y a x b x c=++的性质 1.当0a >时,抛物线开口向上,对称轴为2bx a=-,顶点坐标为2424b a c b a a ⎛⎫-- ⎪⎝⎭,. 当2b x a<-时,y 随x 的增大而减小;当2bx a>-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-.2.当0a <时,抛物线开口向下,对称轴为2bx a =-,顶点坐标为2424b a c b a a ⎛⎫-- ⎪⎝⎭,.当2b x a<-时,y 随x 的增大而增大;当2b x a>-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a-.七、二次函数解析式的表示方法1. 一般式:2y a x b x c=++(a ,b ,c 为常数,0a ≠); 2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠); 3. 两根式:12()()y a xxxx =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化. 八、二次函数的图象与各项系数之间的关系 1. 二次项系数a二次函数2y a x b x c=++中,a 作为二次项系数,显然0a ≠. ⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大;⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02b a -<,即抛物线的对称轴在y 轴左侧; 当0b =时,02b a -=,即抛物线的对称轴就是y 轴; 当0b <时,02b a->,即抛物线对称轴在y 轴的右侧.⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02b a ->,即抛物线的对称轴在y 轴右侧; 当0b =时,02b a -=,即抛物线的对称轴就是y 轴; 当0b <时,02b a-<,即抛物线对称轴在y 轴的左侧.总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异”总结: 3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正;⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0;⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负.总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的. 二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式. 九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y a x b x c=++关于x 轴对称后,得到的解析式是2y a x b x c=---; ()2y ax h k =-+关于x 轴对称后,得到的解析式是()2y ax h k =---; 2. 关于y 轴对称2y a x b x c=++关于y 轴对称后,得到的解析式是2y a x b x c=-+; ()2y ax h k =-+关于y 轴对称后,得到的解析式是()2y ax h k =++; 3. 关于原点对称 2y a x b x c =++关于原点对称后,得到的解析式是2y a x b x c=-+-;()2y ax h k =-+关于原点对称后,得到的解析式是()2y ax h k =-+-; 4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y a x b x c=++关于顶点对称后,得到的解析式是222by a x b x c a=--+-; ()2y ax h k =-+关于顶点对称后,得到的解析式是()2y ax h k =--+. 5. 关于点()m n ,对称()2y ax h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20a x b x c ++=是二次函数2y a x b x c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b a c ∆=->时,图象与x 轴交于两点()()1200A xB x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200a x b xc a ++=≠的两根.这两点间的距离21A B x x =-② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1'当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >;2' 当0a <时,图象落在x轴的下方,无论x 为任何实数,都有0y <.2. 抛物线2y a x b x c=++的图象与y 轴一定相交,交点坐标为(0,)c ; 3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程; ⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶根据图象的位置判断二次函数2y a x b x c=++中a,b,c的符号,或由二次函数中a,b,c的符号判断图象的位置,要数形结合;⑷二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x轴的一个交点坐标,可由对称性求出另一个交点坐标.⑸与二次函数有关的还有二次三项式,二次三项式2(0)a xb xc a++≠本身就是所含字母x的二次函数;下面以0a>时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:图像参考:2y=-2x 22y=3(x+4)22y=3x2y=-2(x-3)22-32十一、函数的应用二次函数应用⎧⎪⎨⎪⎩刹车距离何时获得最大利润最大面积是多少二次函数考查重点与常见题型1.考查二次函数的定义、性质,有关试题常出现在选择题中,如:已知以x 为自变量的二次函数2)2(22--+-=m m x m y 的图像经过原点, 则m 的值是2.综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如:如图,如果函数b kx y +=的图像在第一、二、三象限内,那么函数12-+=bx kx y 的图像大致是( )3.考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如:已知一条抛物线经过(0,3),(4,6)两点,对称轴为35=x ,求这条抛物线的解析式。

二次函数根的分布

二次函数根的分布

即(2a 3)(a 2) 0 由 x a 1 2得
3 a 2, 2
a2
(1)1 a
2时,
x
(a
1)(a
2)
2(a
2)
(2)
3 2
a
x [6,12)
1时, x (1 a)(a
2)x2([a9, 4
22)3) 4
例3.已知函数f(x)=mx2+(m-3)x+1的图象与x轴的 交点至少有一个在原点的右侧,求实数m的取 值范围 .
1 2
时,
x
a,
01 1 2X=a
01
x
x
X=a
y有最大值a2, x 1时, y有最小值f (1) 2a 1.
2.若关于x的方程 x2 (a 1)x 1 0 有两个相
等的实数根,且两根在区间[0,2]上,求实数a的范围.
解:设f (x) x2 (a 1)x 1(如图)
(a 1)2 4 0
(1)试写出g(t)的函数表达式; (2)作g(t)的图象并写出g(t)的最小值
解: f (x) (x 2)2 8
8 1 t 2
g(t
)
f (t) t2 4t 4(t 2)
f (t 1) (t 1)2 4(t 1) 4(t 1)
【巩固练习】
1.当a 0,0 x 1时,求函数f (x) x2 2ax的最大最小值.
3.关于x的方程x2+(a2-1)x+(a-2)=0的一根比1大,
另一根比1小,则有( C )
(A)-1<a<1 (B)a<-2或a>1 (C)-2<a<1 (D)a<-1或a>2
4.设x,y是关于m的方程m2-2am+a+6=0的两个实

【经典例题】二次函数根的分布

【经典例题】二次函数根的分布

二次函数根的分布一、知识点二次方程根的分布与二次函数在闭区间上的最值归纳一元二次方程02=++c bx ax 根的分布情况 表一:(两根与0的大小比较即根的正负情况)分布情况两个负根即两根都小于0()120,0x x << 两个正根即两根都大于0()120,0x x >>一正根一负根即一个根小于0,一个大于0()120x x <<大致图象(0>a )得出的结论()00200b a f ∆>⎧⎪⎪-<⎨⎪>⎪⎩ ()00200b a f ∆>⎧⎪⎪->⎨⎪>⎪⎩ ()00<f大致图象(<a )得出的结论()00200b a f ∆>⎧⎪⎪-<⎨⎪<⎪⎩ ()00200b a f ∆>⎧⎪⎪->⎨⎪<⎪⎩ ()00>f综合结论(不讨论a)()00200b a a f ∆>⎧⎪⎪-<⎨⎪⋅>⎪⎩ ()00200b a a f ∆>⎧⎪⎪->⎨⎪⋅>⎪⎩ ()00<⋅f a表二:(两根与k 的大小比较)分布情况两根都小于k 即k x k x <<21, 两根都大于k 即k x k x >>21, 一个根小于k ,一个大于k 即21x k x <<大致图象(>a )得出的结论()020b k a f k ∆>⎧⎪⎪-<⎨⎪>⎪⎩ ()020b k a f k ∆>⎧⎪⎪->⎨⎪>⎪⎩ ()0<k f大致图象(<a )得出的结论()020b k a f k ∆>⎧⎪⎪-<⎨⎪<⎪⎩ ()020b k a f k ∆>⎧⎪⎪->⎨⎪<⎪⎩ ()0>k f综合结论(不讨论a )()020b k a a f k ∆>⎧⎪⎪-<⎨⎪⋅>⎪⎩ ()020b k a a f k ∆>⎧⎪⎪->⎨⎪⋅>⎪⎩ ()0<⋅k f akkk表三:(根在区间上的分布)二、经典例题分布情况两根都在()n m ,内两根有且仅有一根在()n m ,内(图象有两种情况,只画了一种)一根在()n m ,内,另一根在()q p ,内,q p n m <<<大致图象(>a )得出的结论()()0002f m f n b m na ∆>⎧⎪>⎪⎪>⎨⎪⎪<-<⎪⎩()()0<⋅n f m f()()()()0000f m f n f p f q ⎧>⎪<⎪⎨<⎪⎪>⎩或()()()()00f m f n f p f q <⎧⎪⎨<⎪⎩ 大致图象(<a )得出的结论()()0002f m f n b m na ∆>⎧⎪<⎪⎪<⎨⎪⎪<-<⎪⎩()()0<⋅n f m f()()()()0000f m f n f p f q ⎧<⎪>⎪⎨>⎪⎪<⎩或()()()()00f m f n f p f q <⎧⎪⎨<⎪⎩ 综合结论(不讨论a )——————()()0<⋅n f m f()()()()⎪⎩⎪⎨⎧<<00q f p f n f m f例1:(实根与分布条件)已知βα, 是方程024)12(2=-+-+m x m x 的两个根,且βα<<2 ,求实数m 的取值范围。

二次函数的根与像知识点总结

二次函数的根与像知识点总结

二次函数的根与像知识点总结二次函数是高中数学中的重要概念之一,对于学生来说,了解和掌握二次函数的根与像是必不可少的。

本文将就二次函数的根与像的知识点进行总结,并介绍相应的计算方法和应用。

一、二次函数的根二次函数的一般形式为:y = ax^2 + bx + c,其中a、b、c为实数且a≠0。

二次函数的根指的是函数y = ax^2 + bx + c的零点或解。

1. 判别式和根的性质二次函数的判别式Δ=D=b^2-4ac,根据判别式的值可以判断二次函数的根的情况:1. 当Δ>0时,二次函数有两个不相等的实根;2. 当Δ=0时,二次函数有两个相等的实根;3. 当Δ<0时,二次函数没有实根,但有两个共轭复根。

2. 根的计算(1)当Δ>0时,二次函数有两个不相等的实根。

根的计算公式为: x1 = (-b + √Δ) / (2a)x2 = (-b - √Δ) / (2a)(2)当Δ=0时,二次函数有两个相等的实根。

根的计算公式为:x = -b / (2a)(3)当Δ<0时,二次函数没有实根,但有两个共轭复根。

根的计算公式为:x1 = [-b + √(Δi)] / (2a)x2 = [-b - √(Δi)] / (2a)其中,i表示虚数单位,Δi = |Δ|。

二、二次函数的像二次函数的像是指函数y = ax^2 + bx + c的值域,也就是在坐标系中,函数的所有可能的y值。

1. 函数的开口方向和最值二次函数的开口方向由二次项系数a的正负决定:1. 当a>0时,二次函数开口向上,函数的最值是最小值;2. 当a<0时,二次函数开口向下,函数的最值是最大值。

2. 定点与对称轴二次函数的定点是函数的顶点,也是函数的最值点。

二次函数的对称轴是通过顶点垂直于x轴的直线。

3. 值域的确定二次函数的值域由定点和开口方向决定:1. 当a>0时,值域为函数的最小值y的值至正无穷,即(-∞, y];2. 当a<0时,值域为负无穷至函数的最大值y的值,即[y, +∞)。

二次方程根的分布情况归纳

二次方程根的分布情况归纳

二次方程根的分布情况归纳二次方程的一般形式为ax² + bx + c = 0,其中a、b、c为实数且a≠0。

对于一个二次方程,可以通过求解其判别式来分析其根的分布情况。

判别式的公式为Δ = b² - 4ac,Δ可以通过求解来判断方程的根的类型和个数。

1.当Δ>0时,方程有两个不相等的实根。

当判别式Δ大于零时,可以得出两个不相等的实根。

这意味着方程图像与x轴有两个交点,也就是图像在x轴上的截距为两个不相等的实数。

这种情况下,方程有两个解,一个解对应于图像与x轴交点的左侧,另一个解对应于图像与x轴交点的右侧。

2.当Δ=0时,方程有两个相等的实根。

当判别式Δ等于零时,可以得出两个相等的实根。

这意味着方程图像与x轴只有一个交点,也就是图像在x轴上的截距相等。

这种情况下,方程有两个相等的解,对应于图像与x轴交点的位置。

3.当Δ<0时,方程没有实根,但有两个共轭复根。

当判别式Δ小于零时,可以得出方程没有实根。

这意味着方程图像与x轴没有交点,图像完全位于x轴的上方或下方。

但是,方程仍然有两个根,称为共轭复根,其中一个虚部为正,一个虚部为负。

这种情况下,方程的解无法在实数域内找到,需要在复数域中寻找。

在二次方程根的分布情况中,可以根据判别式Δ的正负来进行分类。

其中,Δ>0时有两个不相等的实根,Δ=0时有两个相等的实根,而Δ<0时没有实根但有两个共轭复根。

此外1.当a=0时,方程退化为一次方程。

当二次方程中a的系数为0时,方程退化为一次方程,形式为bx + c = 0。

这种情况下,方程只有一个解,即x = -c/b,对应于直线与x轴的交点。

2. 当b² - 4ac = 0时,方程有两个相等的实根。

当判别式Δ等于零时,有特殊情况。

此时,方程的两个根相等,即x₁=x₂=-b/2a。

此时方程图像在x轴上的截距相等,方程只有一个解。

总结起来,二次方程根的分布情况主要根据判别式Δ的正负进行分类。

二次函数根的分布和最值

二次函数根的分布和最值

二次方程根的分布与二次函数在闭区间上的最值归纳1、一元二次方程02=++c bx ax 根的分布情况 设方程()200ax bx c a ++=≠的不等两根为12,x x 且12x x <,相应的二次函数为()20f x ax bx c =++=,方程的根即为二次函数图象与x 轴的交点,它们的分布情况见下面各表〔每种情况对应的均是充要条件〕表一:〔两根与0的大小比拟即根的正负情况〕分布情况两个负根即两根都小于0()120,0x x << 两个正根即两根都大于0()120,0x x >>一正根一负根即一个根小于0,一个大于0()120x x <<大致图象〔>a 〕得出的结论()00200b a f ∆>⎧⎪⎪-<⎨⎪>⎪⎩ ()00200b a f ∆>⎧⎪⎪->⎨⎪>⎪⎩ ()00<f大致图象〔<a 〕得出的结论()00200b a f ∆>⎧⎪⎪-<⎨⎪<⎪⎩ ()00200b a f ∆>⎧⎪⎪->⎨⎪<⎪⎩ ()00>f综合结论〔不讨论a〕()00200b a a f ∆>⎧⎪⎪-<⎨⎪⋅>⎪⎩ ()00200b a a f ∆>⎧⎪⎪->⎨⎪⋅>⎪⎩ ()00<⋅f a表二:〔两根与k 的大小比拟〕分布情况两根都小于k 即 k x k x <<21, 两根都大于k 即 k x k x >>21, 一个根小于k ,一个大于k 即21x k x <<大致图象〔>a 〕得出的结论()020b k a f k ∆>⎧⎪⎪-<⎨⎪>⎪⎩ ()020b k a f k ∆>⎧⎪⎪->⎨⎪>⎪⎩ ()0<k f大致图象〔<a 〕得出的结论()020b k a f k ∆>⎧⎪⎪-<⎨⎪<⎪⎩ ()020b k a f k ∆>⎧⎪⎪->⎨⎪<⎪⎩ ()0>k f综合结论〔不讨论a〕()020b k a a f k ∆>⎧⎪⎪-<⎨⎪⋅>⎪⎩ ()020b k a a f k ∆>⎧⎪⎪->⎨⎪⋅>⎪⎩ ()0<⋅k f akkk表三:〔根在区间上的分布〕分布情况两根都在()n m ,内两根有且仅有一根在()n m ,内〔图象有两种情况,只画了一种〕 一根在()n m ,内,另一根在()q p ,内,q p n m <<<大致图象〔>a 〕得出的结论()()0002f m f n b m na ∆>⎧⎪>⎪⎪>⎨⎪⎪<-<⎪⎩()()0<⋅n f m f()()()()0000f m f n f p f q ⎧>⎪<⎪⎨<⎪⎪>⎩或()()()()00f m f n f p f q <⎧⎪⎨<⎪⎩ 大致图象〔<a 〕得出的结论()()0002f m f n b m na ∆>⎧⎪<⎪⎪<⎨⎪⎪<-<⎪⎩()()0<⋅n f m f()()()()0000fm f n f p f q ⎧<⎪>⎪⎨>⎪⎪<⎩或()()()()00f m f n f p f q <⎧⎪⎨<⎪⎩综合结论〔不讨论a〕——————()()0<⋅n f m f()()()()⎪⎩⎪⎨⎧<<00q f p f n f m f 根在区间上的分布还有一种情况:两根分别在区间()n m ,外,即在区间两侧12,x m x n <>,〔图形分别如下〕需满足的条件是〔1〕0a >时,()()00f m f n <⎧⎪⎨<⎪⎩; 〔2〕0a <时,()()0f m f n >⎧⎪⎨>⎪⎩对以上的根的分布表中一些特殊情况作说明: 〔1〕两根有且仅有一根在()n m ,内有以下特殊情况:1︒ 假设()0f m =或()0f n =,那么此时()()0f m f n <不成立,但对于这种情况是知道了方程有一根为m或n ,可以求出另外一根,然后可以根据另一根在区间()n m ,内,从而可以求出参数的值。

二次函数实根分布总结

二次函数实根分布总结

结论:一元二次方程 ax2bxc0(a0)在区间上的
实根分布问题.
(1)一元二次方程有且仅有一个实根属于(m, n)的
充要条件是: f (m) f (n) 0.
(2) 一元二次方程两个实根都属于(m,n)的充要条件是:
实根分布问题一般考虑四个方面,即: (1)开口方向
(2)判别式 b24ac
(3)对称轴 x b 2a
(4)端点值 f ( m ) 的符号。
设f (x) ax2 bx c(a 0) 一元二次方程ax2 bx c 0(a 0) 的两根为x1, x2 (x1 x2 )
( 1 ) 方 程 两 根 都 小 于 k ( k 为 常 数 )
x y
y
3(0 x2 mx
x
1
3)
有两组实数解
整理得 x2 (m 1) x 4 0在[0, 3]上有两个不同的实根.
0

0
m 1 2
3
f (0) 4 0
解得3 m 10 . 3
f (3) 9 3(m 1) 4 0
故m的取值范围是(3, 10 ] 3
解:由题ff((1-)1f)(f2()0)00 ((42m m11))((82mm71))00
1412mm7812
1m1
4
2
例3.就实数k的取值,讨论下列关于x的方 程解的情况: x22x3k
解:将方程视为两曲线 y x2 2 x 3与y k相交,
其交点横坐标便是方程的解,由图知:
k 4时,无解; k=4或k 3时,有两解; 4k 3时有四个解; k 3时有三个解.
二次方程根分布问题总结
一.函数零点
一般地,对于函数y=f(x),我们把使f(x)=0 的实数x就做函数y=f(x)的零点.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初三数学培优卷:二次函数考点分析
★★★二次函数的图像抛物线的时候应抓住以下五点: 开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. ★★二次函数y=ax 2
+bx+c (a ,b ,c 是常数,a ≠0) 一般式:y=ax 2
+bx+c ,三个点
顶点式:y=a (x -h )2
+k ,顶点坐标对称轴
顶点坐标(-2b
a
,244ac b a -).
顶点坐标(h ,k ) ★★★a b c 作用分析
│a │的大小决定了开口的宽窄,│a │越大,开口越小,│a │越小,开口越大,
a ,
b 的符号共同决定了对称轴的位置,当b=0时,对称轴x=0,即对称轴为y 轴,当a ,b 同号时,对称轴x=-2b
a
<0,即对称轴在y 轴左侧,当a ,b•异号时,对称轴x=-
2b
a
>0,即对称轴在y 轴右侧,
c•的符号决定了抛物线与y 轴交点的位置,c=0时,抛物线经过原点,c>0时,与y 轴交于正半轴;c<0时,与y•轴交于负半轴,以上a ,b ,c 的符号与图像的位置是共同作用的,也可以互相推出. 交点式:y=a(x- x 1)(x- x 2),(有交点的情况) 与x 轴的两个交点坐标x 1,x 2 对称轴为2
2
1x x h +=
一元二次方程02
=++c bx ax 根的分布情况
设方程()200ax bx c a ++=≠的不等两根为12,x x 且12x x <,相应的二次函数为()2
0f x ax bx c =++=,
方程的根即为二次函数图象与x 轴的交点,它们的分布情况见下面各表(每种情况对应的均是充要条件)
表一:(两根与0的大小比较即根的正负情况)
大致图象(
>a )
得出的结论
()00200b a f ∆>⎧⎪⎪
-<⎨⎪>⎪⎩ ()0
0200
b a f ∆>⎧⎪⎪
->⎨⎪>⎪⎩ ()00<f

致图象(
<a )
得出的结论
()00200b a f ∆>⎧⎪⎪
-<⎨⎪<⎪⎩ ()0
0200
b a f ∆>⎧⎪⎪
->⎨⎪<⎪⎩ ()00>f

合结论(不讨论
a

()00200b a a f ∆>⎧⎪⎪-<⎨⎪⋅>⎪⎩ ()0
0200
b a a f ∆>⎧⎪⎪->⎨⎪⋅>⎪⎩ ()00<⋅f a

布情况
两根都小于k 即 k x k x <<21, 两根都大于k 即 k x k x >>21, 一个根小于k ,一个大于k 即
21x k x <<
大致图象(
>a )
得出的结论
()020b k a f k ∆>⎧⎪⎪
-<⎨⎪>⎪⎩ ()0
20
b k a f k ∆>⎧⎪⎪
->⎨⎪>⎪⎩ ()0<k f

致图象(
<a )
得出的结论
()020b k a f k ∆>⎧⎪⎪
-<⎨⎪<⎪⎩ ()0
20
b k a f k ∆>⎧⎪⎪
->⎨⎪<⎪⎩ ()0>k f

合结论(不讨论
a

()020b k a a f k ∆>⎧⎪⎪-<⎨
⎪⋅>⎪⎩ ()0
20
b k a a f k ∆>⎧⎪⎪->⎨
⎪⋅>⎪⎩ ()0<⋅k f a
k
k
k

布情况
两根都在()n m ,内
两根有且仅有一根在()n m ,内
(图象有两种情况,只画了一种) 一根在()n m ,内,另一根在()
q p ,内,q p n m <<<
大致图象(
>a )
得出的结论
()()0002f m f n b m n
a ∆>⎧⎪
>⎪⎪
>⎨⎪⎪<-<⎪⎩
()()0<⋅n f m f
()()()()0
000f m f n f p f q ⎧>⎪
<⎪⎨<⎪⎪>⎩
或()()()()0
0f m f n f p f q <⎧⎪⎨
<⎪
⎩ 大致图象(
<a )
得出的结论
()()0002f m f n b m n
a ∆>⎧⎪
<⎪⎪
<⎨⎪⎪<-<⎪⎩
()()0<⋅n f m f
()()()()0000
f
m f n f p f q ⎧<⎪>⎪⎨>⎪⎪<⎩
或()()()()0
0f m f n f p f q <⎧⎪⎨<⎪⎩
综合结论(不讨论
a

——————
()()0<⋅n f m f
()()()()⎪⎩⎪

⎧<<0
0q f p f n f m f 根在区间上的分布还有一种情况:两根分别在区间()n m ,外,即在区间两侧12,x m x n <>,(图形分别如下)
需满足的条件是
(1)0a >时,()()00f m f n <⎧⎪⎨
<⎪⎩; (2)0a <时,()()0
f m f n >⎧⎪⎨>⎪⎩
对以上的根的分布表中一些特殊情况作说明: (1)两根有且仅有一根在()n m ,内有以下特殊情况:
1︒ 若()0f m =或()0f n =,
则此时()()0f m f n <g 不成立,但对于这种情况是知道了方程有一根为m 或n ,可以求出另外一根,然后可以根据另一根在区间()n m ,内,从而可以求出参数的值。

如方程()2
220
mx m x -++=在区间()1,3上有一根,因为()10f =,所以()()()22212mx m x x mx -++=--,另一根为2
m
,由213
m <<得
2
23
m <<即为所求; 2︒ 方程有且只有一根,且这个根在区间()n m ,内,即0∆=,此时由0∆=可以求出参数的值,然后再将参数
的值带入方程,求出相应的根,检验根是否在给定的区间内,如若不在,舍去相应的参数。

如方程
24260x mx m -++=有且一根在区间()3,0-内,求m 的取值范围。

分析:①由()()300f f -<g 即
()()141530m m ++<得出15314m -<<-
;②由0∆=即()2
164260m m -+=得出1m =-或32
m =,当1m =-时,根()23,0x =-∈-,即1m =-满足题意;当32m =时,根()33,0x =∉-,故3
2
m =不满足题意;
综上分析,得出15
314
m -<<-或1m =-
例1、已知二次方程()()221210m x mx m +-+-=有一正根和一负根,求实数m 的取值范围。

例2、已知方程()2210x m x m -++=有两个不等正实根,求实数m 的取值范围。

例3、已知二次函数()()()222433y m x m x m =+-+++与x 轴有两个交点,一个大于1,一个小于1,求实数m 的取值范围。

例4、已知二次方程()22340mx m x +-+=只有一个正根且这个根小于1,求实数m 的取值范围。

1.解:由 ()()2100m f +<g 即 ()()2110m m +-<,从而得1
12
m -<<即为所求的范围。

2解:由
()()0102200m f ∆>⎧⎪-+⎪-
>⎨⎪>⎪⎩
g ⇒ ()2
18010
m m m m ⎧+->⎪>-⎨⎪>⎩ ⇒
330m m m ⎧<->+⎪⎨>⎪⎩⇒
03m <<-
3m >+
3解:由 ()()210m f +<g 即 ()()2210m m ++<g ⇒ 1
22
m -<<
即为所求的范围。

4解:由题意有方程在区间()0,1上只有一个正根,则()()010f f <g ⇒ ()4310m +<g ⇒ 1
3
m <-即为所求范围。

(注:本题对于可能出现的特殊情况方程有且只有一根且这个根在()0,1内,由0∆=计算检验,均不复合题意,计算量稍大)。

相关文档
最新文档